MEMORANDUM FOR NEW MEXICO ENVIRONMENT DEPARTMENT

Mr. Cornelius Amindyas Hazardous Waste Bureau 4131 Montgomery NE Albuquerque, NM 87109

FROM: 49 CES/CEV 550 Tabosa Ave Holloman AFB NM 88330-8458

- SUBJECT: Hazardous and Solid Waste Amendments (HSWA) Quarterly Report for Apr Jun 2003, EPA ID NM6572124422
 - 1. In accordance with Module IV, Section E, of the Holloman AFB HSWA permit, attached please find the Jan-March, 2004 Quarterly Report.
 - 2. If you have any questions please contact me at (505) 572-5395.

Daniel K. Holmquist

Environmental Restoration 49 CES/CEV

Attachment: *HSWA Quarterly Report, Jan-March, 2004* (1 copy) Cc (wrattachment):

Ms. James Bearzie Hazardous Waste Bureau 2905 Rodeo Park Drive East Santa Fe, NM 87505-6303 Steve Jetter NMED-HWD Hazardous Waste Bureau 4131 Montgomery NE Albuquerque, NM 87109

James Harris USEPA, Region 6 PD-N, 1445 Ross Ave., Ste 12 Dallas, TX 75202-2733

HOLLOMAN AIR FORCE BASE NEW MEXICO

. Calinada

HAZARDOUS AND SOLID WASTE AMENDMENT

QUARTERLY ACTIVITY REPORT

EPA ID NM6572124422

Activity Period: January 1 to March 31, 2004

I.0 INTRODUCTION

This quarterly report has been prepared in accordance with the Resource Conservation and Recovery Act (RCRA) Permit and the Hazardous and Solid Waste Amendments (HSWA) Permit for Holloman Air Force Base (HAFB or Holloman). These permits require periodic reporting of activities related to corrective actions at Solid Waste Management Units (SWMUs) located at HAFB.

The report summarizes activities and available data concerning corrective actions at actively remediated SWMUs across HAFB between January 1, 2003 and March 31, 2004. Table 1 briefly summarizes the status of each site undergoing the corrective action process. Table 1 provides the SWMU number, site name, corresponding Environmental Restoration Program (ERP) site number, the status of each site, the activities conducted during the reporting period and the schedule for additional activities (if needed).

Section 2.0 provides the details of specific activities such as work plan preparation, report preparation, investigations and remediation activities. Section 3.0 summarizes planned future activities for each site during next quarter. The report certification statement is presented in Section 4.0

2.0 CORRECTIVE ACTION ACTIVITIES THIS QUARTER

Between January 1 and March 31, 2004, preparations for further remediation activities were conducted, work plans were submitted and approved by NMED, and investigations were initiated at SWMU 123, AOC-2, SS-61 (AOC-1001), SS-57 (Officer's Club) and DP62 (Ritas Draw). The FT-31 draft report was completed and submitted to NMED for review. In February, a petition for site closeout and removal of SWMUs from the RCRA permit was submitted to NMED. During a February 2004 site meeting, NMED rejected the petition for some sites because these sites lack characterization of the subsurface beneath the waste placement. A scope of work was negotiated to characterize site conditions at several of these sites. If the additional characterization is favorable, NMED can then remove these sites from the Base permit.

Remediation related activities conducted during the period consisted of more pothole excavations and free product measurements at SS-59 (T-38) and landfarm compliance sampling although the Landfarm remained empty during this quarter.

The Base met with the NMED Air Quality Bureau (AQB) in January to present the results of modeling emissions from the existing FT-31 Landfarm and the proposed T-38 Landfarm. The emissions issue was raised internally at the Base and was presented to NMED AQB in order to determine if the Base Title V Air Permit could be impacted by the landfarm operation.

2.1 Old Fire Training Area FT-31 (SWMUs 39, 127, 135, 170, 171)

The Draft Report was submitted for review by NMED. Comments from NMED are pending. A final report will be issued when these comments are received and resolved.

2.2 T-38 Test Cell (SS-59)

Continued remediation activities at T-38 consisted of gauging fluid levels in test pits. Late in Q1, work began to remove clean soil overburden from above the contaminated zone.

The treatment for soil at T-38 is landfarming. Preparations for siting and constructing the landfarm were initiated in quarter 3 of 2003 but were halted by a potential conflict with emissions from the landfarm and the Base-wide Title V Air Permit. Activities resumed in Q1. Historical soil and recent analytical results (test pits) were used to model potential air emissions using multiple configurations of the Landfarm (both size and lift thickness). In January, the model results were submitted to NMED AQB so they could review and determine if they wished to regulate the landfarm activities under the Base's Title V Air Permit.

The discharge permit for the T-38 Landfarm was submitted to the NMED Groundwater Quality Bureau in March 2004. Internal Base clearances for utilities and siting procedures were also initiated during Q1. Landfarm construction will begin when the Air emission issue is resolved.

2.3 Landfarm at FT-31

No soil was placed in the Landfarm during Q1. However, quarterly monitoring and sampling as required by the temporary discharge permit was performed during February. A draft discharge permit was presented by NMED for review by HAFB in late February. The quarterly report, prepared in accordance with the discharge permit, was submitted to the NMED Groundwater Quality Bureau on March 12, 2004.

2.4 Ritas Draw (DP-62)

Field work (additional soil sampling and laboratory analysis) including debris removal was completed during Q1 (late March). When available (Q2) a draft report will be prepared and submitted to NMED for review. In addition to summarizing the soil results, the report will document debris removal.

2.5 AOC-2 Tower Site

Approval with modifications to the AOC-2 work plan was received from NMED in February 2004. The field investigation (collection and analysis of soil and groundwater samples) is scheduled for Q2 (April).

2.6 SS-61 (AOC-1001) Building 1001

The workplan for SS-61 was submitted to NMED and USACE for review in November 2003 and approved in January 2004. The first round of groundwater monitoring and gauging was conducted in February 2004. The next round will be conducted in May 2004. Due to an internal Air Force requirement, an interim Feasibility Report without the complete four quarters of data will be prepared for delivery to Air Combat Command in September 2004.

2.6 SWMU-123 POL Yard

NMED completed review of the work plan and provided comments in February. An additional boring was incorporated into the field program. Soil sampling was initiated in late March. A DRAFT summary of the soil data for the site is attached. Groundwater sampling is scheduled for April 2004.

2.7 SS-57 Officer's Club

Soil, groundwater and vapor samples were collected in March 2004 to support a riskedbased closure of this site. Preliminary DRAFT data collected at the site is attached.

3.0 ACTIVITES FOR SCHEDULED FOR THE NEXT QUARTER

Activities for the next quarter (Fourth Quarter, January 1 to March 31, 2004) will include:

- 1. Delivery of Draft Final Ritas Draw Report (DP-62)
- 2. Delivery of Draft Final FT-31 Closure Report.
- 3. Completion of field activities at POL Yard Wash Rack and Tank (SWMU 123).
- 4. Continuation of groundwater monitoring for natural attenuation at SS-61 (AOC-1001).
- 5. Construction of the T-38 Landfarm.
- 6. Finalization of the operating permit at the FT-31 Landfarm.
- 7. Resolution of the air quality issues pertaining to Landfarm operation.

4.0 CERTIFICATION STATEMENT

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to be the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Daniel K. Holmquist Name

49 CES/CEVR Organization

Remedial Project Manager **Position**

Por we Signature/Date

.

.

TABLES

HSWA Quarterly Report January 1 to March 31, 2004 EPA ID# NM6572124422 Page 6 of 9

Revision 0

06/22/04

TABLE 1 QUARTER 1, 2004 STATUS SUMMARY (JANUARY 1 TO MARCH 31, 2004) ONGOING CORRECTION ACTION SITES HOLLOMAN AIR FORCE BASE, NEW MEXICO

SWMU NO.	SITE NAME	SITE STATUS	ACTIVITES CONDUCTED (THIS PERIOD)	SCHEDULED ACTIVITIES
39,127,135, 170 & 171	Fire Training Area (ERP Site FT-31)	Field Activities Complete	Draft Report to NMED for Review in March 2004	Deliver Closure Report by end of Q1, 2004
123	Building 704 Waste Oil Tank (ERP Site N/A)	Undergoing Corrective Action	NMED approved the work plan in Feb 2004. Field work began in late March with soil sampling.	Field work to completed in Q2 2004.
136	King 1 Bio Vent Site (ERP Site)	Corrective Action Complete	Placed on Basis for Determination (Permit Modification)	Awaiting final removal from permit by NMED.
139 & 140	Lake Holloman (139) Lake Stinky (140)	Corrective Action Complete	Placed on Basis for Determination (Permit Modification)	Awaiting final removal from permit by NMED.
141	Pad 9 Washrack ERP Site	Site Requires Additional Characterization	None. Work plan complete and approved by NMED Funding will be available in FY05.	None until funding is available in FY05.

()

TABLE 1 QUARTER 1, 2004 STATUS SUMMARY (JANUARY 1 TO MARCH 31, 2004) ONGOING CORRECTION ACTION SITES HOLLOMAN AIR FORCE BASE, NEW MEXICO

148 to 154	Holloman Sewage Lagoons	Corrective Action Complete	Routine inspection and maintenance to fences conducted in Q1. Minor repairs as needed.	Routine inspection and maintenance in FY05
229	T-38 Test Cell (ERP Site SS-59)	Undergoing Corrective Action	Continued pothole excavation and fluid level measurements in November 2003. Began removal of clean overburden at the site. Submitted application for Landfarm to NMED Met with NMED Air Quality Bureau about the relationship of the Landfarm to the Base Title V Air Permit .	Construct Landfarm in Q2. Excavate at site in Q3 and Q4.
AOC-2	North Tower Site	Investigation Requested	Work Plan approved by NMED with modification to analytical regiment in February 2004.	Perform Field work and investigation in Q2.
AOC-Q	BX Service Station (ERP Site SS-17)	Undergoing Corrective Action	None	Resume excavation and landfarming of soil in Q3 and Q4 2004.
AOC-T	Main POL Spill (EPR Sites SS-02 and SS-05)	Undergoing Corrective Action	Work Plan approved in January 2004.	Excavation scheduled for Q2 and Q3 of 2004.

()

TABLE 1 QUARTER 1, 2004 STATUS SUMMARY (JANUARY 1 TO MARCH 31, 2004) ONGOING CORRECTION ACTION SITES HOLLOMAN AIR FORCE BASE, NEW MEXICO

AOC-V	Officer's Club (EPR Site SS-57)	Undergoing Corrective Action	Performed additional investigation in March 2004. Results will be evaluated by the RAM Group	Perform additional field investigations in Q1, 2004
AOC-1	Chemical Agent Site (ERP Site DP-64)	Undergoing Corrective Action Preliminary Grid walk and visual site inspection for additional exposed agent conducted in FY 2000.	Huntsville USACE mobilized to site in March 04. Work to begin in April as planned.	Initiation of field activities scheduled for Q2 and early Q3 2004.
AOC-3	Ammunition Disposal Site (ERP Site DP-63)	Undergoing Corrective Action PA/SI Completed 2000	Received funding from USACE to Bhate and UXO subcontractor.	Field work will be performed during 2004. If money becomes available, work plan for additional work will be prepared.
AOC-4	West POL Fuel Spill Site	Corrective Action Complete	None. No funding available in 2004. Requested funding for FY05	No work planned in FY04
AOC-1001	Building 1001 (ERP Site SS-61)	Undergoing Corrective Action	Work Plan approved by NMED in January 04 Field work (quarterly groundwater sampling and gauging) initiated in February 2004.	Field work scheduled for Q2, Q3 & Q4

DRAFT

DRAFT PRELIMINARY DATA TABULATION AT SWMU 123

		Soil Screen	ing Levels		=														
Chemical	Calculated	d (µg/kg)	NMED	(µg/kg) ¹	SDG No.	129202	129202	129364	129364	129365	129365								
	Residential	Industriai	Residentiai	Industrial	Sample No.	MW-1	MW-1a	MW-2	MW-3	MW-4	MW-5								
Carbon Chain (µp/kg)	A Wire bran .	the stands of	Sec. 1	Sale and an all	1. S.		1. A. M.	A State of the	the second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	14 F. F. C.			14	4 . A	A State of the	and the second second	70.00	Sec. Sec.
C06 - C10 (DRO)	NA	NA				8.4	9.3	0.52	ND	ND	ND					1	[
C10 - C22 (GRO)						26.0	25.0	1.50	ND	ND	ND								
C22 - C32 (ORO)						ND	NĎ	ND	ND	ND	ND								
Total (C10 - C32)	693,333	2,233,333																	
VOCs (ug/kg)	······································	a sin the second	a lite as	1.15 M		C In Gold	A de la la		1. Di . 1	and the state	T Water	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Wy aging		1000	ALC: COR	ten 11 11	25
1.2.4-Trimethylbenzene	59,600	197,000	52,200	191,000		429	481	ND	ND	ND	ND				1	1	1		
1.3.5-Trimethylbenzene*	25,600	69,100	22,300	66,900		112	127	ND	ND	ND	ND					1	1		
Benzene	11,200	24,500	27,000	73,600		2,280	2,520	1,080	ND	ND	ND								
Ethylbenzene*	86,600	86,600	10,600,000	25,400,000		1,460	1,670	337	ND	ND	ND								
Isopropylbenzene*	265,000	369,000	700,000	2,730,000		122	139	17J	ND	ND	ND								
n-Propylbenzene*	62,100	62,100	53,200	53,200		153	174	13J	ND	ND	ND								
Naphthaiene ¹	61,200	61,200	71,900	98,300		129	142	ND	ND	ND	ND								
p-isopropyttoluene*	63,000	63,000				34J	38J	ND	ND	ND	ND								
sec-Butylbenzene						29J	30.J	ND	ND	ND	ND								
Toluene*	219,000	219,000	248,000	248,000		7,330	7,490	ND	ND	ND	ND								
Xylenes, total*	81,200	81,200	132,000	132,000		2,560	2,920	136	ND	ND	ND						1		
								ND	ND	ND	ND								
SVOCs (µg/kg)	the second second	22.201 201.20	1	Charles and		12	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						91-92 ·	H 🕅 👘 🐪 🐪	44 A.				14 11
2.4-Dimethylphenol	1					27	31	1	1	1		1		[]	T	1	1		
2-Methylnaphthalene					1	38	57	ND	ND	ND	ND				· · · · · · · · · · · · · · · · · · ·		1		
2-Methhylphenol]	105	115												
4-Methylphenol						62	71												
Naphthalene]	55	76	ND	ND	ND	ND								
Phenol)	29	34												
Metals (mg/kg)	See	1	1. A.	1 A		1 1 1 1 1			all and			1.000		1.00		24.			
Antimony						ND	ND	ND	ND	ND	ND							1.	
Arsenic			4	18]	0.014	0.020	0.070	0.061	0.068	0.078								
Barium			5,450	78,300		0.165	0.190	0.081	0.026	0.032	0.049								
Beryllium						ND	ND	ND	ND	ND	ND								
Cadium			74	8,600		ND	ND	ND	ND	ND	ND								
ChromiumVI			234	3,400		0.034	0.039	0.029	0.010	0.023	0.025								
Cobolt						0.009	0.010	0.004	ND	ND	ND								
Copper						0.016	0.017	0.011	0.008	0.012	0.015								
Lead			400	750		0.021	0.025	ND	ND	ND	ND								
Molybdenum						0.051	0.056	0.043	0.037	0.117	0.11								
Nickel						.019J	0.023	0.015	0.003	0.004	0.006								
Selenium			391	5,680	4	ND	ND	0.182	0.161	0.253	0.261				-			+	
Silver			391	5,680		0.016	0.004	ND	0.004	ND	ND					1			1
Thallium				L		ND	ND	ND	ND	ND	ND								
Vanadium					-	0.038	0.035	0.056	ND	0.075	0.151					1	1.		
Zinc	1				-	0.116	0.182	0.085	0.030	0.038	0.163	1							
Mercury (eimental)			100,000	341	J	ND	ND	ND	L NO	ND	ND			1		. 1			

Organic Lead (tetraethyl)	6.11	0.07
Chromium III	100,000	100,000
Methyl Mercury	6.11	68.4

 $\left(1+\frac{\theta}{2}\right)$

J denot SSL for CTU-C-SZ are averaged TPH values of Diesel#2/crankcase oil, #3 and #6 fuel oil, and Kerosene and jet fuel in the NMED TPH Screening Guidelines.

SSL for VOCs are calculated values using the data and equations provided in the NMED, Technical Background Document for Development of Soil Screening Levels. 1: Values in () are results by Method 8260B, not 8270C.

* Saturated concentration was used when calculating HAFB site specific SSL values.

§ Denotes February 2004 NMED SSL values.

** Denotes samples from SDG 128044, analyzed 4/26/04

Note: The lab concentrations were on wet-wt basis. The detected concentrations were converted to dry-wt, bases using the following relationship.

C = concentrations on dry-wt. basis

C. = concentrations on wet-wt. basis

 $\theta_w =$ water content (0.26 g/cm³-soil) $\rho_b \approx$ bulk density of soil (1.55 g/cm³)

٠

Soil S	creeni	na l	Leve	s
the second se			_	
	and the second second			

Chemical	Calculate	ed (µg/kg)	NMED	μg/kg) ^s								
	Residential	Industrial	Residential	Industrial	OP03-10	OP03-11	OP04-10	OP04-11	OP07-9	OP07-10	OP08-8	OP08-9
Carbon Chai	n (µg/kg)	Sale and the		1. A. A.	20 5 . 2	1000		and the state of the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	20. 20	
C06 - C10	NA	NA			238	114.	535	1,050	ND	ND	ND	9.50
C10 - C22	2 (GRO)				150	162	481	1,270	ND	ND	ND	11.00
C22 - C32	? (ORO)								ND	ND	ND	ND
Total (C10	893,333	2,233,333	Ĺ		388	276	1,016	2,320	ND	ND	ND	ND
VOCs (µg/kg	1 Water August	317 St. 7 11	1.229-448-32-11	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8 8 S	341 MA	Sec. 1	1. 1. 1. 1. 1.	1.1.1		1999 A. 1	St. 1974
1.2,4-Trim	59,600	197,000	52,200	191,000					ND	ND	ND	ND
1,3,5-Trim	25,600	69,100	22,300	68,900					ND	ND	ND	ND
Benzene	11,200	24,500	27,000	73,600					ND	ND	ND	ND
Ethylbenz	86,600	86,600	10,600,000	25,400,000					ND	ND	ND	ND
Isopropyli	265,000	369,000	700,000	2,730,000					ND	ND	ND	ND
n-Propylb	62,100	62,100	53,200	53,200					ND	ND	ND	ND
Naphthale	61,200	61,200	71,900	98,300	627	279J	1,210	2,210	ND	ND	ND	ND
p-Isoprop	63,000	63,000							ND	ND	ND	ND
Toluene*	219,000	219,000	248,000	248,000					ND	ND	ND	ND
Xylenes,	t 81,200	81,200	132,000	132,000					ND	ND	ND	ND
2-Methylr	aphthalene				1,130	493	3,400	4,590	ND	ND	ND	ND
Metals (mg/i	kg)	1000	1. A. S.	10 10 2.00	2000 B. 1980	19.946	1.1	Set an Designed		Als - S	and the	
Arsenic			4	18	1.57	1.59	1.69	1.31	2.24	2.34	2.45	1.88
Barium			5,450	78,300	30.00	32.90	16.00	21.70	43.50	17.60	23.40	20,70
Cadium			74	8,600					ND	ND	ND	ND
ChromiumVi			234	3,400	2.33	2.57	1.34	2.87	3.34	1.14	2.24	2.23
Lead			400	750					ND	ND	ND	ND
Selenium			391	5,680					ND	0.63	ND	ND
Silver			391	5,680					ND	ND	0.74	0.20
Mercury (elm	iental)		100,000	341	L				ND	ND	ND	ND
Organic Lead	d (tetraethyl)		6.11	0.07	,							
Chromium II	ł		100,000	100,000	1							
Methyl Merci	ury		6.11	68.4								

J denotes value between MDL and Detection Limit for Reporting (DLR).

SSL for C10 - C32 are averaged TPH values of Diesel#2/crankcase oil, #3 and #6 fuel oil, and Kerosene and jet fuel in the NMED TPH Screening Guidelines.

SSL for VOCs are calculated values using the data and equations provided in the NMED, Technical Background Document for Development of Soil Screening Levels.

1: Values in () are results by Method 8260B, not 8270C.

* Saturated concentration was used when calculating HAFB site specific SSL values.

§ Denotes February 2004 NMED SSL values.

Note: The lab concentrations were on wet-wt.basis. The detected concentrations were converted to dry-wt. bases using the following relationship.

$$C_{d} = C_{w} \left(1 + \frac{\theta_{w}}{\rho_{b}} \right)$$

where,

C_d = concentrations on dry-wt. basis

- C = concentrations on wet-wt. basis
- $\theta_{w} = water content (0.26 g/cm³-soil)$
- ρ_b = bulk density of soil (1.55 g/cm³)

.

.

()

()

2

DP Locations South Excavation Conformation Sample Results (Collected by Bhate)

		Schill Screen	and I availa																											
Chemical	Calculated	t (ya/kg)	NMED	(uofka?	SDG Heo.		127927	127827		127927		127927		127927						1261008		1281008		1281006		1261006		1281008		1261008
	Residential	Industrial	Residential	Industrial	Sample No.	DP01-4	DP01-4	DP01-10	DP01-11	DP01-11	DP02-8	DP02-9	DP02-10	DP02-10	DP03-10	DP03-11	DP04-10	DP04-11	OP05-0	DP05-0-1345	DP05-10	DP05-10-1345	DP06-7	DP08-7-1325	DP06-10	DP06-10-1325	DPOS-7	P08-7-1627	DP09-0 DF	/05-0-1627
Carbon Chain (ughg)		STATES OF		- 5 -	1. 1. 1. 1. 1. 1. 1.	1000	V 7. 8 X	1997 (N	er (* 191	1.0	14 (M 1977)	(d.S43	A. 1997	×.* · · ;		·			Sector (CO)			1			22	1 de lore				Carl State
C06 - C10 (DRO)	NA	NA					NO	800.0		ND		12.0		61.0	1		1		1	NO		ND		ND		NO		NC		NO
C10 - C22 (GRO)					1		ND	2270.0		NO		8.9		71.0						7.7		NÛ		ND		7.4		NC N		ND
C22 - C32 (ORO)]		NO	8		ND		NO		NO						24.0		NO		ND		44.0		NC I		ND
Total (C10 - C32)	663,333,	2,233,333																												
VOCe banded London	13 . 42	· · / / · · · ·	Sec. 45 mil	eng sting	1 24 1	····· 2-··· 4	2 40 mm			nu :				1. A.					0.00	1000		11. C. C. C.	77 F.	C. The Train	4.5	1. 1				
1,2,4-Trimethylbenzene	56,600	197,000	52,200	191,000		NÖ	ND	39,200	ND	ND	NO	174	ND	4,350	13,500	9,870	21,800	17,100	NO	1 ND	NO	NO	NO	ND	NO	NO	ND	NO	NO	NO
1,3,5-Trimethytbenzene*	25,600	69,100	22,300	66,900		NO	NO	13,400	ND	ND	NO	54	ND	1,310	5,030	3,810J	7,680	5,870	ND	ND	ND	NO	NO	ND	NO	NO	NO	NO	NO	NO
Benzene	11,200	24,500	27,000	73,600		NO	NO		ND	ND	ND		ND		2,360,	2,140J	ND	NO	ND	ND	ND	NO	ND	ND	NO	ND	NO	NO	NO	ND
Ethylbenzene*	85,600	86,600	10,600,000	25,400,000		NO	1.7J	52,700	ND .	1.2J	ND	249	ND	3,630	17,200	13,200	42,000	31,700	NO	ND	NO	ND	ND	ND	ND	NÖ	NO	ND	ND	ND
sopropylbenzene"	265,000	309,000	700,000	2,730,000		NO	NO	10,300	ND	NO	ND	132	ND	767	2,590.1	1,960J	7,170	5,450	ND	NO	ND	NO	ND	NO	NO	ND	ND	ND	NO	ND
n-Propythenzene*	62,100	62,100	53,200	53,200		NO	NO	15,600	ND	ND	NO	229	NO	1,290	4,7303	3,430J	11,100	6,390	NO	NO	ND	ND	NO	ND	ND	NO	NO	ND	NO	ND
Naphthalene"	\$1,200	61,200	71,900	98,300		NO	NO	5,670	NO	NÜ	ND	93	NO	764	ND	NO	4,880.1	4,290J	NO	ND	ND	ND	NO	ND	ND	NO	NO	ND	ND	ND
p-isopropyRoluene*	\$3,000	63,000				NO	ND	3,940	ND	ND	ND	27.5	ND	397	1,200./	896.7	3,290,7	2,540,1	NO	NO	ND	ND	NO	ND	NO	NO	ND	NO	NO	ND
sec-Butytbenzene								5,280				103		305										-						
Toluene*	219,000	219,000	248,000	248,000		NO	2.1J	52,800	ND	2.12	NÖ		ND	17J	17,800	14,300	4,320.1	3,050,1	ND	ND	NO	ND	NO	ND	NÔ	ND	NO	NC	ND	ND
Xylenes, total"	81,200	\$1,200	132,000	132,000		NO	1.7J	95,200	ND	1.23	ND	133	ND	3,520	29,300	21,200	56,000	41,500	NO	ND	NO	ND	NO	ND	ND	NO	NO	ND	ND	ND
SVOCA (upha)	ms i M	1946		A Since Second	Link		W B C					· · · · · ·	1	8	(e.; N)(4		256.3		(All the second se			17 . S		and the first of	.e				1.36.2	
Diethylphthalate												1,420																		
2-Methyinaphthalana						NO	ND	8,340	ND	NO	ND		ND	1	ND	NO	ND	ND	ND	ND	NO	NO	ND	ND	NO	ND	ND	NO	NO	NO

Naphthalene					3,410																				
Hetais (hghg)	Support the Locker supply	We want to a state of the			100.00	1	1. 2 kg min	and the second		5. 20 20 20	98 (M. S.	1997 (P. 1997)	1 3-40 2	-97 £2	(101 to 11)	1.1.1.1.1	1000	1000	Maria - Dr. M.	A & 10.40	· · · · · · · · · · · · · · · · · · ·		11-2024	South States	100 C C C C C C C C C C C C C C C C C C
Antimony				NÛ	NO		NO		NO	ND										(I					
Ansenic	4	18		1.45	0.27		0.25		0.71	0.18						3.67	3.47		4.81		4.95		4.72		4.27
Barium	5,450	78,300		43.5	18.6		25		15.1	15.1						58.10	39.60		66.70		77.10		37.10		41.60
Benyliyum				NO	ND		NO		ND	ND								1	_						
Cadium	74	5,600		NO	ND		NO		ND	ND						ND	NÖ		ND		NO		ND	_	ND
ChromiumVI	234	3,400		6.75	1.50		3.05		1.84	1.61						6.25	2.21		8.34		6.19		5.39		7.65
Cobolt				27	0.64		1.04		0.85	0.64															
Copper			-	3.13	0.83		1.4		1.04	0.53				-											
Land	400	750		NQ	ND		NO		ND	NO						1 12	ND		2.41		2.51		0.54		1.77
Molyodenum				0.59	ND		ND		0.55	 ND															
Nickel				4.85	1.46		2.17		1.77	1.34															
Selenam	391	5,660		2.65	4.06		3.96		3.72	3.32						ND	ND		ND		NÛ		ND		NO
Silver	391	5,680		NO	ND		NO		NO	 NO			1			ND	ND		ND		ND	-	ND		ND
The Form				0.36	D.12		0.18		0.13	0.12												1			
Vanadium				11,9	2.49		5.16		5.87	4.25								_							
Zec				19.1	3.79		7.81	1	3.92	3.59								1							
Mercury (elemental)	100,000	341		NO	ND		ND		ND	NO.						ND	NO		NO		0.22	<u> </u>	ND		NO
Organic Lead (tetraethyf)	6.11	0.07																							
Chromium M	100,000	100,000																							
Method Mentury	6.11	68.4																							
,																									

PCRe (mp/kg)	ON ND	ND
1016	ND	ND
1221	ND	ND
1232	ND	ND
1242	ND	ND
1248	ND	ND
1254	ND	ND
1250		

J denotes value between MOX and Detection Link to Reporting (DLR). 55% for C10 - C20 are paragraph Thi water of Destrict/Dankcess of 45 and 46 facil and Ansatence and jot hall in the IMED This Screening Guidelines. 5% for VO22 and Anciberts deviae values in a face and application provided in the IMED, Technical Background Document for Development of Sci Screening Lines. 1. Vision (1) an instants by Method DBDR) and RTDC. 5. Standard Gonzanton units and instant calculation (MR) alls specific SSL values. 5. Danates February 2001 MMED SSL values

Bhate Project No.: 9030232

where,

Page 1 of 2

.

.

()

DP Locations South Excavation Confirmation Sample Results (Collected by Bhase)

Chemical Calculated (units)	1
Residential Industrial	
Cerous Cheir gerag	
C10 - C22 (GRO)	
C22 - C32 (ORO)	
1668 (C10 - C32) 845,333 2233,333	
1,2,4-Trimethythenzene 59,600 197,000	
1,3,5-Trimethytoenzene* 25,600 69,100	
Benzene 11,200 24,500	
soprovibenzene* 265,000 369,000	
n-Propylbenzene* 62,100 62,100	
Naphthalene ¹⁷ 61,200 61,200	
p-tsopropytoluene 53,000 53,000	
Toluene* 219,000 219,000	
Xyienes, total" 81,200 81,200	
SVOCE (HORA)	
2 Methylnaphthalene	
Naphthatena	
Histata (anghag)	
Arsonic	
Barlum	
Cadvan	
ChromiumVI	
Copper	
Lead	
Notyberium Nickel	
Selenium	
Date: Thatium	
Vanedium	
Zinc Marcury (elemental)	
Chromium B	
Methyl Harcury	
1221 1232 1242 1248 1254	
1260	
J denotes value between MOL and Detection Limit for Reports	
SSL for C10 - C32 are averaged TPH values of Diese#/2/crani	
 Values in () are results by Method \$260B, not \$270C. 	
* Saturated concentration was used when calculating HAFB	
§ Denotes February 2004 NMED SSL values.	
§ Denotes February 2004 MMED SSL values.	
§ Denotes Folonumy 2004 MidED SSL values.	
§ Denctes February 2004 MAIED SSL values.	
\$ Dendes February 2004 MAED SSL wakes.	
\$ Denotes Fabruary 2004 MAED SSL values. Note: The Nub concentrations were on wet-at-basis. The data $\left[\overline{C_{\mu}} = C_{\mu} \left(1 + \frac{\theta_{\mu}}{2} \right) \right]$	
§ Dendes February 7004 MAED SSL makes Note: The tab concentrations were on work-tables. The data $C_{\mu} = C_{\mu} \left(1 + \frac{\rho_{\mu}}{\rho_{\mu}} \right)$	
§ Dendes Forwary 2004 MAED SS: where Note: The SD: conservations were on work-tasks. The data $C_{\mu} = C_{\mu} \left(1 + \frac{\rho_{\mu}}{\rho_{\mu}}\right)$ where	
\$ Dendes Fernery 2004 MIED SSL makes. Note: The lab concertificors were on well-at besits. The drip $\boxed{C_{g} = C_{+}\left(1 + \frac{\rho_{g}}{\rho_{g}}\right)}$ where, $C_{g} = concertificors or$	
\$ Dendes Fernery 2004 MAED SSL where Note: The bit constraints on user on user with tasks. The data	
§ Dendes Fernery 2004 MAED SSL where: Note: The bit concentrations were on work basis. The data $\boxed{C_{\mu} = C_{\nu}\left(1 + \frac{\rho_{\mu}}{\rho_{\mu}}\right)}$ where: $C_{\mu} = concentrations is concentrations on concentrations on$	
\$ Dendes Ferrury 2004 MAED SSL where Note: The gal concentrations were on unit-of basis. The data $\boxed{C_{\mu} + C_{-}\left(1 + \frac{\rho_{-}}{\rho_{-}}\right)}$ where, $C_{\mu} = concentrations is in C_{-} = concentrations is in C_{-$	
§ Dendes Ferrury 2004 MAED SSL where Name The bit constraintions were on work of basis. The dire $ \frac{C_{\mu} = C_{\mu} \left(1 + \frac{\theta_{\mu}}{\rho_{\mu}}\right)}{\omega^{2}} $ where, $C_{\mu} = constraintions on C_{\mu} = constraintions on e_{\mu} = water content SD_{\mu}^{2}$	

DRAFT
Groundwater Analytical Data for Officers Club (SS-57)
Holloman AFB, New Mexico

Sample	SB01	SB02	SB03	SB04	SB05	MW01	MW02	MW03	MW05	MW07	MW07- DUP
Date sampled	2/11/2004	2/10/2004	2/12/2004	2/11/2004	2/11/2004	2/13/2004	2/12/2004	2/13/2004	2/14/2004	2/13/2004	2/13/2004
Carbon Chain (µg/L)	the stand of the			1 2 2 2	读令 : [1] 法指的		1				
Date analysed	2/27/2004	2/27/2004	2/26/2004	2/27/2004	2/27/2004	2/26/2004	2/26/2004	2/26/2004	2/26/2004	2/26/2004	2/26/2004
C6 - C12 (GRO)	2200	2250	2250	2200	2200	2250	2150	2200	2150	2200	2200
C12 - C28 (DRO)	2200	3400	3600	3200	2200	2250	2150	2200	2150	2200	2200
C28 - C36 (ORO)	2200	2250	2250	2200	2200	2250	2150	2200	2150	2200	2200
Total (C12 - C36)	4400	5650	5850	5400	4400	4500	4300	4400	4300	4400	4400
VOCs (µg/L)	a second	(1)、数	and cons	NY 12-2-3-1		and designed as				1000 C	
Date analysed	2/19/2004	2/19/2004	2/20/2004	2/19/2004	2/19/2004	2/24/2004	2/20/2004	2/24/2004	2/24/2004	2/24/2004	2/24/2004
Acetone	5.6	5	5	0.5	5	5	5	5	120	5	5
Benzene	0.5	0.5	0.23	0.5	0.5	0.5	0.5	0.3	0.35	0.5	0.5
2-Butanone	44	11	5	5	5	5-	5	5	5	5	5
Carbon disulfide	0.48	3.5	0.5	0.5	0.5	0.5	0.5	1.3	0.5	0.5	0.5
Chloroform	0.5	0.5	0.5	0.5	0.5	0.36	0.5	0.5	0.5	3.2	3.9
Cyclohexane	1	0.79	1	1	1	1.	1	0.86	1	1	1
1,3-Dichlorobenzene	0.38	0.5	0.5	0.58	0.5	0.37	0.43	0.42	0.5	0.59	0.58
1,4-Dichlorobenzene	0.93	0.5	0.5	0.5	0.5	0.5	0.69	0.5	0.5	0.5	0.5
Dichlorodifluoromethane	1	1	1	1	1	0.5	1	11	1	1	1
Ethylbenzene	0.26	40	0.5	0.5	0.5	0.5	0.54	8.4	0.5	0.5	0.5
Hexane	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Isopropylbenzene	0.5	6	0.5.	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Methyl cyclohexane	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.55	0.5	0.5	0.5
Toluene	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Trichloroethene	0.5	0.5	0.5	0.5	0.5	0.5	0.5	3.5	0.5	0.5	0.5
Trichlorofluoromethane	1	1	1	1	1	0.63	1	0.5	1	1	1
1,2,4-Trimethylbenzene	0.5	0.56	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
1,3,5-Trimethylbenzene	0.5	0.53	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Xylenes, total	0.5	2.1	0.5	0.5	0.5	0.5	0.5	0.28	0.5	0.25	0.27

Notes:

Values in bold are detected values or J values, all other values are non-detect.

Non-detect values are taken as 1/2 detection limit. To calculate total TPH (C12 - C36), non-detect values were replaced with 1/2 detection limit. NA denotes not available or not sampled.

4

()

 $\langle \rangle$

Soil Analytical Data for Officers Club (SS-57) Holloman AFB, New Mexico

Sample	SB01	SB01	SB02	SB02	SB02	SB03	SB03	SB04	SB04	SB05	SB05
Depth (ft bgs)	1	2	1	2	2	1	2	1	2	1	2
Date Sampled	2/11/2004	2/11/2004	2/10/2004	2/10/2004	2/10/2004	2/11/2004	2/11/2004	2/10/2004	2/10/2004	2/10/2004	2/10/2004
Carbon Chain (ug/kg)											
Date Analysed	2/25/2004	2/25/2004	2/24/2004	2/24/2004	2/27/2004	2/25/2004	2/25/2004	2/24/2004	2/24/2004	2/24/2004	2/24/2004
C6 - C12	47000	65000	55000	130000	840000	50000	60000	60000	65000	47000	55000
>C12 - C	47000	65000	630000	8800000	9900000	50000	60000	60000	65000	47000	55000
>C28 - C	47000	65000	55000	59000	100000	50000	60000	60000	65000	47000	55000
Total (C12 - C36)	94000	130000	685000	8859000	1000000	100000	120000	120000	130000	94000	110000
VOCs (ug/kg)											
Date Analysed	2/18/2004	2/18/2004	2/12/2004	2/12/2004		2/18/2004	2/18/2004	2/12/2004	2/12/2004	2/12/2004	2/12/2004
Acetone	25.5.	35	22	1200	NA	27.5	32.5	30.5	36	32.5	30
Benzene	2.55	3.5	2.8	120	NA	2.75	3.25	3.05	3.6	3.25	3
2-Butanone	25.5	35	28	1200	NA	27.5	32.5	30.5	36	32.5	30
Carbon disulfide	2.55.	3.5	3	120	NA	2.75	3.25	3.05	3.6	3.25	3
Cyclohexane	5.	7	5.5	245	NA	5.5	6.5	6	7	6.5	6
1,3-Dichlorobenzene	2.55	3.5	2.8	120	NA	2.75	3.25	3.05	3.6	3.25	3
1,4-Dichlorobenzene	2.55	3.5	2.8	120	NA	2.75	3.25	3.05	3.6	3.25	3
Ethylbenzene	2.55	3.5	2.8	120	NA	2.75	3.25	3.05	3.6	3.25	3
Hexane	2.55	2.3	0.61	79	NA	2.75	1.2	3.05	3.6	0.82	3
Isopropylbenzene	2.55	3.5	2.8	87	NA	2.75	3.25	3.05	3.6	3.25	
Methyl cyclohexane	2.55	3.5	2.8	120	NA	2.75	3.25	3.05	3.6	3.25	3
Toluene	2.55	3.5	2.8	120	NA	2.75	3.25	3.05	3.6	3.25	3
1,2,4-Trimethylbenzene	2.55	3.5	2.8	120	NA	2.75	3.25	3.05	3.6	3.25	
1,3,5-Trimethylbenzene	2.55	3.5	2.8	120	NA	2.75	3.25	3.05	3.6	3.25	3
Xylenes, total	2.3	4.4	1.2	120	NA	3.3	2.9	2.7	1.7	2.8	1.2
SVOCs (ug/kg)											
Date Analysed	2/16/2004	2/16/2004	2/17/2004	2/17/2004		2/13/2004	2/16/2004	2/16/2004	2/16/2004	2/16/2004	2/17/2004
Acetophenone	185	235	4100	3800	NA	205	210	220	225	200	20
Benzo (a) anthracene	185	530	4100	3800	NA	205	210	220	225	200	20
Benzo (b) fluoranthene	185	460	4100	3800	NA	205	210	220	225	200	20:
Benzo (k) fluoranthene	185	370	4100	3800	NA	205	210	220	225	200	20:
Benzo (g,h,i) perviene	185	260	4100	3800	NA	205	210	220	225	200	20:
Benzo (a) pyrene	185	530	4100	3800	NA	205	210	220	225	200	20:
1,1'-Biphenyl	185	235	4100	3800	NA	205	210	220	225	200	20:
Chrysene	185	660	4100	3800	NA	205	210	220	225	200	20:
Dibenzofuran	185	235	4100	3800	NA	205	210	220	225	200	20:
Fluoranthene	185	830	4100	3800	NA	NA	210	220	225	200	20
Fluorene	185	235	4100	3800	NA	NA	210	220	225	200	20
Indeno (1,2,3-cd)	185	220J	4100	3800	NA	NA	210	220	225	200	20
2-Methylnaphthalene	185	235	4100	3800	NA	NA	210	220	225	200	20
Naphthalene	185	235	4100	3800	NA	NA	210	220	225	200	20
Phenanthrene	185	170	4100	3800	NA	NA	210	220	225	200	20
Рутепе	185	790	4100	3800	NA	NA	210	220	225	200	20

Notes:

Values in bold are detected values or J values, all other values are non-detect.

Non-detect values are taken as 1/2 detection limit.

To calculate total TPH (C12 - C36) non-detect values were replaced with 1/2 detection limit and are shown bold.

NA: Not available or not sampled.

ft bgs: Feet below ground surface.

٠

()

Soil Analytical Data for Officers Club (SS-57) Holloman AFB, New Mexico

Sample	SV01	SV01	SV02	SV02	SV03	SV03	SV03 DUP	
Depth (ft bgs) 2-3		7-8 2-3		7-8	2-3	7-8	7-8	
ate Sampled 2/16/2004		2/16/2004	2/16/2004	2/16/2004	2/16/2004	2/16/2004	2/16/2004	
Carbon Chain (ug/kg)								
Date Analysed	2/27/2004	2/27/2004	2/27/2004	2/27/2004	2/27/2004	2/27/2004	2/27/2004	
C6 - C12	65000	55000	55000	60000	55000	65000	60000	
>C12 - C	65000	55000	55000	60000	55000	65000	60000	
>C28 - C	65000	55000	55000	60000	55000	65000	60000	
Total (C12 - C36)	130000	110000	110000	120000	110000	130000	120000	
VOCs (ug/kg)								
Date Analysed	2/19/2004	2/19/2004	2/19/2004	2/20/2004	2/19/2004	2/19/2004	2/19/2004	
Acetone	31	30	31	35	25.5	27.5	27.5	
Benzene	NA							
2-Butanone	NA							
Carbon disulfide	NA	NA	NA	NA	NA	NA	NÂ	
Cyclohexane	NA	NA.	NA	NA	NA	NA	NA	
1,3-Dichlorobenzene	NA							
1,4-Dichlorobenzene	NA							
Ethylbenzene	3.1	3	3.1	3.5	2.55	2.75	2.75	
Hexane	3.1	3	3.1	0.81	0.82	2.75	2.75	
Isopropylbenzene	NA							
Methyl cyclohexane	NA							
Toluene	NA	NA	NA.	NA	NA	NA	NA	
1,2,4-Trimethylbenzene	NA							
1,3,5-Trimethylbenzene	NA							
Xylenes, total	2.9	1.2	1.2	3.6	1.4 J	1.3	1.2	
SVOCs (ug/kg)								
Date Analysed	2/24/2004	2/24/2004	2/24/2004	2/24/2004	2/24/2004	2/24/2004	2/24/2004	
Acetophenone	NA							
Benzo (a) anthracene	NA							
Benzo (b) fluoranthene	NA							
Benzo (k) fluoranthene	NA							
Benzo (g,h,i) perylene	NA							
Benzo (a) pyrene	NA							
1,1'-Biphenyl	NA							
Chrysene	NA							
Dibenzofuran	NA							
Fluoranthene	NA							
Fluorene	NA							
Indeno (1,2,3-cd)	NA							
2-Methylnaphthalene	NA							
Naphthalene	NA							
Phenanthrene	NA							
Рутере	NA							

Notes:

Values in bold are detected values or J values, all other values are non-detect.

Non-detect values are taken as 1/2 detection limit.

To calculate total TPH (C12 - C36) non-detect values were replaced with 1/2 detection limit and are shown bold.

NA: Not available or not sampled.

ft bgs: Feet below ground surface.

,

Soil Vapor Analytical Data for Officers Club, (SS-57) Holloman, AFB New Mexico

Sample	SV01	SV01	SV02	SV02	SV03	SV03	SV03-Dup
Depth (ft bgs)	3	8	3	8	3	8	8
Date Sampled	4/19/2004	4/19/2004	4/20/2004	4/20/2004	4/20/2004	4/20/2004	4/20/2004
Carbon Chain (mg/m ³)							
Date Analysed	4/23/2004	4/23/2004	4/23/2004	4/23/2004	4/23/2004	4/23/2004	4/23/2004
TPH (GRO)	0.31	0.30	0.34	0.53	0.20	0.21	NA
TPH (DRO)	35.715	35.715	35.715	35.715	35.715	35.715	35.715
VOCs (mg/m ³)							
Date Analysed	4/26/2004	4/26/2004	4/26/2004	4/26/2004	4/26/2004	4/26/2004	
Benzene	0.0013	0.0013	0.00135	0.00135	0.00135	0.0013	NA
Ethylbenzene	0.00175	0.00175	0.00185	0.00185	0.0018	0.00175	NA
Methyl tert-butyl ether	0.006	0.006	0.006	0.006	0.006	0.006	NA
2-Propanol	0.00395	0.0020	0.0042	0.0042	0.0041	0.00395	NA
Toluene	0.0015	0.0015	0.0016	0.0016	0.0052	0.0015	NA
m/p-Xylenes	0.00175	0.0054	0.00185	0.00185	0.0018	0.00175	NA
o-Xylene	0.0039	0.0010	0.00185	0.00185	0.0018	0.00175	NA
Naphthalene	0.051	0.0085	0.009	0.009	0.0085	0.0085	NA NA

Notes:

Values in bold are detected values or J values, all other values are non-detect.

Non-detect values are taken as 1/2 of the detection limit.

NA: Not available or not sampled.

Concentration for DRO was obtained as mass/volume. Volume was obtained by multiplying the flow rate (0.2L/min*7min=1.4L).

ft bgs : Feet below ground surface

 $\langle \rangle$

Soil Geotechnical Parameters for Officers Club (SS-57) Holloman AFB, New Mexico

Parameters	Unit	GB-0106	SV01-ST	SV01-ST	SV02-ST	SV02-ST	SV03-ST	SV03-ST
Depth	ft bgs	4-6	2-4	7-9	2-4	7-9	2-4	7-9
Date analysed		2/25/2004	2/25/2004	2/25/2004	2/25/2004	2/25/2004	2/25/2004	2/25/2004
Volumetric air	cm3-air/cm3-soil	0.244	0.138	0.142	0.190	0.152	0.183	0.233
Volumetric water content	cm3-water/cm3-soil	0.092	0.288	0.252	0.192	0.253	0.255	0.054
Total soil porosity		0.336	0.426	0.394	0.382	0.405	0.438	0.287
Bulk density	g-soil/cm ³ -soil	1.73	1.53	1.59	1.66	1.57	1.47	1.86
Fractional organic carbon (foc)		0.013	0.016	0.012	0.007	0.006	0.008	0.011

Notes:

fts bgs: Feet below groundsurface

t