DEPARTMENT OF THE AIR FORCE
HEADQUARTERS 377TH AIR BASE WING (AFMC)

(1 6 SEP 1994

377 ABW/EMR
2000 Wyoming Blvd SE
Kirtland AFB NM 87117-5659

Mr. Steve Zappe

Hazardous and Radioactive Materials Bureau
New Mexico Environment Department

525 Camino de los Marquez, Ste 4

Santa Fe NM 87502

Dear Mr. Zappe

This letter serves as our request for amendment of the Post-Closure Plan (PCP), Sew-
age Lagoons and Golf Course Main Pond, (Attachment 1, Ref 1) Kirtland AFB (KAFB),
New Mexico, as approved by the NMED H&RMB on 6 July 1994. This amendment ad-
dresses (1) the significant chromium (Cr) observation during first quarter Phase 1 sam-
pling; (2) a modification of the ground-water sampling procedure based on slow recharge
rates observed at the sewage lagoon wells; (3) the deferral of background sampling from
KAFB production Well #4 until the scheduled second quarter sampling (October 1994);
(4) the addition of a fifth round of quarterly ground-water monitoring; and (5) a method
for evaluating analytical results that may be outliers.

Phase I Chromium Observations

As we reported in the initial Phase 1 quarterly monitoring report for 1 May - 31 July
1994, all Cr values (total and hexavalent) were below the NM Water Quality Control
Commission (WQCC) standard of 0.050 milligrams per liter (mg/L) except for the sample
collected from monitor well KAFB0502 (Attachment 1, Ref 3), located at the northeast
corner of the sewage lagoons. Both the hexavalent and total Cr concentrations in the
sample collected from this well were 0.130 mg/L; analytical results from a split sample
obtained by NMED personnel (Terry Davis and Frank Sanchez) from this well were
nearly identical (Attachment 1, Ref 2). These results were unexpected as all previous
samples collected from this well had no Cr levels above the WQCC standard.

Ground-Water Sampling Method
The first quarter monitoring report (Attachment 1, Ref 2) describes the ground-water

sampling method used at KAFB. Based on the hypothesis that suspended sediments were
the cause of previous observations of excessive ground-water Cr concentrations, a low-
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flow, minimum purge-volume procedure, described by Puls and Barcelona (1989) and
Puls and Powell (1992) (Attachment 1, Ref'4), was used successfully at the golf course
main pond wells. However, the slow recharge of ground water at the sewage lagoon
wells resulted in intermittent pumping of these wells. Although the stabilization of
ground-water quality parameters (pH, electrical conductivity, and turbidity) suggested
that fresh, representative ground water had entered the well screen/casing interval to be
sampled, this may not have been true for well KAFB0502.

We propose to use the submersible pump to purge all (or nearly all) water encountered
in each sewage lagoon well, including that contained in the 10-foot sump in each well. If
unforeseen conditions or equipment problems suggest that some stagnant water may re-
main in the well after recovery, a second borehole volume will be removed and the well
allowed to recover (possibly overnight) prior to the collection of ground-water samples.

Background Sampling

The PCP states that, in the event the concentration of total Cr in any ground-water
sample exceeds one-half the WQCC standard (0.5 x 0.050 mg/L = 0.025 mg/L), an addi-
tional background ground-water sample will be collected from KAFB Well #4, located
approximately 200 yards southeast of the south sewage lagoon.

Due to problems with the sampling equipment, we request the samples collecting from
this well begin with the second round of quarterly sampling in October 1994. Samples
will be then collected from this well during the remaining rounds of quarterly ground-
water monitoring.

Extension of Evaluation Period

It was noted in the first quarter monitoring report that, although water quality parameter
values had stabilized in monitor well KAFB0502, the purge volume (6.7 gallons) was less
than one well casing volume (9.9 gallons) for this well. At least one well casing volume
was removed from each of the other monitor wells at the sewage lagoons (Attachment 2,
Table 2, extract from first quarter monitoring report). Although we don’t understand a
mechanism for the oxidation of Cr in the 304 stainless steel screen, it is possible some
combination of corrosion and microbial activity may account for the analytical observa-
tion.



We would like to use the second round of quarterly monitoring to confirm this obser-
vation and ask that you extend the period of quarterly monitoring by one quarter to pro-
vide the required four quarters of complying monitoring results. We expect compliance
based on the history of low Cr concentrations observed in samples collected from well
KAFB0502, the history of erratic ground-water analytical results for samples collected
from the other sewage lagoon wells, and the low purge volume removed from this well,
as compared to other sewage lagoon monitor wells.

Evaluation of Cr Concentrations

We recognize that, even if succeeding rounds indicate Cr concentrations in the ground
water at well KAFB0502 are below the laboratory detection limit, the arithmetic average
of all four or five results could exceed the WQCC standard. Therefore, we propose using
a statistical method presented by Grubbs (Attachment 3, Page 3) to compare the first
quarter result from well KAFB0502 with the succeeding results. More informally, obser-
vation alone may suffice to indicate the first quarter observation for ground water from
well KAFB0502 is an outlier and is not representative of ground-water Cr concentrations
beneath the sewage lagoons. This should be apparent if the succeeding analytical results
are comparable, as we expect, to Cr results observed in ground-water samples from the
other sewage lagoon monitor wells.

Please contact me, (505) 846-2773/0053, or Mr. Meixner, Daniel B. Stephens &
Associates, Inc., if you have any questions.

Sincerely

CHRISTOPHER § DeWITT, R.P.G.

Acting Chief, Restoration Branch
Environmental Management Division

Attachments:

1. References

2. Table 2 from Monitoring Report
3. Grubbs, F.E., 1969 (Procedures)

cc:
NMED-HRMB (Mr. Pullen) wo Atchs
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Table 2. Purge Volume Information

Well Designation

Water Column

Casing Volume

Volume Purged

(feet) (gallons) (gallons)

Sewage Lagoons

KAFB0501 18.84 12.4 13.2

KAFB0502 15.14 9.9 6.7

KAFB0503 13.88 9.1 23.3

KAFB0504 19.64 12.9 31.8
Golf Course Main Pond

KAFB0602 152.01 99.7 57.4

KAFB0608 33.06 21.7 27

KAFB0609 34.84 22.9 25.5

KAFB0610 61.52 40.4 45

3186(2)\QTLY-RPT.894\DEWITT.825
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Procedures for Detecting Outlying
Observations in Samples
Technometrics 11:1-19
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Procedures for Detecting Outlying
Observations in Samples

Frank E. GRuBBS*

-~

U. S. Army Aberdeen kesmrch and Development Center
Aberdeen Proving Ground, Maryland 21005

Procedures are given for determining statistically whether the highest observation,
the lowest observation, the highest and lowest observations, the two highest observa-
tions, the two lowest observations, or more of the observations in the sample are
statistical outliers. Both the statistical formulae and the application of the procedures
to examples are given, thus representing a rather complete treatment of tests for
outliers in single samples. This paper has been prepared primarily as an exposilory
and futorial article on the problem of detecting outlying observations in much
experimental work. We cover only testa of significance in this paper.

1. ScopE or PAPER

1.1 This is an expository and tutorial type of paper which deals with the
problem of outlying observations in samples and how to -test the statistical
significance of them. An outlying observation, or “outlier,” is one that appears
to deviate markedly from other members of the sample in which it occurs. In
this connection, the following two alternatives are of interest:

1.1.1 An outlying observation may be merely an extreme manifestation of
the random variability inherent in the data. If this is true, the values should be
retained and processed in the same manner as the other observations
in the sample.

1.1.2 On the other hand, an outlying observation may be the result of gross
deviation from prescribed experimental procedure or an error in calculating or
recording the numerical value. In such cases, it may be desirable to institute
an investigation to ascertain the reason for the aberrant value. The observation
may even eventually be rejected as a result of the investigation, though not
necessarily so. At any rate, in subsequent data analysis the outlier or outliers
will be recognized as probably being from a different population than that of
the sample values.

1.2 Tt is our purpose here to provide statistical rules that will lead the experi-

Received December 1967; revised Apnl 1968. \

* Member, Committee E-ll on Statistical Methods, The American Society for Teating
Materials (ASTM). This work in a slightly different form was prepared primarily for the
American Society for Testing Materials and represents a rather extensive revision of an earlier
Tentative Recommended Practice which was drafted by Dr. R. J. Hader and others in 1960.
The author is indebted to W. E. Deming, Acheson J. Duncan, E. V. Harrington, Helen J. Coon
and others for comments leading to the present paper. Permission has been obtained from the
American Society for Testing Materials to publish this paper in Technometrics.
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ménter almost unerringly to look for causes of outliers when they really exist,
and hence to decide whether alternative 1.1.1 above is not the more plausible
hypothesis to accept as compared to alternative 1.1.2 in order that the most
appropriate action in further data analysis may be taken. The procedures covered
herein apply primarily to the simplest kind of experimental data, i.e., replicate
measurements of some property of 2 given material, or observations in a sup-
posedly single random sample. Nevertheless, the tests suggested do cover a
wide enough range of cases in practice to have rather broad utility.

. o ‘2. GENERAL

2.1 When the skilled experimenter is clearly aware that a gross deviatior
from preseribed experimental procedure has taken place, the resultant observa-
tions should be discarded, whether or not it agrees with the rest of the date
and without recourse to statistical tests for outliers. If a reliable correction pro-
cedure, for example, for temperature, is available, the observation may some-
times be corrected and retained. ‘ AN

2.2 In many cases evidence for deviation from prescribed procedure wil.
consist primarily of the discordant value itself. In such cases it is advisablc
to adopt a cautious attitude. Use of one of the criteria discussed below wil
sometimes permit a clear-cut decision to be made. In doubtful cases the experi-
menter’s judgment will have considerable influence. When the experimente:
cannot identify abnormal conditions, he should at Jeast report the discordan:
values and indicate to what extent they have been used in the analysi:
of the data.

2.3 Thus, for purposes of orientation relative to the overall problem o.
experimentation, our position on the matter of screening samples for outlyin;
observations is precisely the following:

Physical Reason Known or Discovered for Outlier(s)
(i) Reject observation(s)
(ii) Correct observation(s) on physical grounds
(ii1) Reject it (them) and possibly take additional observation(s)

Physical Reason Unknown—Use Statistical Test
(1) Reject observation(s) ] :
(i1) Correct observation(s) statistically
(iii) Reject it (them) and possibly take additional observation(s)
(iv) Employ truncated sample theory for censored observations

2.4 The statistical test may always be used to lend support to a judgme
that a physical reason does actually exist for an outlier, or the statistical criteri
may be used routinely as a basis to initiate action to find a physical cau:

3. Basis or StaTisTiCAL CRITERIA FOR OQUTLIERS

3.1 There are a number of criteria for testing outliers. In all of these t
doubtful observation is included in the calculation of the numerical value o:



sample crite.a (or statistic), which is then cow.gared with a ecritical value
based on the theory of random sampling to determine whether the doubtful
observation is to be retained or rejected. The critical value is that value of the
sample criterion which would be exceeded by chance with some specified (small)
probability on the assumption that all the observations did indeed constitute
a random sample from a common system of causes, a single parent population,
distribution or universe. The specified small probability is called the “significance
levels” or ‘“percentage point” and can be thought of as the risk of erroneously
rejecting a good observation. It becomes clear, therefore, that if there exists a
real shift or change in the value of an observation that arises from non-random
causes (human error, loss of calibration of instrument, change of measuring
instrument, or even change of time of measurements, etc.), then the observed
value of the sample criterion used would exceed the “critical value’” based on'
random sampling theory. Tables of critical values are usually given for several
different significance levels, for example, 5%, 19,. For statistical tests of out-
lying observations, it is generally recommended that a low significance level,
such as 19, be used and that significance levels greater than 59, should not -
be common practice. (Note 1).

3.2 It should be pointed out that almost all cnterla. for outliers are based
on an assumed underlying normal (Gaussian) population or distribution. When
the data are not normally or approximately normally distributed, the probabili-
ties associated with these tests will be different. Until such time as criteria not
sensitive to the normality assumption are developed, the experimenter is
cautioned against interpreting the probabilities too literally w‘hen normality of
the data is not assured.

3.3 Although our primary interest here is that of detecting outlying observa-
tions, we remark that the statistical criteria used also test the hypothesis that
the random sample taken did indeed come from a normal or Gaussian popula-
tion. The end result is for all practical purposes the same, i.e., we really want
to know once and for all whether we have in hand a sample of homogeneous
observations.

4. REcoMMENDED CRITERIA FOR SINGLE SAMPLES

4.1 Let the sample of n observations be deroted in order of increasing mag-

nitude by z, < 2, < 2, § -+ £ z, . Let z, be the doubtful value, i.e. the
largest value. The test criterion, T, , recommended here for a single outlier
is as follows: :

Tw = (xn - f)/s

where

~

Z# = arithmetic average of all n values, and

Note 1: In this paper, we will usually illustrate the use of the 59 significance level. Proper
choice of level in probability depends on the particular problem and just what may be involved,
along with the risk that one is willing to take in rejecting a good observation, i.e., if the null-
hypothesis stating ‘‘all observations in the sample come from the same normasl population’’
may be assumed.

~
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Table of Critical Values jor T (One-sided Test). When Standard Deviation
‘ 18 Calculated from the Same Sample

£ <

Number of 8% i . 28% - 1%
Observations * _ Significance - Significance Significance "
n - Level 2+ Level Level
3 .1.15 1.15 1.15
. 4 . .1.48 1.48 1.49
5 T 1.67 . 1.1 1.75
8 1.82 S 1.89 1.94
. 7 1.94 ° ': 2,02 , 2.10
‘8 . 2.03 . 2.13 2.22
-9 1§ - 2.21 2.32
10 2.18 ©2.29 - 2.41
11 2.23 2.36 2.48
~ 12 2.29 2.41 2.55
13 2.33 - 2.46 2.61
14 2.37 2.51 2.66 ™
15 ~ 2.41 2.55 2.71
16 2.44 .2.59 - 2.75
17 - 2.47 - 2.82 2.7
18 2.50 "2.85 2.82
19 2.53 2.68 2.85
20 2.56 2.71 2.88
21 2.58 2.73 ¢ 2.01
22 2.60 2.76 '« 2.94
23 2.62 2.78 2.96
24 2.64 2.80 2.99
25 " 2.66 2.82 3.01
30 2.75 2.91
; 35 2.82 2.98
40 - 2.87 3.04
45 2.92 3.09
50 2.96 3.13
60 3.03 3.20
70 3.09 3.26
80 3.14 3.31
90 "~ 3.18 3.35
100 3.21 7 3.38
z. — & '{Z(:n-f)’“ {n Zz?—(zze)’}’
Ty = —— 8 = { = L
8 n-—1 } . nn — 1)
-2

n<ns <1

-~

Tl ==

Note: Values of T for n < 25 are based on those given in Reference [8]. For n > 25, the
values of T are approximated. All values have been adjusted for division by n — 1 instead of n
in calculating s.



s = er .ate of the population standard de....tion based on the sample data,
" caleulated with n — 1 degrees of freedom as follows:

Zm~a’;‘2fh;if)' ~
g = i=1 _ {n X, ( Ii) }i = \/A,,/‘n('n'—' ];)

B - nn =1 ..

n—1
If z, rather than z, is the doubtful value, the criterion is as follows:
. T, = & —2)/s . N

The critical values for either case, for the 1 per cent and 5 per cent levels of
significance, are given in Table 1. Table 1 and the following tables give the
“one-sided” significance levels. (In a previous ASTM tentative recommended
practice (1961), the tables listed values of significance levels double those in the
present practice, since it was considered that the experimenter would test either -
the lowest or the highest observation (or both) for statistical significance. How-
ever, to be consistent with actual practice and in an attempt to avoid further
misunderstanding, single-sided significance levels are tabulated here so that both
viewpoints can be represented.)

4.2 The hypothesis that we are testing in every case is tha.t all observatxons in
the sample come from the same normal population. Let us adopt, for example,
a significance level of 0.05. If we are interested only in outliers that occur on
the high side, we should always use the statistic T, = (z, — %)/s and take as
critical value the 0.05 point of Table 1. On the other hand, if we are interested
only in outliers occurring on the low side, we would  always use the
statistic T, = (£ — z,)/s and again take as a critical value the 0.05 point of
Table 1. Suppose, however, that we are interested in outliers occurring on either
side, but do not believe that outliers can occur on both sides simultaneously.
We might, for example, believe that at some time during the experiment some-
thing possibly happened to cause an extraneous variation on the high side or on
the low side, but that it was very unlikely that two or more such events could
have occurred, one being an extraneous variation on the high side and the other
an extraneous variation on the low side. With this point of view we should use
the statistic T, = (z. — £)/s or the statistic T, = (£ — z,)/s which ever is
larger. If in this instance we use the 0.05 point of Table 1 as our critical value,
the true significance level would be twice 0.05 or 0.10. If we wish a significance
level of 0.05 and not 0.10, we must in this case use as a critical value the 0.025
point of Table 1. Similar considerations apply to the other tests given below.

Ezample 1

As an illustration of the use of T, and Table 1, consider the following ten
observations on breaking strength (in pounds) of 0.104-in. hard-drawn copper
wire: 568, 570, 570, 570, 572, 572, 572, 578, 584, 596. The doubtful observation is
the high value, z,, = 596. Is the value of 596 significantly high? The mean is
£ = 575.2 and the estimated standard deviation is 8 = 8.70. We compute

= (596 — 575. 2)/8 70 = 2.39

From Table 1, for n = 10, note that a T, as large as 2.39 would occur by chance
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with probability less than 0.05. In fact, so large a value would occur by chance
not much oftener than 19, of the time. Thus, the weight of the evidence is
against the doubtful value having come from the same population as the others
(assuming the population is normally distributed). Investigation of the doubtful
value is therefore indicated.

4.3 An alternative system, the Dixon criteria, based entirely on ratios of
differences between the observations is described in the literature [5] and may
be used in cases where it is desirable to avoid calculation of 8 or where quick
judgment is called for. For the Dixon test, the sample criterion or statistic
changes with sample size. Table 2 gives the appropriate statistic to calculate and
also gives the critical values of the statistic for the 19, 5% and 109, levels
of significance.

Ezample 2

As an illustration of the use of Dixon’s test, consider again the observations
on breaking strength given in Example 1, and suppose that a large number of
such samples had to be screened quickly for outliers and it was judged too time-
consuming to compute s. Table 2 indicates use of

T.. - zn—l

o= for a sample size of ten. Thus, for n = 10,
n T L2
Ty — Z
ryy = 2= e,
‘ Zio — T2

For the measurements of breaking strength above,

596 — 584
-, Ty = m = 462 )

which is a little less than .477, the 5%, critical value for n = 10. Under the
Dixon criterion, we should therefore not consider this observation as an outlier
at the 5% level of significance. This illustrates how border-line cases may be
accepted under one test but rejected under another. It should be remembered,
however, that the T-statistic discussed above is the best one to use for the
single-outlier case, and final statistical judgment should be based on it. See
Ferguson, References (6], [7].

Further examination of the sample observations on breaking strength of
hard-drawn copper wire indicates that none of the other values needs testing.
(Note 2.) '

4.4 A test equivalent to T, (or T,) based on the sample sum of squared
deviations from the mean for all the observations and the sum of squared de-
viations omitting the “outlier” is given by Grubbs in [8]

4.5 The next type of problem to consider is the case where we have the possi-
bility of two outlying observations, the least and the greatest observation, in &

Note 2: With experience we may usually just look at the sample values to observe if an
outlier i8 present. However, strictly speaking the statistical test should be applied to all
samples to guarantee the significance levels used. Concerning ‘“‘multiple’’ tests on a single
sample, we comment on this below.
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sample. (The problem of testing the two highest or the two lowest observations
is considered below.) In testing the least and the greatest observations simul-
taneously as probable outliers in a sample, we use the ratio of sample range to
sample standard deviation test of David, Hartley and Pearson {4]. The signifi-
cance levels for this sample criterion are given in Table 3. An example in
astronomy follows.

Ezample 3

There is one rather famous set.of observations that a number of writers on the
subject of outlying observations have referred to in applying their various tests
for “outliers’”’. This classic set consists of a sample of 15 observations of the

TABLE 2
Dixon Crileria for Testing of Eztrems Qbservation (Smgls Sample)*

: Significance Level
Criterion 10%, 5% 1%

n
3 7 - 7, .886 .041 .988
4 rio ® ———— if smallest value .679 .765 .889
5 = = %1 iy guspected; 557 .42 780
6 Ta = Tas if largest value .482 .560 .698
7 = ———— i3 suspected. .434 .507 .736
Ty — I;
8 n—z 479 554 683 .
9 ry = ———— if smalleat value .441 .512 .835 N
10 Tast T Tt ig guspected; 409 477 507
Za — Za.y if largest value ‘
“xe — 3 suspected.
11 2 — if smallest value .517 .576 .679
12 ry = ———— is suspected; .490 .546 .642
13 Tact = 3 467  .521 615
_ if largest value
- 25 g suspected.
Tu — 2y
14 i — T if amallest value .492 .546 .641
15 ry = ——— is suspected. 472 .525 .616
18 Tt T T 454  .507  .595
17 To — Ta_s if largest value .438 .490 .577
18 = -———— g suspected; 424 .475 .561
Za = I
19 .412 .462 .547
20 .401 .450 .535
21 ' .391 .440 .524
22 .382 .430 .514
23 374 .421 .505
24 .387 .413 .497
25 .360 .408 .489

* From W. J. Dixon, “Processing Data for Outliers’, Biomelrics, Ma.rch 1953, Vol. 9,
No. 1, Appendix, Page 89. (Reference {§]) z; £ 71 £ ' S a
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‘““vertical semi-diameters of Venus made by Lieutenant IHerndon in 1846 and
given in William Chauvenet’s A Manual of Spherical and Practical Astronomy,
Vol. II (5th ed., 1876). In the reduction of the observations, Prof. Pierce
assumed two unknown quantities and found the following residuals which have
been arranged in ascending order of magnitude:

—1.40" —0.24 —0.05 018 048

—0.44 —0.22 0.06 0.20 0.63

—0.30 -0.13 0.10 0.39 1.01
TABLE 3

Critical Values for w/s (Ratio of Range to Sample Standard Deviation)*

Number of 5% 1% 0.5%
Observations Significance Significance Significance
n Level Level . Level
3 2.00 2.00 2.00
4 2.43 2.44 2.45
5 2.75 2.80 2.81
8 3.01 3.10 3.12
7 3.22 3.34 3.37
8 3.40 3.54 3.58
9 3.55 3.72 3.77
10 3.68 3.88 3.94
11 3.80 4.01 4.08
12 3.81 4.13 4.21
13 4.00 4.24 4.32
14 T 4.09 4.34 4.43
15 4.17 " 4.43 4.53
16 4.2¢4 4.51" 4.62
17 4.31 4.59 4.69
18 4.38 4.66 4.77
19 4.43 4.73 4.84
20 4.49 4.79 4.91
30 4.89 5.25 5.39
40 5.15 5.54 5.69
50 5.35 5.77 5.91
60 5.50 5.93 8.09
80 5.73 8.18 6.35
100 5.90 6.36 6.54
150 6.18 . 6.64 6.84
200 6.38 6.85 7.03
500 6.94 7.42 7.60 -
1000 7.33 7.80 7.99

* Taken from H. A. David, H. O. Hartley and E. S. Pearson, “The Distribution of the
Ratio in a Single Sample of Range to Standard Deviation,”” Biometrika, Vol. 41 (1954),
pp. 482—493. (Reference (4])

[ @ -2y
w2z, ~2Z ' 8 = n—~1

ST S ST



DETECTING OUTLYING OBSERVATIONS IN SAMPLES 9

The deviations —1.40 and 1.01 appear to be outliers. Here the suspected ob-
servations lie at each end of the sample. Much less work has been accomplished
for the case of outliers at both ends of the sample than for the case of one or
more outliers at only one end of the sample. This is not necessarily because the
“one-sided” case occurs more frequently in practice but because “two-sided”

tests are more difficult to deal with. For a high and a low outlier in a single’

sample, the procedure below may possess near optimum properties. For optimum
procedures when there is at hand an independent estimate, s* of ¢*, see “Some
Tests for Outliers” by C. P. Quesenberry and H. A. David, Technical Report
No. 47, OOR (ARO) project No. 1166 Virginia Polytechnic Institute, Blacks-
burg, Virginia.

4.6 For the observations on the semi-diameters of Venus given above, all
the information on the measurement error is contained in the sample of 15
residuals. In cases like this, where no independent estimate of variance is avail-
able (i.e. we still have the single sample case), a useful statistic is the ratio of the
range of the observations to the sample standard deviation:

W T.= _ ’ (s — )’
Pohaiae where s = .Z_:‘n-—l

If z. is about as far above the mean, £, as z, is below Z, and if w/s exceeds some
chosen critical value, then one would conclude that both the doubtful values are
outliers. If, however, z, and z, are displaced from the mean by different amounts,
some further test would have to be made to decide whether to rgject as outlying
only the lowest value or only the highest value or both the lowést and highest
values.

4.7 Tor this example the mean of the deviations is # = 018, s = .551, and

1.01 — (-1 40) 241
531 651

w/s = = 4374

From Table 3 for n = 15, we see that the value of w/s = 4.374 falls between
the critical values for the 19, and 59, levels, so if the test were being run at the
5% level of significance, we would conclude that this sample contains one or
more outliers. The lowest measurement, —1.40", is 1.418” below the sample
mean, and the highest measurement, 1.017, is .992"" above the mean. Since
these extremes are not symmetric about the mean, either both extremes are
outliers or else only —1.40 is an outlier. That —1.40 is an outlier can be verified
by use of the T, statistic. We have

018 — (—1.40)
551

Table 1 this value is greater than the eritical value for the 5%, level, so we
reject —1.40. Since we have decided that —1.40 should be rejected, we use the
remaining 14 observations and test the upper extreme 1.01, either with the
criterion

T =(F—z))/s = = 2.574 and from
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or with Dixon’s 75, . Omitting —1.40” and renumbering the observations, we
compute £ = 1.67/14 = .119, s = .401, and !
101 — .119 |
Ty = 201 = 2.22
From Table 1, for n = 14, we find that a value as large as 2.22 would occur by
chance more than 5%, of the time, so we should retain the value 1.01 in further
calculations. We next caleulate Dixon’s sample criterion:

T — 2, _ 101 ~ 48 .53
Ty, — Ty 101 + 24 125

Tz =

or
Ty = 424

From Table 2 for n = 14, we see that the 5%, critical value for r,, is .546. Since
our calculated value (.424) is less than the critical value, we also retain 1.01
by Dixon’s test, and no further values would be tested in this sample. (Note 3.)

4.8 We next turn to the case where we may have the two largest or the two
smallest observations as probable outliers. Here, we employ a test provided by
Grubbs [8] which is based on the ratio of the sample sum of squares when the
two doubtful values are omitted to the sample sum of squares when the two
doubtful values are included. If simplicity in calculation is the prime require-
ment, then the Dixon type of test (actually omitting one observation in the
sample) might be used for this case. In illustrating the test procedure, we give
the following Examples 4 and 5.

Ezample 4 -,

In a comparison of strength of various plastic materials, one characteristic
studied was the per cent elongation at break. Before comparison of the average
elongation of the several materials, it was desirable to isolate for further study
any pieces of a given material which gave very small elongation at breakage com-
pared with the rest of the pieces in the sample. In this example, one might have
primary interest only in outliers to the left of the mean for study, since very
high readings indicate exceeding plasticity, a desirable characteristic.

Following are ten measurements of per cent elongation at break made on
material No. 23: 3.73, 3.59, 3.94, 4.13, 3.04, 2.22, 3.23, 4.05, 4.11, 2.02. Arranged
in ascending order of magnitude, these measurements are: 2.02, 2.22, 3.04, 3.23,
3.99, 3.73, 3.94, 4.05, 4.11, 4.13. The questionable readings are the two lowest,
2.02 and 2.22. We can test these two low readings simultaneously by using the
criterion S? ,/S8* of Table 4. For the above measurements:

: < a_m o= (D0 z) 10(121.3594) — (34.06)°
S E (1'-' - )" = o = - 10

]

i-l

§* = 5.351

Note 3: It should be noted that in a multiplicity of tests of this kind, the final overall
significance level will be less than that used in the individual tests, as we are offering more than
one chance of accepting the sample as one produced by a random operation. It is not our purpose
here to cover the theory of multiple tests.
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and
" 2
(n—")zx—(zz.-)
] = — e - a-_.l_____
1.2 ‘Z.J (z 22" (n — 2)
(where D, = Z z,/(n — 2))
i=3
_ 8(112.35006) — (29.82)°
8
2
1, = 25728 g7
8
- TasLe 4
Critical Values for S2_, /S or 8} ,/8? for Simultancously Testing
the Two Largest or Two Smallest Observations®
Number of 109, 5%, 1%
Observations Significance Significance Significance
n . Level Level Level
4 .0031 .0008 . .0000
5 .03768 .0183 ~.0035
(] - .0921 .0565 .0186 ,,‘
7 .1479 . 1020 0440
8 L1994 .1478 .0750
9 .2454 .1909 » 1082
10 .2853 .2305 - L1415
11 .3228 .2666 .1736
12 .3552 .2996 .2044
13 .3843 .3295 .2333
14 .4108 .3588 .2605
15 .4345 .3818 .2859
16 .4562 .4018 .3008
17 .4761 . 4259 .3321
18 .4944 .4455 .3530-
19 .5113 .4636 .3725
20 .5289 .4804 .3909
St = 3 (z¢ - 2P 2--Zr: 5 < g S za
-] =y
z"i(-ﬂ“h:)’ 21:-—1_£21
-3 ' ) n—-235
ne1 1 na2
S e Z (¢ = Zac1,a)® Bacin = —— Z 4
[ n -2

* These significance levels are taken from Table V of Grubbs, Reference {8). An observed
ratio less than the appropriate critical ratio in this table calls for rejection of the null hypothesis.
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We find

Sia _ 1197
“§* T 5.35l

From Table 4 for n = 10, the 59, significance level for S} ,/S* is .2305. Since
the calculated value is less than the critical value, we should conclude that both
2.02 and 2.22 are outliers. In a situation such as the one described in this ex-
ample, where the outliers are to be isolated for further analysis, a singificance
level as high as perhaps even 10% would probably be used in order to get a
reasonable size of sample for additional study.

= 224

Ezample 5
The following ranges (horizontal distances in yards from gun muzzle to point

of impact of a projectile) were obtained in firings from a weapon at a constant
angle of elevation and at the same weight of charge of propellant powder:

Distances in Yards

4782 4420
4838 4803
4765 4730
4549 4833

It is desired to make a judgment on whether the projectiles exhibit uniformity
in ballistic behavior or if some of the ranges are inconsistent with the others.
The doubtful values are the two smallest ranges, 4420 and 4549. For testing
these two suspected outliers, the statistic S} ;/S* of Table 4 is probably the
best to use. (Note 4.) : ‘

The distances arranged in increasing order of magnitude are:

4420 4782.
4549 4803
4730 4833
4765 4838

The value of S* is 158,592. Omission of the two shortest ranges, 4420 and 4549,
and recalculation gives S} , equal to 8590.8. Thus,
Sia _ 85908

5 = Tog 0z — 0%
which is significant at the .01 level (See Table 4). It is thus highly unlikely that
the two shortest ranges (occurring actually from excessive yaw) could have come
from the same population as that represented by the other six ranges. It should
be noted that the critical values in Table 4 for the 19, level of significance are
smaller than those for the 59, level. So for this particular test, the calculated
value is significant if it is less than the chosen critical value.

Note 4: Kudo [11] indicates that if the two outliers are due to a shift in location or level, as
compared to the scale o, then the optimum sample criterion for testing should be of the type:
min. (22 — z; — z;)/8 = (22 — x — z3)/s in our Example 5.
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4.9 If simplicity in calculation is very important, or if a large number of
samples must be examined individually for outliers, the questionable observa-
tions may be tested with the application of Dixon’s criteria. Disregarding the
lowest range, 4420 we test if the next lowest range 4549 is outlying. Withn = 7,
we see from Table 2 that r,q i3 the appropriate statistic. Renumbering the ranges
as z, to z,, beginning with 4549, we find

T, — z _ 4730 — 4549 _ 181
Mo = g, =, 4838 — 4549 ~ 289 020
which is only a little less than the 19 critical value, .837, for n = 7. So, if the
test is being conducted at any significance level greater than the 19 level, we
would conclude that 4549 is an outlier. Since the lowest of the original set of
ranges, 4420, is even more outlying than the one we have just tested, it can be
classified as an outlier without further testing. We note here, however, that this
test did not use all of the sample observations.

4.10 Rejection of Several Outliers. So far we have discussed procedures for
detecting one or two outliers in the same sample, but these techniques are not
generally recommended for repeated rejection, since if several outliers are
present in the sample the detection of one or two spurious values may be
“masked”” by the presence of other anomalous observations. Outlying observa-
tions occur due to a shift in level (or mean), or a change in scale (i.e., change in
variance of the observations), or both. Ferguson {6, 7] has studied the power
of the various rejeotion rules relative to changes in level or scale. For several

outliers and repeated rejection of observations, Ferguson points out that the
sample coefficient of skewness

VB = Va3 G~ 90— D5 = Va 3~ 9T @ —

ghould be used for “one-sided’” tests (change in level of several observations in
the same direction), and the sample coefficient of kurtosis

b,=n§<x.-—f>‘/<n— st =n 3 (o = DY (= DT

is recommended for “two-sided’’ tests (change in level to higher and lower values)
and also for changes in scale (variance)*. In applying the above tests, the /5,
or the b, , or both, are computed and if their observed values exceed those for
significance levels given in the following tables, then the observation farthest
from the mean is rejected and the same procedure repeated until no further
sample values are judged as outliers. [As is well-known /b, and b, are also
used as tests of Normality].

4.10.1 The significance levels in the following tables for sample sizes of
5, 10, 15 and 20 (and 25 for b,) were obtained by Ferguson on an IBM 704
Computer using a sampling experiment or “Monte Carlo” procedure. The

*In the above equationa for +/7, and b, , s is defined as used in this paper, i.e.

= > (=D -1

1=
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significance levels for the other sample sizes are from E. S. Pearson, “Table of
Percentage Points of /b, and by in Normal Samples; a Rounding Off,” BlO-
metrika (1965), Vol. 52, pp. 282-285.

Significance Levels for /%,

n

Sig
Level 5* 10* 15* 20* 25 30 35 40 50 60

1% 1.34 1.31 1.20 { 1.11 1.06 .98 .92 .87 .79 .72
5% 1.05 .92 .84 .79 .71 .66 .62 .59 .53 .49

Significance Levels for by '~

n
8ig
Level 5* 10* 15* 20* 25* 50 75 100
19, 3.11 4.83 5.08 5.23 5.00 4.88 4.59 4.39
59 2.89 3.85 4.07 4.15 4.00 3.99 3.87 3.77

* These values were obtained by Ferguson, using a Monte Carlo procedure. For n = 25,
Ferguson’s Monte Carlo values of b agree with Pearson’s computed values.

4.10.2 The /b, and b, statistics have the optimum property of being
‘“locally” best against one-sided and two-sided alternatives, respectively. The
Vb, test is good for up to 509, spurious observations in the sample for the
one-sided case and the b, test is optimum in the two-sided alternatives case for
up to 219, “contamination’” of sample values. For only one or two outliers the
sample statisti¢s of the previous paragraphs are recommended, and Ferguson [7]
discusses in detail their optimum properties of pointing out one or two outliers.

5. REcoMMENDED CRITERION UsSING INDEPENDENT
StaNDARD DEVIATION

5.1 Suppose that an independent estimate of the standard deviation is avail-
able from previous data. This estimate may be from a single sample of previous
similar data or may be the result of combining estimates from several such
previous sets of data. In any event, each estimate is said to have degrees of
freedom equal to one less than the sample size that it is based on. The proper
combined estimate is a weighted average of the several values of s*, the weights
being proportional to the respective degrees of freedom. The total degrees of
freedom in the combined estimate is then the sum of the individual degrees of
freedom. When one uses an independent estimate of the standard deviation, s, ,
the test criterion recommended here for an outlier is as follows:

T = I-z (v = total number of degrees of freedom)

or
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: " are due to David [3] and are given in Table 5. In Table 5 the subscript » = df
"~ indicates the total number of degrees of freedom associated with the independent
estimate of standard deviation ¢ and n indicates the number of observations

Critical Values for T When Standard Deviation s, is Independent of Present Sample

TaBLE 5

™ _z.—iori -
N 8, 8,
n 3 4 5 6 7 8 9 10 12
y = df 19, points
10 2.78 3.10 332 348 3.62 3.73 3.8 3.90 4.04
1 2.72 3.02 324 339 35 363 372 379 3.903
12 2.67 29 3.17 332 345 355 3.64 3.71 3.84
13 2.63 292 312 327 338 348 357 364 3.76
14 260 2.8 '3.07 3.22 333 3.43 3.51 358 3.70
15 2.57 2.8 303 317 329 338 346 3.53 3.65
16 2.54 2.8 3.00 3.14 3.25 3.3¢4 3.42 3.49 3.60
17 2,52 2.79 297 3.11 3.22 3.31 3.33 3.45 3.56
18 2.50 2.77 295 3.08 3.19 3.28 3.35 3.42 3.53
19 249 275 293 3.06 3.16 3.25 3.33 339 3.5
20 2.47 273 291 3.04 3.14 3.23 3.30 3.37 3.47
24 242 2.68 2.8 297 3.07 3.16 3.22 329 3.38
30 2.38 262 279 291 30 308 3.15 321 3.3
40 2.3¢ 2.57 2.73 2.8 294 302 308 3.13 3.22
60 2.29 2.52 268 279 2.8 295 301 3.06 3.15
120 2.25 248 2,62 2.73 2.82 2.8 295 3.00 3.08
o 2.22 243 257 268 2.76 2.8 2.8 293 3.01
59%, points
10 2.001 2.27 2.46 2.60 2.72 2.81 2.80 298 3.08
1 1.98 2.24 2.42 256 2.67 2.76 2.8 291 3.03
12 1.8 2.21 239 2.52 263 2.72 2.8 2.87 2.98
13 1.94 2.19 236 2.50 2.60 2.69 2.76 2.83 2.94
14 1.93 2.17 2.34 2.47 2.57 2.66 2.74 2.8 2.91
15 1.91 2.15 232 245 255 264 271 277 2.88
16 1.90 2.14 231 2.43 2.53 262 269 275 2.86
17 1.8 2.13 2.29 242 252 260 2.67 2.73 2.84
18 1.88 2.11 2.28 240 2.50 2.58 2.65 2.71 2.82
19 1.87 2.1 2,27 2.39 249 257 284 270 2.8
20 1.87 2.10 2.26 2.38 2.47 2.56 2.63 2.68 2.78
24 1.84 2.07 2.23 2.3¢ 2.44 252 258 264 2.74
30 1.82 2.04 2.20 . 2.31 240 2.48 2.5¢ 260 2.69
40 1.80 2.02 2,17 228 237 2.44 250 2.5 2.65
60 1.78  1.09 2.14 2.25 2.33 2.41 2.47 2.52 2.61
120 1.76 1.96 2.11 2.22 230 2.37 2.43 2.48 2.57
® 1.74 1.94 208 2.18 2.27 2.33 239 244 2.52

The above percentage points are reproduced from . A. David, ‘Revised upper percentage
points of the extreme studentized deviate from the sample mean,”’ Biometrika, Vol. 43 (1958),
pp. 449-451. (Reference {3]).
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Standardization of Sedium Hydrozide Solutions as Determined by Plant Laboralories

Standard Used: Potassium Acid Phthalate (P.A.P) . !

Laboratory | (P.A.P.-.096000) X 10?

Suma

Averages

Deviation of Average from
Grand Average

1

1

1.
1.

.893

972
876

5.741

1.914

2
1

.046
.861
.949

5.846

1.949

+ .078

.

874
792
.829

5.495

1.832

- .039

-

.861
.998
.983

5.842

1.947

+ .076

—

5.653

+ .013

[ I X

.082
.958

6.069

2.023

+ .152

[T

.992
.980
.066

6.038

2.013

- NN

.050
.181
.903

6.134

2.045

+ .174

[

-

.831
.883
.855

5.569

1.856

- .015

10

735
722
777

2.234

745

~1.126

11

[

.064
.794
.801

5.749

1.918

+ .045

12

2

.475
2.
2.

403
102

6.980

2.327

+ .456

Grand Sum
Grand Average

67.350

1.871
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in the sample under study. We illustrate with an example on mterlabomtory
testing.

5.3 Ezample 6—Interlaboratory Testing. In an arw.lysxs of interlaboratory
test procedures, data representing normalities of sodium hydroxide solutions
were determined by twelve different laboratories. In all the standardizations, a
tenth normal sodium hydroxide solution was prepared by the Standard Methods
Committee using carbon-dioxide-free distilled water, Potassium acid phthsalate
(P. A. P.), obtained from the National Bureau of Standards, was used as the
test standard.

Test data by the twelve laboratones are given in the table below. The P. A. P.
readings have been coded to simplify the calculations. The variances betiween
the three readings within all laboratories were found to be homogeneous. A
one-way classification in the analysis of variance was first analyzed to determine
if the variation in laboratory results (averages) was statistically significant.
This variation was significant, so tests for outliers were then applied to isolate
the particular laboratories whose results gave rise to the significant variation.
We are indebted to Dr. Grant Wernimont of the Eastman Kodak Co. for the
data on Standardization of Sodium Hydroxide Solutions.

Analysis of Variance

Source of Degrees of Sum of Squares Mean Square
Variation Freedom d.f. SS MS F-ratio
Between Labs 1 4.70180 4274, F = 48.61
- (Highly
Within Labs 24 .21103 .008793 Significant)
TOTAL 35 4.91283

The above analysis of variance shows that the variation between laboratories
is highly significant. To test if this (very significant) variation is due to one
(or perhaps two) laboratories that obtained ‘“‘outlying’ results (i.e. perhaps
showing non-standard technique), we can test the laboratory averages for
outliers. From the analysis of variance, we have an estimate of the variance of
an individual reading as .008793, based on 24 degrees of freedom. The estimated
standard deviation of an individual measurement is +/.008793 = .094 and the
estimated standard deviation of the average of three reandings is therefore
094/+/3 = .054.

Since the estimate of within-laboratory variation is independent of any
difference between laboratories, we can use the statistic T/ of section 5.1 to
test for outliers. An examination of the deviations of the laboratory averages
from the grand average indieates that Laboratory 10 obtained an average
reading much lower than the grand average, and that Laboratory 12 obtained a
high average compared to the overall average. To first test if Laboratory 10 is
an outlier, we compute

, 1871 — 745 _
T = 2SS = 209

This value of T” is obviously significant at a very low level of probability
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(P « .01. Refer to Table 5 withn = 12 and » = 24 d.f.). We conclude therefore
that the test methods of Laboratory 10 should be investigated. v

Excluding Laboratory 10, we compute a new grand average of 1.973 and test
if the results of Laboratory 12 are outlying. We have

, 2327 — 1973
T = %z - 6.56

and this value of T” is significant at P < .01 (Refer to Table 5 with n = 11 and
v = 24 d.f.). We conclude that the procedures of Laboratory 12 should also
be investigated. ‘

To verify that the remaining laboratories did indeed obtain homogeneous
results, we might repeat the analysis of variance omitting Laboratories 10
and 12. This calculation gives

Analysis of Variance
(omilting labs 10 and 12)

Source of Variation d.f. 83 MS F-ratio
Between Labs 9 .13889 .01543 F = 2.36
Within Labs 20 .13107 .00855 F.a(9, 20) = 2.40

F.u(9, 20) = 3.45

TOTAL 29 .26996

For this analysis, the variation between labs is not significant at the 5%
lovel and we conclude that all the laboratories except No. 10 and No. 12 exhibit
the same capability in testing procedure.

In conclusion, there should be a systematic investigation of test methods for
Laboratories No. 10 and No. 12 to determine why their test precedures are
apparently different from the other ten laboratories.

(For the above example, procedures for ranking means after the initial
analysis of variance test could, of course, have been used. For example, Duncan’s
Multiple Range Test, Scheffe’s Test, Tukey’s procedure, etc., could have been
used. Also, the test of Halperin, Greenhouse and Cornfield (9] could have been
used. We have used David’s tables [3] as an example here since they seem
tailor-made for one or two specific laboratories.)

6. RECoMMENDED CRITERIA FOR KNOWN
STANDARD DEVIATION

6.1 Frequently the population standard deviation ¢ may be known accurately.
In such cases, Table 6 may be used for single outliers and we illustrate with the
following example.

6.2 Example 7 (¢ known). DPassage of the Echo I (Balloon) Satellite was
recorded on star-plates when it was visible. Photographs were made by means
of a camera with shutter automatically timed to obtain a series of points for
the Echo path. Since the stars were also photographed at the same times as the
Satellite, all the pictures show star-trails and so are called “‘star-plates.”
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TABLE 6 e
Critical Values of T. 4 and T, When the Population Standard Deviation o is Known

Number of 5% 1%. . 0.5%
Observations Significance Significance Significance

n Level Level Level

2 1.39 1.82 1.99

3 1.74 2.22 2.40

4 . 1.94 2.43 2.62

5 2.08 2.57 2.76

6 2.18 2.68 2.87

7 2.27 2.76 2.95

8 2.33 2.83 3.02

9 2.39 2.88 3.07

10 2.44 2.93 3.12

11 2.48 2.97 3.16

12 2.52 3.01 3.20

13 2.56 3.04 3.23

14 2.59 - 3.07 3.26

15 2.62 3.10 3.29

16 2.64 3.12 3.31

17 2.67 3.18 3.33

18 2.69 . 3.17 3.36

19 2.7 3.19 3.38

20 2.73 3.21 3.39

21 2.75 3.22 3.41

22 2.77 3.24 3.42

23 2.78 3.26 3.44

24 5 2.80 3.27 3.45

25 2.81 3.28 3.46

2122 <z1 <" <24 Tie = (£ ~ 21)/0 Tl = (za — 2)/0

This table is taken from the paper of Grubbs, Reference [8].

The z- and y-coordinate of each point on the Echo path are read from a
photograph, using a stereo-comparator. To eliminate bias of the reader, the
photograph is placed in one position and the coordinates are read; then the
photograph is rotated 180° and the coordinates reread. The average of the two
readings is taken as the final reading. Before any further calculations are made,
the readings must be “‘screened” for gross reading or tabulation errors. This is
done by examining the difference in the readings taken at the two positions of
the photograph.

Recorded below are a sample of six readings made at the two positions and
the differences in these readings. On the third reading, the differences are rather
large. Has the operator made an error in positioning the cross-hair on the point?

For this example, an independent estimate of ¢ is available since extensive
tests on the stero-comparator have shown that the standard deviation in
reader’s error is about 4 microns. The determination of this standard error was
based on such a large sample that we can assume ¢ = 4 microns. The standard
deviation of the difference in two readings is therefore V47 4+ 4° = /32
or 5.7 microns.



