

DEPARTMENT OF THE AIR FORCE HEADQUARTERS 377TH AIR BASE WING (AFMC)

19 February 2016

Mr. L. Wayne Bitner Chief, Environmental Restoration 2000 Wyoming Blvd SE Kirtland AFB NM 87117-5600

Ms. Michelle Hunter Ground Water Quality Bureau New Mexico Environment Department 1190 St Francis Drive Santa Fe, New Mexico 87502

Subject: Approval with Conditions, Request for Temporary Permission to Discharge to KAFB-7, Kirtland Air Force Base, Bulk Fuels Facility, DP-1839

Dear Ms. Hunter

This Kirtland Air Force Base (KAFB) Bulk Fuel Facility (BFF) letter is provided to present data in support of the conditions listed in the January 7, 2016 Ground Water Quality Bureau approval for pilot test injection of treated groundwater into KAFB-7.

Condition 1

Prior to initiating the discharge, the Permittee must verbally notify NMED of the date the temporary discharge is to commence.

The NMED will receive verbal notification prior to initiation of discharge into KAFB-7, and e-mail follow up to document the initiation of discharge.

Condition 2

Prior to occurrence, the Permittee must notify NMED in writing of any increase of the discharge volume or any process modification that would result in any significant modification in the temporary discharge of water contaminants.

The NMED will be notified in writing of any increase of discharge volume beyond 500 gpm, and of any change to the system (i.e., process modifications) that would affect the temporary discharge.

RECEIVED

FEB 19 2016

NMLD Albuquerque Field Office

Anthropogenic chemicals in injected water shall not exceed the more stringent value of either New Mexico Water Quality control commission standards (Section 20.6.2.3103 NMAC) or the Safe Drinking Water Act maximum contaminant levels (MCLs) for drinking water. For NMWQCC listed Toxic Pollutants without 3103 standards or MCLs, injected water shall not exceed the most current Tap Water Limits in Table A-1 of the NMED Risk Assessment Guidance. The contaminants of concern (COCs) associated with the EDB plume and their applicable standard are:

- a) Benzene: 5ug/L
- b) Ethylene dibromide (EDB): 0.05 ug/L
- c) Iron: 1 mg/L
- d) Manganese: 0.2 mg/L
- e) Toluene: 750 ug/L
- f) Total xylenes: 620 ug/L

See description for compliance method listed in Condition 5 below.

Condition 4

The Permittee shall submit documentation demonstrating that the GWTS effluent achieves the standards specified in Condition #3 above to NMED prior to the commencement of the temporary discharge.

See description for compliance method listed in Condition 5 below.

Condition 5

After commencement of the temporary discharge, the GWTS effluent shall be sampled daily for the first week of operation with 24-hour analytical turnaround times. After the first week of operation, weekly samples shall be collected for the first month of operation with 5-day analytical turnaround times. After one month, and once it is determined that that constituents in effluent samples are not exceeding the standards specified in Condition #3, the sampling frequency may be reduced to monthly in accordance with Application Attachment D (Monitoring and Contingency Plan), Subsection 2.1.

Samples of treated discharge water (i.e., effluent) will be collected and analyzed to ensure the contaminants of concern (COCs) are below applicable standards during injection per Condition 5. Draft data will be supplied by e-mail to NMED once results are received from the analytical laboratory. Attachment A, Treatment Effectiveness Analytical Data contains COC data for the temporary Groundwater Treatment System (GWTS) which operated from June 28, 2015 to December 15, 2015 (A-1), and the full-scale GWTS that began operation on December 16, 2015 (A-2). All GWTS effluent water to date has been either non-detect or under regulatory limits.

Condition 6

Each time a new extraction well is brought on-line, the same sampling frequency specified in Condition #5 shall be utilized.

As additional extraction wells are brought on-line, the same sampling frequency will be followed per Condition 5. Currently, all extraction wells (KAFB-106228, KAFB-106233, and KAFB-106234) are operational and treated effluent will be either injected into KAFB-7 or sent to the Tijeras Arroyo Golf Course for irrigation under their respective Temporary Permission to Discharge permits.

Should any COCs be detected above applicable standards in the effluent of the GWTS, the pumping shall cease immediately and the Permittee shall implement the response and notification procedures specified at Application Attachment D, Section 3 (Contingency Plan), Subsection 3.2. Should the concentrations of iron or manganese exceed applicable standards, the Permittee shall propose to the NMED additional appropriate treatment methods for installation in addition to the GWTS.

Pumping will cease if concentrations of COCs in effluent samples are detected above applicable standards, and the response and notification procedure specified in the Monitoring and Contingency Plan will be implemented.

Condition 8

Injected water shall not overtop the KAFB-7 well casing liner installed in 1979.

To prevent injection water going over the top of the casing liner, a dedicated transducer has been installed in KAFB-7. This transducer is connected to the full-scale GWTS programmable logic controller (PLC) which will trigger a shutdown of the GWTS. Shutdown will be triggered when the water level in KAFB-7 reaches 2 feet below the top of the liner (470 feet below the top of the well pedestal).

Condition 9

Water levels will be monitored with transducers in associated monitoring wells (KAFB-0523, KAFB-0524, KAFB-0507, KAFB-0508) as well as downhole in KAFB-7. System controls shall ensure shutdown of all associated components should conditions warrant.

In-Situ Level Troll 700 transducers were installed in KAFB-0507, KAFB-0508, KAFB-0523 and KAFB-0524 on January 27, 2016. Final installation of KAFB-7 transducer occurred on February 5, 2016. Manufacturer calibration logs are supplied for these transducers in Attachments B-1 and B-2. Attachment B-3 contains completed field verification of the water level and transducer reading in each well. System electrical control is in KAFB-7 and it will trigger a shutdown of the GWTS when the water level in KAFB-7 reaches 2 feet below the top of the liner (470 feet below the top of the well pedestal).

Condition 10

The injection flow-rate monitoring, inspection, and calibration shall be performed in accordance with Application Attachment D, Subsection 2.2.

Factory calibration logs are provided in the attachments listed below. A field calibration check procedure is attached for review.

- C-1 KAFB-106228
- C-2 KAFB-106233
- C-3 KAFB-106234
- C-4 GWTS Influent Pump
- C-5 GWTS Effluent Pump
- C-6 Field Calibration Check Procedure

The injection of treated water into KAFB-7 shall be manually supervised for the first 24 hours of injection.

When injection into KAFB-7 commences, it will be manually supervised for the first 24 hours.

Condition 12

Well KAFB-7 shall be configured as represented in Application Figure 7.

KAFB-7 configuration is as represented in the Application Figure 7 (see Attachment B-4). As the Figure indicated, the dedicated transducer was installed in KAFB-7 to a depth of 502.5 feet below the top of the well pedestal. The top of the injection valve was placed at 500 feet below the pedestal, and the top of the liner is at 468 feet below the pedestal. The Pressure Indicator Transmitter (PIT) and the Air Release Valve (ARV) were installed on the influent piping at the ground surface.

Condition 13

All equipment placed in KAFB-7 shall be decontaminated utilizing a steam pressure wash prior to insertion in the well.

All equipment was decontaminated with a steam pressure wash prior to insertion into KAFB-7. Photographic record can be found in Attachment D.

Condition 14

No chemicals shall be placed into KAFB-7 without the prior approval of NMED.

No chemicals are anticipated for KAFB-7, if in the event that chemicals would be needed, prior approval from the NMED will be obtained.

Condition 15

Access of unauthorized personnel to both the GWTS and KAFB-7 shall be restricted.

No unauthorized personnel will be allowed access to GWTS or KAFB-7.

Condition 16

NMED representatives shall be allowed to inspect any treatment works and monitoring equipment, and to sample any associated effluent. (See 20.6.2.31 07 .D)

At any time, NMED representatives will be allowed to inspect the GWTS and monitoring equipment, as well as sample any associated effluent. Prior notice from NMED personnel would help facilitate the collection of effluent samples at the GWTS.

A final report shall be submitted to NMED within 60 days of cessation of the temporary discharge. The report shall include the following information:

- *i.* Total effluent volumes from the GWTS and injection volumes to KAFB-7, with any discrepancy explained.
- ii. Daily total injection volumes.
- iii. Effluent sampling analytical results.
- iv. Any operations and maintenance activities performed during the period.
- v. A comparison of injection flow rates and associated changes to hydraulic head.
- vi. Groundwater elevation contour map(s) illustrating the aquifer's response to injection, including maps illustrating changed to the aquifer resulting from the discharge changes referred to in Condition #2.

The final report will be submitted to the NMED within specified timeframe with the above stated information included; except the total injection volumes will be monthly instead of daily.

We appreciate your attention to this matter. Please contact me at 505.853.3484 or at ludie.bitner@us.af.mil or Mr. Scott C. Clark at 505.846.9017 or at scott.clark@us.af.mil if you have any questions.

Sincerely,

L. Wayne Bitner Chief, Environmental Restoration

cc: NMED-EHD (Roberts) NMED (McQuillan, Longmire, Agnew) NMED-HWB (Kieling, Cobrain) NMED-GWQB (Pullen, Hunter) NMED-GWQB (Pullen, Hunter) NMED-OGC (Kendall) SAF-IEE (Lynnes) U.S.EPA Region 6 (King, Ellinger) AFCEC-CZRX (Bodour) USACE-ABQ District Office (Simpler, Phaneuf) Public Info Repository (Central New Mexico Community College), Administrative Record/Information Repository (AR/IR), and File

ATTACHMENTS

- A. Treatment Effectiveness Analytical Data
 - A-1. Temporary Groundwater Treatment System Data
 - A-2. Full-Scale Groundwater Treatment System Data
- **B.** Transducer Factory Calibration Certificates
 - B-1. KAFB-7 Transducer
 - **B-2. Observation Well Transducers**
 - **B-3. Completed Transducer Installation Forms**
 - B-4. KAFB-7 Well Completion Diagram
- C. Flow Meter Calibration Certificates
 - C-1. KAFB-106228
 - C-2. KAFB-106233
 - C-3. KAFB-106234
 - C-4. GWTS Feed Pump
 - C-5. GWTS Discharge Pump
 - C-6. Field Calibration Check Procedure
- D. KAFB-7 Equipment Decontamination Photos

ATTACHMENT A

Treatment Effectiveness Analytical Data

ATTACHMENT A-1

Temporary Groundwater Treatment System Data

			LOCA	TION CODE	KA		INF	KAF	B-106228-E	EFF	KA	FB-106228	INF	KAF	B-106228-	FF	KAF	B-106228-	INF	KAF	B-106228	-EFF	KA	FB-106228	-INF	KAF	FB-106228-	EFF
			S	SAMPLE NO.	D.	1-106228-II	١F	D1	-106228-EF	FF	D	2-106228-I	١F	D2	2-106228-E	FF .	D3	-106228-IN	١F	D	3-106228-E	EFF	C	4-106228-I	NF	D4	4-106228-E	.FF
			SA	MPLE DATE		28-Jun-15			28-Jun-15			30-Jun-15			30-Jun-15			1-Jul-15			1-Jul-15			2-Jul-15			2-Jul-15	
			SAMPLI	E PURPOSE		REG																						
			SAM	IPLE DEPTH		0-0 FT																						
Chemical Class and Analytical Method ^a	Parameter	NMED Ground Water Protection Standards (Sec. 20.6.2.3103) ^b	NMED Approved Background ^c	EPA MCLs ^d	Result	VAL QUAL	LOQ																					
VOCs (µg/L)	1,2-DIBROMOETHANE (Method 8011)	0.1	NE	0.05	0.19		0.02	ND	U	0.01	0.19		0.02	ND	U	0.01	0.19		0.02	ND	U	0.01	0.16		0.02	ND	U	0.02
Method 8260B	BENZENE	10	NE	5	ND	U	1	0.1	J	1	ND	U	1	ND	U	1	ND	U	1									
	ETHYLBENZENE	750	NE	700	ND	U	1	0.14	J	1	ND	U	1															
	M,P-XYLENES	620	NE	10000	N/A	N/A	N/A	ND	U	2	ND	U	2															
	O-XYLENE	620	NE	10000	N/A	N/A	N/A	ND	U	1	ND	U	1															
	TOLUENE	750	NE	1000	1.5		1	0.37	J	1	0.65	J	1	ND	U	1	0.28	J	1	ND	U	1	ND	U	1	ND	U	1
	XYLENES	620	NE	10000	ND	U	1.5	1.3	J	1.5	ND	U	1.5	N/A	N/A	N/A	N/A	N/A	N/A									
Metals (ug/L)	IRON, DISSOLVED (Method 6010B-DISS)	1000	NE	NE	14	J	20	ND	U	20	N/A	N/A	N/A	N/A	N/A	N/A												
	IRON, DISSOLVED (Method 6020A-DISS)	1000	NE	NE	N/A	N/A	N/A	ND	U	100	ND	U	100															
	MANGANESE, DISSOLVED (Method 6010B-DISS)	200	NE	NE	19		2	4.6		2	7.8		2	8.6		2	3.7		2	7.8		2	N/A	N/A	N/A	N/A	N/A	N/A
	MANGANESE, DISSOLVED (Method 6020A-DISS)	200	NE	NE	N/A	N/A	N/A	3.26	J	5	7.48		5															
General Chemistry	PH (Method SM4500) (PH)	9	NE	NE	N/A	N/A	N/A																					
(mg/L)	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE) (Method SM2540D)	NE	NE	NE	N/A	N/A	N/A																					
	TOTAL ORGANIC CARBON (Method SW9060)	NE	NE	NE	N/A	N/A	N/A																					

a. EPA analytical methods listed are for the most recent sampling event.

b. New Mexico Water Quality Control Commission, Water Quality Standards, New Mexico Administrative Code 20.6.2.3103.

c. NMED-HWB Approved Background Concentrations, SNL/Kirtland AFB, Chemical Constituents in Ground Water.

d. U.S. Environmental Protection Agency, 2015, National Primary Drinking Water Regulations: List of Drinking Water Contaminants and Maximum

Contaminant Levels, June. Shading indicates the analyte was detected. **Bold** indicated analyte detected greater than regulatory standard.

μg/L = microgram per liter

EFF = Effluent

EPA = Environmental Protection Agency

FT = Feet

GAC = Granular-activated carbon

INF = Influent J = Estimated value, concentration is less than LOQ but greater than laboratory method detection limit (DL). J- = Estimated value, concentration is less than LOQ but greater than laboratory method detection limit (DL); biased low.

KAFB = Kirtland Air Force Base LOQ = Limit of Quantitation

MCL = Maximum contaminant level

mg/L = milligram per literN/A = Not analyzed ND = Not detected

NE = Not established.

NMED = New Mexico Environment Department

NMWQCC = New Mexico Water Quality Control Commission

No. = number

U = Analyte was not detected. The reported numerical value is at or below the LOQ. VAL QUAL = Validation qualifier VOC = Volatile organic compound

Kirtland AFB BFF February 2016 Approval with Conditions, Request for Temporary Permission to Discharge to KAFB-7

			LOCA	TION CODE	KA	B-106228	INF	KAF	B-106228-I	EFF	KA	B-106228	INF	KAF	B-106228-	FF	KAF	B-106228-	INF	KAF	B-106228	-EFF	KA	FB-106228	-INF	KAF	B-106228-	EFF
			S	SAMPLE NO.	D	5-106228-II	١F	D5	-106228-EI	FF	D	6-106228-I	١F	D6	6-106228-E	FF	D7	-106228-IN	١F	D7	7-106228-E	FF	JUL	15-106228-	INF-1	JUL1	5-106228-8	FF-1
			SA	MPLE DATE		3-Jul-15			3-Jul-15			4-Jul-15			4-Jul-15			5-Jul-15			5-Jul-15			29-Jul-15			29-Jul-15	
			SAMPLI	E PURPOSE		REG			REG																			
			SAM	PLE DEPTH		0-0 FT			0-0 FT																			
Chemical Class and Analytical Method ^a	Parameter	NMED Ground Water Protection Standards (Sec. 20.6.2.3103) ^b	NMED Approved Background ^c	EPA MCLs ^d	Result	VAL QUAL	LOQ	Result	VAL QUAL	LOQ																		
VOCs (µg/L)	1,2-DIBROMOETHANE (Method 8011)	0.1	NE	0.05	0.204		0.02	ND	U	0.02	0.262		0.02	ND	U	0.02	0.113		0.02	ND	U	0.02	0.092		0.02	ND	U	0.02
Method 8260B	BENZENE	10	NE	5	ND	U	1	ND	U	1																		
	ETHYLBENZENE	750	NE	700	ND	U	1	ND	U	1																		
	M,P-XYLENES	620	NE	10000	ND	U	2	ND	U	2																		
	O-XYLENE	620	NE	10000	ND	U	1	ND	U	1																		
	TOLUENE	750	NE	1000	ND	U	1	ND	U	1																		
	XYLENES	620	NE	10000	N/A	N/A	N/A	N/A	N/A	N/A																		
Metals (ug/L)	IRON, DISSOLVED (Method 6010B-DISS)	1000	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A																		
,	IRON, DISSOLVED (Method 6020A-DISS)	1000	NE	NE	ND	U	100	ND	U	100																		
	MANGANESE, DISSOLVED (Method 6010B-DISS)	200	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A																		
	MANGANESE, DISSOLVED (Method 6020A-DISS)	200	NE	NE	1.3	J	5	6.15		5	1.76	J	5	5		5	ND	U	5	7.16		5	ND	U	5	17.1		5
General Chemistry	PH (Method SM4500) (PH)	9	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A																		
(mg/L)	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE) (Method SM2540D)	NE	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A																		
	TOTAL ORGANIC CARBON (Method SW9060)	NE	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A																		

a. EPA analytical methods listed are for the most recent sampling event.

b. New Mexico Water Quality Control Commission, Water Quality Standards, New Mexico Administrative Code 20.6.2.3103.

c. NMED-HWB Approved Background Concentrations, SNL/Kirtland AFB, Chemical Constituents in Ground Water.

d. U.S. Environmental Protection Agency, 2015, National Primary Drinking Water Regulations: List of Drinking Water Contaminants and Maximum

Contaminant Levels, June. Shading indicates the analyte was detected. **Bold** indicated analyte detected greater than regulatory standard. μg/L = microgram per liter

EFF = Effluent

EPA = Environmental Protection Agency

FT = Feet

GAC = Granular-activated carbon

INF = Influent J = Estimated value, concentration is less than LOQ but greater than laboratory method detection limit (DL). J- = Estimated value, concentration is less than LOQ but greater than laboratory method detection limit (DL); biased low. KAFB = Kirtland Air Force Base

LOQ = Limit of Quantitation

MCL = Maximum contaminant level

mg/L = milligram per literN/A = Not analyzed ND = Not detected

NE = Not established.

NMED = New Mexico Environment Department

NMWQCC = New Mexico Water Quality Control Commission

No. = number

U = Analyte was not detected. The reported numerical value is at or below the LOQ. VAL QUAL = Validation qualifier VOC = Volatile organic compound

Kirtland AFB BFF February 2016 Approval with Conditions, Request for Temporary Permission to Discharge to KAFB-7

			LOCA	TION CODE	KA	B-106228	-INF	KAF	B-106228-	-EFF	KA	B-106228	-INF	KAI	FB-106228-E	FF	KAF	B-106228-	INF	KAI	FB-106228	-EFF	KA	FB-106228	-INF	K/	AFB-106228-E	EFF
			S	AMPLE NO.	AUG	15-106228	INF-1	AUG1	5-106228-	EFF-1	AUG	15-106228-	INF-2	AUG	15-106228-E	FF-2	SEPT	15-106228	-INF-1	SEPT	15-106228	-EFF-1	OCT	15-106228	-INF-1	OC.	T15-106228-E	FF-1
			SAM	MPLE DATE		3-Aug-15			3-Aug-15			12-Aug-15			12-Aug-15			8-Sep-15			8-Sep-15			15-Oct-15	5		15-Oct-15	
			-	PURPOSE		REG			REG			REG			REG			REG			REG			REG			REG	
			SAM	PLE DEPTH		0-0 FT			0-0 FT			0-0 FT			0-0 FT			-			-			-			-	
Chemical Class and Analytical Method ^a	Parameter	NMED Ground Water Protection Standards (Sec. 20.6.2.3103) ^b	NMED Approved Background ^c	EPA MCLs ^d	Result	VAL QUAL	LOQ	Result	VAL QUAL	LOQ	Result	VAL QUAL	LOQ	Result	VAL QUAL	LOQ	Result	VAL QUAL	LOQ	Result	VAL QUAL	LOQ	Result	VAL QUAL	LOQ	Result	VAL QUAL	LOQ
VOCs (µg/L)	1,2-DIBROMOETHANE (Method 8011)	0.1	NE	0.05	0.176		0.02	ND	U	0.02	0.133		0.02	ND	U	0.02	0.075		0.02	ND	U	0.02	0.078		0.02	ND	U	0.02
Method 8260B	BENZENE	10	NE	5	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1
	ETHYLBENZENE	750	NE	700	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1
	M,P-XYLENES	620	NE	10000	ND	U	2	ND	U	2	ND	U	2	ND	U	2	ND	U	2	ND	U	2	ND	U	2	ND	U	2
	O-XYLENE	620	NE	10000	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1
	TOLUENE	750	NE	1000	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1	ND	U	1
	XYLENES	620	NE	10000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Metals (ug/L)	IRON, DISSOLVED (Method 6010B-DISS)	1000	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	IRON, DISSOLVED (Method 6020A-DISS)	1000	NE	NE	ND	U	100	ND	U	100	ND	U	100	ND	U	100	ND	U	100	ND	U	100	ND	U	100	ND	U	100
	MANGANESE, DISSOLVED (Method 6010B-DISS)	200	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	MANGANESE, DISSOLVED (Method 6020A-DISS)	200	NE	NE	ND	U	5	2.13	J	5	ND	U	5	2.16	J	5	ND	Ŭ	5	ND	U	5	ND	U	5	ND	U	5
General Chemistry	PH (Method SM4500) (PH)	9	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
(mg/L)	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE) (Method SM2540D)	NE	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	TOTAL ORGANIC CARBON (Method SW9060)	NE	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

a. EPA analytical methods listed are for the most recent sampling event.

b. New Mexico Water Quality Control Commission, Water Quality Standards, New Mexico Administrative Code 20.6.2.3103.

c. NMED-HWB Approved Background Concentrations, SNL/Kirtland AFB, Chemical Constituents in Ground Water.

d. U.S. Environmental Protection Agency, 2015, National Primary Drinking Water Regulations: List of Drinking Water Contaminants and Maximum

Contaminant Levels, June. Shading indicates the analyte was detected. **Bold** indicated analyte detected greater than regulatory standard.

µg/L = microgram per liter EFF = Effluent

EPA = Environmental Protection Agency

FT = Feet GAC = Granular-activated carbon

INF = Influent J = Estimated value, concentration is less than LOQ but greater than laboratory method detection limit (DL). J- = Estimated value, concentration is less than LOQ but greater than laboratory method detection limit (DL); biased low.

KAFB = Kirtland Air Force Base

LOQ = Limit of Quantitation

MCL = Maximum contaminant level

mg/L = milligram per liter N/A = Not analyzed ND = Not detected

NE = Not established.

NMED = New Mexico Environment Department

NMWQCC = New Mexico Water Quality Control Commission

No. = number

U = Analyte was not detected. The reported numerical value is at or below the LOQ. VAL QUAL = Validation qualifier VOC = Volatile organic compound

I			LOCA	TION CODE	KA	\FB-106228-I	NF	KA	FB-106228-E	FF
				SAMPLE NO.		C15-106228-II			15-106228-E	
				MPLE DATE		15-Dec-15			15-Dec-15	
			SAMPL	E PURPOSE		REG			REG	
			SAN	IPLE DEPTH		-			-	
Chemical Class and Analytical Method ^a	Parameter	NMED Ground Water Protection Standards (Sec. 20.6.2.3103) ^b	NMED Approved Background ^c	EPA MCLs ^d	Result	VAL QUAL	LOQ	Result	VAL QUAL	LOQ
VOCs (µg/L)	1,2-DIBROMOETHANE (Method 8011)	0.1	NE	0.05	0.237	J	0.02	ND	U	0.02
Method 8260B	BENZENE	10	NE	5	ND	U	1	ND	U	1
	ETHYLBENZENE	750	NE	700	ND	U	1	ND	U	1
	M,P-XYLENES	620	NE	10000	ND	U	2	ND	U	2
	O-XYLENE	620	NE	10000	ND	U	1	ND	U	1
	TOLUENE	750	NE	1000	ND	U	1	ND	U	1
	XYLENES	620	NE	10000	N/A	N/A	N/A	N/A	N/A	N/A
Metals (ug/L)	IRON, DISSOLVED (Method 6010B-DISS)	1000	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A
	IRON, DISSOLVED (Method 6020A-DISS)	1000	NE	NE	ND	U	100	ND	U	100
	MANGANESE, DISSOLVED (Method 6010B-DISS)	200	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A
	MANGANESE, DISSOLVED (Method 6020A-DISS)	200	NE	NE	ND	U	5	2.47	J	5
General Chemistry	PH (Method SM4500) (PH)	9	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A
(mg/L)	SUSPENDED SOLIDS (RESIDUE, NON-FILTERABLE) (Method SM2540D)	NE	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A
	TOTAL ORGANIC CARBON (Method SW9060)	NE	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A

a. EPA analytical methods listed are for the most recent sampling event.

b. New Mexico Water Quality Control Commission, Water Quality Standards, New Mexico Administrative Code 20.6.2.3103.

c. NMED-HWB Approved Background Concentrations, SNL/Kirtland AFB, Chemical Constituents in Ground Water.

d. U.S. Environmental Protection Agency, 2015, National Primary Drinking Water Regulations: List of Drinking Water Contaminants and Maximum

Contaminant Levels, June. Shading indicates the analyte was detected. **Bold** indicated analyte detected greater than regulatory standard.

µg/L = microgram per liter

EFF = Effluent

EPA = Environmental Protection Agency

FT = Feet GAC = Granular-activated carbon

INF = Influent J = Estimated value, concentration is less than LOQ but greater than laboratory method detection limit (DL). J- = Estimated value, concentration is less than LOQ but greater than laboratory method detection limit (DL); biased low.

KAFB = Kirtland Air Force Base

LOQ = Limit of Quantitation

MCL = Maximum contaminant level

mg/L = milligram per liter N/A = Not analyzed ND = Not detected

NE = Not established.

NMED = New Mexico Environment Department

NMWQCC = New Mexico Water Quality Control Commission

No. = number

U = Analyte was not detected. The reported numerical value is at or below the LOQ. VAL QUAL = Validation qualifier VOC = Volatile organic compound

February 2016 KAFB-RPD-016-0001

ATTACHMENT A-2

Full-Scale Groundwater Treatment System Data

Attachment A-2 Full-Scale Groundwater Treatment System Analytical Results, December 2015 - January 2016

			LOCATION CODE		S-INF		S-GAC1	GWTS-		GWTS		GWTS-GA		GWT			S-INF		-GAC1		S-EFF		S-INF		S-GAC1	GWT	
			SAMPLE NO	GWTS-I	NF-0001	GWTS-G	GAC1-0001	GWTS-EF	F-0001	GWTS-IN	F-0002	GWTS-GAC1	-0002	GWTS-E	EFF-0002	GWTS-	INF-0003	GWTS-G	AC1-0003	GWTS-I	EFF-0003	GWTS-I	INF-0004	GWTS-G	AC1-0004	GWTS-E	:FF-00
			SAMPLE DATE	12/16	6/2015	12/10	6/2015	12/16/2	2015	12/18/2	2015	12/18/20	5	12/18	8/2015	21-D	ec-15	21-D	ec-15	21-D	ec-15	22-D	ec-15	22-D	ec-15	22-D	ec-15
			SAMPLE TIME	16	:00	16	5:00	16:0	0	14:1	5	14:25		14	:35	12	2:15	12	:30	12	2:40	15	:20	15	:10	15	:00
			SAMPLE DAY	Wedr	lesday	Wed	nesday	Wednes	sday	Frida	ау	Friday		Fri	day	Mo	nday	Moi	nday	Mo	nday	Tue	sday	Tue	sday	Tue	sday
			DAY NUMBER		1		1	1		2		2			2		3		3		3		4		4	4	ł
			SAMPLE PURPOSE		EG		EG	REG	-	REC	-	REG			EG		EG		ĒG		EG		EG		EG		EG
			LABORATORY	Emp			pirical	Empiri		Empiri		Empirica		Emp			oirical	Emp			oirical	Emp		Emp		Emp	
	-	•	LAB DATA DUE	12/18	/2015	12/18	8/2015	12/18/2	015	12/20/2	2015	12/20/20	5	12/20)/2015	12/23	3/2015	12/23	/2015	12/23	3/2015	12/24	/2015	12/24	/2015	12/24	/2015
Chemical Class & Analytical Method	Parameter	NMED Ground Water Protection Standards (Sec. 20.6.2.3103)	EPA MCLs ^a	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	_OQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ
							•								Final Anal	ytical Data											
EDB (µg/L)SW8011	1,2-DIBROMOETHANE	0.1	0.05	0.181	0.03	ND	0.03	ND	0.03	0.18	0.0281	ND 0	0288	ND	0.0284	0.195	0.0281	ND	0.0282	ND	0.028	0.182	0.0283	ND	0.0278	ND	0.0283
VOC (µg/L)/ SW8260B	BENZENE	10	5	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1
	ETHYLBENZENE	750	700	ND	1	ND	1	ND	1	0.316J	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1
	TOLUENE	750	1000	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1
	XYLENES	620	10000	0.918J	3	ND	3	ND	3	2.89J	3	ND	3	1.08J	3	ND	3	ND	3	ND	3	ND	3	ND	3	ND	3
Metals (µg/L)/SW6010C	IRON, DISSOLVED	1,000	NE	36.8J	100	ND	100	ND	100	239	100	ND	100	81.2J	100	37.3J	100	ND	100	30.4J	100	ND	100	ND	100	39.4J	100
	MANGANESE, DISSOLVED	200	NE	ND	15	5.02J	15	3.55J	15	15.5	15	5.46J	15	4.3J	15	ND	15	5.56J	15	5.87J	15	ND	15	5.3J	15	18.5	15
Field Data	Temperature (Deg.C)			17	.48	17	7.33	13.78	8	17		16.4		14	4.7		8.3	17	.3	10	6.3	19	9.3		9	18	3.2
i ielu Dala				35	4.2	37	73.5	609		393		388		-	42	-	87	3	38		34	3	97	-	63		91
Tield Data	Spec. Conductivity (us/cm)						9.1	8.5		7.82		8.86			02		.64	-	.7		.17	-	.2		91		36
Tield Data	pН			8										17		10	1.3	1	77	10							
nelu Data	pH ORP (mV) DO (mq/L)			8 2 6.	14	2	.57	231		79.9 7.64	-	117.4 1.48			5.5 54		.95	3.		-	4.1 .62	-	5.5 42	-	6.1 13	26	8.2 .5

μg/L = micrograms per liter mg/L = milligrams per liter

Grey indicates draft data

Attachment A-2 Full-Scale Groundwater Treatment System Analytical Results, December 2015 - January 2016

			LOCATION CODE	GWTS	S-INF		S-GAC1		S-EFF		rs-inf		S-GAC1		S-EFF		S-INF		-GAC1		S-EFF	GWT			S-GAC1		TS-EFF
			SAMPLE NO	GWTS-IN	IF-0005	GWTS-C	GAC1-0005	GWTS-	EFF-0005	GWTS-	INF-0006	GWTS-G	AC1-0006	GWTS-E	EFF-0006	GWTS-	INF-0007	GWTS-G	AC1-0007	GWTS-E	EFF-0007	GWTS-I	NF-0008	GWTS-C	GAC1-0008	GWTS-	-EFF-0008
			SAMPLE DATE	29-De	c-15	29-D	Dec-15	29-D	ec-15	30-D	Dec-15	30-D	ec-15	30-D	Dec-15	31-D	ec-15	31-D	ec-15	31-D	ec-15	7-Ja	in-16	7-Ja	an-16	7-J	Jan-16
			SAMPLE TIME	13:5	55	1:	3:47	13	:38	13	3:05	13	:00	13	3:10	9	:47	9:	43	8:	:30	9:	00	9	:10	g	9:20
			SAMPLE DAY	Tues	day	Tue	esday	Tue	sday	Wedr	nesday	Wedr	nesday	Wedr	nesday	Thu	rsday	Thur	sday	Thu	rsday		rsday	-	irsday		ursday
			DAY NUMBER	5			5		5		6		6		6		7		7		7	We			ek 1		/eek 1
			SAMPLE PURPOSE	RE	-		EG		EG		EG		EG		EG		EG	RE	-		EG	RI	-		EG		REG
			LABORATORY	Empir			pirical	Emp			pirical		irical		pirical		oirical	Emp			oirical		irical		oirical		pirical
			LAB DATA DUE	12/31/	2015	12/3	1/2015	12/31	/2015	1/4/	2016	1/4/2	2016	1/4/	2016	1/5/	2016	1/5/2	2016	1/5/	2016	1/15/	2016	1/15	/2016	1/15	5/2016
Chemical Class & Analytical Method	Parameter	NMED Ground Water Protection Standards (Sec. 20.6.2.3103)	EPA MCLs ^a	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ
												Final Ana	alytical Data	a										Draft Ana	alytical Data		
EDB (µg/L)SW8011	1,2-DIBROMOETHANE	0.1	0.05	0.181	0.0289	ND	0.0288	ND	0.0287	0.194	0.0284	ND	0.0284	ND	0.0282	0.183	0.0287	ND	0.0286	ND	0.0287	0.176	0.0283	ND	0.0286	ND	0.0284
VOC (µg/L)/ SW8260B	BENZENE	10	5	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1
	ETHYLBENZENE	750	700	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1
	TOLUENE	750	1000	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1
	XYLENES	620	10000	ND	3	ND	3	ND	3	ND	3	ND	3	ND	3	ND	3	ND	3	ND	3	ND	3	ND	3	ND	3
letals (µg/L)/SW6010C	IRON, DISSOLVED	1,000	NE	ND	100	ND	100	63J	100	ND	100	ND	100	ND	100	38.3J	100	ND	100	54.9J	100	ND	100	ND	100	ND	100
	MANGANESE, DISSOLVED	200	NE	ND	15	6.65J	15	9.47J	15	ND	15	6.9J	15	6.21J	15	ND	15	8.22J	15	7.8J	15	ND	15	7.05J	15	8.37J	15
Field Data	Temperature (Deg.C)			18.			6.1		7.7		17		3.8		7.1	1	7.2		3.4	17	7.9	18	3.4	1	7.1	-	16.4
	Spec. Conductivity (us/cm)			40			93		19	4	21		07		25	4	24	40			16	42	24	4	18		430
	рН			8.0	-		.81		38		3.1		75		.02		.05	8.			.42	7.	94		3.3		7.87
	ORP (mV)			114			15.3		3.8		/2.3		1.2		12.5	18	6.8	18		-	4.9		51		64.7		58.16
	DO (mg/L)			7.6	6	2	.46	6	47	7	7.7	3	33	6	.46	7	.47	2.	95	6	.28	7	76		2.8	6	6.68

J = analyte was detected at a trace level below the LOQ

μg/L = micrograms per liter mg/L = milligrams per liter

Grey indicates draft data

Attachment A-2 Full-Scale Groundwater Treatment System Analytical Results, December 2015 - January 2016

			LOCATION CODE	KAFB-	106233	KAFB-	106234	GWT	S-INF		S-GAC1		rs-eff		S-INF		S-GAC1	GWT	S-EFF
			SAMPLE NO	GW	2601	GW	2602	GWTS-	NF-0009	GWTS-C	GAC1-0009	GWTS-	EFF-0009	GWTS-	INF-0010	GWTS-G	GAC1-0010	GWTS-	EFF-0010
			SAMPLE DATE	13-J	an-16	13-J	an-16	14-J	an-16	14	lan-16	14-、	Jan-16	21-J	an-16	21-J	lan-16	21-J	lan-16
			SAMPLE TIME	14	:36	14	:52	9:	28	g	:40	g	:53	16	6:08	15	5:58	15	5:40
			SAMPLE DAY		nesday		lesday		sday		irsday		ırsday		rsday		rsday		ursday
			DAY NUMBER		Sample		Sample	-	ek 2		ek 2		eek 2		& Day 1		3 & Day 1		3 & Day 1
			SAMPLE PURPOSE		EG		EG		EG		EG		EG		EG		EG		EG
			LABORATORY	Emp		Emp		Emp			oirical		oirical		irical		birical		pirical
			LAB DATA DUE	1/21	/2016	1/21,	2016	1/22	2016	1/22	2/2016	1/22	2/2016	1/26	/2016	1/26	/2016	1/26	/2016
Chemical Class & Analytical Method	Parameter	NMED Ground Water Protection Standards (Sec. 20.6.2.3103)	EPA MCLs ^a	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ	Result	LOQ
											Draft Analy	tical Data							
EDB (µg/L)SW8011	1,2-DIBROMOETHANE	0.1	0.05	0.00982J	0.0284	0.112	0.0284	0.15	0.286	ND	0.0287	ND	0.0284	0.146	0.0284	ND	0.0286	ND	0.0281
VOC (µg/L)/ SW8260B	BENZENE	10	5	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1
	ETHYLBENZENE	750	700	0.26J	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1
	TOLUENE	750	1000	1.17	1	0.278J	1	ND	1	ND	1	ND	1	0.661J	1	ND	1	ND	1
	XYLENES	620	10000	1.54J	3	0.921J	3	ND	3	ND	3	ND	3	ND	3	ND	3	ND	3
Metals (µg/L)/SW6010C	IRON, DISSOLVED	1,000	NE	ND	25	ND	25	ND	100	ND	100	37.3J	100	ND	100	ND	100	ND	100
	MANGANESE, DISSOLVED	200	NE	69.3	3.75	8.23	3.75	ND	15	ND	15	3.69J	15	5.55J	15	25.6	15	11.5J	15
Field Data	Temperature (Deg.C)				3.8		6.4		3.8		8.9		8.8		4.3		0.8		7.2
	Spec. Conductivity (us/cm)			3	87		01		25		31		44		90		63	-	70
	-11				42	7.			62		.83		.47		.35		.42		.34
	pH			20	0.1		9.9 22		2.8		21.9		38.3		.99	-	91.6	-	95.4
	DRP (mV) DO (mg/L)			-	16				.2		1.7		.54						.96

μg/L = micrograms per liter mg/L = milligrams per liter

Grey indicates draft data

ATTACHMENT B

Transducer Factory Calibration Certificates

ATTACHMENT B-1

KAFB-7 Transducer

Report Number: 20151216-436996 221 East Lincoln Avenue, Fort Collins, CO 80524 USA 1-970-498-1500, 1-800-446-7488, FAX: 1-970-498-1598 Visit us at www.in-situ.com

Instrument Details: Well-7 Transducer

Instrument Model:	Level TROLL 700
Full Scale Pressure Range:	300 PSI / 210 m / 692 ft / vented
Serial Number:	436996
Hardware Version:	5
Firmware Version:	3.03
Calibration Details:	
Calibration Result:	PASS
Calibration Date:	2015-12-16 17:08:46 (UTC)
Nominal Range of Applied Temperature:	-5 C to +50 C

 Temperature Accuracy Specification:
 +/- 0.1 C From -5 C to +50 C

 Nominal Range of Applied Pressure:
 0 PSI to 300 PSI

 Pressure Accuracy Specification:
 +/- 0.1 %FS from -5 C to +50 C, +/- 0.05 %FS at +15 C

Post-Calibration Check:

Parameter	Applied	Reported	Deviation	Unit
Pressure	300.0010	299.9905	-0.0105	PSI
Pressure	120.0000	119.9871	-0.0129	PSI
Pressure	0.0114	0.0121	0.0007	PSI
Temperature	39.7330	39.7499	0.0169	С

Calibration Procedures and Equipment Used:

Automated calibration procedures used. Manu Agilent Model 34970A SerialNo MY44021907 Manu Mensor Model CPC6000 SerialNo 610450 Manu Instrulab Model 3312A-14-15-24 SerialNo 31138 Manu Instrulab Model 406X-0031-01 SerialNo 1-31154 Manu Mensor Model CPC6000 SerialNo 621433 Manu Agilent Model 53131A-010 SerialNo MY47000169 Manu MENSOR Model 600 SerialNo 620225

Notes:

- 1. Standards used in this calibration are traceable to the National Institute of Standards and Technology.
- 2. This calibration report shall not be reproduced, except in full, without the written approval of In-Situ, Inc.

3 A calibration interval of 12 to 18 months is recommended

ATTACHMENT B-2

Observation Well Transducers

Report Number: 20150923005437-383745

221 East Lincoln Avenue, Fort Collins, CO 80524 USA 1-970-498-1500, 1-800-446-7488, FAX: 1-970-498-1598 Visit us at www.in-situ.com

Instrument Details:

Instrument Model:	Level TROLL 700	
Full Scale Pressure Range	15 PSI vented	
Serial Number:	383745	
Calibration Details:		

Calibration Result:	PASS
Calibration Date:	2015-09-23 00:54:37 (UTC)
Nominal Range of Applied Temperature:	-5 C to +50 C
Temperature Accuracy Specification:	+/- 0.1 C From -5 C to +50 C
Nominal Range of Applied Pressure:	0.0 PSI to 15.0 PSI
Pressure Accuracy Specification:	+/- 0.1 %FS from -5 C to +50 C, +/- 0.05 %FS at +15 C

Post-Calibration Check:

Parameter	Applied	Reported	Deviation
Pressure	15.0000	14.9984	-0.0104
Pressure	6.2998	6.3003	0.0033
Pressure	0.0003	-0.0001	-0.0027
Temperature	24.9240	24.9275	0.0035

Calibration Procedures and Equipment Used:

Automated calibration procedures used. Manu Agilent Model 34980A SerialNo MY44014053 Manu Instrulab Model 4312A-15 SerialNo 41014 Manu Instrulab Model 832-151-01 SerialNo 12157 Manu Ruska Model 7215xi SerialNo 53143

Notes:

- 1. Standards used in this calibration are traceable to the National Institute of Standards and Technology.
- 2. This calibration report shall not be reproduced, except in full, without the written approval of In-Situ, Inc.

3. A calibration interval of 12 to 18 months is recommended.

Report Number: 2015101822832-414253

221 East Lincoln Avenue, Fort Collins, CO 80524 USA 1-970-498-1500, 1-800-446-7488, FAX: 1-970-498-1598 Visit us at www.in-situ.com

Instrument Details:

Instrument Model:	Level TROLL 700	
Full Scale Pressure Range	15 PSI vented	
Serial Number:	414253	

Calibration Details:

Calibration Result:	PASS
Calibration Date:	2015-10-18 22:8:32 (UTC)
Nominal Range of Applied Temperature:	-5 C to +50 C
Temperature Accuracy Specification:	+/- 0.1 C From -5 C to +50 C
Nominal Range of Applied Pressure:	0.0 PSI to 15.0 PSI
Pressure Accuracy Specification:	+/- 0.1 %FS from -5 C to +50 C, +/- 0.05 %FS at +15 C

Post-Calibration Check:

Parameter	Applied	Reported	Deviation		
Pressure	15.0001	14.9993	-0.0055		
Pressure	6.2999	6.2988	-0.0073		
Pressure	0.0002	0.0004	0.0011		
Temperature	24.9270	24.9274	0.0004		

Calibration Procedures and Equipment Used:

Automated calibration procedures used. Manu Agilent Model 34980A SerialNo MY44014053 Manu Instrulab Model 4312A-15 SerialNo 41014 Manu Instrulab Model 832-151-01 SerialNo 12157 Manu Ruska Model 7215xi SerialNo 53143

Notes:

- 1. Standards used in this calibration are traceable to the National Institute of Standards and Technology.
- 2. This calibration report shall not be reproduced, except in full, without the written approval of In-Situ, Inc.

3. A calibration interval of 12 to 18 months is recommended.

Report Number: 20151016183811-428666

221 East Lincoln Avenue, Fort Collins, CO 80524 USA 1-970-498-1500, 1-800-446-7488, FAX: 1-970-498-1598 Visit us at www.in-situ.com

Instrument Details:

Instrument Model:	Level TROLL 700	
Full Scale Pressure Range	15 PSI / 11 m / 35 ft / vented	
Serial Number:	428666	
Calibration Details:		
Calibration Result:	PASS	

Calibration Date:2015-10-16 18:38:11 (UTC)Nominal Range of Applied Temperature:-5 C to +50 CTemperature Accuracy Specification:+/- 0.1 C From -5 C to +50 CNominal Range of Applied Pressure:0.0 PSI to 15.0 PSIPressure Accuracy Specification:+/- 0.1 %FS from -5 C to +50 C, +/- 0.05 %FS at +15 C

Post-Calibration Check:

Parameter	Applied	Reported	Deviation		
Pressure	15.0002	15.0003	0.0011		
Pressure	5.9999	5.9965	-0.0230		
Pressure	-0.0002	-0.0025	-0.0152		
Temperature	39.1510	39.1682	0.0172		

Calibration Procedures and Equipment Used:

Automated calibration procedures used. Manu Agilent Model 34970A SerialNo MY44000743 Manu Instrulab Model 3312A-14-15-24 SerialNo 31127 Manu Instrulab Model 406X-0031-01 SerialNo 2-31154 Manu MENSOR Model 600 SerialNo 620947 Manu Agilent Model 53131A-010 SerialNo MY47000169 Manu MENSOR Model 600 SerialNo 620225

Notes:

- 1. Standards used in this calibration are traceable to the National Institute of Standards and Technology.
- 2. This calibration report shall not be reproduced, except in full, without the written approval of In-Situ, Inc.
- 3. A calibration interval of 12 to 18 months is recommended.

Report Number: 20151021102238-429634

221 East Lincoln Avenue, Fort Collins, CO 80524 USA 1-970-498-1500, 1-800-446-7488, FAX: 1-970-498-1598 Visit us at www.in-situ.com

Instrument Details:

Instrument Model:	Level TROLL 700	
Full Scale Pressure Range	15 PSI / 11 m / 35 ft / vented	
Serial Number:	429634	
Calibration Details:		
Calibration Result:	PASS	

Calibration Result.	PASS
Calibration Date:	2015-10-21 10:22:38 (UTC)
Nominal Range of Applied Temperature:	-5 C to +50 C
Temperature Accuracy Specification:	+/- 0.1 C From -5 C to +50 C
Nominal Range of Applied Pressure:	0.0 PSI to 15.0 PSI
Pressure Accuracy Specification:	+/- 0.1 %FS from -5 C to +50 C, +/- 0.05 %FS at +15 C

Post-Calibration Check:

Parameter	Applied	Reported	Deviation		
Pressure	15.0002	15.0002	0.0002		
Pressure	6.0001	6.0003	0.0018		
Pressure	0.0001	-0.0009	-0.0063		
Temperature	39.1650	39.1970	0.0320		

Calibration Procedures and Equipment Used:

Automated calibration procedures used. Manu Agilent Model 34970A SerialNo MY44000743 Manu Instrulab Model 3312A-14-15-24 SerialNo 31127 Manu Instrulab Model 406X-0031-01 SerialNo 2-31154 Manu MENSOR Model 600 SerialNo 620947 Manu Agilent Model 53131A-010 SerialNo MY47000169 Manu MENSOR Model 600 SerialNo 620225

Notes:

- 1. Standards used in this calibration are traceable to the National Institute of Standards and Technology.
- 2. This calibration report shall not be reproduced, except in full, without the written approval of In-Situ, Inc.
- 3. A calibration interval of 12 to 18 months is recommended.

ATTACHMENT B-3

Completed Transducer Installation Forms

Transducer Installation

Page _ / _ of _ / ___

Date 1-27-16 \$ 2-3-16 Personnel Trenton Richards & Evan Perez

Well ID	Initial Water	Water	Time	Log name	Log start	Commonto
		Laural	-	Log nume	Contraction (Contraction)	Comments
		Level	Transducer		time	
	Level (ft	Time	Zeroed			
	below top					
0.508	or vault)	and the second second				
CAFB-105	486.53			KAFB-0508-1	1030	
			1207	KAFB-0523		
			1302	KAFR-0524	1307	
KAFB-0507	491.68	1355	1402	KAFB-0507		
IMPO /		Nov 15	1200	KAFB - 7rl	1400	
			60 2-3-16			
	pedistal					
5						
					-	
	KAFB 0523 KAFB 0524 KAFB 0507 KAFB 7	KAFB 0523 482-67 KAFB 0529 478.29 KAFB 0507 491.68	CAFB-10508 486.53 6900 CAFB-10508 482-67 1120 CAFB 0522 478.29 1226 CAFB-0507 491.68 1355 CAFB 7 2486 CAFB 7 2486 SAFB 7 2486 Below Top	CAFB-106-0 486.53 6900 1010 CAFB-106-0 482-67 1120 1207 CAFB 0523 482-67 1120 1207 KAFB 0524 478.29 1226 1302 KAFB 0524 478.29 1226 1302 KAFB 0507 491.68 1355 1402 KAFB 7 2486 Nov 15 1200 KAFB 7 2486 Nov 15 1200 Below Top 002-3-16 002-3-16	KAFB-10508 486.53 6900 1010 KAFB-0508-1 KAFB 0523 482-67 1120 1207 KAFB-0523 KAFB 0524 478.29 1226 1302 KAFB-0524 KAFB 0524 478.29 1226 1302 KAFB-0524 KAFB 0507 491.68 1355 1402 KAFB-0507 KAFB 7 2486 Nov 15 1200 KAFB-7-1 Below 709 002-3-16 002 1000 1000	KAFB-10508 486.53 6900 1010 KAFB-0508-1 1030 KAFB 0523 482-67 1120 1207 KAFB-0523 1215 KAFB 0529 478.29 1226 1302 KAFB-0524 1307 KAFB 0529 478.29 1226 1302 KAFB-0524 1307 KAFB 0507 491.68 1355 1402 KAFB-0507 1431 KAFB 7 2486 Nov 15 1200 KAFB-71 1400 KAFB 7 2486 Nov 15 1200 KAFB-71 1400

Well ID Checklist

Page _/___ of _/___

Date 1-27-15 Personnel T. Richards, E. Perez

Tra	nsducer and Baro	TROLL Installation	Locations	
	Transducer or	Serial Number	Well ID	Comments
	BaroTROLL?			
1	Transducer	R27315	KAFB-0508	
2	Transducer	R26859	KAFB-0523	
3	Transfurer	R27316	KAFB.0524	
4	Transducer	R26391	KAFB-0507	
5	Trans ducer	R 26391 R 436996 M 2311	KAFB-7	Reinstalled 2-3-16
6		7R 2-376		
7				
8				
9				
10		- 22		
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
	5			

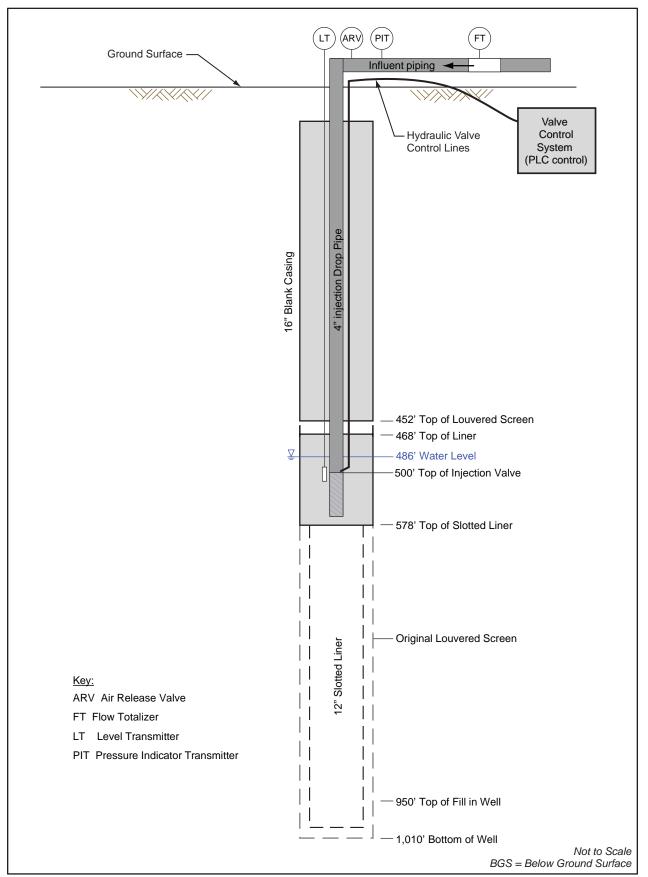
Transducer Calibration

Page l of l

Personnel

Date <u>1-27-16</u> # 2-3-16 7R₂₋₃₋₁₆ T. Richards & Evan Perez

	Time	Well ID	Initial	Depth	(feet)	Raised (feet)	Depth	3	Final	Depth⁵	(feet)	Comments
			1	2	3	1	2	3	1	2	3	
16	1036	K458	9.96	9.96	9.96	7.01	7.01	7.01	9.94	9.96	9.96	
-27-1° 3	1155	KAFB 0529	10.091	9.89	0.09	7.14	7.14	7. M.	10.101	10.103	10.08	
-27-16 {	1385	KAFB BS07	997	9.97	10.04	7.09	7.09	7,09	10.05	10.05	10.05	
		a second second										
-3-16	1233	KAFB 7	16.51	16.51	16.51	13.60	13.60	13.60	16.51	16.51	16.51	Re-installed.
									- 34			
-												
								_				
			_	-			_					
-												
-												
			_									
ŀ								1				
F												
								-			-+	
_						2						


^a Lift the transducer cable by 3.0 feet for the "Raised Depth"

^bReturn the transducer to its initial location for the "Final Depth"

ATTACHMENT B-4

KAFB-7 Well Completion Diagram

KAFB-7 Injection Schematic

500433.04010300.A6

ATTACHMENT C

Flow Meter Calibration Certificates

ATTACHMENT C-1

KAFB-106228

5		FB-106228					Manufactur	e				
		T-3001		Transo	ducer/Tra	ansmitter	Seimens/McCrometer					
Contra	act ID	ISA S20	Sheet	Calibr	ation/Ve	rification	Model Num	nber				
	15-056						433-1EA22/V	H03-A1	SF3			
	ent Condition	-	0	Loop Numbe			Serial Num					
		60 ° C			3000			2314-900278				
Press		<u>n/a</u> mr	n Hg	L	Initial Calibr			Range 0		60 ^{dp}		
Humic	,	<u>n/a</u> %			Verificati		0	to 250	gp			
	•	n: Mechanica				Nameplate/ID T	「ag ⊡ M	lounted at cor	rect hei	ight 🗹		
		uit Connectio		I erminal/Wi	re Labels 🗹	Conduit ID						
	ibration Proc	of test at: ☑ Indirect [zero	Linear 🗌	Non linear	Square Roo	• [7]					
							l					
	id Impedanc	24 VDC		ms max @ 2								
0. LUA					4 VUC							
				C	alibration P	oints						
	Input	Expected	Meter		As Found D	ata		As Left Da	ata			
%	mput	Output	EU	Output	Output	Maximum	Output	Output	Max	ximum		
	DP	(mADC)	GPM	Increase	se Decrease Output Erro		Increase	Decrease	Outp	ut Error		
0	0.00	4.00	0.00	0	0	± 0	0	0	±	0		
10	-					<u>±</u>			±			
20	-			-	_	±	_	_	±	-		
25		8.00	62.50	0	0	± 0	0	0	±	0		
30	-					<u>+</u>			±			
40 50	40.04	12.00	125.00	0	0	± 0	0	0	±	0		
50 60	40.04	12.00	125.00	U	U	± 0 ±	U	0	±	0		
70	_					±			±			
75		16.00	187.50	0	0	± 0	0	0	±	0		
80	-	10.00	-	.		±	, ,		±	•		
90	-		-			±			±			
100	160.16	20.00	250.00	0	0	± 0	0	0	±	0		
Test F	quipment U	sed		Mode	el No:	Serial N	0.	Calibration/Ce	ertificati	on Date		
	Fluke 789				89	149700		February 7, 2016				
		led Calibrator			75	120619			<u>у , </u>	-		

Zero of transmitter performed in field after media introduced to flow meter and stablized

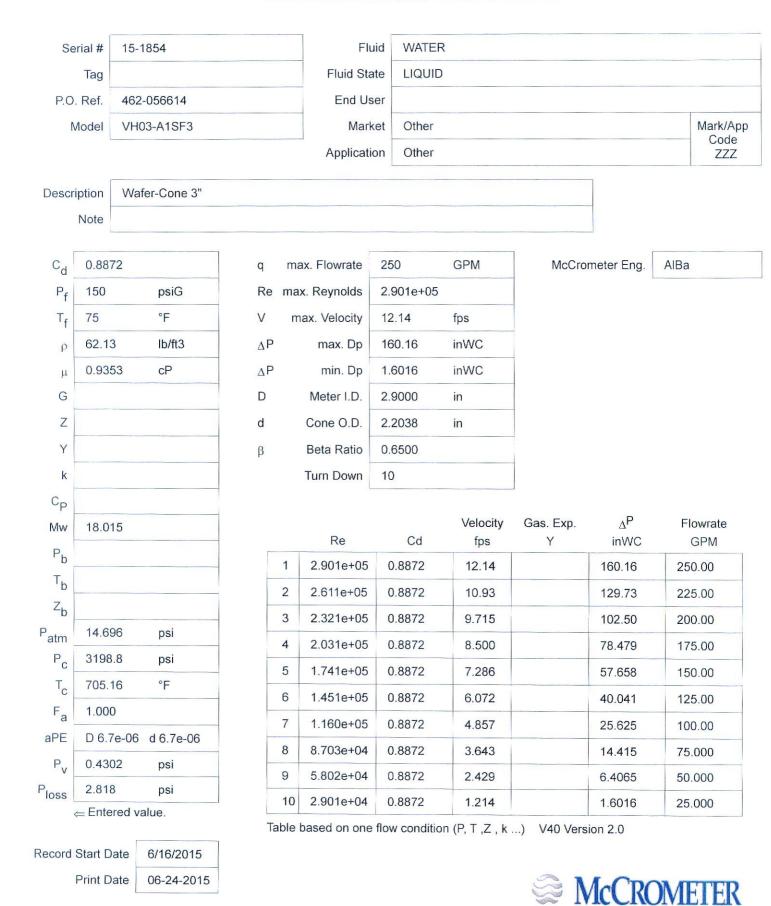
Span verifed in field with actual field conditions and flow rate and visual DP recorded in Hart Communicator

Print Name:Robbie SatrianaSigned By:Robbie Satriana

Approved By: Preston Patterson

Final Inspection Checklist

Serial Number: 15-1854


Job Reference: 462-056614

√ <u>Meter</u> • • • • • •	Body Construction Tube Type / Rating Tube Material Tube Internal Diameter Flange Material Flanges Parallel Face-to-Face Dimension Cone Type Cone Material Cone Centered Pressure Ports Free of Burrs Fitting Threads Clean
• ✓ <u>Stand</u>	Name Plate Flow Arrow ard Technical Documentation
•	V-Cone Application Sizing Materials Of Construction Report Warranty Card
✓ <u>Optio</u> ☑ □ □ □	nal Technical Documentation Calibration Test Report Hydrostatic Pressure Test Dye Penetrant Examination X-Ray Examination Magnetic Particle Examination Certified Mill Test Reports (CMTR's)

In		
Inspected By:	PF	
Date:	Le 25/2015	
	1	

V-Cone® Application Sizing

Serial Number: 15-1854					. Te	st Number:	15-1854		
Model:	VH03-A1SF3	/H03-A1SF3 Calib				ration Date:	6/24/	2015	
						R	eport Date:	6/24/	2015
Sold To:	Null								
Description:									
Notes:	Wafer-Cone	3"							
Inside Dia	ameter (in):	2.9	-					Beta Ratio:	0.65
Cone Outside Dia	ameter (in): _	2.2038	-	Calibratio	n Ponort			Average Cf:	0.8872
	Γ		Reynolds Nun			SLB	F Cf:]	
	1		223991 -	204486		0.8	949	-	
	2		204486 - 184981			0.8943			
3			184981 - 165476 165476 - 145971 145971 - 126466 126466 - 106961 106961 - 87456			0.8935 0.8926 0.8913 0.8897 0.8874		1	
	4 5 6							1	
]	
7									
	8		87456 -	67951		0.8	839		
9			67951 -	48446		0.8	781		
	10		48446 -	28941		0.8665			
Approved By:	The H.		2				Test Fluid:	Wa	ater
				Stand Instru	imentation ⁻	Traceability	Kit Number:	V0:	121
						Sta	ndard Used:	Prin	nary
				Test D	Data		()	1	1
Water Temperature	Test Time	Collected Mass	Air Temperature	Barometric Pressure	Relative	Differential Pressure	Rate of Flow Reference	Reynolds Number	Combined Uncertainty

	Temperature (°C)	(seconds)	Mass (kilograms)	Temperature (°C)	Pressure (kPa)	Humidity (%)	Pressure (kPa)	Reference (m ³ /sec)	Number (× ¹ / ₁₀₀₀)	(%) at 95% confidence
1	25.60	31.676	360.953	21.79	95.80	52.96	20.5717	0.01141	224	0.15
2	25.80	31.975	215.146	21.79	95.80	52.96	7.2187	0.00674	133	0.15
3	25.80	46.454	67.987	21.79	95.80	52.96	0.3719	0.00147	29	0.15

This calibration was performed using standards traceable to the National Institute of Standards and Technology (NIST), USA. Certificates of traceability for the individual test measurements listed in this report are documented and serialized by the Test Stand Instrumentation Traceability Kit Number identified above and are available upon request. Combined Uncertainty to a 95% confidence level is developed for each test point according to the methods described in the ANSI/NCSL Z540-2-1997. Methods and procedures used in this calibration are in accordance with the McCrometer Flow Laboratory Technical Manual, revision 2.0.

Page 1 of 1

McCrometer, Inc. • 3255 West Stetson Avenue, Hemet, CA 92545, USA Tel (951) 652-6811 • Fax (951) 652-3078 • Website: http://www.mccrometer.com Hours: 8am - 4:30pm PST, Monday – Friday

KAFB-106233

Tag N	lame / ID: KA			Tropo		- no mit	tor	Manufactu			
		T-7001	01 /		ducer/Tra			Seimens/McCrometer			
Contra		ISA S20	Sheet	Calibr	ation/Ve	rification	on	Model Nun			4050
A no bia	15-111			Loop Numbe	~				433-1EA22/VI	<u>103-A</u>	15F3
	ent Condition		C(°F)		Loop Number Serial Number 1 1X-FD09-9047929/153398						000
Press	erature	n/a mi	· · ·	<u> </u>	Initial Calibr	ration					62 DP
Humid		<u>n/a</u> m/	ппу	L							
	<u> </u>			ons 🗸		Namepla		-			om eight V
	•	n: Mechanica uit Connectio		ons ⊡ Terminal/Wi	Finish	-		agı⊻ın. ⊡	Iounted at cor	rect ne	eight 🖄
	ibration Proo			reminal/wi		Condi					
	_	Indirect	zero	Linear 🗌	Non-linear		Poot	• 🔽			
	p Voltage			Vire 2-V	Nire 🗸						
	id Impedance	e N/A		ms max @ 2							
0. 200					4 100						
				C	alibration P	oints					
	Input	Expected	Meter		As Found D	Data			As Left Da	ita	
%	mput	Output	EU	Output	Output	Maxim	านm	Output	Output	Ma	aximum
	DP	(mADC)	GPM	Increase	Decrease	Output	Error	Increase	Decrease	Out	put Error
0	0.00	4.00	0.00	0	0	±	0	0	0	±	0
10						±				±	
20						±				±	
25		8.00	62.50	0	0		0	0	0	±	0
30	-					±				±	
40	-					±	· · · · · · · · · · · · · · · · · · ·			±	
50	40.29	12.00	125.00	0	0		0	0	0	±	0
60			• • • • • • • • • • • • • • • • • • • •			±				±	
70	-			-	-	±		•	-	±	~
75		16.00	187.50	0	0		0	0	0	±	0
80	-					±				±	
90	-	00.00	-	•	0	±	^	•		±	•
100	161.80	20.00	250.00	0	0	±	0	0	0	±	0
Test E	Equipment U	sed		Mode	el No:	S	erial N	o:	Calibration/Ce	ertifica	tion Date
\checkmark	Fluke 789			78	89	1	497008	35	Februar	y 7, 20	016
\checkmark	Emerson Fil	•	3.	75	1:	20619	55	Ν	I/A		

Comments <u>Mcrometer Vcone Fitted with Seimens DP transmitter and setup per Vcone cal parameteres</u> Zero of transmitter performed in field after media introduced to flow meter and stablized Span verifed in field with actual field conditions and flow rate and visual DP recorded in Hart Communicator

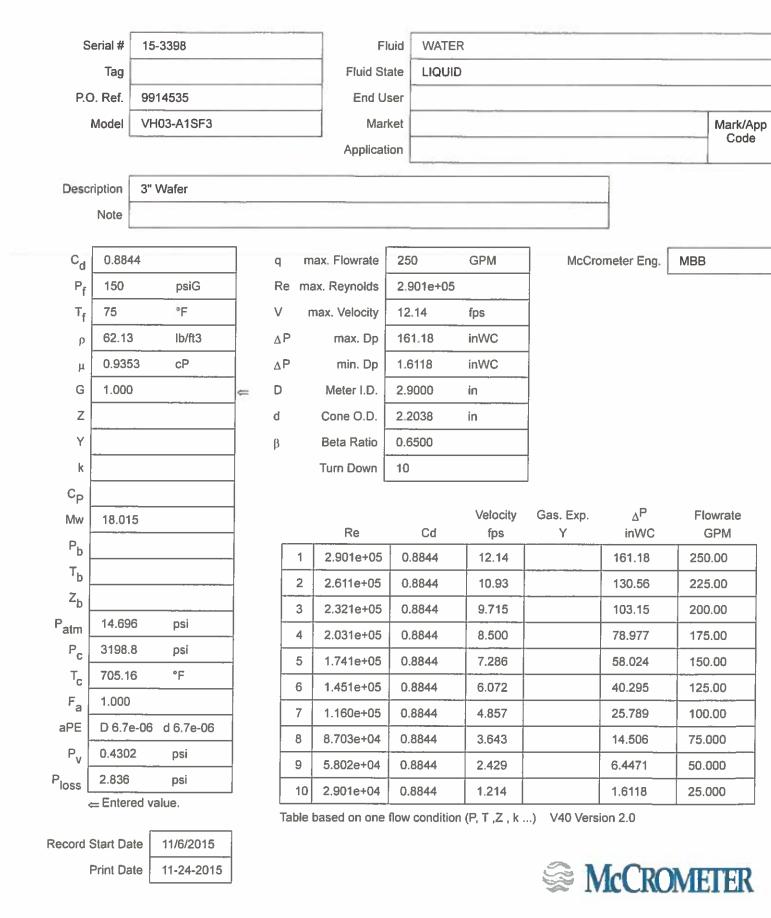
Print Name: Robbie Satriana

Signed By: Robbie Satriana

Approved By: <u>Preston Patterson</u> 01-28-16 DCN <u>1/14/2016</u> Date <u>1/14/2016</u> Date <u>1/27/2016</u>

I&C Solutions LLC 4485 Irving Blvd Albuquerque, NM 87114 505-821-8960 fax 505-821-8970

Final Inspection Checklist


Serial Number:	15-3398	
Job Reference:	9914535	

✓ <u>Mete</u>	r Body Construction	
•	Tube Type / Rating	
•	Tube Material	
•	Tube Internal Diameter	
•	Flange Material	
•	Flanges Parallel	
•	Face-to-Face Dimension	
•	Cone Type	
•	Cone Material	
•	Cone Centered	
•	Pressure Ports Free of Burrs	
•	Fitting Threads Clean	
•	Name Plate	
•	Flow Arrow	
✓ <u>Stan</u>	lard Technical Documentation	
•	V-Cone Application Sizing	
•	Materials Of Construction Report	
•	Warranty Card	
✓ <u>Optic</u>	onal Technical Documentation	
P		
	Hydrostatic Pressure Test	
_	Dye Penetrant Examination	
	X-Ray Examination	
	Magnetic Particle Examination	
لنسا	magnetie i al tiele Examination	

ty		
Inspected By:	FO	
Date:	11/24/15	
	• •	

V-Cone® Application Sizing

Serial Number: 15-33	98		Т	est Number:	15-	15-3398			
Model: VH03-	-A1SF	3				_ Calib	pration Date:	11/23	3/2015
Sold To: Null							Report Date:	11/23	3/2015
Description: 3" Wa	ıfer								
Notes: <u>3" Wa</u>	ıfer								
Inside Diameter	r (in):	2.9	_					Beta Ratio:	0.65
Cone Outside Diameter	r (in):	2.2038						Average Cf:	0.8844
			-	Calibratio	on Report				
		1	Reynolds Nur	nber Interva	il:	SLE	F Cf:		
	1		214162	196852		0.8	3878		
	2			- 179542			875		
	3		179542	- 162232		0.8	871		
	4		162232 -	144922		0.8	866		
	5		144922 -	127612		0.8	860		
	6		127612 -	110302		0.8	852		
	7		110302	- 92992		0.8	841		
	8		92992 -	92 - 75682 0.8827					
	9		75682 -	58372		0.8804			
	10		58372 -	41062		0.8	765		
Approved By: Lus O	2 L	Ann Luis Leon Pached					Test Fluid:	Wa	ter
				Stand Instru	umentation	Fraceability	Kit Number:	V0:	128
						Sta	ndard Used:	Prin	агу
				Test D	Data				
Water Temperature (°C)		Collected Mass (kilograms)	Air Temperature (°C)	Barometric Pressure (kPa)	Relative Humidity (%)	Drossura	Rate of Flow Reference (m ³ /sec)	Reynolds Number (× ¹ / ₁₀₀₀)	Combined Uncertainty (%) at 95% confidence
1 20.80 30.8	09	375.358	20.04	95.70	34.82	23.8364	0.01218	214	0.37
2 20.80 30.7	66	225.298	20.04	95.70	34.82	8.6268	0.00732	129	0.22
3 20.80 30.7	80	71.954	20.04	95.70	34.82	0.9117	0.00234	41	0.21

This calibration was performed using standards traceable to the National Institute of Standards and Technology (NIST), USA. Certificates of traceability for the Individual test measurements listed in this report are documented and serialized by the Test Stand Instrumentation Traceability Kit Number Identified above and are available upon request. Combined Uncertainty to a 95% confidence level is developed for each test point according to the methods described in the ANSI/NCSL 2540-2-1997. Methods and procedures used in this calibration are in accordance with the McCrometer Flow Laboratory Technical Manual, revision 2,0.

Page 1 of 1

McCrometer, Inc. • 3255 West Stetson Avenue, Hemet, CA 92545, USA Tel (951) 652-6811 • Fax (951) 652-3078 • Website: http://www.mccrometer.com Hours: 8am - 4:30pm PST, Monday - Friday

KAFB-106234

Tag N	lame / ID: KA			Tuener	J			Manufactu				
		Г-7002			ducer/Tra				eimens/McCro	omete	r	
Contr	act ID	ISA S20	Sheet	Calibr	ation/Ve	rificati	on	Model Num				
	15-111				7MF4433-1EA22/VH03-A1SF3							
	ent Condition		· / ° – ·	Loop Numbe	.oop Number Serial Number					00		
	erature		C [°] F)		1 Initial Calibr	ation			FD09-904793		99 62 ^{DP}	
Press Humi		<u>n/a</u> mr n/a %	пнд	L				Calibration 0	U U			
						-		÷			om	
	ual Inspection				Finish	Namepla		agı⊻ııv	lounted at cor	rect ne	eight 🖂	
	ctrical: Condu			Terminal/Wi	re Labels 🖄	Cond	luit ID					
	ibration Proo		zero	Linear 🗌	Non linear		ro Dool	· [J]				
	op Voltage			Vire 2-	Nire 🗸	🗆 Squa						
	ad Impedance	<u>24 VDC</u> e N/A	4-\ \	ms max @ 2								
0. L00		<u> </u>			4 100							
				C	alibration P	oints						
	Input	Expected	Meter		As Found D	ata			As Left Data			
%	mpat	Output	EU	Output	Output	Maxin	num	Output	Output	Ма	ximum	
	DP	(mADC)	GPM	Increase	Decrease	Output	Error	Increase	Decrease	Outp	out Error	
0	0.00	4.00	0.00	0	0	±	0	0	0	±	0	
10	-					±				±		
20	-					±				±		
25		8.00	62.50	0	0		0	0	0	±	0	
30	-					±				±		
40				_	_	±	-	-		±	-	
50	40.55	12.00	125.00	0	0		0	0	0	±	0	
60	-					±				±		
70	-	40.00	-	0	0	±	^	0	0	± .	^	
75 80		16.00	187.50	0	0		0	0	0	±	0	
90	-					±				±		
100	162.20	20.00	250.00	0	0	± ±	0	0	0	± ±	0	
100	102.20	20.00	250.00	0	0	Ξ	0	0	0	Ξ	0	
Test I	Equipment Us	sed		Mode	el No:	S	Serial N	0:	Calibration/Ce	ertificat	ion Date	
\checkmark	Fluke 789			7	89	1	497008	35	Februar	y 7, 20	16	
\checkmark	Emerson Fil		3	75	1	206195	55	N	/A			
	_											
	_											
	-											
 												
						1						

Comments <u>Mcrometer Vcone Fitted with Seimens DP transmimtter and setup per Vcone cal parameteres</u> Zero of transmitter performed in field after media introduced to flow meter and stablized Span verifed in field with actual field conditions and flow rate and visual DP recorded in Hart Communicator

Print Name: Robbie Satriana

Signed By: Robbie Satriana

Approved By: <u>Preston Patterson</u>

DCN <u>1/9/2016</u> Date <u>1/9/2016</u> Date <u>1/27/2016</u>

I&C Solutions LLC 4485 Irving Blvd Albuquerque, NM 87114 505-821-8960 fax 505-821-8970

Final Inspection Checklist

Serial Number: 15-3399 Job Reference: 9914535

the	- 2	
Inspected By:	.FS	
Date:	"24/15	

V-Cone® Application Sizing

Serial Number: 15-33	99		Test Number: 15-3399								
Model: VH03	-A1SF	3				Calib	pration Date:	Date: 11/23/201			
Sold To: Null							Report Date:	11/2	3/2015		
Description: 3" Wa	fer							···· ·			
Notes: <u>3" Wa</u>	ıfer										
Inside Diamete	r (in):	2.9	_					Beta Ratio	: 0.65		
Cone Outside Diamete	r (in):	2.2038						Average Cf	0.8816		
	• •	·	-	Calibratio	on Report						
			Reynolds Nur	nber Interva	ıl:	SLE	IF Cf:				
	1		214258 -	197004		0.8	3860				
	· · · · · ·	197004 -	179750		0.8	3856					
		179750 -	162496		0.8	3851					
	4		162496 -	145242		0.8	3845				
	S		145242 -	127988		0.8	3837				
	6		127988 -	110734		0.8	827				
	7		110734	- 93480		0.8	813				
	8		93480 -	76226		0.8	3794				
	9		76226 -	58972		0.8	0.8765				
	10		58972 -	41718		0.8	716				
Approved By: Lin O		ر المنابع Leon Pacheo		Stand Instru	umentation 7	Fraceability	Test Fluid: Kit Number:		ater 128		
						-	•				
				Test D	Data	2[9	ndard Used:	Prir	nary		
Water Temperature (°C)		Collected Mass (kilograms)	Air Temperature (°C)	Barometric Pressure (kPa)	Relative Humidity (%)	Differential Pressure (kPa)	Rate of Flow Reference (m ³ /sec)	Reynolds Number (× ¹ / ₁₀₀₀)	Combined Uncertainty (%) at 95% confidence		
1 20.90 30.7	56	374.409	20.04	95.70	34.82	23.8877	0.01217	214	0.37		
2 20.90 30.8	91	226.918	20.04	95.70	34.82	8.7422	0.00734	129	0.22		
3 20.80 31.0	04	73.557	20.04	95.70	34.82	0.9471	0.00237	42	0.21		

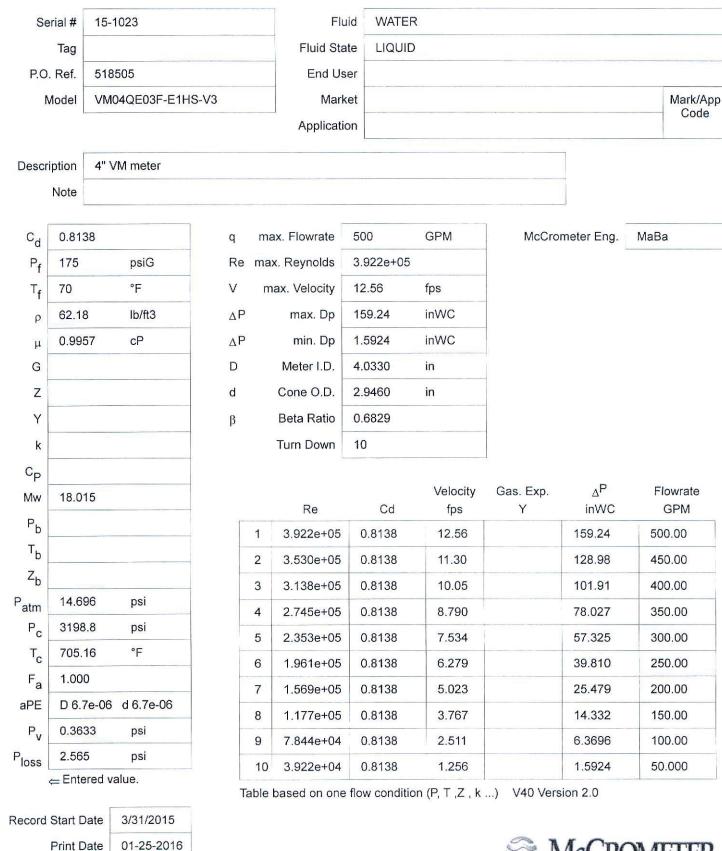
This calibration was performed using standards traceable to the National Institute of Standards and Technology (NIST), USA. Certificates of traceability for the individual test measurements listed in this report are documented and serialized by the Test Stand Instrumentation Traceability Kit Number Identified above and are available upon request. Combined Uncertainty to a 95% confidence level is developed for each test point according to the methods described in the ANSI/NCSI. Z540-2-1997. Methods and procedures used in this calibration are in accordance with the McCrometer Flow Laboratory Technical Manual, revision 2.0.

Page 1 of 1

McCrometer, Inc. • 3255 West Stetson Avenue, Hemet, CA 92545, USA Tel (951) 652-6811 • Fax (951) 652-3078 • Website: http://www.mccrometer.com Hours: 8am • 4:30pm PST, Monday – Friday

GWTS Influent Pump

Tog N	amo / ID: G	WTS Influent	Dump				Manufactu	ro			
Tay N		T-3102	rump	Transo	ducer/Tra	ansmitter	Endress Hauser/McCrometer Model Number				
Contra		ISA S20	Sheet			rification					
	N/A			Callbi		meation		41-200-02/VH	03-A1S	F3	
Ambie	nt Condition	IS		Loop Numbe	er		Serial Num	nber			
Temp	erature	60 ° C	(°F)	-	3000			E15-01718/15	-1023		
Press		n/a mr			Initial Calibr	Calibration	Range 0	to 15	9 ^{DP}		
Humic	lity	<u>n/a</u> %			✓ Verificati		0 to 500 gpm				
		n: Mechanica		ons 🗹	Finish 🗹	Nameplate/ID T	ag 🗹 🛛	Nounted at cor	rect hei	ght 🗹	
2. Eleo	ctrical: Cond	luit Connectio	ns 🗹	Terminal/Wi	ire Labels 🗹	Conduit ID					
	bration Proc	_	zero	_		_	_				
		 ✓ Indirect 		Linear	Non-linear	Square Roo	t 🗹				
		24 VDC	4-\	Wire 2-V	Wire 🔽						
6. Loa	d Impedanc	e <u>N/A</u>	l oh	ms max @ 2	4 vdc						
					alibration P	oints					
	-	Expected	Meter		As Found D			As Left Data			
%	Input	Output	EU	Output	Output	Maximum	Output	Output		imum	
	DP	(mADC)	GPM	Increase	Decrease	Output Error	Increase	-			
0	0.00	4.00	0.00	0	0	± 0	0	0	±	0	
10	-					±			±		
20	-					±			±		
25		8.00	125.00	0	0	± 0	0	0	±	0	
30	-					±			±		
40	-					±			±		
50	39.81	12.00	250.00	0	0	± 0	0	0	±	0	
60	-		-			±			±		
70	-	40.00	-		•	±	~		±		
75 80		16.00	375.00	0	0	± 0	0	0	±	0	
90	-		-			± ±			±		
100	159.24	20.00	500.00	0	0	± 0	0	0	±	0	
							. T			_	
	quipment U	sed			el No:	Serial N		Calibration/Ce			
	Fluke 789				89	149700		Februar		6	
	Emerson Fi	led Calibrator		3	75	120619	55	N	I/A		
											
-				-		I directed by cus					


Span verifed in field with actual field conditions and flow rate and visual DP recorded in Hart Communicator

Print Name: Robbie Satriana DCN 2/2/2016 Signed By: Robbie Satriana 2/2/2016 Date Approved By: Preston Patterson

2/2/2016 Date

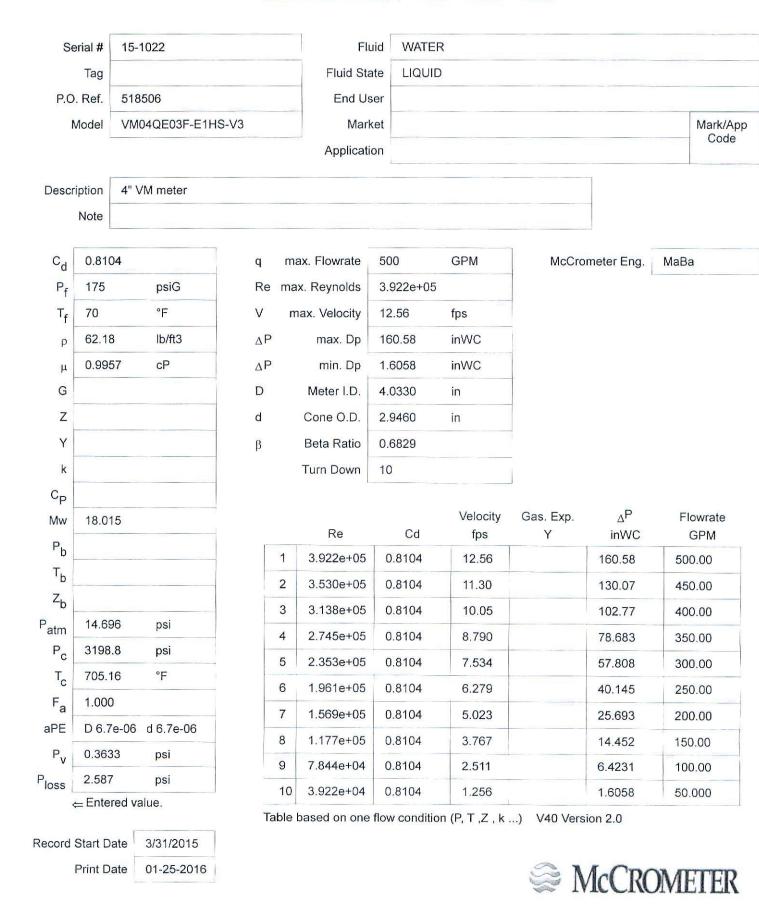
I&C Solutions LLC 4485 Irving Blvd Albuquerque, NM 87114 505-821-8960 fax 505-821-8970

V-Cone® Application Sizing

Print Date

See McCrometer

GWTS Discharge Pump


Tog N	omo / ID: Di	scharge Flow	umotor					Manufactu	~				
Tagin		T-3108	VIIIetei	Transducer/Transmitter				Endress Hauser/McCrometer					
Contra		ISA S20	Sheet		ation/Ve			Model Number					
	N/A			Calibi		mcan			41-200-02/VH	03-A1	SF3		
Ambie	ent Condition	IS		Loop Numbe	er			Serial Num	ber				
Temp	erature	60 ° C	(°F)		3000 E15-01717/15-1022								
Press		n/a mr			Initial Calibration Calibration Range 0 to 161					61 ^{DP}			
Humic	lity	<u>n/a</u> %		Verification 0 to 500 gpm							om		
		n: Mechanica		ons 🗸	Finish 🗹	Namepla	te/ID T	ag 🗹 🛛 🛛	lounted at cor	rect he	eight 🗹		
2. Ele	ctrical: Cond	uit Connectio	ns 🗹	Terminal/Wi	ire Labels 🗹	Condu	uit ID						
	ibration Proc		zero	_		_		_					
		✓ Indirect [Linear	Non-linear	Squar	e Root	✓					
	p Voltage	24 VDC	4-\	Nire 🗌 2-V	Wire 🔽								
6. Loa	d Impedanc	e <u>N/A</u>	l oh	ms max @ 2	4 vdc								
				0	alibration P	oints							
		Expected	Meter		As Found D				As Left Data				
%	Input	Output	EU	Output	Output	Maxim	um	Output	Output	1	ximum		
	DP	(mADC)	GPM	Increase	Decrease	Output Error		Increase	Decrease	Output Erro			
0	0.00	4.00	0.00	0	0	· · · ·	0	0	0	±	0		
10	-					Ŧ				±			
20	-					±				±			
25		8.00	125.00	0	0	± (0	0	0	±	0		
30	-					±				±			
40	-					<u>+</u>				<u>+</u>			
50	40.13	12.00	250.00	0	0		0	0	0	±	0		
60	-		-			±				±			
70	-	40.00	-	~	~	<u>+</u>	•			<u>+</u>			
75 80		16.00	375.00	0	0		0	0	0	±	0		
90	-		-							±			
<u> </u>	160.58	20.00	500.00	0	0		D	0	0	±	0		
100	100100	20:00	000100										
Test E	quipment U	sed			el No:		erial N		Calibration/Ce				
<u> </u>	Fluke 789				89		497008		Februar)16		
	Emerson Fi	led Calibrator		3	75	12	206195	55	N	I/A			
<u> </u>													
+													
-													
H													
						<u> </u>							
						1							

Span verifed in field with actual field conditions and flow rate and visual DP recorded in Hart Communicator

Print Name:Robbie SatrianaDCN2/2/2016Signed By:Robbie SatrianaDate2/2/2016Approved By:Preston PattersonDate2/2/2016

I&C Solutions LLC 4485 Irving Blvd Albuquerque, NM 87114 505-821-8960 fax 505-821-8970

V-Cone® Application Sizing

Field Calibration Check Procedure

Procedure for Checking the Calibration of a Flow Meter at the Kirtland AFB Bulk Fuels Facility Groundwater Treatment System

"Bucket and Stopwatch Procedure", Rev. 0 – Date: February 1, 2016

Background. To perform a "bucket and stopwatch" test to check the calibration of the various meters associated with the treatment system, we can use the geometry of the influent or effluent tanks themselves to measure the volume of water that has been introduced (or removed) very accurately over a given interval of time. These tanks are right and vertical cylinders with uniform sides of a known diameter. The diameter of the tank is given on the nameplate as 10.17 feet; therefore, the radius of these tanks is half of the diameter, or 5.085 feet.

The cross section area of the cylinder is given by: $Area=\pi r^2 = \pi (5.085 \text{ ft})^2 = 81.23 \text{ ft}^2$. A one-foot thick slice of this cross sectional area contains 81.23 ft^3 . One cubic foot of water is equivalent to 7.4805 gallons of water. Multiplying the volume (in cubic feet) of a one-foot section of this cylinder by this factor yields:

81.23 $ft^3 x$ 7.4805 Gallons/ ft^3 = 607.64 gallons in this one foot slice of the tank column.

We can measure a difference in height in the tank over a specific time interval and quantify the amount of water involved by multiplying the difference in tank height by the factor - **607.64 gallons/ft.**

Procedure. The procedure for checking the calibration on a given meter in the treatment system will be as follows. To determine the **ACTUAL flow rate**, shut down all the other flows and run water only through the meter to be tested into the influent tank (or out of the effluent tank) until steady state is achieved. Then for a planned interval, in this example we will use fifteen minutes, perform the test. The test will start at t=0 when the beginning water level is recorded. The test ends at t=15 minutes when the final water level is recorded. The difference in water levels (expressed in feet) will be multiplied by 607.64 gallons/ft. The resulting total amount of gallons will be divided by 15 minutes and the answer expressed as GPM. This test will be repeated three times and the results averaged to calculate the **ACTUAL flow rate**.

To check the calibration of the meter, the **OBSERVED readings** (that the meter is reporting) needs to be compared with the actual flow rate. To determine the **OBSERVED reading** there are two methods depending upon the style of meter. Both methods will be employed. For <u>totalizing</u> meters, they can be read directly as the value at t=0 and t=15 minutes and the difference calculated. For <u>instantaneous</u> output meters, they will need to be witnessed and recorded at regular intervals, i.e. every 30 seconds and their values recorded manually and averaged over the 15 minute test period.

The final step in the calibration/check procedure is to compare the relative percent difference (RPD) between the **OBSERVED flow rate** with the **ACTUAL flow rate**.

The formula for RPD is as follows:

% Difference = (Observed Flow Rate – Actual Flow Rate) / (Actual Flow Rate) x 100%

As per the NMED requirements, to be considered a successful check, the RPD should be less than 10 percent. If the check is greater than 10 percent RPD, the flow meter in question will be taken off line and calibrated by a certified technician.

Calibration Form. The attached form summarizes the data collected during the above procedure and it will be used to calculate the actual and observed flow rates for the three tests and the RPD.

Flow Meter Calibration Check Sheet

Kirtland Air Force Base Bulk Fuels Facility Groundwater Treatment System Flow Meter

Meter PID #			Make				
Location			Model				
"Bucket"			Serial Number				
1 Observed De		or T-116)					
1. Observed Re	talizer, in gallons	-)					
		1					
Initial Reading Final Reading		(gallons) (gallons)					
Total Observed		(galions)	(Total Obs	erved = Final - Initial) in collons		
	volume (gal)		(Total Obs	erveu – Finar- Initiar	j, ili galiolis		
Instantaneous Fl	ow Readings (units	s of GPM recorded at 30	second intervals), Test 2	1, 2, 3:			
OBSERVED Flow	Rates (GPM), thre	ee tests:					
Test 1:		Test 2:		Test 3:			
	Average O	BSERVED Flow Rat	te (Tests 1, 2, 3):		GPM		
2. Actual Flow	and Rate:						
	Final height	t of water in tank		inches			
	Initial height	t of water in tank		inches			
	1	Height difference		inches			
	1	Height difference					
Actual	Volume (multiply	y by 607.6 gal/ft)					
		of Test (minutes)		minutes			
ACTUAL Flow Ra	te (GPM), three t						
Test 1:		Test 2:		Test 3:			
	Average	ACTUAL Flow Rat	te (Tests 1, 2, 3):		GPM		
3. Relative Pero	cent Difference	(RPD):					
Volume:		· · ·					
	RPD = (Observed	d Volume - Actual	Volume) / Actual	Volume x 100 %			
				gallons			
Flow Rate:		Note: RPD <	10% to pass				
	PD = (Observed Fl	ow Rate - Actual F	•	al Flow Rate x 10	0%		
	·						
			100/ have a	GPM			
Date Tested:		Note: RPD <	10% to pass. Date QC'd:				
Tested By:			QC'ed By:				
			uceuby.				

ATTACHMENT D

KAFB-7 Equipment Decontamination Photos

Photo 1. Decontamination of KAFB-7 Piping Exterior

Photo 2. Decontamination of KAFB-7 Piping Interior

Photo 3. Completed Decontamination of Piping

Photo 4. Decontamination of Injection Piping