

DEPARTMENT OF THE AIR FORCE 377TH AIR BASE WING (AFGSC)

MAR 1 4 2017

Colonel Eric H. Froehlich 377 ABW/CC 2000 Wyoming Blvd SE Kirtland AFB NM 87117-5000

Mr. John Kieling, Bureau Chief Hazardous Waste Bureau (HWB) New Mexico Environment Department (NMED) 2905 Rodeo Park Drive East, Building 1 Santa Fe NM 87505-6303

Dear Mr. Kieling

Please find attached the Revised Corrective Action Report for the Water/Condensate Release associated with dismantlement of the soil vapor extraction system on 1 February 2017 at the Bulk Fuels Facility Spill, Solid Waste Management Unit ST-106/SS-111, Kirtland Air Force Base, New Mexico. The 30-gallon water/condensate release was originally reported to NMED via email on 1 February 2017 and the Corrective Action Report was submitted on 14 February 2017 pursuant to Part 1.27 (Twenty-Four Hour and Subsequent Reporting) of Hazardous Waste Treatment Facility Operating Permit (HWTF Permit No. NM9570024423 -"RCRA Permit"). Based on NMED comments received on 16 February 2017 additional samples were collected and analyzed. Based on all data collected, soil samples contain no detectable hazardous constituents and indicate that the water/condensate released from the HDPE pipe did not impact the surrounding soil media. No further corrective action is recommended.

If you have any questions or concerns, please contact Mr. Scott Clark at (505) 846-9017 or at scott.clark@us.af.mil or Dr. Adria Bodour at (210) 241-6276 or at adria.bodour.1@us.af.mil.

Sincerely

ERIC H. FROEHLICH, Colonel, USAF

Commander

Attachment:

Revised Corrective Action Plan for Water/Condensate Release During Soil Vapor Extraction System Dismantlement at Solid Waste Management Unit ST-106/SS-111; 2 Hard Copies/2 CDs

cc:

NMED-HWB (Kieling)
NMED-RPD (McQuillan)
NMED-GWQB (Agnew, Pullen)
EPA Region 6 (King, Ellinger)
SAF-IEE (Lynnes)
AFCEC/CZ (Bodour, Clark, Devergie, O'Grady)
USACE-ABQ District Office (Simpler, Phaneuf, Dreeland; Sanchez; Salazar)
Public Info Repository, AR/IR, and File

KIRTLAND AIR FORCE BASE ALBUQUERQUE, NEW MEXICO

CORRECTIVE ACTION REPORT FOR WATER/CONDENSATE RELEASE DURING SOIL VAPOR EXTRACTION SYSTEM DISMANTLEMENT AT SOLID WASTE MANAGEMENT UNIT ST-106/SS-111, BULK FUELS FACILITY Revised

March 2017

377 MSG/CEANR 2050 Wyoming Blvd. SE Kirtland AFB, New Mexico 87117-5270

KIRTLAND AIR FORCE BASE ALBUQUERQUE, NEW MEXICO

CORRECTIVE ACTION REPORT FOR WATER/CONDENSATE RELEASE DURING SOIL VAPOR EXTRACTION SYSTEM DISMANTLEMENT AT SOLID WASTE MANAGEMENT UNIT ST-106/SS-111, BULK FUELS FACILITY REVISED

MARCH 2017

Prepared for

U.S. Army Corps of Engineers Albuquerque District 4101 Jefferson Plaza NE Albuquerque, New Mexico 87109-3435

Prepared by

EA Engineering, Science, and Technology, Inc., PBC 320 Gold Avenue SW, Suite 1300 Albuquerque, New Mexico 87102 Contract No. W9128F-13-D-0006/Delivery Order DM02

NOTICE

This Revised Corrective Action Report was prepared for the U.S. Army Corps of Engineers by EA Engineering, Science, and Technology, Inc., PBC to summarize the response to a water/condensate release at the Kirtland Air Force Base (AFB) Bulk Fuels Facility, Solid Waste Management Unit ST-106/SS-111. This work was performed under the U.S. Air Force Environmental Restoration Program, under requirements set forth in Part 1.27 (*Twenty-four Hour and Subsequent Reporting*) of the Resource Conservation and Recovery Act permit issued to Kirtland AFB, with the New Mexico Environment Department serving as the lead regulatory agency. This Corrective Action Report addresses the activities related to the corrective actions taken after a release of water/condensate during the dismantlement of a soil vapor extraction system on February 1, 2017.

Government agencies and their contractors registered with the Defense Technical Information Center should direct requests for copies of this report to: Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22304-6145.

Non-government agencies may purchase copies of this document from: National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE Revised Final 3. DATES COVERED (From - To) 01-02-2017 through 03-03-2017

1. KEPOKI DATE (DD-MIMI-	2. KEPUKI TIPE	3. DATES COVERED (FIOIII - 10)
YYYY)	Revised Final	01-02-2017 through 03-03-2017
03-03-2017		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
Corrective Action Report for	Water/Condensate Release during Soil Vapor	W9128F-13-D-0006-DM02
Extraction System Dismantle	ment at Solid Waste Management Unit	5b. GRANT NUMBER
ST-106/SS-111, Bulk Fuels F	Facility,	
Kirtland Air Force Base, New	v Mexico	5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
EA Engineering, Science, and	l Technology, Inc., PBC (EA)	62735DM02
		5e. TASK NUMBER
		1037
		5f. WORK UNIT NUMBER
		Not applicable
	ON NAME(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION
AND ADDRESS(ES)		REPORT NUMBER
EA Engineering, Science and	Technology, Inc., PBC	Not assigned
320 Gold Avenue SW, Suite	1300	
Albuquerque, New Mexico 8'	7102	
9. SPONSORING / MONITORING	G AGENCY NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S
		ACRONYM(S)
U.S. Army Corps of Engineer	rs–Albuquerque District	
4101 Jefferson Plaza NE		11. SPONSOR/MONITOR'S REPORT
Albuquerque, New Mexico 8'	7109-3435	NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes the corrective action response to the release of 30 gallons of water/condensate from a soil vapor extraction system during dismantlement operations at Solid Waste Management Unit ST-106/SS-111 at Kirtland Air Force Base, New Mexico. Approximately 1 cubic yard of wetted soil was removed from the release area and 80 gallons of water/condensate was removed from the high density polyethylene pipe. Soil samples were collected before and after soil removal and analyzed for volatile organic compounds (VOCs) using U.S. Environmental Protection Agency Method 8260B. No VOCs were detected in any soil samples. A water/condensate sample was collected from a sump in the pipeline and analyzed for VOCs, semivolatile organic compounds (SVOCs), gasoline range organic (GRO) compounds, diesel range organic (DRO) compounds, and motor oil range organic (MRO) compounds. The water/condensate contained part per billion (ppb) concentrations of VOCs and low parts per million (ppm) concentrations of GRO/DRO/MRO and ketones related to hydrocarbon fuels. The water/condensate also contained ppb concentrations of SVOCs related to the plastic piping.

15. SUBJECT TERMS

Solid Waste Management Unit ST-106/SS-111, Bulk Fuels Facility, water/condensate, release, corrective action, soil sampling, soil removal, dismantle, soil vapor extraction system, RCRA

16. SECURITY CL	ASSIFICATION OF:	:	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Devon E. Jercinovic
a. REPORT UNCLASSIFIED	b. ABSTRACT UNCLASSIFIED	c. THIS PAGE UNCLASSIFIED	ABSTRACT	94	19b. TELEPHONE NUMBER (include area code) 505-715-4248

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

40 CFR 270.11 DOCUMENT CERTIFICATION

March 2017

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

ERIC H. FROEHLICH, Colonel, U.S. Air Force

Commander, 377th Air Base Wing

This document has been approved for public release.

KIRTLAND AIR FORCE BASE

377th Air Base Wing Public Affairs

PREFACE

This Revised Corrective Action Report was prepared by EA Engineering, Science, and Technology, Inc., PBC (EA) for the U.S. Army Corps of Engineers (USACE), under Contract Number W9128F-13-D-0006, Delivery Order DM02 and describes the corrective action response to the release of 30 gallons of water/condensate from a soil vapor extraction system during dismantlement operations at Solid Waste Management Unit ST-106/SS-111 at Kirtland Air Force Base (AFB), New Mexico. This report was prepared in accordance with Part 1.27 (*Twenty-four Hour and Subsequent Reporting*) of the permit issued to Kirtland AFB under the Resource Conservation and Recovery Act and applicable federal, state, and local laws and regulations. The report summarizes the response actions taken following the release and including soil removal and sample data analysis.

Mr. Trent Simpler, PE, is the USACE-Albuquerque District Project Manager. The Environmental Restoration Section Chief for this program is Mr. Scott Clark of Kirtland AFB. This report was prepared by Devon Jercinovic, P.G., C.P.G., PMP, the EA Project Manager.

Devon Jercinovic, P.G., C.P.G., PMP

EA Engineering, Science, and Technology, Inc., PBC

Project Manager

CONTENTS

Secti	ion		Page
LIST	Γ OF FIG	GURES	iii
LIST	ΓOFTA	ABLES	iii
		PPENDICES	
ACF	RONYM	S AND ABBREVIATIONS	iv
EXE	ECUTIV	E SUMMARY	1
1.	INTE	RODUCTION	1-1
	1.1	Description of the Release	1-1
	1.2	Report Overview	1-1
2.	COR	RECTIVE ACTIONS	
	2.1	Soil Removal and Characterization Sampling – February 1, 2017	2-1
	2.2	Residual Water/Condensate Removal from Soil Vapor Extraction Liv	
		2, 2017	2-1
3.	SAM	IPLING RESULTS	3-1
	3.1	Water/Condensate Samples	3-1
	3.2	Pre-Removal Soil Samples	
	3.3	Post-Removal Soil Samples	3-1
	3.4	Summary and Recommendation	3-1
4.	REF.	ERENCES	4-1

LIST OF FIGURES

Figure

1 Location of Condensate Spill, February 1, 2017

LIST OF TABLES

Table

- Water/Condensate Analytical Results for Volatile Organic Compounds, February 1, 2017
- Water/Condensate Analytical Results for GRO/DRO/MRO and Semivolatile Organic Compounds, February 16, 2017
- 3 Soil Analytical Results for Volatile Organic Compounds, February 1, 2017

LIST OF APPENDICES

Appendices

- A Photographs
- B Laboratory Analytical Reports

ACRONYMS AND ABBREVIATIONS

μg/L microgram(s) per liter

AFB Air Force Base

BFF Bulk Fuels Facility

DRO diesel range organic compounds

EA Engineering, Science, and Technology, Inc., PBC

EPA U.S. Environmental Protection Agency

GRO gasoline range organic compounds

HDPE high - density polyethylene

MRO motor range oil organic compounds

NMED New Mexico Environment Department

RCRA Resource Conservation and Recovery Act

SE Southeast

SVE soil vapor extraction

SVOC semivolatile organic compound SWMU Solid Waste Management Unit

USACE U.S. Army Corps of Engineers

VOC volatile organic compound

EXECUTIVE SUMMARY

This Revised Corrective Action Report was prepared by EA Engineering, Science, and Technology, Inc., PBC (EA) for the U.S. Army Corps of Engineers (USACE), under Contract Number W9128F-13-D-0006, Delivery Order DM02. This report describes the corrective action response to the release of 30 gallons of water/condensate from a soil vapor extraction (SVE) system during dismantlement operations at Solid Waste Management Unit (SWMU) ST-106/SS-111 at Kirtland Air Force Base (AFB), New Mexico. The accidental spill and corrective actions took place on February 1-2, 2017.

Approximately 1 cubic yard of wetted soil was removed from the release area and 80 gallons of water/condensate was removed from the high - density polyethylene (HDPE) pipe. Soil samples were collected before and after soil removal and analyzed for volatile organic compounds (VOCs) using U.S. Environmental Protection Agency (EPA) Method 8260B. No VOCs were detected in any soil samples. A water/condensate sample was also collected from a sump in the pipeline and analyzed for VOCs, semivolatile organic compounds (SVOCs), gasoline range organic (GRO) compounds, diesel range organic (DRO) compounds, and motor oil range organic (MRO) compounds. The water/condensate contained part per billion (ppb) concentrations of VOCs and low parts per million (ppm) concentrations of GRO/DRO/MRO and ketones related to hydrocarbon fuels. The water/condensate contained ppb concentrations of SVOCs related to the plastic piping. Based on these soil analyses, no further corrective action is proposed. Waste profiles will be developed for the removed water/condensate and soil for final disposition.

1. INTRODUCTION

EA, under USACE Contract Number W9128F-13-D-0006, Delivery Order DM02, is performing dismantling of the SVE system at SWMU ST-106/SS-111, at Kirtland AFB, New Mexico. This SWMU is known as the Bulk Fuels Facility (BFF) site. Environmental restoration efforts at the BFF site are being conducted under requirements set forth in the Resource Conservation and Recovery Act (RCRA) Permit Number NM9570024423 (RCRA Permit) with the New Mexico Environment Department (NMED) serving as the lead regulatory agency (NMED 2010). An accidental release of water/condensate from an HDPE pipe occurred on the south side of the SVE area fence on February 1, 2017 during the SVE dismantlement at the BFF. This report is submitted pursuant to Part 1.27 of the RCRA Permit.

1.1 Description of the Release

On February 1, 2017, while dismantling the SVE HDPE influent pipe, a release of water/condensate occurred on the south side of SVE area fence adjacent to the BFF located on Fuel Drive, Southeast (SE) (Figure 1). Approximately 30 gallons of water/condensate was released from the SVE HDPE pipe onto the ground when a cut was made between the wellhead and the pipe (Appendix A). The condensate was produced from cooled water vapor trapped in the decommissioned SVE system. The release occurred at 0915 and the condensate was contained by 0930. The spill area was approximately 16 feet in length and between 2 and 4 feet in width. There were no potential hazardous waste or constituents released that would cause endangerment to a public drinking water supply and no private property was impacted.

1.2 Report Overview

This report describes the accidental water/condensate release associated with the dismantlement of the SVE system at SWMU ST-106/SS-111 and the corrective actions taken immediately after the release. The report consists of four sections:

- Section 1 includes an introduction, description of the condensate release from the SVE HDPE pipe
- Section 2 describes the corrective actions taken immediately after the release, characterization sampling (pre-excavation and post-excavation), and soil removal procedure.
- Section 3 summarizes the condensate and soil sample analytical results
- Section 4 provides a list of references cited.

Appendix A contains photographs of the release area and corrective actions. Appendix B contains the laboratory results of analyses performed on the condensate and soil samples.

2. CORRECTIVE ACTIONS

Field personnel responded immediately after the spill by elevating the HDPE pipe and covering the end to prevent additional condensate release (Appendix A). After the condensate was contained inside the HDPE pipe, the soil area impacted by the condensate was demarcated with pin flags based on wetted soil observed on the ground surface. The spill area was approximately 16 feet in length and between 2 and 4 feet in width (Figure 1). Once the site spill was secured, Mr. John Kieling, Chief of the NMED Hazardous Waste Bureau and Ms. Diane Agnew, NMED's Project Technical Lead, were notified regarding the incident via phone and email on February 1, 2017.

2.1 Soil Removal and Characterization Sampling – February 1, 2017

Three soil samples (pre-excavation) were collected in the spill area immediately after the release to characterize the potentially-contaminated soil (Figure 1). The samples were collected from the upper half of the release footprint closest to the HDPE pipe cut since the water/condensate saturated the deepest in this zone (Figure 2). Soil samples were collected immediately beneath the HDPE pipe (SP-01), in the midpoint of the upper half of the spill area (SP-02), and at the spill area midpoint (SP-03). Following pre-excavation sampling, the soil was excavated by hand to a depth of 4 inches throughout the length of the spill and to a depth of 8 inches directly under the HDPE pipe where the release originated. The criteria for excavation depth were removal of soil until dry soil was encountered and verification on a photoionization detector that no residual VOCs were measureable. Approximately 1 cubic yard of soil was removed and placed in five, plastic-lined 55-gallon drums. The drums were transported from the BFF to the EA investigation-derived waste yard for final waste disposition pending characterization.

Following excavation, three confirmation soil samples were collected. Sample SP-04 was collected from directly beneath the HDPE pipe (same location as SP-01). Sample SP-05 was collected at approximately the same location as SP-03. The third confirmation sample SP-06 was collected in the lower third of the release area (Figure 2). Sample SP-07 was a composite of soil removed from the site and collected for waste characterization. Additionally, a water/condensate sample was collected with a polyethylene bailer from a pipe sump in the HDPE line after removal of the flange on February 1, 2017. A second sample of condensate was collected from the storage container (following removal from the piping) on February 16, 2017 to characterize the heavier petroleum fraction. All samples were analyzed primarily for VOCs, based on the water/condensate forming when the monitoring wells released soil vapors during barometric changes which subsequently condensed in the piping attached to the wellhead. The VOCs were analyzed by EPA Method 8260B at Hall Environmental Laboratories in Albuquerque, New Mexico. In addition, the water/condensate sample was also analyzed for SVOCs by EPA Method 8270C, GRO by EPA Method 8015D, and DRO/MRO by EPA Method 8015M/D at Hall Laboratories to ensure that no heavier hydrocarbon fraction was present. In addition, the soil IDW was analyzed for EPA Method 6010B Toxicity Characteristic Leaching Procedure (TCLP) metals, EPA Method 8081 TCLP pesticides, EPA Method 8270B and C for TCLP SVOCs. Condensate analytical results are provided in Table 1 and Table 2. Soil sample analytical results are provided in Table 3. Laboratory analytical reports are provided in Appendix B.

2.2 Residual Water/Condensate Removal from Soil Vapor Extraction Line – February 2, 2017

On February 2, 2017, residual condensate was removed from the HDPE pipe by a vacuum truck. The following steps were performed to remove the water/condensate from the HDPE pipe.

- The HDPE pipe was elevated at one end to get water/condensate to flow to low points so it could be more easily targeted by the vacuum truck
- At the low point, a hole was cut at the top of the HDPE pipe to allow the vacuum truck stinger to access all collected fluids; a cut tote container was placed underneath the pipe at all times to prevent residual water/condensate from dripping on the underlying soil. As the HDPE pipe was only partially full, no water/condensate could leak from the top hole cut for vacuum truck access.
- After free water/condensate was vacuumed out of the HDPE pipe, the vacuum truck crew moved to the next low point to repeat the process, and the pipe remained elevated on one end.
- After fluids were removed from each elevated section, the contractor cut those sections of elevated pipe that had been drained/vacuumed of all fluids. A cut tote container acted as a catch basin placed beneath the HDPE pipe where cutting occurred to capture any residual moisture that drained from the pipe (very little residual fluid remained in the pipe).
- Photoionization detector measurements were recorded at each point where the HDPE pipe was cut to vacuum out fluids.

3. SAMPLING RESULTS

Table 1 provides the VOC analytical results for the water/condensate sample collected on February 1, 2017. Table 2 provides the GRO/DRO/MRO and SVOC and analytical results for the additional water/condensate sample collected on February 16, 2017. Table 3 summarizes the VOC analytical results for the six soil samples collected.

3.1 Water/Condensate Samples

The water/condensate sample contained petroleum hydrocarbon compounds as well as ketones (Tables 1 and 2), both groups of contaminants routinely detected in groundwater samples from the BFF source area. Benzene was detected at 54 micrograms per liter (µg/L). Toluene and total xylenes were detected at concentrations of 280 and 270 µg/L, respectively. Acetone was detected at a concentration of 3,500 µg/L and 2-butanone was detected at a concentration of 900 µg/L. Sample analytical results for VOCs were conservatively compared to EPA Maximum Contaminant Levels and New Mexico Water Quality Control Commission Standards; however, no surface water or groundwater was impacted by the release to the ground surface. The sample collected on February 16, 2017 contained low parts per million (ppm) concentrations of GRO/DRO/MRO related to hydrocarbon fuels. While the GRO/DRO/MRO concentrations exceed the EPA Regional Screening Levels (RSLs) for Tapwater, there is no impact to surface water or groundwater that could reach a drinking water supply or receptor. The water/condensate also contained ppb concentrations of SVOCs related to the plastic piping and hydrocarbon degradation, but concentrations were all below the EPA RSLs for Tapwater.

3.2 **Pre-Removal Soil Samples**

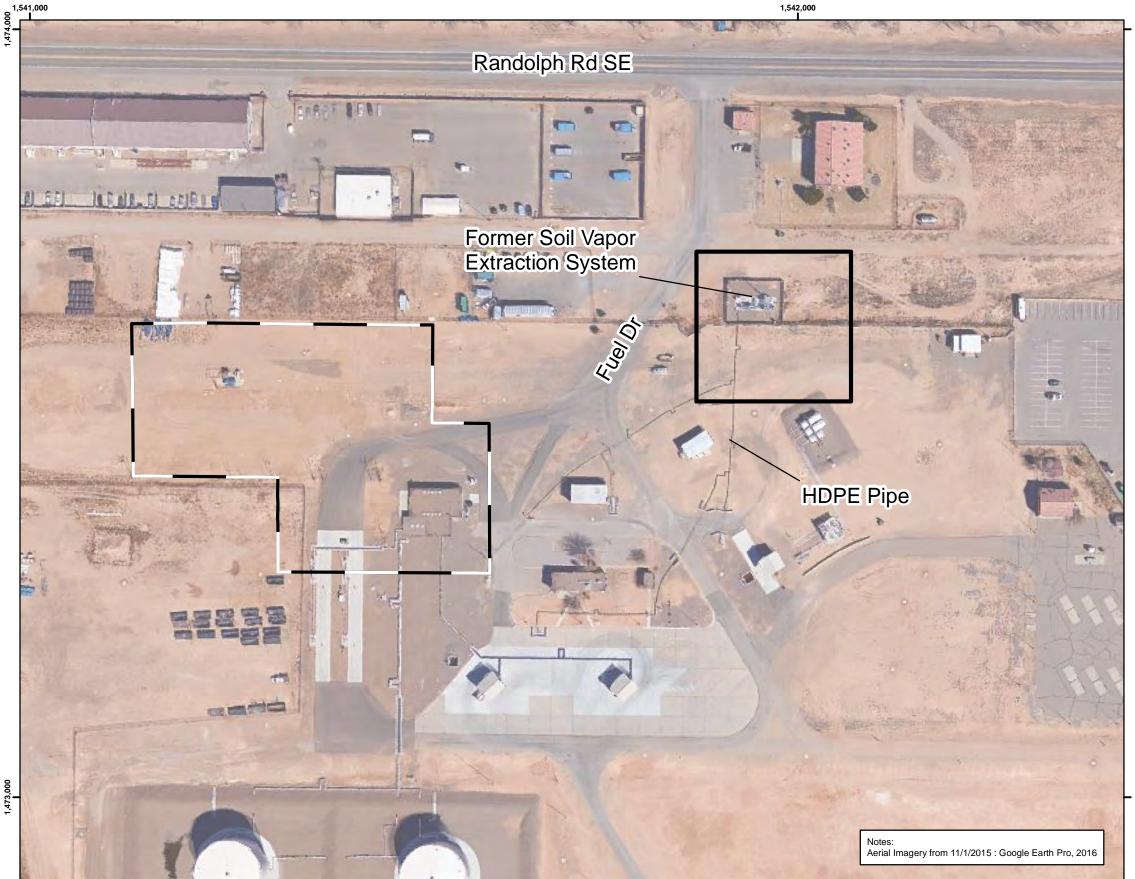
Laboratory analytical results for the three soil samples (SP-01, SP-02, and SP-03) collected prior to excavation activities indicate the soil did not contain any VOCs above the practical quantitation limit as all results were non-detect for these compounds. In addition, the analyses of the removed soil detected only MRO at 92 milligrams per kiliogram (mg/kg) which is below the NMED soil screening level of 1,000 mg/kg for residential exposure (NMED, 2015).

3.3 Post-Removal Soil Samples

Laboratory analytical results for the three confirmation soil samples (SP-04, SP-05, and SP-06) collected after excavation activities indicate the soil did not contain any VOCs above the practical quantitation limit as all results were non-detect for these compounds.

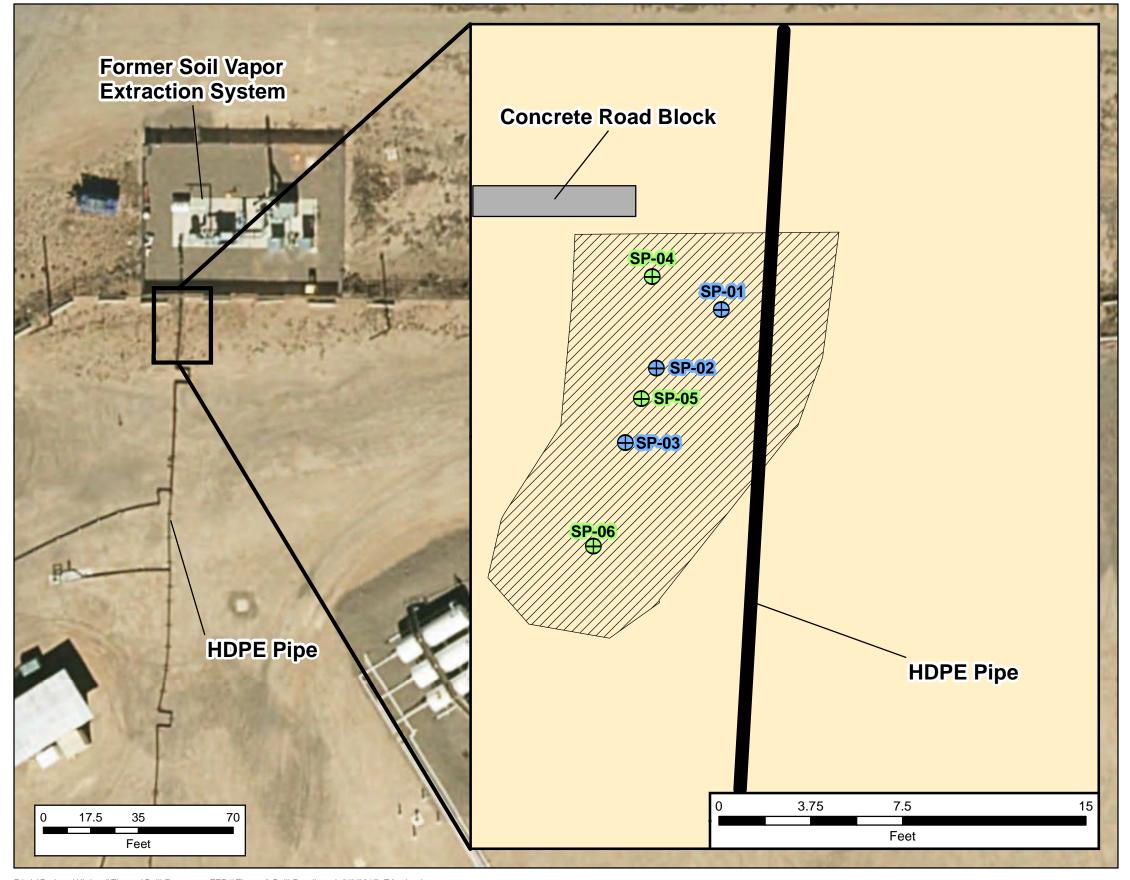
3.4 Summary and Recommendation

Water/condensate sampling confirms that low concentrations of VOCs were present in the source water. Heavier petroleum fractions in the water/condensate were only above EPA RSLs for Tapwater but there is no risk to surface or groundwater from the release to the ground surface. Soil samples contain no detectable hazardous constituents and indicate that the water/condensate released from the HDPE pipe did not impact the surrounding soil media. No further corrective action is recommended.


3-1

4. REFERENCES

New Mexico Environment Department (NMED). 2010. Hazardous Waste Treatment Facility Operating Permit, EPA ID No. NM9570024423, Issued to U.S. Air Force for the Open Detonation Unit Located at Kirtland Air Force Base, Bernalillo County, New Mexico, by the NMED Hazardous Waste Bureau. July.


NMED. 2015. Risk Assessment Guidance for Site Investigations and Remediation. July.

FIGURES

P:\gis\Projects\Kirtland\Figures\Spill Response FEB1\Figure 1 Site Location.mxd 2/9/2017 EA eomalia

Legend

Sample Locations

Pre Excavation Sample Site

Post Excavation Sample Site

Spill Area

Projection: NAD83 State Plane New Mexico Central FIPS3002 Feet

CORRECTIVE ACTION REPORT FOR
WATER / CONDENSATE RELEASE
BULK FUELS FACILITY
SOLID WASTE MANAGEMENT UNIT ST-106/SS-111
KIRTLAND AIR FORCE BASE, NEW MEXICO

FIGURE 2

WATER / CONDENSATE RELEASE DETAIL AND SAMPLE LOCATIONS

P:\gis\Projects\Kirtland\Figures\Spill Response FEB1\Figure 2 Spill Detail.mxd 2/9/2017 EA sbusby

TABLES

Table 1
Water/Condensate Analytical Results for Volatile Organic Compounds

				Fie	ld Sample ID:	Water/Conden	sate
				,	Sample Date:	2/1/2017	
					Sample Type:	REG	
				NMAC	Janipie Type.	KEG	
	EPA				EPA MCL ^b	Decult	
Danamatan		Analista	CACDN			Result	DO1
Parameter	Method	Analyte	CAS RN	(µg/L)	(µg/L)	(µg/L)	PQL
VOCs	SW8260B	1,1,1,2-Tetrachloroethane	630-20-6	NS	NS	ND	50
		1,1,1-Trichloroethane	71-55-6	60	200	ND	50
		1,1,2,2-Tetrachloroethane	79-34-5	10	NS	ND	100
		1,1,2-Trichloroethane	79-00-5	10	5	ND	50
		1,1-Dichloroethane	75-34-3	25	NS 7	ND	50
		1,1-Dichloroethene	75-35-4	5	7 NC	ND	50
		1,1-Dichloropropene	563-58-6	NS	NS	ND	50
		1,2,3-Trichlorobenzene	87-61-6	NS	NS	ND	50
		1,2,3-Trichloropropane	96-18-4	NS	NS 70	ND	100
		1,2,4-Trichlorobenzene	120-82-1	NS NS	70 NS	ND ND	50 50
		1,2,4-Trimethylbenzene	95-63-6				
		1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)	96-12-8 106-93-4	NS 0.1	0.2 0.05	ND ND	100 50
		1,2-Dibromoetnane (EDB)	95-50-1	600	600	ND ND	50
		1.2-Dichloroethane (EDC)	107-06-2	10	5	ND	50
		1,2-Dichloropropane	78-87-5	NS	5	ND	50
		1,3,5-Trimethylbenzene	108-67-8	NS	NS NS	ND ND	50
		1,3-Dichlorobenzene	541-73-1	600	600	ND ND	50
		1,3-Dichloropropane	142-28-9	NS	NS	ND	50
		1,4-Dichlorobenzene	106-46-7	NS	75	ND	50
		1-Methylnaphthalene ^c					
			90-12-0	30 NC	NS NC	ND ND	200
		2,2-Dichloropropane	594-20-7	NS NC	NS NC		100
		2-Butanone	78-93-3 95-49-8	NS NS	NS NS	900 ND	500 50
		2-Chlorotoluene 2-Hexanone	591-78-6	NS NS	NS NS	ND ND	500
		2-Methylnaphthalene	91-57-6	NS NS	NS NS	ND ND	200
		4-Chlorotoluene	106-43-4	NS	NS	ND ND	50
		4-Isopropyltoluene	99-87-6	NS NS	NS NS	ND ND	50
		4-Methyl-2-pentanone	108-10-1	NS	NS	ND ND	500
		Acetone	67-64-1	NS	NS NS	3500	500
		Benzene	71-43-2	10	5	54	50
		Bromobenzene	108-86-1	NS	NS	ND	50
		Bromodichloromethane	75-27-4	NS	80	ND	50
		Bromoform	75-25-2	NS	80	ND	50
		Bromomethane	74-83-9	NS	NS	ND	150
		Carbon disulfide	75-15-0	NS	NS	ND	500
		Carbon tetrachloride	56-23-5	10	5	ND	50
		Chlorobenzene	108-90-7	NS	100	ND	50
		Chloroethane	75-00-3	NS	NS	ND	100
		Chloroform	67-66-3	100	80	ND	50
		Chloromethane	74-87-3	NS	NS	ND	150
		cis-1,2-Dichloroethene	156-59-2	NS	70	ND	50
		cis-1,3-Dichloropropene	10061-01-5	NS	NS NS	ND	50
		Dibromochloromethane	124-48-1	NS	80	ND	50
		Dibromomethane	74-95-3	NS	NS	ND	50
		Dichlorodifluoromethane	75-71-8	NS	NS	ND	50
		Ethylbenzene	100-41-4	750	700	ND	50
		Hexachlorobutadiene	87-68-3	NS	NS	ND	50
		Isopropylbenzene	98-82-8	NS	NS	ND	50

Table 1
Water/Condensate Analytical Results for Volatile Organic Compounds

				Fie	d Sample ID:	Water/Conde	ensate
				;	Sample Date:	2/1/201	7
				,	Sample Type:	REG	
				NMAC			
	EPA				EPA MCL ^b	Result	
Parameter	Method	Analyte	CAS RN	(µg/L)	(µg/L)	(µg/L)	PQL
VOCs	SW8260B	Methyl tert-butyl ether (MTBE)	1634-04-4	NS	NS	ND	50
		Methylene chloride	75-09-2	100	5	ND	150
		n-Butylbenzene	104-51-8	NS	NS	ND	150
		n-Propylbenzene	103-65-1	NS	NS	ND	50
		Naphthalene ^c	91-20-3	30	NS	ND	100
		sec-Butylbenzene	135-98-8	NS	NS	ND	50
		Styrene	100-42-5	NS	100	ND	50
		tert-Butylbenzene	98-06-6	NS	NS	ND	50
		Tetrachloroethene (PCE)	127-18-4	20	5	ND	50
		Toluene	108-88-3	750	1,000	280	50
		trans-1,2-DCE	156-60-5	NS	100	ND	50
		trans-1,3-Dichloropropene	10061-02-6	NS	NS	ND	50
		Trichloroethene (TCE)	79-01-6	100	5	ND	50
		Trichlorofluoromethane	75-69-4	NS	NS	ND	50
		Vinyl chloride	75-01-4	1	2	ND	50
		Xylenes, Total	1330-20-7	620	10,000	270	75

Analytical data generated by Hall Environmental Analysis Laboratories, Inc., Albuquerque, New Mexico

CASRN = Chemical Abstracts Service Registry Number

CFR = Code of Federal Regulations

EPA = U.S. Environmental Protection Agency

MCL = maximum contaminant level

ND = not detected above the method detection limit

NMAC = New Mexico Administrative Code

NMWQCC = New Mexico Water Quality Control Commission

NS = not specified

PQL = practical quantitation limit

REG = normal field sample

SW = EPA SW-846 Test Methods for Evaluating Solid Waste, Third Edition, 1986 and Updates

VOC = Volatile organic compound

Shading = detected concentration above the PQL

Bold = detected concentration exceeds the NMWQCC or EPA MCL value.

^a NMWQCC numeric standards per the New Mexico Administrative Code Title 20.6.2.3101A, Standards for Ground Water of 10,000 mg/L Total Dissolved Solids Concentration or Less (NMAC 2004).

^b EPA National Primary Drinking Water Regulations, MCLs and Secondary MCLs, Title 40CFR Part 141, 143 (May 2009).

^c NMWQCC specifies a standard for the sum of napthalene and mononaphthalenes (1- and 2-methylnaphthalene). μg/L = microgram per liter

Table 2
Water/Condensate Analytical Results for GRO/DRO/MRO and Semivolatile Organic Compounds
February 16, 2017

Location ID: Field Sample ID:

Sample Date:

KAFB-SVE

SVE Condensate

2/16/2017

				Sample Type:	R	EG
Parameter	EPA Method	Analyte	CASRN	EPA MCL/Tapwater RSL ^a (μg/L)	Result (µg/L)	PQL (μg/L)
TPH	SW8015D/8015M/D	GRO	NA	33	1600	500
		DRO	NA	100	34,000	1000
		MRO	NA	800	7600	5000
SVOCs	SW8270C	Benzyl Alcohol	100-51-6	2000	270	50
		Bis(2-ethylhexyl)phthalate	117-81-7	6 ^b /56	52	50

Analytical data generated by Hall Environmental Analysis Laboratory, Inc., Albuquerque, New Mexico

The RSL for GRO is based on the RSL for TPH aromatic (low), DRO is based on aliphatic (medium) and MRO is based on aromatic (high). b EPA National Primary Drinking Water Regulations, Maximum Contaminant Levels, Title 40CFR Part 141, 143 (May 2016).

μg/L = microgram per liter

CASRN = Chemical Abstracts Service Registry Number

DRO = Diesel range organics

EPA = U.S. Environmental Protection Agency

GRO = Gasoline range organics

MRO = Motor oil range organics

NA = Not applicable

PQL = Practical quantitation limit

REG = Normal field sample

SVOC = Semivolatile organic compound

SW = EPA SW-846 Test Methods for Evaluating Solid Waste, Third Edition, 1986 and Updates

TPH = Total petroleum hydrocarbon

Bold = reported concentration exceeds the EPA MCL or Tapwater RSL value

^a USEPA Tapwater Regional Screening Levels (RSLs) for hazard index = 1.0 for noncarcinogens and a 10-5 cancer risk level for carcinogens, May 2016.

Table 3
Soil Analytical Results for Volatile Organic Compound
February 1, 2017

				Fi	eld Sample ID:	Cat Ox		Cat Ox	k SP-02	Cat Ox		Cat Ox			SP-05		SP-06
					Sample Date:	2/1/2			2017	2/1/2		2/1/2		2/1/2		2/1/2	
	1	T	ı	NMED	Sample Type:	RE	-G	R	EG I	RE	G	RE	EG	RE	EG	RE	EG I
Parameter	EPA Method	Analyte	CASRN	Residential SSL ^a	EPA RSL ^b	Result (mg/kg)	PQL	Result (mg/kg)	PQL	Result (mg/kg)	PQL	Result (mg/kg)	PQL	Result (mg/kg)	PQL	Result (mg/kg)	PQL
VOCs		1,1,1,2-Tetrachloroethane	630-20-6	28.1	20	ND	0.050	ND	0.047	ND ND	0.046	ND ND	0.050	ND	0.049	ND	0.049
		1,1,1-Trichloroethane	71-55-6	14,400	8100	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		1,1,2,2-Tetrachloroethane	79-34-5	7.98	6	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		1,1,2-Trichloroethane	79-00-5	2.61	11	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		1,1-Dichloroethane	75-34-3	78.6	36	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		1,1-Dichloroethene	75-35-4	440	230	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		1,1-Dichloropropene	563-58-6	NS	NS	ND	0.099	ND	0.094	ND	0.092	ND	0.099	ND	0.098	ND	0.098
		1,2,3-Trichlorobenzene	87-61-6	NS	63	ND	0.099	ND	0.094	ND	0.092	ND	0.099	ND	0.098	ND	0.098
		1,2,3-Trichloropropane	96-18-4	0.051	0.051	ND	0.099	ND	0.094	ND	0.092	ND	0.099	ND	0.098	ND	0.098
		1,2,4-Trichlorobenzene	120-82-1	82.9	240	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		1,2,4-Trimethylbenzene	95-63-6	NS	58	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		1,2-Dibromo-3-chloropropane	96-12-8	0.0858	0.053	ND	0.099	ND	0.094	ND	0.092	ND	0.099	ND	0.098	ND	0.098
	1,2-Dibromoethane (EDB)	106-93-4	0.672	0.36	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049	
		1,2-Dichlorobenzene	95-50-1	2,150	1800	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		1,2-Dichloroethane (EDC)	107-06-2	8.32	4.6	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		1,2-Dichloropropane	78-87-5	17.8	10	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		1,3,5-Trimethylbenzene	108-67-8	NS	780	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		1,3-Dichlorobenzene	541-73-1	NS	26	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		1,3-Dichloropropane	142-28-9	NS	1600	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		1,4-Dichlorobenzene	106-46-7	32.8	26	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		1-Methylnaphthalene	90-12-0	NS	18	ND	0.199	ND	0.188	ND	0.183	ND	0.198	ND	0.195	ND	0.19
		2,2-Dichloropropane	594-20-7	NS	NS	ND	0.099	ND	0.094	ND	0.092	ND	0.099	ND	0.098	ND	0.098
		2-Butanone	78-93-3	37,400	27000	ND	0.497	ND	0.470	ND	0.459	ND	0.495	ND	0.488	ND	0.48
		2-Chlorotoluene	95-49-8	1,560	1600	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.04
		2-Hexanone	591-78-6	NS	200	ND	0.497	ND	0.470	ND	0.459	ND	0.495	ND	0.488	ND	0.48
		2-Methylnaphthalene	91-57-6	NS	24	ND	0.199	ND	0.188	ND	0.183	ND	0.198	ND	0.195	ND	0.19
		4-Chlorotoluene	106-43-4	NS	1600	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		4-Isopropyltoluene	99-87-6	NS	NS	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.04
		4-Methyl-2-pentanone	108-10-1	5,810	33000	ND	0.497	ND	0.470	ND	0.459	ND	0.495	ND	0.488	ND	0.48
		Acetone	67-64-1	66,300	61000	ND	0.745	ND	0.706	ND	0.688	ND	0.743	ND	0.732	ND	0.73
		Benzene	71-43-2	17.8	12	ND	0.025	ND	0.024	ND	0.023	ND	0.025	ND	0.024	ND	0.02
		Bromobenzene	108-86-1	NS	290	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.04
		Bromodichloromethane	75-27-4	6.19	2.9	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.04
		Bromoform	75-25-2	674	190	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.04
		Bromomethane	74-83-9	17.7	6.8	ND	0.149	ND	0.141	ND	0.138	ND	0.149	ND	0.146	ND	0.14
		Carbon disulfide	75-15-0	1,550	770	ND	0.497	ND	0.470	ND	0.459	ND	0.495	ND	0.488	ND	0.48
		Carbon tetrachloride	56-23-5	10.7	6.5	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.04
		Chlorobenzene	108-90-7	378	280	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Chloroethane	75-00-3	19,000	14000	ND	0.099	ND	0.094	ND	0.092	ND	0.099	ND	0.098	ND	0.098
		Chloroform	67-66-3	5.9	3.2	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049

Table 3 Soil Analytical Results for Volatile Organic Compound February 1, 2017

				Fi	eld Sample ID:	Cat Ox	SP-01	Cat Ox	SP-02	Cat Ox	SP-03	Cat Ox	SP-04	Cat Ox	SP-05	Cat Ox	x SP-06
					Sample Date:	2/1/2		2/1/2		2/1/2		2/1/2		2/1/2			2017
	1	1		NIMED	Sample Type:	RE	EG	RE	EG	RE	G	RE	EG	RI	EG	RE	EG
Parameter	EPA Method	Analyte	CASRN	NMED Residential SSL ^a	EPA RSL ^b	Result (mg/kg)	PQL										
		Chloromethane	74-87-3	41.1	110	ND	0.149	ND	0.141	ND	0.138	ND	0.149	ND	0.146	ND	0.146
VOCs	SW8260B	cis-1,2-Dichloroethene	156-59-2	156	160	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		cis-1,3-Dichloropropene	10061-01-5	29.3	18	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Dibromochloromethane	124-48-1	13.9	83	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Dibromomethane	74-95-3	57.9	24	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Dichlorodifluoromethane	75-71-8	182	87	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Ethylbenzene	100-41-4	75.1	58	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Hexachlorobutadiene	87-68-3	61.6	1.2	ND	0.099	ND	0.094	ND	0.092	ND	0.099	ND	0.098	ND	0.098
		Isopropylbenzene	98-82-8	2,360	1900	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Methyl tert-butyl ether (MTBE)	1634-04-4	975	470	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Methylene chloride	75-09-2	409	570	ND	0.149	ND	0.141	ND	0.138	ND	0.149	ND	0.146	ND	0.146
		n-Butylbenzene	104-51-8	NS	3900	ND	0.149	ND	0.141	ND	0.138	ND	0.149	ND	0.146	ND	0.146
		n-Propylbenzene	103-65-1	NS	3800	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Naphthalene	91-20-3	49.7	38	ND	0.099	ND	0.094	ND	0.092	ND	0.099	ND	0.098	ND	0.098
		sec-Butylbenzene	135-98-8	NS	7800	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Styrene	100-42-5	7,260	6000	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		tert-Butylbenzene	98-06-6	NS	7800	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Tetrachloroethene (PCE)	127-18-4	111	24	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Toluene	108-88-3	5,230	4900	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		trans-1,2-Dichloroethene	156-60-5	295	1600	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		trans-1,3-Dichloropropene	10061-02-6	29.3	18	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Trichloroethene (TCE)	79-01-6	6.77	9.4	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Trichlorofluoromethane	75-69-4	1,230	23000	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Vinyl chloride	75-01-4	0.742	0.59	ND	0.050	ND	0.047	ND	0.046	ND	0.050	ND	0.049	ND	0.049
		Xylenes, Total	1330-20-7	871	580	ND	0.099	ND	0.094	ND	0.092	ND	0.099	ND	0.098	ND	0.098

Analytical data generated by Hall Environmental Analysis Laboratories, Inc., Albuquerque, New Mexico. Results are presented "as received" from the laboratory and have not been adjusted for moisture content.

EPA = U.S. Environmental Protection Agency

mg/kg = Milligram(s) per kilogram

ND = Not detected above the PQL

NMED = New Mexico Environment Department

PQL = practical quantification limit

RSL = Regional Screening Level

SSL = Soil Screening Level

SW = EPA SW-846 Test Methods for Evaluating Solid Waste, Third Edition, 1986 and Updates

VOC = Volatile organic compound

Shading = detected concentration above the PQL

Bold = detected concentration exceeds the NMED SSL or EPA RSL value.

^a Residential land use SSLs from the NMED Risk Assessment Guidance for Site Investigations and Remediation, Appendix A, Table A-1, NMED SSLs. July 2015.

^b USEPA Regional Screening Levels (RSLs) for residential land use scenario for hazard index = 1.0 for non-carcinogens and a 10-5 cancer risk level for carcinogens. May 2016. CASRN = Chemical Abstracts Service Registry Number

APPENDIX A PHOTOGRAPHS

Description: Release location with impacted soil.

Date: February 1, 2017 Direction: North

Address: BFF Kirtland AFB

Description: Cut HDPE location where the release occurred.

Description: Release location with HDPE pipe elevated.

Date: February 1, 2017 Direction: North

Address: BFF Kirtland AFB

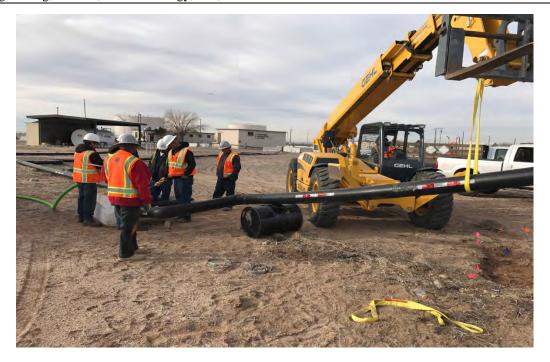
Description: Soil removal with shovels.

Description: Release location after impacted soil removal and pin flags of release perimeter.

Date: February 1, 2017 Direction: North

Address: BFF Kirtland AFB

Description: Release perimeter identified by pin flags.


Description: Overnight cover for exposed pipe section.

Date: February 1, 2017 Direction: North

Address: BFF Kirtland AFB

Description: Overnight cover for exposed pipe section.

Description: HDPE pipe elevated to drain water/condensate to a low point.

Date: February 2, 2017 Direction: North

Address: BFF Kirtland AFB

Description: Cut poly drum placed under the low point to ensure no spillage to soil during condensate removal.

Date: February 2, 2017

Direction: North

Description: Preparation to cut hole in top of HDPE for vacuum truck stinger access.

Date: February 2, 2017 Direction: North

Address: BFF, Kirtland AFB

Description: Vacuum truck connected to the HDPE pipe with removing water/condensate.

Description: Cut HDPE pipe after condensate removed.

APPENDIX B LABORATORY ANALYTICAL REPORTS

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 06, 2017

Devon Jercinovic

EA Engineering
320 Gold Ave SW Suite 1210

Albuquerque, NM 87102 TEL: (505) 224-9013

FAX

RE: Cat Ox Removal OrderNo.: 1702076

Dear Devon Jercinovic:

Hall Environmental Analysis Laboratory received 7 sample(s) on 2/1/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order 1702076

Date Reported: 2/6/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: Cat Ox SP-01

 Project:
 Cat Ox Removal
 Collection Date: 2/1/2017 10:17:00 AM

 Lab ID:
 1702076-001
 Matrix: SOIL
 Received Date: 2/1/2017 4:33:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Benzene	ND	0.025	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Toluene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Ethylbenzene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Methyl tert-butyl ether (MTBE)	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,2,4-Trimethylbenzene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,3,5-Trimethylbenzene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,2-Dichloroethane (EDC)	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,2-Dibromoethane (EDB)	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Naphthalene	ND	0.099	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1-Methylnaphthalene	ND	0.20	mg/Kg	1	2/3/2017 12:25:37 PM	30023
2-Methylnaphthalene	ND	0.20	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Acetone	ND	0.74	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Bromobenzene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Bromodichloromethane	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Bromoform	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Bromomethane	ND	0.15	mg/Kg	1	2/3/2017 12:25:37 PM	30023
2-Butanone	ND	0.50	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Carbon disulfide	ND	0.50	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Carbon tetrachloride	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Chlorobenzene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Chloroethane	ND	0.099	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Chloroform	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Chloromethane	ND	0.15	mg/Kg	1	2/3/2017 12:25:37 PM	30023
2-Chlorotoluene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
4-Chlorotoluene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
cis-1,2-DCE	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,2-Dibromo-3-chloropropane	ND	0.099	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Dibromochloromethane	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Dibromomethane	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,1-Dichloroethane	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,1-Dichloroethene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,2-Dichloropropane	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,3-Dichloropropane	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
2,2-Dichloropropane	ND	0.099	mg/Kg	1	2/3/2017 12:25:37 PM	30023

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 21
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1702076**Date Reported: **2/6/2017**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering

Client Sample ID: Cat Ox SP-01

 Project:
 Cat Ox Removal
 Collection Date: 2/1/2017 10:17:00 AM

 Lab ID:
 1702076-001
 Matrix: SOIL
 Received Date: 2/1/2017 4:33:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
1,1-Dichloropropene	ND	0.099	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Hexachlorobutadiene	ND	0.099	mg/Kg	1	2/3/2017 12:25:37 PM	30023
2-Hexanone	ND	0.50	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Isopropylbenzene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
4-Isopropyltoluene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Methylene chloride	ND	0.15	mg/Kg	1	2/3/2017 12:25:37 PM	30023
n-Butylbenzene	ND	0.15	mg/Kg	1	2/3/2017 12:25:37 PM	30023
n-Propylbenzene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
sec-Butylbenzene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Styrene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
tert-Butylbenzene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
trans-1,2-DCE	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,2,3-Trichlorobenzene	ND	0.099	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Trichlorofluoromethane	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
1,2,3-Trichloropropane	ND	0.099	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Vinyl chloride	ND	0.050	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Xylenes, Total	ND	0.099	mg/Kg	1	2/3/2017 12:25:37 PM	30023
Surr: Dibromofluoromethane	99.1	70-130	%Rec	1	2/3/2017 12:25:37 PM	30023
Surr: 1,2-Dichloroethane-d4	96.4	70-130	%Rec	1	2/3/2017 12:25:37 PM	30023
Surr: Toluene-d8	103	70-130	%Rec	1	2/3/2017 12:25:37 PM	30023
Surr: 4-Bromofluorobenzene	96.5	70-130	%Rec	1	2/3/2017 12:25:37 PM	30023

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 21
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1702076**Date Reported: **2/6/2017**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: Cat Ox SP-02

 Project:
 Cat Ox Removal
 Collection Date: 2/1/2017 10:19:00 AM

 Lab ID:
 1702076-002
 Matrix: SOIL
 Received Date: 2/1/2017 4:33:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Benzene	ND	0.024	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Toluene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Ethylbenzene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Methyl tert-butyl ether (MTBE)	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,2,4-Trimethylbenzene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,3,5-Trimethylbenzene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,2-Dichloroethane (EDC)	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,2-Dibromoethane (EDB)	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Naphthalene	ND	0.094	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1-Methylnaphthalene	ND	0.19	mg/Kg	1	2/3/2017 12:55:03 PM	30023
2-Methylnaphthalene	ND	0.19	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Acetone	ND	0.71	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Bromobenzene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Bromodichloromethane	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Bromoform	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Bromomethane	ND	0.14	mg/Kg	1	2/3/2017 12:55:03 PM	30023
2-Butanone	ND	0.47	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Carbon disulfide	ND	0.47	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Carbon tetrachloride	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Chlorobenzene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Chloroethane	ND	0.094	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Chloroform	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Chloromethane	ND	0.14	mg/Kg	1	2/3/2017 12:55:03 PM	30023
2-Chlorotoluene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
4-Chlorotoluene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
cis-1,2-DCE	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
cis-1,3-Dichloropropene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,2-Dibromo-3-chloropropane	ND	0.094	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Dibromochloromethane	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Dibromomethane	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,2-Dichlorobenzene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,3-Dichlorobenzene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,4-Dichlorobenzene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Dichlorodifluoromethane	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,1-Dichloroethane	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,1-Dichloroethene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,2-Dichloropropane	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,3-Dichloropropane	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
2,2-Dichloropropane	ND	0.094	mg/Kg	1	2/3/2017 12:55:03 PM	30023

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 21
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1702076**Date Reported: **2/6/2017**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: Cat Ox SP-02

 Project:
 Cat Ox Removal
 Collection Date: 2/1/2017 10:19:00 AM

 Lab ID:
 1702076-002
 Matrix: SOIL
 Received Date: 2/1/2017 4:33:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
1,1-Dichloropropene	ND	0.094	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Hexachlorobutadiene	ND	0.094	mg/Kg	1	2/3/2017 12:55:03 PM	30023
2-Hexanone	ND	0.47	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Isopropylbenzene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
4-Isopropyltoluene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
4-Methyl-2-pentanone	ND	0.47	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Methylene chloride	ND	0.14	mg/Kg	1	2/3/2017 12:55:03 PM	30023
n-Butylbenzene	ND	0.14	mg/Kg	1	2/3/2017 12:55:03 PM	30023
n-Propylbenzene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
sec-Butylbenzene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Styrene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
tert-Butylbenzene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,1,1,2-Tetrachloroethane	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,1,2,2-Tetrachloroethane	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Tetrachloroethene (PCE)	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
trans-1,2-DCE	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
trans-1,3-Dichloropropene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,2,3-Trichlorobenzene	ND	0.094	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,2,4-Trichlorobenzene	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,1,1-Trichloroethane	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,1,2-Trichloroethane	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Trichloroethene (TCE)	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Trichlorofluoromethane	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
1,2,3-Trichloropropane	ND	0.094	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Vinyl chloride	ND	0.047	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Xylenes, Total	ND	0.094	mg/Kg	1	2/3/2017 12:55:03 PM	30023
Surr: Dibromofluoromethane	95.7	70-130	%Rec	1	2/3/2017 12:55:03 PM	30023
Surr: 1,2-Dichloroethane-d4	96.6	70-130	%Rec	1	2/3/2017 12:55:03 PM	30023
Surr: Toluene-d8	104	70-130	%Rec	1	2/3/2017 12:55:03 PM	30023
Surr: 4-Bromofluorobenzene	86.9	70-130	%Rec	1	2/3/2017 12:55:03 PM	30023

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 21
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1702076**Date Reported: **2/6/2017**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: Cat Ox SP-03

 Project:
 Cat Ox Removal
 Collection Date: 2/1/2017 10:21:00 AM

 Lab ID:
 1702076-003
 Matrix: SOIL
 Received Date: 2/1/2017 4:33:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
Benzene	ND	0.023	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Toluene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Ethylbenzene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Methyl tert-butyl ether (MTBE)	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,2,4-Trimethylbenzene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,3,5-Trimethylbenzene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,2-Dichloroethane (EDC)	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,2-Dibromoethane (EDB)	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Naphthalene	ND	0.092	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1-Methylnaphthalene	ND	0.18	mg/Kg	1	2/3/2017 2:51:38 PM	30023
2-Methylnaphthalene	ND	0.18	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Acetone	ND	0.69	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Bromobenzene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Bromodichloromethane	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Bromoform	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Bromomethane	ND	0.14	mg/Kg	1	2/3/2017 2:51:38 PM	30023
2-Butanone	ND	0.46	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Carbon disulfide	ND	0.46	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Carbon tetrachloride	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Chlorobenzene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Chloroethane	ND	0.092	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Chloroform	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Chloromethane	ND	0.14	mg/Kg	1	2/3/2017 2:51:38 PM	30023
2-Chlorotoluene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
4-Chlorotoluene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
cis-1,2-DCE	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
cis-1,3-Dichloropropene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,2-Dibromo-3-chloropropane	ND	0.092	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Dibromochloromethane	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Dibromomethane	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,2-Dichlorobenzene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,3-Dichlorobenzene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,4-Dichlorobenzene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Dichlorodifluoromethane	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,1-Dichloroethane	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,1-Dichloroethene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,2-Dichloropropane	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,3-Dichloropropane	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
2,2-Dichloropropane	ND	0.092	mg/Kg	1	2/3/2017 2:51:38 PM	30023

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 5 of 21
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1702076**Date Reported: **2/6/2017**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: Cat Ox SP-03

 Project:
 Cat Ox Removal
 Collection Date: 2/1/2017 10:21:00 AM

 Lab ID:
 1702076-003
 Matrix: SOIL
 Received Date: 2/1/2017 4:33:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
1,1-Dichloropropene	ND	0.092	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Hexachlorobutadiene	ND	0.092	mg/Kg	1	2/3/2017 2:51:38 PM	30023
2-Hexanone	ND	0.46	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Isopropylbenzene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
4-Isopropyltoluene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
4-Methyl-2-pentanone	ND	0.46	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Methylene chloride	ND	0.14	mg/Kg	1	2/3/2017 2:51:38 PM	30023
n-Butylbenzene	ND	0.14	mg/Kg	1	2/3/2017 2:51:38 PM	30023
n-Propylbenzene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
sec-Butylbenzene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Styrene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
tert-Butylbenzene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,1,1,2-Tetrachloroethane	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,1,2,2-Tetrachloroethane	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Tetrachloroethene (PCE)	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
trans-1,2-DCE	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
trans-1,3-Dichloropropene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,2,3-Trichlorobenzene	ND	0.092	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,2,4-Trichlorobenzene	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,1,1-Trichloroethane	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,1,2-Trichloroethane	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Trichloroethene (TCE)	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Trichlorofluoromethane	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
1,2,3-Trichloropropane	ND	0.092	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Vinyl chloride	ND	0.046	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Xylenes, Total	ND	0.092	mg/Kg	1	2/3/2017 2:51:38 PM	30023
Surr: Dibromofluoromethane	97.2	70-130	%Rec	1	2/3/2017 2:51:38 PM	30023
Surr: 1,2-Dichloroethane-d4	93.4	70-130	%Rec	1	2/3/2017 2:51:38 PM	30023
Surr: Toluene-d8	110	70-130	%Rec	1	2/3/2017 2:51:38 PM	30023
Surr: 4-Bromofluorobenzene	95.2	70-130	%Rec	1	2/3/2017 2:51:38 PM	30023

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 6 of 21
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1702076**Date Reported: **2/6/2017**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: Cat Ox SP-04

 Project:
 Cat Ox Removal
 Collection Date: 2/1/2017 3:20:00 PM

 Lab ID:
 1702076-004
 Matrix: SOIL
 Received Date: 2/1/2017 4:33:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
Benzene	ND	0.025	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Toluene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Ethylbenzene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Methyl tert-butyl ether (MTBE)	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,2,4-Trimethylbenzene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,3,5-Trimethylbenzene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,2-Dichloroethane (EDC)	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,2-Dibromoethane (EDB)	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Naphthalene	ND	0.099	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1-Methylnaphthalene	ND	0.20	mg/Kg	1	2/3/2017 1:24:37 PM	30023
2-Methylnaphthalene	ND	0.20	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Acetone	ND	0.74	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Bromobenzene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Bromodichloromethane	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Bromoform	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Bromomethane	ND	0.15	mg/Kg	1	2/3/2017 1:24:37 PM	30023
2-Butanone	ND	0.50	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Carbon disulfide	ND	0.50	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Carbon tetrachloride	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Chlorobenzene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Chloroethane	ND	0.099	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Chloroform	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Chloromethane	ND	0.15	mg/Kg	1	2/3/2017 1:24:37 PM	30023
2-Chlorotoluene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
4-Chlorotoluene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
cis-1,2-DCE	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,2-Dibromo-3-chloropropane	ND	0.099	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Dibromochloromethane	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Dibromomethane	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,1-Dichloroethane	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,1-Dichloroethene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,2-Dichloropropane	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,3-Dichloropropane	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
2,2-Dichloropropane	ND	0.099	mg/Kg	1	2/3/2017 1:24:37 PM	30023

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 7 of 21
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1702076**Date Reported: **2/6/2017**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: Cat Ox SP-04

 Project:
 Cat Ox Removal
 Collection Date: 2/1/2017 3:20:00 PM

 Lab ID:
 1702076-004
 Matrix: SOIL
 Received Date: 2/1/2017 4:33:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
1,1-Dichloropropene	ND	0.099	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Hexachlorobutadiene	ND	0.099	mg/Kg	1	2/3/2017 1:24:37 PM	30023
2-Hexanone	ND	0.50	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Isopropylbenzene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
4-Isopropyltoluene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Methylene chloride	ND	0.15	mg/Kg	1	2/3/2017 1:24:37 PM	30023
n-Butylbenzene	ND	0.15	mg/Kg	1	2/3/2017 1:24:37 PM	30023
n-Propylbenzene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
sec-Butylbenzene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Styrene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
tert-Butylbenzene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
trans-1,2-DCE	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,2,3-Trichlorobenzene	ND	0.099	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Trichlorofluoromethane	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
1,2,3-Trichloropropane	ND	0.099	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Vinyl chloride	ND	0.050	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Xylenes, Total	ND	0.099	mg/Kg	1	2/3/2017 1:24:37 PM	30023
Surr: Dibromofluoromethane	95.4	70-130	%Rec	1	2/3/2017 1:24:37 PM	30023
Surr: 1,2-Dichloroethane-d4	97.3	70-130	%Rec	1	2/3/2017 1:24:37 PM	30023
Surr: Toluene-d8	104	70-130	%Rec	1	2/3/2017 1:24:37 PM	30023
Surr: 4-Bromofluorobenzene	88.2	70-130	%Rec	1	2/3/2017 1:24:37 PM	30023

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 8 of 21
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1702076**Date Reported: **2/6/2017**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: Cat Ox SP-05

 Project:
 Cat Ox Removal
 Collection Date: 2/1/2017 3:19:00 PM

 Lab ID:
 1702076-005
 Matrix: SOIL
 Received Date: 2/1/2017 4:33:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
Benzene	ND	0.024	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Toluene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Ethylbenzene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Methyl tert-butyl ether (MTBE)	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,2,4-Trimethylbenzene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,3,5-Trimethylbenzene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,2-Dichloroethane (EDC)	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,2-Dibromoethane (EDB)	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Naphthalene	ND	0.098	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1-Methylnaphthalene	ND	0.20	mg/Kg	1	2/3/2017 1:53:18 PM	30023
2-Methylnaphthalene	ND	0.20	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Acetone	ND	0.73	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Bromobenzene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Bromodichloromethane	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Bromoform	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Bromomethane	ND	0.15	mg/Kg	1	2/3/2017 1:53:18 PM	30023
2-Butanone	ND	0.49	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Carbon disulfide	ND	0.49	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Carbon tetrachloride	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Chlorobenzene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Chloroethane	ND	0.098	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Chloroform	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Chloromethane	ND	0.15	mg/Kg	1	2/3/2017 1:53:18 PM	30023
2-Chlorotoluene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
4-Chlorotoluene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
cis-1,2-DCE	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
cis-1,3-Dichloropropene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,2-Dibromo-3-chloropropane	ND	0.098	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Dibromochloromethane	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Dibromomethane	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,2-Dichlorobenzene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,3-Dichlorobenzene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,4-Dichlorobenzene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Dichlorodifluoromethane	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,1-Dichloroethane	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,1-Dichloroethene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,2-Dichloropropane	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,3-Dichloropropane	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
2,2-Dichloropropane	ND	0.098	mg/Kg	1	2/3/2017 1:53:18 PM	30023

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 9 of 21
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1702076 Date Reported: 2/6/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: Cat Ox SP-05

Project: Cat Ox Removal **Collection Date:** 2/1/2017 3:19:00 PM Matrix: SOIL Lab ID: 1702076-005 Received Date: 2/1/2017 4:33:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
1,1-Dichloropropene	ND	0.098	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Hexachlorobutadiene	ND	0.098	mg/Kg	1	2/3/2017 1:53:18 PM	30023
2-Hexanone	ND	0.49	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Isopropylbenzene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
4-Isopropyltoluene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
4-Methyl-2-pentanone	ND	0.49	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Methylene chloride	ND	0.15	mg/Kg	1	2/3/2017 1:53:18 PM	30023
n-Butylbenzene	ND	0.15	mg/Kg	1	2/3/2017 1:53:18 PM	30023
n-Propylbenzene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
sec-Butylbenzene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Styrene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
tert-Butylbenzene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,1,1,2-Tetrachloroethane	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,1,2,2-Tetrachloroethane	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Tetrachloroethene (PCE)	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
trans-1,2-DCE	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
trans-1,3-Dichloropropene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,2,3-Trichlorobenzene	ND	0.098	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,2,4-Trichlorobenzene	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,1,1-Trichloroethane	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,1,2-Trichloroethane	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Trichloroethene (TCE)	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Trichlorofluoromethane	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
1,2,3-Trichloropropane	ND	0.098	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Vinyl chloride	ND	0.049	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Xylenes, Total	ND	0.098	mg/Kg	1	2/3/2017 1:53:18 PM	30023
Surr: Dibromofluoromethane	95.3	70-130	%Rec	1	2/3/2017 1:53:18 PM	30023
Surr: 1,2-Dichloroethane-d4	96.0	70-130	%Rec	1	2/3/2017 1:53:18 PM	30023
Surr: Toluene-d8	109	70-130	%Rec	1	2/3/2017 1:53:18 PM	30023
Surr: 4-Bromofluorobenzene	96.0	70-130	%Rec	1	2/3/2017 1:53:18 PM	30023

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 10 of 21 J
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Lab Order 1702076 Date Reported: 2/6/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: Cat Ox SP-06

Project: Cat Ox Removal **Collection Date:** 2/1/2017 3:18:00 PM Lab ID: 1702076-006 Matrix: SOIL Received Date: 2/1/2017 4:33:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	: DJF
Benzene	ND	0.024	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Toluene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Ethylbenzene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Methyl tert-butyl ether (MTBE)	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,2,4-Trimethylbenzene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,3,5-Trimethylbenzene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,2-Dichloroethane (EDC)	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,2-Dibromoethane (EDB)	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Naphthalene	ND	0.098	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1-Methylnaphthalene	ND	0.20	mg/Kg	1	2/3/2017 2:22:24 PM	30023
2-Methylnaphthalene	ND	0.20	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Acetone	ND	0.73	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Bromobenzene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Bromodichloromethane	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Bromoform	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Bromomethane	ND	0.15	mg/Kg	1	2/3/2017 2:22:24 PM	30023
2-Butanone	ND	0.49	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Carbon disulfide	ND	0.49	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Carbon tetrachloride	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Chlorobenzene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Chloroethane	ND	0.098	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Chloroform	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Chloromethane	ND	0.15	mg/Kg	1	2/3/2017 2:22:24 PM	30023
2-Chlorotoluene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
4-Chlorotoluene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
cis-1,2-DCE	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
cis-1,3-Dichloropropene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,2-Dibromo-3-chloropropane	ND	0.098	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Dibromochloromethane	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Dibromomethane	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,2-Dichlorobenzene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,3-Dichlorobenzene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,4-Dichlorobenzene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Dichlorodifluoromethane	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,1-Dichloroethane	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,1-Dichloroethene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,2-Dichloropropane	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,3-Dichloropropane	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
2,2-Dichloropropane	ND	0.098	mg/Kg	1	2/3/2017 2:22:24 PM	30023

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 11 of 21 J
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Lab Order 1702076

Hall Environmental Analysis Laboratory, Inc. Date Reported: 2/6/2017

CLIENT: EA Engineering Client Sample ID: Cat Ox SP-06

Project: Cat Ox Removal **Collection Date:** 2/1/2017 3:18:00 PM Lab ID: 1702076-006 Matrix: SOIL Received Date: 2/1/2017 4:33:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: DJF
1,1-Dichloropropene	ND	0.098	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Hexachlorobutadiene	ND	0.098	mg/Kg	1	2/3/2017 2:22:24 PM	30023
2-Hexanone	ND	0.49	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Isopropylbenzene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
4-Isopropyltoluene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
4-Methyl-2-pentanone	ND	0.49	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Methylene chloride	ND	0.15	mg/Kg	1	2/3/2017 2:22:24 PM	30023
n-Butylbenzene	ND	0.15	mg/Kg	1	2/3/2017 2:22:24 PM	30023
n-Propylbenzene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
sec-Butylbenzene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Styrene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
tert-Butylbenzene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,1,1,2-Tetrachloroethane	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,1,2,2-Tetrachloroethane	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Tetrachloroethene (PCE)	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
trans-1,2-DCE	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
trans-1,3-Dichloropropene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,2,3-Trichlorobenzene	ND	0.098	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,2,4-Trichlorobenzene	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,1,1-Trichloroethane	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,1,2-Trichloroethane	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Trichloroethene (TCE)	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Trichlorofluoromethane	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
1,2,3-Trichloropropane	ND	0.098	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Vinyl chloride	ND	0.049	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Xylenes, Total	ND	0.098	mg/Kg	1	2/3/2017 2:22:24 PM	30023
Surr: Dibromofluoromethane	100	70-130	%Rec	1	2/3/2017 2:22:24 PM	30023
Surr: 1,2-Dichloroethane-d4	98.3	70-130	%Rec	1	2/3/2017 2:22:24 PM	30023
Surr: Toluene-d8	106	70-130	%Rec	1	2/3/2017 2:22:24 PM	30023
Surr: 4-Bromofluorobenzene	94.6	70-130	%Rec	1	2/3/2017 2:22:24 PM	30023

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 12 of 21 J
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Received Date: 2/1/2017 4:33:00 PM

Lab Order 1702076 Date Reported: 2/6/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: Cat Ox Condensate

Project: Cat Ox Removal **Collection Date:** 2/1/2017 3:53:00 PM Matrix: AQUEOUS

Analyses	Result	PQL Q	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: BCN
Benzene	54	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Toluene	280	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Ethylbenzene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Methyl tert-butyl ether (MTBE)	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,2,4-Trimethylbenzene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,3,5-Trimethylbenzene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,2-Dichloroethane (EDC)	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,2-Dibromoethane (EDB)	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Naphthalene	ND	100	μg/L	50	2/3/2017 10:37:00 AM	R40492
1-Methylnaphthalene	ND	200	μg/L	50	2/3/2017 10:37:00 AM	R40492
2-Methylnaphthalene	ND	200	μg/L	50	2/3/2017 10:37:00 AM	R40492
Acetone	3500	500	μg/L	50	2/3/2017 10:37:00 AM	R40492
Bromobenzene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Bromodichloromethane	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Bromoform	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Bromomethane	ND	150	μg/L	50	2/3/2017 10:37:00 AM	R40492
2-Butanone	900	500	μg/L	50	2/3/2017 10:37:00 AM	R40492
Carbon disulfide	ND	500	μg/L	50	2/3/2017 10:37:00 AM	R40492
Carbon Tetrachloride	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Chlorobenzene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Chloroethane	ND	100	μg/L	50	2/3/2017 10:37:00 AM	R40492
Chloroform	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Chloromethane	ND	150	μg/L	50	2/3/2017 10:37:00 AM	R40492
2-Chlorotoluene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
4-Chlorotoluene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
cis-1,2-DCE	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
cis-1,3-Dichloropropene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,2-Dibromo-3-chloropropane	ND	100	μg/L	50	2/3/2017 10:37:00 AM	R40492
Dibromochloromethane	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Dibromomethane	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,2-Dichlorobenzene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,3-Dichlorobenzene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,4-Dichlorobenzene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Dichlorodifluoromethane	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,1-Dichloroethane	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,1-Dichloroethene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,2-Dichloropropane	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,3-Dichloropropane	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
2,2-Dichloropropane	ND	100	μg/L	50	2/3/2017 10:37:00 AM	R40492

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Lab ID:

1702076-007

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 13 of 21 J
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Lab Order 1702076 Date Reported: 2/6/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: Cat Ox Condensate

Project: Cat Ox Removal **Collection Date:** 2/1/2017 3:53:00 PM Lab ID: 1702076-007 Matrix: AQUEOUS Received Date: 2/1/2017 4:33:00 PM

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	BCN
1,1-Dichloropropene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Hexachlorobutadiene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
2-Hexanone	ND	500	μg/L	50	2/3/2017 10:37:00 AM	R40492
Isopropylbenzene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
4-Isopropyltoluene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
4-Methyl-2-pentanone	ND	500	μg/L	50	2/3/2017 10:37:00 AM	R40492
Methylene Chloride	ND	150	μg/L	50	2/3/2017 10:37:00 AM	R40492
n-Butylbenzene	ND	150	μg/L	50	2/3/2017 10:37:00 AM	R40492
n-Propylbenzene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
sec-Butylbenzene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Styrene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
tert-Butylbenzene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,1,1,2-Tetrachloroethane	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,1,2,2-Tetrachloroethane	ND	100	μg/L	50	2/3/2017 10:37:00 AM	R40492
Tetrachloroethene (PCE)	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
trans-1,2-DCE	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
trans-1,3-Dichloropropene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,2,3-Trichlorobenzene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,2,4-Trichlorobenzene	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,1,1-Trichloroethane	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,1,2-Trichloroethane	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Trichloroethene (TCE)	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Trichlorofluoromethane	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
1,2,3-Trichloropropane	ND	100	μg/L	50	2/3/2017 10:37:00 AM	R40492
Vinyl chloride	ND	50	μg/L	50	2/3/2017 10:37:00 AM	R40492
Xylenes, Total	270	75	μg/L	50	2/3/2017 10:37:00 AM	R40492
Surr: 1,2-Dichloroethane-d4	109	70-130	%Rec	50	2/3/2017 10:37:00 AM	R40492
Surr: 4-Bromofluorobenzene	111	70-130	%Rec	50	2/3/2017 10:37:00 AM	R40492
Surr: Dibromofluoromethane	105	70-130	%Rec	50	2/3/2017 10:37:00 AM	R40492
Surr: Toluene-d8	103	70-130	%Rec	50	2/3/2017 10:37:00 AM	R40492

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 14 of 21 J
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702076**

07-Feb-17

Client: EA Engineering
Project: Cat Ox Removal

Sample ID mb-30023 SampType: MBLK TestCode: EPA Method 8260B: Volatiles RunNo: 40507 Client ID: **PBS** Batch ID: 30023 Analysis Date: 2/3/2017 Prep Date: 2/2/2017 SeqNo: 1269600 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 0.025 Toluene ND 0.050 ND Ethylbenzene 0.050 Methyl tert-butyl ether (MTBE) ND 0.050 1,2,4-Trimethylbenzene ND 0.050 0.050 1,3,5-Trimethylbenzene ND 1,2-Dichloroethane (EDC) ND 0.050 1,2-Dibromoethane (EDB) ND 0.050 Naphthalene ND 0.10 ND 0.20 1-Methylnaphthalene 2-Methylnaphthalene ND 0.20 ND 0.75 Acetone ND 0.050 Bromobenzene Bromodichloromethane ND 0.050 ND 0.050 Bromoform Bromomethane ND 0.15 2-Butanone ND 0.50 Carbon disulfide ND 0.50 Carbon tetrachloride ND 0.050 Chlorobenzene ND 0.050 ND Chloroethane 0.10 Chloroform ND 0.050 Chloromethane ND 0.15 2-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 cis-1,2-DCE ND 0.050 cis-1,3-Dichloropropene ND 0.050 1,2-Dibromo-3-chloropropane ND 0.10 Dibromochloromethane ND 0.050 ND Dibromomethane 0.050 ND 0.050 1.2-Dichlorobenzene ND 0.050 1,3-Dichlorobenzene 1.4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 ND 0.050 1,2-Dichloropropane 1,3-Dichloropropane ND 0.050 2,2-Dichloropropane ND 0.10

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 15 of 21

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702076**

07-Feb-17

Client: EA Engineering
Project: Cat Ox Removal

Sample ID mb-30023	SampT	уре: МІ	BLK	TestCode: EPA Method 8260B: Volatiles							
Client ID: PBS	Batch	n ID: 30	023	F	RunNo: 4	0507					
Prep Date: 2/2/2017	Analysis D	oate: 2	/3/2017	\$	SeqNo: 1	269600	Units: mg/K	(g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
1,1-Dichloropropene	ND	0.10									
Hexachlorobutadiene	ND	0.10									
2-Hexanone	ND	0.50									
Isopropylbenzene	ND	0.050									
4-Isopropyltoluene	ND	0.050									
4-Methyl-2-pentanone	ND	0.50									
Methylene chloride	ND	0.15									
n-Butylbenzene	ND	0.15									
n-Propylbenzene	ND	0.050									
sec-Butylbenzene	ND	0.050									
Styrene	ND	0.050									
tert-Butylbenzene	ND	0.050									
1,1,1,2-Tetrachloroethane	ND	0.050									
1,1,2,2-Tetrachloroethane	ND	0.050									
Tetrachloroethene (PCE)	ND	0.050									
trans-1,2-DCE	ND	0.050									
trans-1,3-Dichloropropene	ND	0.050									
1,2,3-Trichlorobenzene	ND	0.10									
1,2,4-Trichlorobenzene	ND	0.050									
1,1,1-Trichloroethane	ND	0.050									
1,1,2-Trichloroethane	ND	0.050									
Trichloroethene (TCE)	ND	0.050									
Trichlorofluoromethane	ND	0.050									
1,2,3-Trichloropropane	ND	0.10									
Vinyl chloride	ND	0.050									
Xylenes, Total	ND	0.10									
Surr: Dibromofluoromethane	0.49		0.5000		98.0	70	130				
Surr: 1,2-Dichloroethane-d4	0.49		0.5000		97.9	70	130				
Surr: Toluene-d8	0.53		0.5000		107	70	130				
Surr: 4-Bromofluorobenzene	0.47		0.5000		93.6	70	130				
Sample ID Ics-30023	SampT	ype: LC	 :s	Tes	tCode: E	PA Method	8260B: Volat	iles			
Client ID: LCSS	Batch	n ID: 30	023	F	RunNo: 4	0507					
Prep Date: 2/2/2017	Analysis D			5	SeqNo: 1	269601	Units: mg/K	(g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.96	0.025	1.000	0	95.7	70	130				

Qualifiers:

Chlorobenzene

Toluene

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

1.1

1.0

0.050

0.050

1.000

1.000

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

70

70

130

130

E Value above quantitation range

106

102

J Analyte detected below quantitation limits

P Sample pH Not In Range

0

0

RL Reporting Detection Limit

Page 16 of 21

W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

0.48

WO#: **1702076**

07-Feb-17

Client: EA Engineering
Project: Cat Ox Removal

Surr: 4-Bromofluorobenzene

Sample ID Ics-30023 SampType: LCS TestCode: EPA Method 8260B: Volatiles RunNo: 40507 Client ID: LCSS Batch ID: 30023 Analysis Date: 2/3/2017 Prep Date: 2/2/2017 SeqNo: 1269601 Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 1,1-Dichloroethene 0.050 1.000 104 1.0 0 72 146 94.3 Trichloroethene (TCE) 0.94 0.050 1.000 0 70 130 94.3 70 Surr: Dibromofluoromethane 0.47 0.5000 130 Surr: 1,2-Dichloroethane-d4 0.49 0.5000 97.4 70 130 Surr: Toluene-d8 0.53 0.5000 105 70 130

96.1

70

130

0.5000

Sample ID 1702076-001ams SampType: MS TestCode: EPA Method 8260B: Volatiles Client ID: Cat Ox SP-01 Batch ID: 30023 RunNo: 40507 Prep Date: 2/2/2017 Analysis Date: 2/3/2017 SeqNo: 1269602 Units: mg/Kg **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Benzene 0.90 0.024 0.9766 92.1 61.9 146 0.049 0.9766 0.03817 105 70 130 Toluene 1.1 Chlorobenzene 1.0 0.049 0.9766 0 102 70 130 94.7 37.1 1,1-Dichloroethene 0.92 0.049 0.9766 0 170 Trichloroethene (TCE) 0.92 0.049 0.9766 0 94.2 49.8 150 Surr: Dibromofluoromethane 0.47 0.4883 96.2 70 130 Surr: 1,2-Dichloroethane-d4 0.47 96.7 70 0.4883 130 Surr: Toluene-d8 0.53 0.4883 108 70 130 Surr: 4-Bromofluorobenzene 0.45 0.4883 93.1 70 130

Sample ID 1702076-001ams	d SampT	ype: MS	SD	Tes	TestCode: EPA Method 8260B: Volatiles					
Client ID: Cat Ox SP-01	Batch	n ID: 30	023	F	RunNo: 4	0507				
Prep Date: 2/2/2017	Analysis D	oate: 2/	3/2017	8	SeqNo: 1	269603	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.81	0.023	0.9183	0	88.6	61.9	146	9.96	20	
Toluene	0.95	0.046	0.9183	0.03817	99.8	70	130	11.1	20	
Chlorobenzene	0.88	0.046	0.9183	0	96.0	70	130	12.7	20	
1,1-Dichloroethene	0.88	0.046	0.9183	0	95.6	37.1	170	5.21	20	
Trichloroethene (TCE)	0.81	0.046	0.9183	0	87.9	49.8	150	13.1	20	
Surr: Dibromofluoromethane	0.44		0.4591		95.3	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	0.45		0.4591		97.2	70	130	0	0	
Surr: Toluene-d8	0.49		0.4591		107	70	130	0	0	
Surr: 4-Bromofluorobenzene	0.43		0.4591		94.0	70	130	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 17 of 21

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702076**

07-Feb-17

Client:	EA Engineering
Project:	Cat Ox Removal

Sample ID 100ng lcs2	SampT	ype: LC	es	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	ID: R4	10476	F	RunNo: 4	0476				
Prep Date:	Analysis D	ate: 2	/2/2017	\$	SeqNo: 1	268410	Units: %Red	C		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	11		10.00		115	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		110	70	130			
Surr: Dibromofluoromethane	11		10.00		111	70	130			
Surr: Toluene-d8	10		10.00		103	70	130			
Sample ID rb	SampT	ype: MI	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R4	10476	F	RunNo: 4	0476				
Prep Date:	Analysis D	ate: 2	/2/2017	5	SeqNo: 1	268411	Units: %Re	c		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	11		10.00		114	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		105	70	130			
Surr: Dibromofluoromethane	11		10.00		113	70	130			
Surr: Toluene-d8	10		10.00		103	70	130			
Sample ID rb	SampT	ype: MI	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R4	10492	F	RunNo: 4	0492				
Prep Date:	Analysis D	ate: 2	/3/2017	8	SeqNo: 1	269341	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 18 of 21

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702076**

07-Feb-17

Client: EA Engineering
Project: Cat Ox Removal

Sample ID rb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES RunNo: 40492 Client ID: **PBW** Batch ID: R40492 Analysis Date: 2/3/2017 Prep Date: SeqNo: 1269341 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Chloroethane ND 2.0 ND Chloroform 1.0 ND Chloromethane 3.0 2-Chlorotoluene ND 1.0 4-Chlorotoluene ND 1.0 cis-1,2-DCE ND 1.0 cis-1,3-Dichloropropene ND 1.0 1,2-Dibromo-3-chloropropane ND 2.0 Dibromochloromethane ND 1.0 ND Dibromomethane 1.0 1,2-Dichlorobenzene ND 1.0 ND 1,3-Dichlorobenzene 1.0 1.4-Dichlorobenzene ND 1.0 Dichlorodifluoromethane ND 1.0 1.1-Dichloroethane ND 1.0 1,1-Dichloroethene ND 1.0 ND 1.0 1,2-Dichloropropane 1,3-Dichloropropane ND 1.0 2,2-Dichloropropane ND 2.0 ND 1,1-Dichloropropene 1.0 Hexachlorobutadiene ND 1.0 2-Hexanone ND 10 ND Isopropylbenzene 1.0 4-Isopropyltoluene ND 1.0 4-Methyl-2-pentanone ND 10 Methylene Chloride ND 3.0 n-Butylbenzene ND 3.0 n-Propylbenzene ND 1.0 sec-Butylbenzene ND 1.0 ND Styrene 1.0 ND tert-Butylbenzene 1.0 1,1,1,2-Tetrachloroethane ND 1.0 1.1.2.2-Tetrachloroethane ND 2.0 Tetrachloroethene (PCE) ND 1.0 trans-1,2-DCE ND 1.0 trans-1,3-Dichloropropene ND 1.0 ND 1,2,3-Trichlorobenzene 1.0 1,2,4-Trichlorobenzene ND 1.0 1,1,1-Trichloroethane ND 1.0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 19 of 21

EA Engineering

Client:

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702076** *07-Feb-17*

Project: Cat Ox Removal Sample ID rb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES Client ID: **PBW** Batch ID: R40492 RunNo: 40492 Prep Date: Analysis Date: 2/3/2017 SeqNo: 1269341 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 1,1,2-Trichloroethane ND 1.0 Trichloroethene (TCE) ND 1.0 ND Trichlorofluoromethane 1.0 1,2,3-Trichloropropane ND 2.0 Vinyl chloride ND 1.0 Xylenes, Total ND 1.5 Surr: 1,2-Dichloroethane-d4 11 10.00 110 70 130 10.00 107 70 130 Surr: 4-Bromofluorobenzene 11 Surr: Dibromofluoromethane 11 10.00 105 70 130 Surr: Toluene-d8 10 10.00 103 70 130 TestCode: EPA Method 8260B: VOLATILES Sample ID 100ng lcs2 SampType: LCS LCSW Client ID: Batch ID: R40492 RunNo: 40492 Prep Date: Analysis Date: 2/3/2017 SeqNo: 1269478 Units: µg/L **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result Qual 23 1.0 20.00 0 115 70 130 Benzene Toluene 21 1.0 20.00 0 107 70 130 21 20.00 0 106 70 Chlorobenzene 1.0 130 1,1-Dichloroethene 23 1.0 20.00 0 115 70 130 22 20.00 111 70 Trichloroethene (TCE) 1.0 0 130 10.00 110 Surr: 1,2-Dichloroethane-d4 11 70 130 Surr: 4-Bromofluorobenzene 11 10.00 107 70 130 Surr: Dibromofluoromethane 11 10.00 107 70 130 Surr: Toluene-d8 10 10.00 103 70 130 Sample ID rb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES Batch ID: W40507 Client ID: PBW RunNo: 40507 Prep Date: Analysis Date: 2/3/2017 SeqNo: 1269582 Units: %Rec %REC Analyte Result PQL SPK value SPK Ref Val LowLimit HighLimit %RPD **RPDLimit** Qual Surr: 1,2-Dichloroethane-d4 10 10.00 101 70 130 Surr: 4-Bromofluorobenzene 9.5 10.00 95.0 70 130 Surr: Dibromofluoromethane 10 10.00 101 70 130

Qualifiers:

Surr: Toluene-d8

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

11

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

70

130

E Value above quantitation range

107

J Analyte detected below quantitation limits

C----1---II N-+ I-- D-----

P Sample pH Not In Range

10.00

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 20 of 21

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702076**

07-Feb-17

Client: EA Engineering
Project: Cat Ox Removal

Sample ID 100ng lcs SampType: LCS TestCode: EPA Method 8260B: VOLATILES Client ID: LCSW Batch ID: W40507 RunNo: 40507 SeqNo: 1269583 Prep Date: Analysis Date: 2/3/2017 Units: %Rec Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Surr: 1,2-Dichloroethane-d4 9.5 10.00 95.1 70 130 10.00 93.6 70 130 Surr: 4-Bromofluorobenzene 9.4 Surr: Dibromofluoromethane 9.8 10.00 98.4 70 130 Surr: Toluene-d8 11 10.00 106 70 130

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 21 of 21

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Clie	nt Name:	EA Enginee	ring Alb	Work Ord	er Number:	1702076			RcptNo:	1
Pace	eived by/dat	· AA	ACT	02/0	$\frac{1}{1}$					
				0-10	,		A			
Logg	ed By:	Ashley (Sal		2/1/2017 4:			2 de la			
Com	pleted By:	Ashley Gal	legos	2/2/2017 9:	51:50 AM		A			
Revie	ewed By:	IO	ı	221	٦					
<u>Chai</u>	in of Cus	tody		•						
1. 0	Custody sea	els intact on sa	imple bottles?			Yes 🗌	No [Not Present 🗹	
2. 1	s Chain of 0	Custody compi	lete?			Yes 🗸	No [Not Present	
3. F	low was the	e sample deliv	ered?			<u>Client</u>				
Log	<u>In</u>									
		empt made to	cool the sampl	es?		Yes 🗸	No l		NA 🗆	

5. v	Vere all sar	mples received	l at a tempera	ture of >0° C to	6.0°C	Yes 🗌	No 🛭	/	na 🗌	
6. 8	Sample(s) ii	n proper conta	iner(s)?			Yes 🗹	z No			
7 8	Sufficient sa	mple volume i	for indicated te	est(s)?		Yes 🔽	No [
		·		perly preserved	?	Yes 🔽	No [
	•	ative added to		, p		Yes	No B	~	NA 🗆	
10.V	OA vials h	ave zero head	space?			Yes 🗌	No [No VOA Vials 🔽	
11.1	Nere any s	ample contain	ers received b	roken?		Yes □	No		# of preserved	
40 -						v	No [_	bottles checked	
		work match bo pancies on ch	ttie labels? ain of custody))		Yes 🗹	INO 1	-	for pH: (<2	or >12 unless noted)
			ntified on Chair			Yes 🗹	No [Adjusted?	
14. [s it clear wh	at analyses w	ere requested	?		Yes 🗹	No [
		ding times abl				Yes 🗹	No [□	Checked by:	
(1	ir no, notity	customer for a	autnorization.)							
Spec	ial Hand	lling (if app	dicable)							
			screpancies w	ith this order?		Yes 🗌	No [_	NA 🗹	
10.1			ocropundice ii	itir tine order.					1012	
:	Persor By Wh	n Notified:			Date ∦ Via: 「	□ aMail □] Dhana [[™]] I	Fax	☐ In Person	
	Regard				via. [eMail	Phone []	rax	III Felson	
		Instructions:								
17. <i>i</i>	Additional re	,i		<u> </u>						i
18 (Cooler Info	rmation								
10. 5	Cooler N		Condition	Seal Intact S	eal No S	Seal Date	Signed By	<u>y</u>		
	1	7.5	Good	Not Present						

DMO2 P DMO2 P DMO2 P DMO2 P TVD	DIVIDILI DISCOLUTIONI INCUINA	- (するまた	1		HA	4	2	IRC	Z	HALL ENVIRONMENTAL	È	7
Cat Ox Cuncy	79	□ Rush	1110		` 	AN	7	SIS	Z	BC	JRA	0	RY
Cat Ox Cangled # Abbuquerque, NM Project # Delte Time Project # Delte Time Ambuguerque, NM Project Manager Delte Delte Time Ambuguerque, NM Delte Time Delte Time Received by: Delte Time Time Delte Time Time Delte Time	2	Project Name:				***	haller	vironr	nental	COM			
Project #. DAVO2 Dev DevO2A Project #. DAVO2 Dev DevO2A Project Manager. Paroject Manager. Paroject		+ 0x	0 Kg/	490	1 Haw	kins N	Ч -	anbnqı	erque.	Ž	37109		
Project Manager: Project Man		DM02	(m)	<u>le</u>	505-3	345-39	75	Fax	505-34	541	0,4		
Project Manager: Received by: Project Manager: Project Manager:		627350000 103	7.0.0				Ana	lysis	Reque	st			
Received by: Rece				(λ ι	(Jəs		_	(*(_			
Sample: Tyler Culty Container Preservative Sample: Tyler Culty Container Preservative Type and # Type and		t		IO SI	eiQ'		_	OS' [†]	s,g(-	
Sampler Tyler Curly	el 4 (Full Validation)	7		_ම ව)	/585			ОЧ,) d (
Ox Sp-01 Sp-02 Sp-02 Sp-03 Sp-03 Sp-04 Sp-04 Sp-03 Sp-04 Sp-03 Sp-04 Sp	1000	Tyler Corl		НЧТ			(H)	NO ₂	2808 /	((N
Ox SP-01 G lass VCVV LOOJ BTEX H Method Ox SP-03 G lass VCVV LOOJ BTEX H Method Ox SP-03 G lass VCVV LOOJ BTEX H Method Ox SP-03 G lass VCVV LOOJ BTEX H Method Ox SP-03 G lass VCVV LOOJ BTEX H Method Ox SP-03 G lass VCVV LOOJ BTEX H Method Ox SP-03 G lass VCVV LOOJ BTEX H Method Ox SP-04 G lass VCVV LOOJ Respected by Ox SP-05 G lass VCVV LOOJ Respected by Ox C lass C lass C lass C lass C lass Ox C lass C lass C lass C lass C lass Ox C lass C lass C lass C lass C lass Ox C lass C lass C lass C lass<		Sample Temperature, 7 + 0 +	Į.	+ ∃8				_			,		10 Y
0x 5p-01 5lass 12016 -001 X 0x 5p-03 9lass 12016 -003 2x 5p-03 9lass 12016 -003 2x 5p-04 9lass 12016 -003 2x 5p-06 9lass 12014 HCI -005 0x 622631/k 3 401/b/k HCI -007 Cx 622631/k 3 401		<u> </u>	7 % %	TEX + MTE									/ir Bubbles (
59-02 9lass hone -003	0× 5p-01				· 					<u> </u>			/
59-03 91455 None -003 59-04 4455 Nove -009 59-06 91455 Nove -005 59-07 P	50-02		-003						×				
59-04 9455 West 2004 59-65 54655 Word -005 59-06 54655 Word -005 Educate 3 Will HCI -007 Received by: Received by: Received by: Date Time Remarks: Sord qualyticuls to Date Time A Jum @ eaest. Com			-003						X.				
59-65 56455 word -005 59-06 9655 word -000 5000 K Keceived by: Date Time Remarks: Send Analyticals to Date Time Received by: Date Time Remarks: Send Analyticals to Date Time Received by:	56		400						X				
59-06 9655 went ——OOO	56-65		-005						人			<u> </u>	
Enderson for 1801 — OO 7 Received by: Received by: Received by: Date Time Remarks: Send qualy him bate Time Received by: Date Time Analy him bate Time			000						X.	<u> </u>			
Received by: Received by: Date Time Remarks: Send 4 naly hinls to Date Time A Johnn @ eaest, con	Endesa R		700-						X				
M/ 52/1/17 1653 + 5 soun @ eaest. com	-	•										<u>.</u>	
May oz 1117 1633 + j Sown a eaest, can							_						
May oz 1117 1633 + jhun @ eaest.com													
Many oz 1117 1633 + jhun @ eaest, con													
May oz 1117 1633 + j soun a eaest. con													
Date Time + Jahun (d Rales), Com		Maria	Time R	emarks:	Send	gra (lyhic	2/2	Ą		Signal	(3) Z	C4 85/12
Tracks			Time	ナン	Second Contract of the Contrac	<u>5</u>)	1637	ું ફુ					
										•	کے	2 KG	()

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 27, 2017

Devon Jercinovic

EA Engineering 320 Gold Ave SW Suite 1210

Albuquerque, NM 87102 TEL: (505) 224-9013

FAX

RE: KAFB-SVE OrderNo.: 1702792

Dear Devon Jercinovic:

Hall Environmental Analysis Laboratory received 1 sample(s) on 2/16/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1702792

Date Reported: 2/27/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: SVE Condensate

 Project:
 KAFB-SVE
 Collection Date: 2/16/2017 2:10:00 PM

 Lab ID:
 1702792-001
 Matrix: AQUEOUS
 Received Date: 2/16/2017 3:47:00 PM

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015M/D: DIESEL RANGE						Analyst	: MAB
Diesel Range Organics (DRO)	34	1.0		mg/L	1	2/17/2017 3:59:12 PM	30272
Motor Oil Range Organics (MRO)	7.6	5.0		mg/L	1	2/17/2017 3:59:12 PM	30272
Surr: DNOP	109	98.8-141		%Rec	1	2/17/2017 3:59:12 PM	30272
EPA METHOD 8015D: GASOLINE RANG	E					Analyst	: NSB
Gasoline Range Organics (GRO)	1.6	0.50		mg/L	10	2/17/2017 3:43:45 PM	WG4082
Surr: BFB	97.2	52.3-138		%Rec	10	2/17/2017 3:43:45 PM	WG4082
EPA METHOD 8270C: SEMIVOLATILES						Analyst	: DAM
Acenaphthene	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Acenaphthylene	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Aniline	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Anthracene	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Azobenzene	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Benz(a)anthracene	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Benzo(a)pyrene	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Benzo(b)fluoranthene	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Benzo(g,h,i)perylene	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Benzo(k)fluoranthene	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Benzoic acid	ND	100	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Benzyl alcohol	270	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Bis(2-chloroethoxy)methane	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Bis(2-chloroethyl)ether	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Bis(2-chloroisopropyl)ether	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Bis(2-ethylhexyl)phthalate	52	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
4-Bromophenyl phenyl ether	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Butyl benzyl phthalate	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Carbazole	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
4-Chloro-3-methylphenol	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
4-Chloroaniline	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
2-Chloronaphthalene	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
2-Chlorophenol	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
4-Chlorophenyl phenyl ether	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Chrysene	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Di-n-butyl phthalate	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Di-n-octyl phthalate	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Dibenz(a,h)anthracene	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Dibenzofuran	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
1,2-Dichlorobenzene	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
1,3-Dichlorobenzene	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 9
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1702792

Date Reported: 2/27/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: SVE Condensate

 Project:
 KAFB-SVE
 Collection Date: 2/16/2017 2:10:00 PM

 Lab ID:
 1702792-001
 Matrix: AQUEOUS
 Received Date: 2/16/2017 3:47:00 PM

Analyst: DAM	Analyses	Result	PQL (Qual	Units	DF Date Analyzed Bate	Batch	
33-Dichlorobenzidine	EPA METHOD 8270C: SEMIVOLATILE	S				Analyst: DAN	VI	
Diethyl phthalate	1,4-Dichlorobenzene	ND	50	D	μg/L	1 2/26/2017 7:42:44 PM 3037	70	
Dimethyl phthalate	3,3'-Dichlorobenzidine	ND	50	D	μg/L	1 2/26/2017 7:42:44 PM 3037	70	
2,4-Dichlorophenol ND 100 D µg/L 1 2/26/2017 7:42:44 PM 30370 2,4-Dimethylphenol ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 2,4-Dinitrotoluene ND 100 D µg/L 1 2/26/2017 7:42:44 PM 30370 2,4-Dinitrotoluene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 2,6-Dinitrotoluene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Fluoranthene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Fluoranthene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobenzene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorocyclopentadiene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorochtadiene ND 50 D	Diethyl phthalate	ND	50	D	μg/L	1 2/26/2017 7:42:44 PM 3037	70	
2,4-Dimethylphenol ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 4,6-Dinitro-2-methylphenol ND 100 D µg/L 1 2/26/2017 7:42:44 PM 30370 2,4-Dinitrotoluene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 2,6-Dinitrotoluene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Fluoranthene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Fluoranthene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobenzene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorocyclopentadiene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorocyclopentadiene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorocyclopentadiene ND 50 <td>Dimethyl phthalate</td> <td>ND</td> <td>50</td> <td>D</td> <td>μg/L</td> <td>1 2/26/2017 7:42:44 PM 3037</td> <td>70</td>	Dimethyl phthalate	ND	50	D	μg/L	1 2/26/2017 7:42:44 PM 3037	70	
4,6-Dinitro-2-methylphenol ND 100 D μg/L 1 2/26/2017 7:42:44 PM 30370 2,4-Dinitrophenol ND 100 D μg/L 1 2/26/2017 7:42:44 PM 30370 2,4-Dinitrotoluene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2,6-Dinitrotoluene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Fluoranthene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Fluoranthene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Fluoranthene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobetare ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobetadiene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Indeno(1,2,3-cd)pyrene ND 50 D	2,4-Dichlorophenol	ND	100	D	μg/L	1 2/26/2017 7:42:44 PM 3037	70	
2,4-Dinitrophenol ND 100 D µg/L 1 2/26/2017 7:42:44 PM 30370 2,4-Dinitrotoluene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 2,6-Dinitrotoluene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Fluorene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobutadiene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobutadiene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobutadiene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobutadiene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobutadiene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobutadiene ND 50 D	2,4-Dimethylphenol	ND	50	D	μg/L	1 2/26/2017 7:42:44 PM 3037	70	
2,4-Dinitrotoluene	4,6-Dinitro-2-methylphenol	ND	100	D	μg/L	1 2/26/2017 7:42:44 PM 3037	70	
2,6-Dinitrotoluene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Fluoranthene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Fluorene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorocyclopentadiene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorocyclopentadiene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorochtane ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Indenof 1,2,3-cd)pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 1-Methylnaphthalene ND 50 D	2,4-Dinitrophenol	ND	100	D	μg/L	1 2/26/2017 7:42:44 PM 3037	70	
Fluoranthene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Fluorene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobutadiene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorocyclopentadiene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Indeno(1,2,3-cd)pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 1-Methylnaphthalene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Methylphenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 3-4-Methylphenol ND 50 D μ	2,4-Dinitrotoluene	ND	50	D	μg/L	1 2/26/2017 7:42:44 PM 3037	70	
Fluoranthene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Fluorene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobutadiene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorocyclopentadiene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Indeno(1,2,3-cd)pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 1-Methylnaphthalene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Methylphenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 3-4-Methylphenol ND 50 D μ	2,6-Dinitrotoluene	ND	50	D	μg/L	1 2/26/2017 7:42:44 PM 3037	70	
Hexachlorobenzene	Fluoranthene	ND	50	D		1 2/26/2017 7:42:44 PM 3037	70	
Hexachlorobenzene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorobutadiene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorocyclopentadiene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Hexachlorocyclopentadiene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Indeno(1,2,3-cd)pyrene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D µg/L 1 2/26/2017 7:42:4	Fluorene	ND	50	D		1 2/26/2017 7:42:44 PM 3037	70	
Hexachlorobutadiene	Hexachlorobenzene	ND	50	D		1 2/26/2017 7:42:44 PM 3037	70	
Hexachloroethane	Hexachlorobutadiene	ND	50	D		1 2/26/2017 7:42:44 PM 3037	70	
Indeno(1,2,3-cd)pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 1-Methylnaphthalene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Methylnaphthalene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Methylphenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 3+4-Methylphenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodi-n-propylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	Hexachlorocyclopentadiene	ND	50	D	μg/L	1 2/26/2017 7:42:44 PM 3037	70	
Indeno(1,2,3-cd)pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Isophorone ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 1-Methylnaphthalene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Methylnaphthalene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Methylphenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 3-44-Methylphenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodi-n-propylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L	Hexachloroethane	ND	50	D	μg/L	1 2/26/2017 7:42:44 PM 3037	70	
Isophorone ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370	Indeno(1,2,3-cd)pyrene	ND	50	D		1 2/26/2017 7:42:44 PM 3037	70	
1-Methylnaphthalene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 2-Methylnaphthalene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 2-Methylphenol ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 3+4-Methylphenol ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodi-n-propylamine ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodiphenylamine ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodiphenylamine ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodiphenylamine ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodiphenylamine ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 2-Nitrosniline ND 50		ND	50	D	μg/L	1 2/26/2017 7:42:44 PM 3037	70	
2-Methylnaphthalene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 2-Methylphenol ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 3+4-Methylphenol ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodi-n-propylamine ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodiphenylamine ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodiphenylamine ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodiphenylamine ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Naphthalene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 2-Nitrosoniline ND 50	·	ND	50	D			70	
2-Methylphenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 3+4-Methylphenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodi-n-propylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodiphenylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Naphthalene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 3-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Nitrobenzene ND 50 D <td< td=""><td></td><td>ND</td><td>50</td><td>D</td><td></td><td></td><td></td></td<>		ND	50	D				
3+4-Methylphenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodin-propylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodiphenylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Naphthalene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Naphthalene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Naphthalene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44	· ·	ND	50	D	. •	1 2/26/2017 7:42:44 PM 3037	70	
N-Nitrosodi-n-propylamine ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodimethylamine ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodiphenylamine ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Naphthalene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Pug/L 1 2/26/2017 7:42:44 PM 30370 Naphthalene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Nitroaniline ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Nitroaniline ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Nitrobenzene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Nitrobenzene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370 Nitrophenol ND 50 D µg/L 1	* '	ND	50	D		1 2/26/2017 7:42:44 PM 3037	70	
N-Nitrosodimethylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 N-Nitrosodiphenylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Naphthalene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitrobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pentachlorophenol ND 50 D μg/L	• •	ND	50	D		1 2/26/2017 7:42:44 PM 3037	70	
N-Nitrosodiphenylamine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Naphthalene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 3-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Nitrobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pentachlorophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenol ND 50 D μg/L 1 <td></td> <td>ND</td> <td>50</td> <td>D</td> <td></td> <td></td> <td></td>		ND	50	D				
Naphthalene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 3-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Nitrobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pentachlorophenol ND 100 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyrene ND 50 D μg/L 1 2	N-Nitrosodiphenylamine	ND	50	D		1 2/26/2017 7:42:44 PM 3037	70	
2-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 3-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Nitrobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pentachlorophenol ND 100 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenanthrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370	• •	ND	50	D	. •			
4-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Nitrobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pentachlorophenol ND 100 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenanthrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370	2-Nitroaniline	ND	50	D		1 2/26/2017 7:42:44 PM 3037	70	
4-Nitroaniline ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Nitrobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pentachlorophenol ND 100 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenanthrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 1,2,4-Trichlorobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370	3-Nitroaniline	ND	50	D	μg/L	1 2/26/2017 7:42:44 PM 3037	70	
Nitrobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 2-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pentachlorophenol ND 100 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenanthrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 1,2,4-Trichlorobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370	4-Nitroaniline	ND	50	D		1 2/26/2017 7:42:44 PM 3037	70	
2-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 4-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pentachlorophenol ND 100 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenanthrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 1,2,4-Trichlorobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370	Nitrobenzene	ND	50	D				
4-Nitrophenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pentachlorophenol ND 100 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenanthrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 1,2,4-Trichlorobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370	2-Nitrophenol	ND	50	D		1 2/26/2017 7:42:44 PM 3037	70	
Pentachlorophenol ND 100 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenanthrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 1,2,4-Trichlorobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370	•	ND	50	D	. •	1 2/26/2017 7:42:44 PM 3037	70	
Phenanthrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Phenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 1,2,4-Trichlorobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370	Pentachlorophenol	ND	100	D	. •		70	
Phenol ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 1,2,4-Trichlorobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370		ND	50	D		1 2/26/2017 7:42:44 PM 3037	70	
Pyrene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 1,2,4-Trichlorobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370	Phenol	ND	50	D				
Pyridine ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370 1,2,4-Trichlorobenzene ND 50 D μg/L 1 2/26/2017 7:42:44 PM 30370								
1,2,4-Trichlorobenzene ND 50 D µg/L 1 2/26/2017 7:42:44 PM 30370	•				. •			
7.7	•				. •			
	* *			D				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 9
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1702792**

Date Reported: 2/27/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Client Sample ID: SVE Condensate

 Project:
 KAFB-SVE
 Collection Date: 2/16/2017 2:10:00 PM

 Lab ID:
 1702792-001
 Matrix: AQUEOUS
 Received Date: 2/16/2017 3:47:00 PM

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES	3					Analyst	: DAM
2,4,6-Trichlorophenol	ND	50	D	μg/L	1	2/26/2017 7:42:44 PM	30370
Surr: 2-Fluorophenol	52.3	15-98.1	D	%Rec	1	2/26/2017 7:42:44 PM	30370
Surr: Phenol-d5	45.8	15-80.7	D	%Rec	1	2/26/2017 7:42:44 PM	30370
Surr: 2,4,6-Tribromophenol	80.3	15-112	D	%Rec	1	2/26/2017 7:42:44 PM	30370
Surr: Nitrobenzene-d5	67.3	27.2-90.7	D	%Rec	1	2/26/2017 7:42:44 PM	30370
Surr: 2-Fluorobiphenyl	77.4	23.3-85.6	D	%Rec	1	2/26/2017 7:42:44 PM	30370
Surr: 4-Terphenyl-d14	60.3	27.6-107	D	%Rec	1	2/26/2017 7:42:44 PM	30370

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: Value exceeds Maximum Contaminant Level. Analyte detected in the associated Method Blank D Sample Diluted Due to Matrix Е Value above quantitation range Analyte detected below quantitation limits Page 3 of 9 Н Holding times for preparation or analysis exceeded J ND Not Detected at the Reporting Limit P Sample pH Not In Range R RPD outside accepted recovery limits RL Reporting Detection Limit % Recovery outside of range due to dilution or matrix Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1702792

27-Feb-17

Client: EA Engineering Project: KAFB-SVE

Sample ID LCS-30272 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Client ID: LCSW Batch ID: 30272 RunNo: 40813 Prep Date: 2/17/2017 Analysis Date: 2/17/2017 SeqNo: 1278905 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 6.2 1.0 5.000 0 125 63.2 155 Surr: DNOP 0.5000 98.8 0.66 131 141

TestCode: EPA Method 8015M/D: Diesel Range Sample ID MB-30272 SampType: MBLK Client ID: PBW Batch ID: 30272 RunNo: 40813 Prep Date: 2/17/2017 Analysis Date: 2/17/2017 SeqNo: 1278906 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 1.0 Motor Oil Range Organics (MRO) ND 5.0 Surr: DNOP 1.1 1.000 114 98.8 141

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Page 4 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702792**

27-Feb-17

Client: EA Engineering
Project: KAFB-SVE

Sample ID RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: WG40829 RunNo: 40829

Prep Date: Analysis Date: 2/17/2017 SeqNo: 1279144 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 17 20.00 85.8 52.3 138

Sample ID 2.5UG GRO LCSB SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: WG40829 RunNo: 40829

Prep Date: Analysis Date: 2/17/2017 SeqNo: 1279145 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 0.47
 0.050
 0.5000
 0
 94.7
 79.1
 123

 Surr: BFB
 18
 20.00
 91.7
 52.3
 138

Sample ID 1702792-001AMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: SVE Condensate Batch ID: WG40829 RunNo: 40829

Prep Date: Analysis Date: 2/17/2017 SeqNo: 1279147 Units: mg/L

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual Gasoline Range Organics (GRO) 7.3 0.50 5.000 1.640 113 64.8 129

Gasoline Range Organics (GRO) 7.3 0.50 5.000 1.640 113 64.8 129 Surr: BFB 220 200.0 110 52.3 138

Sample ID 1702792-001AMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: SVE Condensate Batch ID: WG40829 RunNo: 40829

Prep Date: Analysis Date: 2/17/2017 SeqNo: 1279148 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 6.8 0.50 5.000 1.640 103 64.8 129 6.84 20 Surr: BFB 220 200.0 109 52.3 138 0 0

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

D. Complemental Design

Page 5 of 9

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Client: EA Engineering
Project: KAFB-SVE

Sample ID Ics-30370 SampType: LCS TestCode: EPA Method 8270C: Semivolatiles LCSW RunNo: 40995 Client ID: Batch ID: 30370 Analysis Date: 2/26/2017 Prep Date: 2/23/2017 SeqNo: 1283879 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Acenaphthene 70 10 100.0 0 69.7 42.9 100 130 10 200.0 0 63.2 36.2 4-Chloro-3-methylphenol 110 130 0 65.7 33.4 2-Chlorophenol 10 200.0 97.8 1,4-Dichlorobenzene 57 10 100.0 0 57.4 32.8 79.3 2,4-Dinitrotoluene 57 10 100.0 0 56.6 34.9 107 N-Nitrosodi-n-propylamine 66 10 100.0 0 65.6 30.7 111 4-Nitrophenol 71 10 200.0 0 35.6 15 91.9 Pentachlorophenol 100 20 200.0 0 50.2 33.3 93.5 Phenol 74 10 200.0 0 36.9 20.9 86.4 10 0 66.7 Pyrene 67 100.0 45.6 111 1,2,4-Trichlorobenzene 56 100.0 56.3 38.7 88.2 Surr: 2-Fluorophenol 97 48.4 98.1 200.0 15 75 37.5 Surr: Phenol-d5 200.0 15 80.7 Surr: 2,4,6-Tribromophenol 130 200.0 66.2 15 112 Surr: Nitrobenzene-d5 68 100.0 67.6 27.2 90.7 Surr: 2-Fluorobiphenyl 64 100.0 64.0 23.3 85.6 Surr: 4-Terphenyl-d14 57 100.0 57.5 27.6 107

Sample ID Icsd-30370	SampType	e: LC	SD	Test	TestCode: EPA Method 8270C: Semivolatiles									
Client ID: LCSS02	Batch ID	: 303	370	R	tunNo: 40	0995								
Prep Date: 2/23/2017 An	alysis Date	: 2/ 2	26/2017	S	SeqNo: 12	283880	Units: µg/L							
Analyte R	esult F	QL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Acenaphthene	68	10	100.0	0	67.8	42.9	100	2.79	37.4					
4-Chloro-3-methylphenol	130	10	200.0	0	63.1	36.2	110	0.174	26.8					
2-Chlorophenol	120	10	200.0	0	59.0	33.4	97.8	10.7	30.3					
1,4-Dichlorobenzene	55	10	100.0	0	54.8	32.8	79.3	4.70	32					
2,4-Dinitrotoluene	60	10	100.0	0	60.0	34.9	107	5.80	36.7					
N-Nitrosodi-n-propylamine	70	10	100.0	0	69.9	30.7	111	6.31	29.9					
4-Nitrophenol	56	10	200.0	0	28.2	15	91.9	23.2	28.8					
Pentachlorophenol	110	20	200.0	0	52.6	33.3	93.5	4.69	38.2					
Phenol	65	10	200.0	0	32.4	20.9	86.4	12.8	39.8					
Pyrene	65	10	100.0	0	64.9	45.6	111	2.67	28.3					
1,2,4-Trichlorobenzene	54	10	100.0	0	53.8	38.7	88.2	4.40	39.8					
Surr: 2-Fluorophenol	84		200.0		41.9	15	98.1	0	0					
Surr: Phenol-d5	61		200.0		30.7	15	80.7	0	0					
Surr: 2,4,6-Tribromophenol	130		200.0		63.4	15	112	0	0					
Surr: Nitrobenzene-d5	67		100.0		67.4	27.2	90.7	0	0					
Surr: 2-Fluorobiphenyl	64		100.0		64.1	23.3	85.6	0	0					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 6 of 9

WO#:

1702792

27-Feb-17

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702792**

27-Feb-17

Client: EA Engineering
Project: KAFB-SVE

Sample ID Icsd-30370 SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles

Client ID: LCSS02 Batch ID: 30370 RunNo: 40995

Prep Date: 2/23/2017 Analysis Date: 2/26/2017 SeqNo: 1283880 Units: µg/L

Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Surr: 4-Terphenyl-d14 27.6 53 100.0 53.0 107 0 0

Sample ID mb-30370	SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles									
Client ID: PBW	Batch	ID: 30	370	F	RunNo: 4	0995				
Prep Date: 2/23/2017	Analysis D	ate: 2/	26/2017	S	SeqNo: 1	283881	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	20								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								
4-Bromophenyl phenyl ether	ND	10								
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chloronaphthalene	ND	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	ND	10								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 7 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702792**

27-Feb-17

Client: EA Engineering
Project: KAFB-SVE

Sample ID mb-30370 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles RunNo: 40995 Client ID: **PBW** Batch ID: 30370 Analysis Date: 2/26/2017 Prep Date: 2/23/2017 SeqNo: 1283881 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 3,3 - Dichlorobenzidine ND 10 ND 10 Diethyl phthalate ND Dimethyl phthalate 10 2,4-Dichlorophenol ND 20 2,4-Dimethylphenol ND 10 4,6-Dinitro-2-methylphenol ND 20 2,4-Dinitrophenol ND 20 2,4-Dinitrotoluene ND 10 2,6-Dinitrotoluene ND 10 Fluoranthene ND 10 Fluorene ND 10 ND 10 Hexachlorobenzene Hexachlorobutadiene ND 10 Hexachlorocyclopentadiene ND 10 ND 10 Hexachloroethane Indeno(1,2,3-cd)pyrene ND 10 Isophorone ND 10 1-Methylnaphthalene ND 10 2-Methylnaphthalene ND 10 2-Methylphenol ND 10 3+4-Methylphenol ND 10 N-Nitrosodi-n-propylamine ND 10 N-Nitrosodimethylamine ND 10 N-Nitrosodiphenylamine ND 10 Naphthalene ND 10 2-Nitroaniline ND 10 3-Nitroaniline ND 10 4-Nitroaniline ND 10 Nitrobenzene ND 10 ND 10 2-Nitrophenol ND 10 4-Nitrophenol Pentachlorophenol ND 20 Phenanthrene ND 10 Phenol ND 10 ND 10 Pyrene Pyridine ND 10 ND 10 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol ND 10 2,4,6-Trichlorophenol ND 10

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 8 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702792**

27-Feb-17

Client: EA Engineering Project: KAFB-SVE

Sample ID mb-30370	SampT			Tes						
Client ID: PBW	Batch	ID: 30	370	F	RunNo: 4	0995				
Prep Date: 2/23/2017	Analysis Da	ate: 2/	26/2017	S	SeqNo: 1	283881	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	92		200.0		45.8	15	98.1			
Surr: Phenol-d5	66		200.0		32.9	15	80.7			
Surr: 2,4,6-Tribromophenol	130		200.0		64.8	15	112			
Surr: Nitrobenzene-d5	66		100.0		65.9	27.2	90.7			
Surr: 2-Fluorobiphenyl	60		100.0		59.7	23.3	85.6			
Surr: 4-Terphenyl-d14	55		100.0		54.9	27.6	107			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 9 of 9

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: EA Engineering Alb Work Order Number: 1702792 RcptNo: 1 Received by/date: Logged By: Ashley Gállegos 2/16/2017 3:47:00 PM Completed By: **Ashley Gallegos** 2/17/2017 7:41:55 AM Reviewed By: Chain of Custody 1. Custody seals intact on sample bottles? No [__] Yes | Not Present 2. Is Chain of Custody complete? Yes 🗸 No [.] Not Present How was the sample delivered? Client Log In 4. Was an attempt made to cool the samples? No ... NA [T] 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 No 🗔 NA . 6. Sample(s) in proper container(s)? No 🛄 Yes 🛂 7. Sufficient sample volume for indicated test(s)? No 🗀 Yes 🗸 8. Are samples (except VOA and ONG) properly preserved? No 🗀 Yes 🗸 9. Was preservative added to bottles? No 🗸 Yes 🗌 NA 🗍 10.VOA vials have zero headspace? Yes 🗸 No 🗀 No VOA Vials 11. Were any sample containers received broken? Yes 🗌 No 🔽 # of preserved bottles checked 12. Does paperwork match bottle labels? No 🗔 Yes 🗸 for pH: (Note discrepancies on chain of custody) (<2 or >12 unless noted) 13. Are matrices correctly identified on Chain of Custody? Adjusted? Yes 🗸 No 🗌 14. Is it clear what analyses were requested? Yes 🗸 No 🗔 15. Were all holding times able to be met? Yes 🗸 No 🗔 Checked by: (If no, notify customer for authorization.) Special Handling (if applicable) 16. Was client notified of all discrepancies with this order? Yes 🗌 No NA 🗸 Person Notified: Date | By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp °C Condition | Seal Intact | Seal No | Seal Date Good Not Present

	HALL ENVIRONMENTAL ANALYSIS LABORATORY	www hallenvironmental com	NE - Albuqueraue, NM 87109	3975 Fax 505-345-4107	√na			(HA , ₂ ON, ₆ (S808 \ (A	or Palsitals I,NC I,OC I,OC I	ANG) (PNA A Me A		X									ed data will be clearly notated on the analytical report.
•	L A S	**************************************	ASO Hawkins NE	Tel. 505-345-3975	(ijes	34//01/ 34//01/	9 (1.81	.₽P	TPH Methor TPH (Methor TPH (Methor	X		χ								sub-contracte
			ove ove			Jy)	no ego)	H9T +	- 3 8	TM + X3T8 TM + X3T8			`			-			Remarks: 7		ssibility. Any
Time:	KRush 24TAT		SVE	Project #:	5 pmo2. [031.0]		"Civen C	Doff Bu These In No	Tempērature: 「ワート」	Preservative HEAL No. Type	190001	<i>√</i>	h/a	ī.				i i	11 FET 124	Date Time	coredited laboratories. This serves as notice of this po
Turn-Around Time:	☐ Standard	Project Name:	KAFB-SVE	Project #:	627	Project Manager:	Rown	Sampler: On Ice:	Sample Ten	Container Type and #	3 this look	In Anh	1 to A. 4			÷		-	$\mathcal{L}_{\mathcal{N}}$	Received by:	tracted to other a
Chain-of-Custody Record	Client: EA Englyeering		Mailing Address:		Phone #:	email or Fax#:	QA/QC Package: Standard Level 4 (Full Validation)	T.	ype)	Date Time Matrix Sample Request ID	2-16-17 [516 unto SVECudusife]		wor SVE Endusate					H. D. C	1) (EUT) Kelinquished by:	Date: Time: Relinquished by: R	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 28, 2017

Devon Jercinovic

EA Engineering Science & Technology 320 Gold Ave SW Suite 1210 Albuquerque, NM 87102 TEL: FAX

RE: SVE Condensate Removal OrderNo.: 1702797

Dear Devon Jercinovic:

Hall Environmental Analysis Laboratory received 1 sample(s) on 2/16/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1702797**

Date Reported: 2/28/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering Science & Technology

Project: SVE Condensate Removal

Collection Date: 2/16/2017 11:57:00 AM

Lab ID: 1702797-001 **Matrix:** SOIL **Received Date:** 2/16/2017 1:19:00 PM

Analyses	Result	PQL Q	Qual Units	DF	Date Analyzed	Batch
MERCURY, TCLP					Analys	st: MED
Mercury	ND	0.020	mg/L	1	2/24/2017 3:59:58 PM	30378
EPA METHOD 6010B: TCLP METALS					Analys	st: pmf
Arsenic	ND	5.0	mg/L	1	2/24/2017 11:42:34 Al	-
Barium	ND	100	mg/L	1	2/24/2017 11:42:34 AI	
Cadmium	ND	1.0	mg/L	1	2/24/2017 11:42:34 AI	
Chromium	ND	5.0	mg/L	1	2/24/2017 11:42:34 AI	
Lead	ND	5.0	mg/L	1	2/24/2017 11:42:34 Al	M 30364
Selenium	ND	1.0	mg/L	1	2/24/2017 11:42:34 AI	M 30364
Silver	ND	5.0	mg/L	1	2/24/2017 11:42:34 Al	M 30364
EPA METHOD 8081: PESTICIDES TCLP					Analys	st: MAB
Chlordane	ND	0.030	mg/L	1	2/24/2017 10:29:14 Al	M 30334
Endrin	ND	0.020	mg/L	1	2/24/2017 10:29:14 Al	M 30334
gamma-BHC (Lindane)	ND	0.40	mg/L	1	2/24/2017 10:29:14 Al	M 30334
Heptachlor	ND	0.0080	mg/L	1	2/24/2017 10:29:14 Al	M 30334
Heptachlor epoxide	ND	0.0080	mg/L	1	2/24/2017 10:29:14 Al	M 30334
Methoxychlor	ND	10	mg/L	1	2/24/2017 10:29:14 Al	M 30334
Toxaphene	ND	0.50	mg/L	1	2/24/2017 10:29:14 Al	M 30334
Surr: Decachlorobiphenyl	83.1	47.9-114	%Rec	1	2/24/2017 10:29:14 Al	M 30334
Surr: Tetrachloro-m-xylene	67.3	31.9-104	%Rec	1	2/24/2017 10:29:14 Al	M 30334
EPA METHOD 8015M/D: DIESEL RANGE	ORGANIC	S			Analys	st: MAB
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	2/23/2017 8:41:49 PM	30282
Motor Oil Range Organics (MRO)	92	46	mg/Kg	1	2/23/2017 8:41:49 PM	30282
Surr: DNOP	127	70-130	%Rec	1	2/23/2017 8:41:49 PM	30282
EPA METHOD 8015D: GASOLINE RANG	E				Analys	st: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	2/20/2017 2:36:04 PM	30280
Surr: BFB	77.4	54-150	%Rec	1	2/20/2017 2:36:04 PM	30280
EPA METHOD 8270C TCLP					Analys	st: DAM
2-Methylphenol	ND	200	mg/L	1	2/22/2017 5:53:35 PM	30316
3+4-Methylphenol	ND	200	mg/L	1	2/22/2017 5:53:35 PM	30316
Phenol	ND	200	mg/L	1	2/22/2017 5:53:35 PM	30316
2,4-Dinitrotoluene	ND	0.13	mg/L	1	2/22/2017 5:53:35 PM	30316
Hexachlorobenzene	ND	0.13	mg/L	1	2/22/2017 5:53:35 PM	30316
Hexachlorobutadiene	ND	0.50	mg/L	1	2/22/2017 5:53:35 PM	30316
Hexachloroethane	ND	3.0	mg/L	1	2/22/2017 5:53:35 PM	30316
Nitrobenzene	ND	2.0	mg/L	1	2/22/2017 5:53:35 PM	30316
Pentachlorophenol	ND	100	mg/L	1	2/22/2017 5:53:35 PM	30316
Pyridine	ND	5.0	mg/L	1	2/22/2017 5:53:35 PM	30316

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S $\,\,$ $\,$ % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 10
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report

Lab Order **1702797**

Collection Date: 2/16/2017 11:57:00 AM

Date Reported: 2/28/2017

Hall Environmental Analysis Laboratory, Inc.

SVE Condensate Removal

CLIENT: EA Engineering Science & Technology Client Sample ID: SVE Condensate SP-07

Lab ID: 1702797-001 **Matrix:** SOIL **Received Date:** 2/16/2017 1:19:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C TCLP					Analyst	DAM
2,4,5-Trichlorophenol	ND	400	mg/L	1	2/22/2017 5:53:35 PM	30316
2,4,6-Trichlorophenol	ND	2.0	mg/L	1	2/22/2017 5:53:35 PM	30316
Cresols, Total	ND	200	mg/L	1	2/22/2017 5:53:35 PM	30316
Surr: 2-Fluorophenol	24.6	15-82.7	%Rec	1	2/22/2017 5:53:35 PM	30316
Surr: Phenol-d5	24.3	15-79.7	%Rec	1	2/22/2017 5:53:35 PM	30316
Surr: 2,4,6-Tribromophenol	67.7	17.2-102	%Rec	1	2/22/2017 5:53:35 PM	30316
Surr: Nitrobenzene-d5	48.6	35.4-106	%Rec	1	2/22/2017 5:53:35 PM	30316
Surr: 2-Fluorobiphenyl	46.1	26-98.9	%Rec	1	2/22/2017 5:53:35 PM	30316
Surr: 4-Terphenyl-d14	55.9	15-79.5	%Rec	1	2/22/2017 5:53:35 PM	30316
EPA METHOD 8260B: TCLP COMP	OUNDS				Analyst	DJF
Benzene	ND	0.50	ppm	10	2/20/2017 11:58:54 AM	30280
1,2-Dichloroethane (EDC)	ND	0.50	ppm	10	2/20/2017 11:58:54 AM	30280
2-Butanone	ND	200	ppm	10	2/20/2017 11:58:54 AM	30280
Carbon tetrachloride	ND	0.50	ppm	10	2/20/2017 11:58:54 AM	30280
Chlorobenzene	ND	100	ppm	10	2/20/2017 11:58:54 AM	30280
Chloroform	ND	6.0	ppm	10	2/20/2017 11:58:54 AM	30280
1,4-Dichlorobenzene	ND	7.5	ppm	10	2/20/2017 11:58:54 AM	30280
1,1-Dichloroethene	ND	0.70	ppm	10	2/20/2017 11:58:54 AM	30280
Tetrachloroethene (PCE)	ND	0.70	ppm	10	2/20/2017 11:58:54 AM	30280
Trichloroethene (TCE)	ND	0.50	ppm	10	2/20/2017 11:58:54 AM	30280
Vinyl chloride	ND	0.20	ppm	10	2/20/2017 11:58:54 AM	30280
Surr: 1,2-Dichloroethane-d4	110	70-130	%Rec	10	2/20/2017 11:58:54 AM	30280
Surr: 4-Bromofluorobenzene	93.6	70-130	%Rec	10	2/20/2017 11:58:54 AM	30280
Surr: Dibromofluoromethane	106	70-130	%Rec	10	2/20/2017 11:58:54 AM	30280
Surr: Toluene-d8	95.7	70-130	%Rec	10	2/20/2017 11:58:54 AM	30280

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Project:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 10
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1702797-001B SVE CONDENSATE SP-07

SAMPLE RESULTS - 01

WG955104

WG955104

WG955104

2/23/2017 2:58:07 PM

2/23/2017 2:58:07 PM

2/23/2017 2:58:07 PM

ONE LAB, NATIONWIDE.

Collected date/time: 02/16/17 11:57
Preparation by Method 1311

***************************************	Result	Qualifier	Prep	<u>Batch</u>
Analyte			date / time	
TCLP Extraction	-		2/23/2017 2:58:07 PM	WG955104

1

9.54

Final pH 6.44

Wet Chemistry by Method 9012 B

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
Reactive Cyanide	ND		0.250	1	02/23/2017 22:02	WG955292

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Reactive Sulfide	31.0		25.0	1	02/25/2017 14:52	WG955364	

Wet Chemistry by Method 9045D

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	5u			date / time	
Corrosivity by pH	8.81		1	02/22/2017 12:00	WG954518

Sample Narrative:

Fluid

Initial pH

9045D L891117-01 WG954518: 8.81 at 19.4c

Wet Chemistry by Method D93/1010A

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Deg. F			date / time	
Ignitability	DNI at 170 F		1	02/22/2017 00:22	WG954026

Chlorinated Acid Herbicides (GC) by Method 8151A

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
2,4,5-TP (Silvex)	ND		0.00200	1	1	02/27/2017 15:57	WG955942
2,4-D	ND		0.00200	10	1	02/27/2017 15:57	WG955942
(S) 2,4-Dichlorophenyl Acetic Acid	83.9		14.0-158	158		02/27/2017 15:57	WG955942

WG955292 wet Chemistry by Method 9012 B

Method Blank (MB) (MB) R3199033-1 02/23/17

1		<u>.</u>		SS	4	5		्रंग		ွိတိ	F.	<u>ত</u>	***************************************	. ব	Total Carrier	ي ک)	
													RPD Limits	96	20			
							RPD Limits						ier RPO	96	~			
						***************************************	RPD	% €	20				MSD Qualifier		91			
						***************************************	LCS Qualifier LCSD Qualifier RPD	%	2				MS Qualifier		9			
							ifier LCSD						Dilution Rec. Limits	96	75-125			
							LCS Qual				ā		Dilution		-			
					te (LCSD)		Rec. Limits	%	50-150		plicate (MS	02/23/17 22:10	MSD Rec.	₉₆	Ŋ			
					le Duplica	A	LCSD Rec.	9 ₆	101		Spike Du	033-5 02/23/	MS Rec.	≫	R			
	MB RDL	mg/kg	0.250		ntrol Samp	55	LCS Rec.	96	103		1S) • Matrix	• (MSD) R3199	MSD Result	mg/kg	0.247			
	MB MDL	mg/kg	0.039		rratory Cor	3 02/23/17 21:	LCSD Result LCS Rec.	тд/кд	2.52		ix Spike (N	2/23/17 22:09	t MS Result	mg/kg	0.250			
	MB Qualifier				.CS) • Labo	SD) R3199033-	Spike Amount LCS Result	mg/kg	2.57		(OS) • Matr	R3199033-4 0	Spike Amount Original Result MS Result	тд/кд	Q			
/23/17 21:53	MB Result	mg/kg	⊃		trol Sample (L	2/23/17 21:54 · (LCS	Spike Amount	⊞g/kg	2.50		ginal Sample	73/17 22:08 · (MS)	Spike Amoun	mg/kg	1.67			
(MB) R3199033-1 02/23/17 21:53		Analyte	Reactive Cyanide		Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	(LCS) R3199033-2 02/23/17 21:54 • (LCSD) R3199033-3 02/23/17 21:55		Analyte	Reactive Cyanide		L891210-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)	(OS) L891210-04 02/23/17 22:08 · (MS) R3199033-4 02/23/17 22:09 · (MSD) R3199033-5		Analyte	Reactive Cyanide			

ACCOUNT:
Hall Environmental Analysis Laboratory

PROJECT:

SDG: L891117

DATE/TIME: 02/27/17/17:23

WG955364 Wet Chemistry by Method 9034-9030B

Method Blank (MB) (MB) WG9553644 02/25/17 14:52

MB Result ma/ka	Mooningo	2	MB RDL						
ma/ka		MB MUL							
n .		mg/kg	mg/kg						
Þ		7.63	25.0						
L891210-04 Original Sample (OS) • Duplicate (DUP)	S) · Dupli	cate (DUP)							
(OS) L891210-04 02/25/17 14:52 • (DUP) WG955364-1 02/25/17 14:52	VG955364-1 (2/25/17 14:52	***************************************		***************************************			######################################	
Original Result DUP Result	DUP Result	Dilution DUP	RPD	UP Qualifier	DUP Qualifier DUP RPD Limits				
mg/kg	mg/kg	%			%				
310	310	1 0.0452	152		20				
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	S) • Labor	atory Cont	irol Samp	le Duplica	rte (LCSD)				
(LCS) WG955364-2 02/25/17 14:52 • (LCSD) WG955364-3 02/25/17 14:52	D) WG95536	1-3 02/25/17 1	4:52						
Spike Amount LCS Result	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.		LCS Qualifier	Rec. Limits LCS Qualifier LCSD Qualifier RPD	RPD Limits	
mg/kg	mg/kg	mg/kg	%	86	96		8%	38	
100	99.2	93.0	99.2	93.0	70.0-130		6.45	20	

SDG: L891117

QUALITY CONTROL SUMMARY

L890710-02 Original Sample (OS) • Duplicate (DUP)

WG954518 Wet Chemistry by Method 9045D

(OS) L890/10-02 02/22/17 12:00 • (DUP) WG954518-3 02/22/17 12:00	Z/17 1Z:00 · (DUP)	WG954518-3	02/22/17	2:00		
	Original Result	Original Result DUP Result Dilution DUP RPD	Dilution	DUP RPD	DUP Qualifier	DUP Qualifier DUP RPD Limits
4nalyte	ns	Su		%		%
Corrosivity by pH	5.48	5.49	.	0.182		1

Analyte	SU SU	Su Su Su %		νουν κγυ %	NOT QUALITIES SOP RED LIMITS	בא ה רנשונא				
Corrosivity by pH	5.48	5.49	-	0.182	-					
Laboratory Control Sample (LCS) •	rol Sample (L(CS) • Labor	ratory C	ontrol Sar	Laboratory Control Sample Duplicate (LCSD)	e (LCSD)				
(LCS) WG954518-1 02/22/17 12:00 • (LCSD) WG954518-2 02/22/17 12:00	/22/17 12:00 • (LCS	D) WG954518-	-2 02/22/1	7 12:00	THE THE TAXABLE PROPERTY OF TAXABLE PR			***************************************		-
	Spike Amount	Spike Amount LCS Result LCSD Result LCS Rec.	LCSD Resu	ult LCS Rec.	. LCSD Rec.	Rec. Limits	LCS Qualifier	LCS Qualifier LCSD Qualifier RPD	RPD Limits	
Analyte	กร	ns	Su	96	96	%		%	%	
Corrosivity by pH	6.07	6.11	6.13	101	101	98.4-102		0.327	-	

SDG: L891117

PROJECT:

Hall Environmental Analysis Laboratory

ACCOUNT:

DATE/TIME: 02/27/17 17:23

QUALITY CONTROL SUMMARY

L890949-01 Original Sample (OS) • Duplicate (DUP)

WG954026 Wet Chemistry by Method D93/1010A

	COULD ASSESS ASSESSED ASSESSED ASSESSED ASSESSED		,							
	Ollymai Result	Original Result DUP Result	Dilution DUP RPD	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	Deg. F	Deg. F	6	8		%				
Ignitability	DNI at 170 F	DNI at 170 F	-	0.000		10				
91119-01 Orig	L891119-01 Original Sample (OS) • Duplicate (DUP)	S) • Duplic	ate (DUP	(6						
L891119-01 02/2	(OS) L891119-01 02/22/17 00:22 • (DUP) WG954026-4 02/22/17 00:22	/G954026-4	02/22/17 00	:22					WWW.WWW.WW.WW.WW.WW.WW.WW.WW.WW.WW.WW.W	
Analyto	Original Result DUP Result Dilution DUP RPD	DUP Result	Difution D	DUP RPD	DUP Qualifier	DUP Qualifier DUP RPD Limits				
Ignitability	DNI at 170 F	DNI at 170 F	-	0.000		£ 6				
oratory Cor	Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	55) • Labo	ratory Co	ontrol San	ple Duplic	ate (LCSD)				
) WG954026-1 ((LCS) WG954026-1 02/22/17 00:22 - (LCSD) WG954026-2 02/22/17 00:22	SD) WG95402	6-2 02/22/	17 00:22						
	Spike Amount LCS Result	LCS Result	LCSD Resuf	LCSD Result LCS Rec.	LCSD Rec.		LCS Qualifier	Rec. Limits LCS Qualifier LCSD Qualifier RPD	RPD Limits	
Analyte	Deg. F	Deg. F	Deg. F	%	96	%		∂ €	%	
Ignitability	82.0	83.0	83.0	101	101	93.0-107		0.000	20	

SDG: L891117

QUALITY CONTROL SUMMARY

Chlorinated Acid Herbicides (GC) by Method 8151A

WG955942

Method Blank (MB)

(MB) R31996 Analyte 2,4-D 2,4,5-TP (Silve (S) 2,4-Dichi		MB) R3199670-3 02/27/17 15:43	MB Result MB Qualifier MB MDL MB RDL	l/gm l/gm l/gm	U 0.000667 0.00200	2,4,5-TP (Silvex) U 0.000667 0.00200	(S) 2,4-Dichlorophenyl Acetic 21
---	--	-------------------------------	--------------------------------------	----------------	--------------------	--------------------------------------	----------------------------------

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	Sample (L(S) • Labo	ratory Conf	ırol Sampl	e Duplicate	(CSD)			
(LCS) R3199670-1 02/27/17 15:04 - (LCSD) R3199670-2 02/27/17 15:17	17 15:04 • (LCSD)) R3199670-2	02/27/17 15:17		***				
	Spike Amount	Amount LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	mg/l	l/gm	l/6m	%	%	9 ₆		3%	%
2,4-D	0.00500	0.00418	0.00416	83.5	83.3	56.0-120		0.320	20
2,4,5-TP (Silvex)	0.00500	0.00499	0.00496	8.66	99.2	55.0-120		0.530	20
(S) 2,4-Dichlorophenyl Acetic Acid	U			30.5	88.8	20.0-138			

DATE/TIME: 02/27/17 17:23

Abbreviations and Definitions

SDG MDL	Sample Delivery Group. Method Detection Limit.
RDL	Reported Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
Qualifier	Description
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

Hall Environmental Analysis Laboratory, Inc.

WO#: 1702797

28-Feb-17

Client: EA Engineering Science & Technology

Project: SVE Condensate Removal

Sample ID MB-30282 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID: **PBS** Batch ID: 30282 RunNo: 40870

Analysis Date: 2/21/2017 Prep Date: 2/20/2017 SeqNo: 1280393 Units: mg/Kg

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Diesel Range Organics (DRO) ND 10 Motor Oil Range Organics (MRO) ND 50

Surr: DNOP 9.2 10.00 91.6 70 130

Sample ID LCS-30282 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics

Client ID: LCSS Batch ID: 30282 RunNo: 40870

Analysis Date: 2/21/2017 Prep Date: 2/20/2017 SeqNo: 1280404 Units: mg/Kg

Analyte SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Diesel Range Organics (DRO) 10 100 63.8 50 50.00 116 Surr: DNOP 4.5 5.000 90.7 70 130

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Page 3 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702797**

28-Feb-17

Client: EA Engineering Science & Technology

Project: SVE Condensate Removal

Sample ID MB-30280 SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBS Batch ID: 30280 RunNo: 40860

Prep Date: 2/17/2017 Analysis Date: 2/20/2017 SeqNo: 1279799 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 750 1000 75.5 54 150

Sample ID LCS-30280 SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSS Batch ID: 30280 RunNo: 40860

Prep Date: 2/17/2017 Analysis Date: 2/20/2017 SeqNo: 1279800 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 28
 5.0
 25.00
 0
 113
 76.4
 125

 Surr: BFB
 990
 1000
 99.3
 54
 150

Sample ID 1702797-001AMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: SVE Condensate SP Batch ID: 30280 RunNo: 40860

Prep Date: 2/17/2017 Analysis Date: 2/20/2017 SeqNo: 1279808 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 23
 5.0
 24.95
 0
 91.0
 61.3
 150

 Surr: BFB
 830
 998.0
 82.9
 54
 150

Sample ID 1702797-001AMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: SVE Condensate SP Batch ID: 30280 RunNo: 40860

Prep Date: 2/17/2017 Analysis Date: 2/20/2017 SeqNo: 1279809 Units: mg/Kg

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 24 5.0 24.98 96.0 61.3 150 5.49 20 Surr: BFB 910 999.0 91.3 54 150 0 0

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

Reporting Detection Limit

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL

W Sample container temperature is out of limit as specified

Page 4 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702797**

28-Feb-17

Client: EA Engineering Science & Technology

Project: SVE Condensate Removal

Sample ID LCS-30334	Samp	Type: LC	s	Tes	tCode: El	PA Method	8081: Pestici	des TCLP)	
Client ID: LCSW	Bat	ch ID: 30	334	F	RunNo: 4	0962				
Prep Date: 2/22/2017	Analysis	Date: 2/	24/2017	8	SeqNo: 1	283341	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Endrin	0.00044	0.00010	0.0005000	0	87.4	42.6	125			
gamma-BHC (Lindane)	0.00044	0.00010	0.0005000	0	87.8	29.5	142			
Heptachlor	0.00040	0.00010	0.0005000	0	79.2	18.6	138			
Heptachlor epoxide	0.00044	0.00010	0.0005000	0	88.2	40.3	127			
Methoxychlor	0.00045	0.00010	0.0005000	0	89.6	36.5	143			
Surr: Decachlorobiphenyl	0.0021		0.002500		85.8	47.9	114			
Surr: Tetrachloro-m-xylene	0.0015		0.002500		60.9	31.9	104			
Sample ID MB-30334	Samp	Туре: МЕ	BLK	Tes	tCode: El	PA Method	8081: Pestici	des TCLP)	
Client ID: PBW	Bat	ch ID: 30	334	F	RunNo: 4	0962				
Prep Date: 2/22/2017	Analysis	Date: 2/	24/2017	8	SeqNo: 1	283342	Units: mg/L			
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chlordane	ND	0.030								
Endrin	ND	0.020								
gamma-BHC (Lindane)	ND	0.40								
Heptachlor	ND	0.0080								
Heptachlor epoxide	ND	0.0080								
Methoxychlor	ND	10								
Toxaphene	ND	0.50								
Surr: Decachlorobiphenyl	0.0021		0.002500		85.8	47.9	114			
Surr: Tetrachloro-m-xylene	0.0019		0.002500		75.8	31.9	104			
Sample ID LCSD-30334	Samp	туре: LC	SD	Tes	tCode: El	PA Method	8081: Pestici	des TCLP)	
Client ID: LCSS02	Bat	ch ID: 30	334	F	RunNo: 4	0962				
Prep Date: 2/22/2017	Analysis	Date: 2/	24/2017	S	SeqNo: 1	283345	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Endrin	0.00030	0.00010	0.0005000	0	60.8	42.6	125	35.9	20	R
gamma-BHC (Lindane)	0.00031	0.00010	0.0005000	0	62.0	29.5	142	34.4	20	R
										_

Qualifiers:

Heptachlor

Methoxychlor

Heptachlor epoxide

Surr: Decachlorobiphenyl

Surr: Tetrachloro-m-xylene

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

0.00030 0.00010 0.0005000

0.00031 0.00010 0.0005000

0.00031 0.00010 0.0005000

0.002500

0.002500

0.0018

0.0014

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

59.8

61.6

62.2

73.2

55.8

18.6

40.3

36.5

47.9

31.9

0

0

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 5 of 10

R

R

R

20

20

20

0

27.9

35.5

36.1

0

138

127

143

114

104

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702797**

28-Feb-17

Client: EA Engineering Science & Technology

Project: SVE Condensate Removal

Sample ID mb-30280 SampType: MBLK TestCode: EPA Method 8260B: TCLP Compounds Client ID: **PBS** Batch ID: 30280 RunNo: 40864 Prep Date: 2/17/2017 Analysis Date: 2/20/2017 SeqNo: 1279927 Units: ppm Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual ND 0.050 Benzene 1,2-Dichloroethane (EDC) 0.050 ND 2-Butanone ND 20 Carbon tetrachloride ND 0.050 Chlorobenzene ND 10 Chloroform ND 0.60 1,4-Dichlorobenzene ND 0.75 1,1-Dichloroethene ND 0.070 Tetrachloroethene (PCE) ND 0.070 Trichloroethene (TCE) ND 0.050 Vinyl chloride ND 0.020 0.57 0.5000 113 70 130 Surr: 1,2-Dichloroethane-d4 0.5000 85.3 Surr: 4-Bromofluorobenzene 0.43 70 130 Surr: Dibromofluoromethane 0.56 0.5000 112 70 130 Surr: Toluene-d8 0.47 0.5000 94.3 70 130

Sample ID Ics-30280	Samp	Гуре: LC	s	Tes	tCode: El	PA Method	8260B: TCLP	Compou	nds	
Client ID: LCSS	Batc	h ID: 30	280	F	RunNo: 4	0864				
Prep Date: 2/17/2017	Analysis [Date: 2/	20/2017	5	SeqNo: 1	279928	Units: ppm			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.1	0.050	1.000	0	110	70	130			
Chlorobenzene	0.93	0.050	1.000	0	92.6	70	130			
1,1-Dichloroethene	1.2	0.050	1.000	0	119	72	146			
Trichloroethene (TCE)	1.0	0.050	1.000	0	102	70	130			
Surr: 1,2-Dichloroethane-d4	0.57		0.5000		113	70	130			
Surr: 4-Bromofluorobenzene	0.44		0.5000		88.1	70	130			
Surr: Dibromofluoromethane	0.54		0.5000		109	70	130			
Surr: Toluene-d8	0.47		0.5000		94.9	70	130			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 6 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702797**

28-Feb-17

Client: EA Engineering Science & Technology

Project: SVE Condensate Removal

Sample ID Ics-30316	SampT	Гуре: LC	s	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: LCSS	Batcl	h ID: 30	316	F	RunNo: 4	0927				
Prep Date: 2/21/2017	Analysis D	Date: 2/	22/2017	S	SeqNo: 1	281873	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	0.071	0.010	0.1000	0	70.6	38.6	122			
3+4-Methylphenol	0.16	0.010	0.2000	0	78.3	38.1	148			
2,4-Dinitrotoluene	0.059	0.010	0.1000	0	58.9	35	107			
Hexachlorobenzene	0.071	0.010	0.1000	0	71.5	48.8	123			
Hexachlorobutadiene	0.065	0.010	0.1000	0	65.3	16.6	142			
Hexachloroethane	0.059	0.010	0.1000	0	59.1	19	121			
Nitrobenzene	0.065	0.010	0.1000	0	64.6	38.5	119			
Pentachlorophenol	0.047	0.010	0.1000	0	47.3	37.9	107			
Pyridine	0.051	0.010	0.1000	0	50.6	15	131			
2,4,5-Trichlorophenol	0.077	0.010	0.1000	0	77.1	46	139			
2,4,6-Trichlorophenol	0.068	0.010	0.1000	0	68.3	39	135			
Cresols, Total	0.23	0.010	0.3000	0	75.8	30	136			
Surr: 2-Fluorophenol	0.12		0.2000		60.3	15	82.7			
Surr: Phenol-d5	0.12		0.2000		58.7	15	79.7			
Surr: 2,4,6-Tribromophenol	0.16		0.2000		78.8	17.2	102			
Surr: Nitrobenzene-d5	0.068		0.1000		68.5	35.4	106			
Surr: 2-Fluorobiphenyl	0.062		0.1000		62.1	26	98.9			
Surr: 4-Terphenyl-d14	0.061		0.1000		61.5	15	79.5			

Sample ID mb-30316	SampT	уре: МВ	BLK	Test	tCode: El	PA Method				
Client ID: PBS	Batch	n ID: 30 3	316	R	tunNo: 4	0927				
Prep Date: 2/21/2017	Analysis D	ate: 2/ 2	22/2017	S	SeqNo: 1	281874	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	ND	200								
3+4-Methylphenol	ND	200								
Phenol	ND	200								
2,4-Dinitrotoluene	ND	0.13								
Hexachlorobenzene	ND	0.13								
Hexachlorobutadiene	ND	0.50								
Hexachloroethane	ND	3.0								
Nitrobenzene	ND	2.0								
Pentachlorophenol	ND	100								
Pyridine	ND	5.0								
2,4,5-Trichlorophenol	ND	400								
2,4,6-Trichlorophenol	ND	2.0								
Cresols, Total	ND	200								
Surr: 2-Fluorophenol	0.071		0.2000		35.4	15	82.7			
Surr: Phenol-d5	0.061		0.2000		30.4	15	79.7			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 7 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702797**

28-Feb-17

Client: EA Engineering Science & Technology

Project: SVE Condensate Removal

Sample ID mb-30316 SampType: MBLK TestCode: EPA Method 8270C TCLP PBS Client ID: Batch ID: 30316 RunNo: 40927 SeqNo: 1281874 Prep Date: 2/21/2017 Analysis Date: 2/22/2017 Units: mg/L Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Surr: 2,4,6-Tribromophenol 0.11 0.2000 57.3 17.2 102 0.047 0.1000 47.2 35.4 Surr: Nitrobenzene-d5 106 Surr: 2-Fluorobiphenyl 0.042 0.1000 41.8 26 98.9 0.1000 Surr: 4-Terphenyl-d14 0.052 52.2 15 79.5

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 8 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702797**

28-Feb-17

Client: EA Engineering Science & Technology

Project: SVE Condensate Removal

Sample ID MB-30378 SampType: MBLK TestCode: MERCURY, TCLP

Client ID: PBW Batch ID: 30378 RunNo: 40990

Prep Date: 2/24/2017 Analysis Date: 2/24/2017 SeqNo: 1283766 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.020

Sample ID LCS-30378 SampType: LCS TestCode: MERCURY, TCLP

Client ID: LCSW Batch ID: 30378 RunNo: 40990

Prep Date: 2/24/2017 Analysis Date: 2/24/2017 SeqNo: 1283767 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.020 0.005000 0 97.5 80 120

Sample ID TCLP Fluid1 #2973 SampType: MBLK TestCode: MERCURY, TCLP

Client ID: PBW Batch ID: 30378 RunNo: 40990

Prep Date: 2/24/2017 Analysis Date: 2/24/2017 SeqNo: 1283778 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.020

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 9 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **1702797**

28-Feb-17

Client: EA Engineering Science & Technology

Project: SVE Condensate Removal

Sample ID MB-30364 SampType: MBLK TestCode: EPA Method 6010B: TCLP Metals Client ID: **PBW** Batch ID: 30364 RunNo: 40975 Analysis Date: 2/24/2017 Prep Date: 2/23/2017 SeqNo: 1283607 Units: mg/L Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual ND Arsenic 5.0 Barium ND 100 ND 1.0

 Barium
 ND
 100

 Cadmium
 ND
 1.0

 Chromium
 ND
 5.0

 Lead
 ND
 5.0

 Selenium
 ND
 1.0

 Silver
 ND
 5.0

Sample ID LCS-30364 SampType: LCS TestCode: EPA Method 6010B: TCLP Metals Client ID: Batch ID: 30364 LCSW RunNo: 40975 Prep Date: 2/23/2017 Analysis Date: 2/24/2017 SeqNo: 1283608 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual ND 5.0 0.5000 104 80 120 Arsenic 0 ND 100 0.5000 99.2 80 120 Barium 0 ND 0.5000 0 102 80 120 Cadmium 1.0 Chromium ND 5.0 0.5000 0 97.6 80 120 Lead ND 5.0 0.5000 0 95.9 80 120 ND 102 Selenium 1.0 0.5000 0 80 120 Silver ND 5.0 0.1000 102 80 120

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

D G 1 HN LD

Page 10 of 10

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Clie	nt Name:	EA Enginee	ring Alb	Work Orde	er Number:	17027	97			RcptNo:	1
Rece	eived by/dat	e:	AT 02	116/17							_
Logg	ed By:	Anne Thor	ne ″	2/16/2017 1:	19:00 PM			ane s	h		
Com	pleted By:	Anne Thor	ne/	2/17/2017 8:	12:48 AM			Anne S Anne S	1		
Revie	ewed By:	1		02/17	117			ame J	,		
Chai	in of Cus	tody	7		1/ '						
1. 0	Custody sea	ر als intact on sa	. <i>]</i> ample bottles?			Yes		No [Not Present 🗹	
2. 1	s Chain of 0	Custody comp	lete?			Yes	✓	No [Not Present	
3. ⊦	low was the	e sample deliv	ered?			<u>Clien</u>	<u>t</u>				
Log	<u>ı In</u>										
4. \	Vas an atte	empt made to	cool the samp	les?		Yes	✓	No [NA 🗆	
5. v	Vere all sar	mples received	d at a tempera	ture of >0° C to 6		Yes		No 🖢		NA 🗆	
۰.				Sa	mples wer			e same day	/ and	chilled.	
ъ. s	Sample(s) ii	n proper conta	iiner(s)?			Yes	Y	No L			
7. S	Sufficient sa	mple volume	for indicated te	est(s)?		Yes	✓	No [
8. A	re samples	(except VOA	and ONG) pro	operly preserved?		Yes	~	No [
9. v	Vas preserv	ative added to	o bottles?			Yes		No 🛭	/	NA 🗆	
10.v	/OA vials ha	ave zero head	space?			Yes		No [No VOA Vials ✔	
		ample contain		roken?		Yes		No [
										# of preserved bottles checked	
		vork match bo		•		Yes	V	No [for pH:	
		pancies on ch	-	,				F	۱ ا	(<2 o Adjusted?	r >12 unless noted)
		correctly ider at analyses w				Yes Yes	V	No L No [-	, tajaotoa	
		ding times abl	•	f			V	No [Checked by:	
		customer for a						_	_ [<u> </u>	
								1			
Spec	ial Hand	ling (if app	olicable)								
16. V	Vas client n	otified of all di	screpancies w	vith this order?		Yes		No 🛭	_	na \square	
	Persor	n Notified:			Date			HITE . PERSONNELLEMENT	1		
	By Wh	om:	· · · · · · · · · · · · · · · · · · ·		Via:	eMa	il 🔲 l	Phone 🔲 F	ax	In Person	
	Regard	ding:			W4 W4 W4 AND COMPANY OF A PROPERTY OF A PROP			enter et a company de seguina esta a a com	**********	,	
	Client	Instructions:	THE RESIDENCE OF STREET	TO 19 dec 5 of the state of the	ectypotopusassiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		0.000 TVII.IIIII.	.asminiminimis	кологияния	PRINCIPALITY OF THE CONTRACT O	
17. 🗸	Additional re	emarks:									
18. <u>c</u>	Cooler Info Cooler No	compor t action of the contraction of the contraction of	Condition Good	Seal Intact Se	al No S	Seal Da	te	Signed By			
			·	L	l						

	_							(N)c) (Y	Air Bubbles									EMPORE @ CER		
1	HALL ENVIKONMENTAL ANALYSIS LABORATORY					<u> </u>													g) 7		
ŀ	HALL ENVIKONMENTAL ANALYSIS LABORATOR'	! !					721 9	P.D.191	H	4 L85	X								SyOba	. 5	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
	7 2		7109	_						BCI	X								S	Lysh KS	nalytica
			M 87	Fax 505-345-4107			9727	" (A		-imə2) 0728	乂								4	-8	the a
9	₹	tal.c	e, Z	-345	sənk					8260B (VO									1		ated or
į	S	men	Jergu	505	Rec					8081 Pestic			 			\perp			رځ کې		rly nota
	Si	www.hallenvironmental.com	- Albuquerque, NM 87109	Fax	Analysis Request	(20				O,7) snoinA									ks: Email grilpfig	Ø 15	oe clea
1	<u>_</u> _	allen			Ana		177			8310 (PNA 6 9M 8 AROR	X			 	 				141	3	ta will l
-	֓֞֝֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֡֓֡֡֡֓֡֓֡֡֡֡֡֡	. A	4901 Hawkins NE	Tel. 505-345-3975			<u></u>			EDB (Metho							-		" G	3)	ted da
	Ì	₹	vkins	345						TPH (Metho							-		4,1		contrac
	- -	=	Hay	505		(les	eiU\asi			Dorth Method				 	 		_		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	ogns/
			4901	<u>1</u>						BTEX + MT	$\stackrel{\times}{-}$			 	 				<u>i</u> \$; +	>	ķ. An
										TM + X3T8					 				Remarks: באיין האיין ב		ligisso
				<u> </u>				14.7							 						this po
										0.	100) Date Time	Time	office of
0	2	-								HEALNO.	١٦) /	jë	S as D
12	為				lo			lo	دا	1 20									Safe (Section)	Date	serve
6	7		γòς		1037.01			% P	19	7.7				١.				,	32		s.
#	ush		4)		ر چ	Britan	I	ative									1		ratorie
36	10 My		ع 4		5		چ ^زر^	_ ≶ S	e	Preservative Type	irone							1	7		dabo
Turn-Around Time: # (2) (1)			SVE Governor premoval		62735 DMOA	ger:	Oran Jerginani	Sampler: 303/Km [On Ice IV Yes	Seral	Pre	چ										credite
pund	X Standard	lame	ق	J.	35	Project Manager:	ا ج		Leui	her nd #	¹⁸ 45	,							× 7/) k	ther ac
-Arc	Stan	ect	ŹŊ	ect #	5	ect	Š	pler	ple	Container Type and #	Gloss Durg								Received by:	Received by:	8d to 0
Tur	×	Proj.	Ś	Project #:	ق	Proj		Sarr	Sam	ΩĘ)			λ'					Rece	Rece	ontracte
							(L)				2		·								subcc
5							idatic			Sample Request ID	160										nay be
ပ္ပ							l Val			nbe	ठ ~								\		iental r
Re							(Ful			e R	lensa.								\ \ \		vironn
þ	2	_					vel 4			ldm	هي								1 /	1	무료
Š	7. 7						☐ Level 4 (Full Validation)			Sa	SVE Godonsate 19-07								<i>∭</i> ≒	py: Kg	ed to
Ä	\\\\2							je		.خ	7)				 				ished //	ished	submit
Chain-of-Custody Record	CA Ensignering							□ Other		Matrix	Soil								Relinquished by:	Relinquished by:	mptes.
in-c	4		ess:			##	ge:		 						\dashv					<u> L.</u>	ary, sa
hai	$ \omega $		Addr		ا. ا	Fax	acka lard	ation \P	(J	Time	1197								Time: [75/9	Time:	necess
S	Client:		Mailing Address:		Phone #:	email or Fax#:	QA/QC Package:	Accreditation:	□ EDD (Type)	Date	8-16-7					\top			7	1 1	Ŧ
	Ϊ́Ξ		Ma		[품	e E	ð ₽	A □		۵	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								Date:	Date:	