

DEPARTMENT OF THE AIR FORCE 377TH AIR BASE WING (AFGSC)

Colonel Richard W. Gibbs 377 ABW/CC 2000 Wyoming Blvd SE Kirtland Air Force Base NM 87117

Mr. John Kieling Hazardous Waste Bureau Chief New Mexico Environment Department (NMED) 2905 Rodeo Park Drive East, Building 1 Santa Fe NM 87505-6303

JUL 1 5 2017

Dear Mr. Kieling

Please find attached the *Risk Assessment Report, Bulk Fuels Facility Spill; Solid Waste Management Unit ST-106/SS-111*, Kirtland Air Force Base, New Mexico, dated July 2017. This report is submitted in response to NMED's Notice of Deficiency dated May 24, 2017 and approval of extension request dated July 5, 2017.

If you have any questions or concerns, please contact Mrs. Holly O'Grady at (505) 853-3484 or at holly.ogrady@us.af.mil or Mr. Scott Clark at (505) 846-9017 or at scott.clark@us.af.mil.

Sincerely

chard W. Dil

RICHARD W. GIBBS, Colonel, USAF Commander

Attachment:

Risk Assessment Report, July 2017, Bulk Fuels Facility Spill, Solid Waste Management Unit ST-106/SS-111.

cc:

NMED, Deputy Secretary (Borrego), letter NMED-GWQB (Agnew, Hunter), letter EPA Region 6 (Ellinger, King), letter SAF-IEE (Lynnes), electronic only AFCEC/CZ (Bodour, Clark, O'Grady), electronic only USACE-ABQ District Office (Dreeland, Phaneuf, Salazar, Sanchez, Simpler), electronic only Public Info Repository, Administrative Record/Information Repository (AR/IR) and File

KIRTLAND AIR FORCE BASE ALBUQUERQUE, NEW MEXICO

RISK ASSESSMENT BULK FUELS FACILITY RELEASE SOLID WASTE MANAGEMENT UNIT ST-106/SS-111 KIRTLAND AIR FORCE BASE, NEW MEXICO

July 2017

377 MSG/CEI 2050 Wyoming Boulevard SE Kirtland Air Force Base, New Mexico 87117-5270

KIRTLAND AIR FORCE BASE ALBUQUERQUE, NEW MEXICO

Risk Assessment Bulk Fuels Facility Release Solid Waste Management Unit ST-106/SS-111

July 2017

Prepared for

U.S. Army Corps of Engineers Albuquerque District Albuquerque, New Mexico 87109

USACE Contract No. W912PP-16-C-0002

Prepared by

Sundance Consulting, Inc. 8210 Louisiana Blvd NE., Suite C Albuquerque, NM 87113

with support from

EA Engineering, Science, and Technology, Inc., PBC 320 Gold Avenue SW, Suite 1300 Albuquerque, NM 87102

NOTICE

This document was prepared for the U.S. Army Corps of Engineers by Sundance Consulting, Inc. for the purpose of aiding in the implementation of a remedial action plan under the U.S. Air Force Environmental Restoration Program (ERP). While this document may be of interest to the public, the limited objectives of this document and the ongoing nature of the ERP, along with the evolving knowledge of Site conditions and chemical effects on the environment and health, must be considered when evaluating release of this document, since subsequent facts may become known making this document premature or inaccurate.

Government agencies and their contractors registered with the Defense Technical Information Center (DTIC) should direct requests for copies of this document to: DTIC, Cameron Station, Alexandria, Virginia 22304-6145.

Non-government agencies may purchase copies of this document from: National Technical Information Service, <u>www.ntis.gov</u>. 5301 Shawnee Rd., Alexandria, Virginia 22312.

REPORT DOCUMENTATION PAGE			Form Approved	
			OMB No. 0704-0188	
Public reporting burden for this collection data sources, gathering and maintaining the any other aspect of this collection of info Operations and Reports, 1215 Jefferson I Project (0704-0188), Washington, DC 20	n of information is estimated to average he data needed, and completing and revi rmation, including suggestions for reduc Davis Highway, Suite 1204, Arlington, V 0503.	I hour per response, including the ewing the collection of informat ing this burden, to Washington I A 22202-4302, and to the Office	e time for reviewing instructions, searching existing ion. Send comments regarding this burden estimate or leadquarters Services, Directorate for Information e of Management and Budget, Paperwork Reduction	
1. AGENCY USE ONLY	2. REPORT DATE	3. REPORT TYPE AND	DATES COVERED	
	July 2017	Risk Assessment		
4. TITLE AND SUBTITLE	·	•	5. FUNDING NUMBERS	
Risk Assessment, Bulk Fuels Facility Solid Waste Management Unit ST-100 Kirtland Air Force Base, New Mexico	Release, 6/SS-111,		USACE Contract No. W912PP-16-C-0002	
6. AUTHOR				
R. Hobbs, P.G. R. Wortman				
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
Sundance Consulting, Inc. 8210 Louisiana Blvd NE, Suite C Albuquerque, NM 87113			KAFB-16-002	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING AGENCY	
USACE Albuquerque District 4101 Jefferson Plaza NE Albuquerque, NM 87109 Project Manager: Trent Simpler, P.E.			REPORT NUMBER	
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION/AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE	
This Risk Assessment (RA) was prepa of potential concern (COPC) and any site (Site). Kirtland AFB, located in A and determined through environmenta Resource Conservation and Recovery Resulting from these investigations, tw comprised of the source area at the Sit detail in the RFI Report (USACE, 201 and groundwater collected between 20	ared by Kirtland Air Force Base (AFB associated potential human health effe Ibuquerque, New Mexico, discovered I investigations that subsurface fuel re Act (RCRA) Facility Investigation (R wo solid waste management units (SW e (ST-106) and the light non-aqueous 7a). Site investigations and interim m 114 and 2016 to evaluate the potential) to evaluate the potential for l octs and ecological risks relate the release in November 1999 leases occurred over a period FI) Report (United States Arr 'MU) identified as ST-106 and phase liquid identified in the g easures have been ongoing sin for exposure and associated ri	human and ecological exposure to contaminants d to fuel releases at the Bulk Fuels Facility (BFF) at the Former Fuel Offloading Rack at the BFF of decades, as described in Section 2 of the ny Corps of Engineers [USACE], 2017a). d SS-111 were created. These SWMUs are groundwater (SS-111), and are discussed in greater ce 1999. This RA uses Site data for soil, soil gas, sk to COPCs.	
14. SUBJECT TERMS			15. NUMBER OF PAGES	
Bulk Fuels Facility, Risk Assessment, SWMU ST-106/SS-111			16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICA OF ABSTRACT	TION 20. LIMITATION OF ABSTRACT	

40 CFR 270.11 DOCUMENT CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

RICHARD W. GIBBS, Colonel, U.S. Air Force Commander, 377th Air Base Wing

<u>16 Jul 17</u> Date

This document has been approved for public release.

KIRTLAND AIR FORCE BASE 377th Air Base Wing Public Affairs

12 JUL 17 Date

PREFACE

This Risk Assessment (RA) Report was prepared by Sundance, Consulting, Inc. (Sundance) for the U.S. Army Corps of Engineers (USACE) under contract number W912PP-16-C-0002. It pertains to the Kirtland Air Force Base (AFB) Bulk Fuels Facility Site at Solid Waste Management Unit (SWMU) ST-106/SS-111, located in Albuquerque, New Mexico. This RA Report was prepared in accordance with the permit issued to Kirtland AFB under the Resource Conservation and Recovery Act (RCRA) and applicable federal, state, and local laws and regulations.

This RA Report presents and describes data from the RCRA Facility Investigation performed at SWMU ST-106/SS-111, which has been used to characterize risks to human and ecological receptors. Ms. Amy Sanchez is the Contracting Officer's Representative for the USACE Albuquerque District, and Mr. Trent Simpler, Professional Engineer, is the Project Manager. Mr. Scott Clark is the Kirtland AFB Restoration Interim Section Chief. This Report was prepared by Rachel Hobbs, Professional Geologist (P.G.) the Sundance Project Manager, and Ryan Wortman, Sundance project geologist with assistance from Cynthia Cheatwood and Dan Hinckley of EA Engineering, Science, and Technology, Inc., PBC.

achel Hobbs

Rachel Hobbs, P.G. Sundance Consulting, Inc. Project Manager

TABLE OF CONTENTS

FIG	URES.	
TAI	BLES	vii
AT	ГАСНИ	MENTSix
AC	RONYI	MS AND ABBREVIATIONSx
EXI	ECUTI	VE SUMMARYES-1
	ES 1.1	Human Health Risk Assessment Results
	ES 1.1	.1 Soil
	ES 1.1	.2 Soil Gas
	ES 1.1	.3 Groundwater
	ES 1.2	Ecological Risk Assessment Results
1	INTR	ODUCTION1-1
	1.1	Risk Assessment Objectives1-1
	1.2	Regulatory Context
	1.3	Summary of Site Contamination and Contaminant Transport1-2
	1.4	Interim Measures
	1.5	Organization of this Document1-6
2	OVEF	RVIEW OF THE RISK ASSESSMENT PROCESS2-1
	2.1	Human Health Risk Assessment
	2.1.1	Summary of NMED Human Health Screening Levels
	2.1.2	Ecological Risk Assessment2-4
3	ENVI	RONMENTAL DATA AND DATA QUALITY
	3.1	Selection of Contaminants of Potential Concern
	3.2	Environmental Data Evaluated in the Risk Assessment
	3.2.1	Soil
	3.2.2	Soil Gas
	3.2.3	Groundwater
	3.3	Data Quality Evaluation
	3.3.1	Soil Gas Data Quality Evaluation

4	HUM	IAN HEALTH EXPOSURE ASSESSMENT	4-1
	4.1	Land Use	4-1
	4.1.1	On-Site Land Use	4-2
	4.1.2	Off-Base Land Use	4-2
	4.1.3	Groundwater Use	4-2
	4.2	Land Use Controls	4-3
	4.3	On-Site CSEM	4-4
	4.3.1	On-Site Human Receptors	4-4
	4.3.2	On-Site Exposure Pathways	4-4
	4.4	Off-Base CSEM	4-7
	4.4.1	Off-Base Human Receptors	4-7
	4.4.2	Off-Base Exposure Pathways	4-8
5	HUM	IAN HEALTH RISK CHARACTERIZATION	5-1
	5.1	Human Health Risk Assessment	5-1
	5.1.1	Soil	5-2
	5.1.2	Soil Gas	5-3
	5.1.3	Groundwater	5-5
	5.2	Uncertainty Analysis	5-6
	5.2.1	Uncertainty Related to Analytical Data Quality	5-6
	5.2.2	Uncertainty in Risks Related to Soil Gas Exposure	5-7
	5.3	Human Health Risk Assessment Conclusions	5-7
	5.3.1	Soil	5-7
	5.3.2	Soil Gas	5-7
	5.3.3	Groundwater	5-8
6	ECO	LOGICAL RISK ASSESSMENT	6-1
	6.1	Phase I Qualitative Assessment	6-1
	6.1.1	General Site Characteristics	6-1
	6.1.2	Surface Water, Sediment, and Wetlands	6-1
	6.1.3	Vegetative Communities	6-1
	6.1.4	Wildlife	6-2
	6.1.5	Threatened, Rare, and Endangered Species	6-2
	6.1.6	Ecological Problem Formulation	6-3
	6.1.7	Conceptual Site Exposure Model	6-3
	6.1.8	Assessment Endpoints	6-4

6.2	Phase II, Tier 1 Quantitative Assessment	6-5
6.2.1	Assessment Endpoints and Measures of Effect	6-5
6.2.2	Exposure Estimation	6-6
6.2.3	Ecological Risk Characterization	6-6
6.3	Phase II, Tier 2 Quantitative Assessment	6-7
6.4	Uncertainty Discussion	6-8
6.5	Conclusions and Recommendations	6-8
REFI	ERENCES	7-1

7

FIGURES

- Figure 1-1 EDB and Benzene Groundwater Plumes, Q4 2015
- Figure 1-2 Vadose Zone Conceptual Site Model
- Figure 2-1 NMED Screening Level HHRA Process
- Figure 3-1 Excavation Overview West of Pump House, All Depths
- Figure 3-2 Excavation Overview South of Pump House, All Depths
- Figure 3-3Soil Gas Monitoring Network
- Figure 4-1 On-Site Conceptual Site Exposure Model
- Figure 4-2 Off-Base Conceptual Site Exposure Model
- Figure 5-1 EDB Concentrations in Soil Gas On-Site at 25 Feet bgs Q1 to Q3 2016
- Figure 5-2 Naphthalene Concentrations in Soil Gas On-Site at 25 Feet bgs Q1 to Q3 2016
- Figure 6-1 Current Bulk Fuels Facility Infrastructure
- Figure 6-2 Historical Locations of Burrowing Owl Nests on Kirtland Air Force Base 2015
- Figure 6-3 Ecological Conceptual Site Exposure Model

TABLES

Table ES-1	Human Health Risk Assessment Results
Table 1-1	Current Nature and Extent of Site Contamination as Presented in the RFI Report
Table 3-1	RCRA Facility Investigation Report List of Contaminants of Potential Concern (COPCs)
Table 3-2	On-Site Surface Soil (0 to 1 foot bgs) Summary Statistics
Table 3-3	On-Site Mixed Zone Soil (0 to 10 feet bgs) Summary Statistics
Table 3-4	On-Site Soil Gas Summary Statistics, 25-foot Depth (µg/m ³)
Table 3-5	Off-Base Soil Gas Summary Statistics, 25-foot Depth (µg/m ³)
Table 3-6	On-Site Groundwater Summary Statistics (µg/L)
Table 3-7	Off-Base Groundwater Summary Statistics (µg/L)
Table 4-1	On-Site Occupied Buildings
Table 5-1	Current/Future On-Site Commercial/Industrial Worker, Surface Soil (0 to 1 foot bgs), Cancer Risk Estimate
Table 5-2	Current/Future On-Site Commercial/Industrial Worker, Surface Soil (0 to 1 foot bgs), Noncancer Hazard Index
Table 5-3	Future Hypothetical On-Site Resident, Mixed Zone Soil (0 to 10 feet bgs), Cancer Risk Estimate
Table 5-4	Future Hypothetical On-Site Resident, Mixed Zone Soil (0 to 10 feet bgs), Noncancer Hazard Index
Table 5-5	Future On-Site Construction Worker, Mixed Zone Soil (0 to 10 feet bgs), Cancer Risk Estimate
Table 5-6	Future On-Site Construction Worker, Mixed Zone Soil (0 to 10 feet bgs), Noncancer Hazard Index
Table 5-7	Current/Future On-Site Commercial/Industrial Worker, Soil Gas Maximum Concentrations, Cancer Risk Estimate
Table 5-8	Current/Future On-Site Commercial/Industrial Worker, Soil Gas EPC Concentrations, Cancer Risk Estimate
Table 5-9	On-Site Current/Future On-Site Commercial/Industrial Worker, Soil Gas Maximum Concentration, Noncancer Hazard Index
Table 5-10	Future Hypothetical On-Site Resident, Soil Gas Maximum Concentrations, Cancer Risk Estimate
Table 5-11	Future Hypothetical On-Site Resident, Soil Gas EPCs, Cancer Risk Estimate
Table 5-12	Future Hypothetical On-Site Resident, Soil Gas Maximum Concentrations, Noncancer Hazard Index

TABLES (CONCLUDED)

Future Hypothetical Off-Base Resident, Soil Gas Maximum Concentrations, Cancer **Risk Estimate** Table 5-14 Future Hypothetical Off-Base Resident, Soil Gas Maximum Concentrations, Noncancer Hazard Index Table 5-15 Future On-Site Domestic Water User, Groundwater Maximum Concentrations, Cancer **Risk Estimate** Table 5-16 Future On-Site Domestic Water User, Groundwater EPCs, Cancer Risk Estimate Table 5-17 Future On-Site Domestic Water User, Groundwater Maximum Concentrations, Noncancer Hazard Index Table 5-18 Future On-Site Domestic Water user, Groundwater EPCs, Noncancer Hazard Index Table 5-19 Future Off-Base Domestic Water User, Groundwater Maximum Concentrations, Cancer **Risk Estimate** Table 5-20 Future Off-Base Domestic Water User, Groundwater EPCs, Cancer Risk Estimate Table 5-21 Future Off-Base Domestic Water User, Groundwater Maximum Concentrations, Noncancer Hazard Index Table 5-22 Future Off-Base Domestic Water User, Groundwater EPCs, Noncancer Hazard Index Table 6-1 Ecological Screening of On-Site Surface Soil (0 to 1-foot depth interval) Table 6-2 Hazard Index Calculations for On-Site Surface Soil (0 to 1-foot depth interval) Table 6-3 Ecological Screening of Mixed Zone Soil (0 to 10 feet bgs) Table 6-4 Hazard Calculations of Mixed Zone Soil (0 to 10 feet bgs) Table 6-5 Ecological Screening of Soil Gas Concentrations On-Site (15 to 25-foot depth interval) Table 6-6 Summary Statistics for Tier 2 Ecological COPCs

Table 5-13

ATTACHMENTS

Attachment 1 Investigation of Bias in EDB Analytical Results by Soil Gas Method CARB 422

Attachment 2 ProUCL Input and Output Data Files

ACRONYMS AND ABBREVIATIONS

%	percent
1,2-DCA	1,2-dichloroethane
1,2,4-TMB	1,2,4-trimethylbenzene
95UCL	95th percentile upper confidence limit of the mean
AFB	Air Force Base
AOC	area of concern
AvGas	aviation gas
BFF	Bulk Fuels Facility
bgs	below ground surface
CARB	California Air Resources Board
COPC	contaminant of potential concern
CSEM	conceptual site exposure model
CSM	conceptual site model
DL	detection limit
DQO	data quality objective
DTIC	Defense Technical Information Center
EDB	ethylene dibromide
e.g.	for example
EPA	United States Environmental Protection Agency
EPC	exposure point concentration
ERA	Ecological Risk Assessment
ERP	Environmental Restoration Program
ESL	ecological screening level
etc.	etcetera
FFOR	Former Fuel Offloading Rack
GWM	groundwater monitoring
HC	hydrocarbon
HHRA	Human Health Risk Assessment
HI	hazard index
HQ	hazard quotient
HWB	Hazardous Waste Bureau

ACRONYMS AND ABBREVIATIONS (CONTINUED)

i.e. INRMP	in other words Integrated Natural Resources Management Plan
JP-4	jet propellant 4
JP-8	jet propellant 8
KAFB	Kirtland Air Force Base
LANL	Los Alamos National Laboratory
LNAPL	light non-aqueous phase liquid
LUC	land use control
MEK	methyl ethyl ketone
$\mu g/m^3$	microgram per cubic meter
μg/L	microgram per Liter
mg/kg	milligram per kilogram
NM	New Mexico
NMED	New Mexico Environment Department
No.	number
NOAA	National Oceanic and Atmospheric Administration
NOAEL	no observed adverse effect level
Permit	Permit identification number NM9570024423 (NMED, 2010)
P.G.	Professional Geologist
PVC	polyvinyl chloride
0	Ouarter
QAPjP	Quality Assurance Project Plan
RA	Risk Assessment
RCKA	Resource Conservation and Recovery Act
KFI Bidgeorest	RCRA Facility investigation
Riugeciest	reporting limit
RSL	Regional Screening Level
ROL	
SDWA	Safe Drinking Water Act
Site	SWMU ST-106/SS-111
SL	screening level
SLERA	screening level ecological risk assessment
SLRA	screening level risk assessment
SSL	soil screening level
Sundance	Sundance Consulting, Inc.
SVE	son vapor extraction

ACRONYMS AND ABBREVIATIONS (CONCLUDED)

SVM	soil vapor monitoring
SVMP	soil vapor monitoring point
SWMU	solid waste management unit
TSL	tapwater screening level
UCL	upper confidence limit
USACE	United States Army Corps of Engineers
USGS	United States Geological Survey
VA	Veterans Affairs
VISL	Vapor Intrusion Screening Level
VOC	volatile organic compounds
Water Authority	Albuquerque Bernalillo County Water Utility Authority

EXECUTIVE SUMMARY

This Risk Assessment (RA) was prepared by Kirtland Air Force Base (AFB) to evaluate the potential for human and ecological exposure to, and potential risks from such exposures to, contaminants of potential concern (COPCs) related to the historical fuel leak at the Bulk Fuels Facility (BFF) site (Site). Kirtland AFB, which is located in Albuquerque, New Mexico, discovered the fuel release in November 1999 at the Former Fuel Offloading Rack at the BFF and determined through environmental investigations that subsurface fuel releases occurred over a period of decades. Site investigations and interim measures have been ongoing since 1999. This RA uses Site data for soil, soil gas, and groundwater from the Resource Conservation and Recovery Act (RCReA) Facility Investigation (RFI) Report (United States Army Corps of Engineers [USACE], 2017a) to evaluate the potential for exposure and associated risk to identified COPCs.

The investigation and remediation activities at the Site and this RA are being implemented pursuant to the RCRA corrective action provisions in Part 6 of Kirtland AFB's Hazardous Waste Treatment Facility Operating Permit (Permit Number NM9570024423—"Permit"). The Permit identified two BFF-related solid waste management units (SWMUs): ST-106 and SS-111. These SWMUs are comprised of the source area at the Site (ST-106) and the light non-aqueous phase liquid that was identified in the groundwater (SS-111), which are discussed in greater detail in the RFI Report.

The RCRA Permit requires the performance of a RA using the current version of New Mexico Environment Department (NMED) Risk Assessment Guidance for Site Investigations and Remediation (NMED, 2017). This guidance, which was developed by NMED, provides generic screening levels for soil, tapwater, and vapor intrusion for chemicals commonly found at contaminated sites based upon conservative default exposure assumptions for both residential and non-residential land use scenarios. The objective of this RA is to evaluate the potential human health and ecological risks associated with COPCs detected in environmental samples related to the Site.

There are two parts to this RA, the Human Health Risk Assessment (HHRA), and the Ecological Risk Assessment (ERA). The HHRA investigates whether there is any risk to human receptors from contamination at the Site, and the ERA examines whether there is any risk to ecological receptors, such as plants, birds, or mammals, from Site contaminants. For the purposes of the RFI Report, a list of fuel-related analytes was developed for soil, soil gas, and groundwater which are referred to in this RA as COPCs. In total, there are 20 COPCs across all three media. The list of COPCs differs slightly for soil, soil gas, and groundwater; however, ethylene dibromide; benzene, toluene, ethylbenzene, and xylenes constituents; naphthalene; 1,2,4-trimethylbenzene; and 1,2-dichloroethane are common to all three media.

Both the HHRA and the ERA ask two questions to determine whether unacceptable risk exists. The first question is whether there is an exposure pathway for contaminated media to come in contact with human or ecological receptors. For example, if subsurface soil is contaminated, and construction workers disturb the soil while performing their work, they could be exposed to contaminated soil by skin contact, accidental ingestion, or inhalation while they are working.

In this RA, existing land use controls (LUCs) are incorporated in the conceptual site exposure model for current receptors, in that ongoing institutional, engineering, and administrative practices may prevent exposure to current human receptors. However, future exposure scenarios are also considered in the RA, in the case that land use may change, or LUCs may change or be removed in the future. For example, current land use at the BFF is industrial, and is expected to remain industrial for the foreseeable future.

However, in the absence of LUCs, if land use were to change in the future, the BFF could become a residential area. Hypothetical future on-Site residential receptors are evaluated in the RA to inform risk management decisions, and assess unrestricted site use.

Once the complete and potentially complete exposure pathways are identified, the next question is whether the contamination is present at levels that could cause an unacceptable risk to human or ecological receptors, thus not protecting human health and the environment.

To evaluate potential risk to human receptors, both carcinogenic and non-carcinogenic COPCs are evaluated in the HHRA. NMED Guidance (2017) sets the target level for carcinogenic risk equal to or less than 1×10^{-5} , meaning that the incremental probability of an individual developing cancer over a lifetime as a result of exposure to a potential carcinogen at the BFF is less than one in 100,000. For non-carcinogenic contaminants, NMED sets a hazard quotient (HQ) target of 1.0, below which, it is unlikely sensitive populations would experience adverse health effects (NMED, 2017).

To evaluate potential risk to ecological receptors, maximum concentrations of COPCs are evaluated in comparison to ecological screening levels (SLs). Similar to the HHRA, NMED sets a HQ target of 1.0, below which, it is unlikely sensitive populations would experience adverse ecological effects (NMED, 2017). If the HQ exceeds 1, additional evaluation is warranted.

ES-1 Human Health Risk Assessment Results

The HHRA concludes there are no estimated unacceptable risks to current human receptors from contaminated soil, soil gas, or groundwater either on-Site (in other words, within the area of investigation on-Site) or off-Base as summarized in Table ES-1.

The HHRA identified potential unacceptable risks for exposure to groundwater under a future domestic use scenario both on-Site and off-Base, and for on-Site soil gas via vapor intrusion to indoor air under a future hypothetical on-Site residential scenario. However, current interim measures prevent exposure to impacted groundwater, and residential use is prevented on-Site. As a result, no additional interim measures are recommended. Consideration of a LUC in any final remedy may be warranted to prevent residential use on-Site until soil gas concentrations have reached acceptable levels.

ES-1.1 Soil

Complete and potentially complete soil exposure pathways were identified for the on-Site current/future commercial/industrial workers at the BFF, future construction workers at the BFF, and future hypothetical residents at the BFF. No contaminated surface or mixed zone soil is present off-Base, therefore, there are no complete or potentially complete exposure pathways for impacted soil for off-Base receptors. Maximum detected concentrations in soil from 0 to 10 feet below ground surface (bgs) were below NMED soil screening levels (SSLs) for commercial/industrial, construction worker, and residential receptors. Total soil risks based on the maximum detected concentrations were at or below NMED target risk levels. No unacceptable risk was identified based on exposure to on-Site surface or mixed zone soil within the BFF. The maximum detected concentration of lead in soil (0 to 10 feet bgs) was below the NMED SSL. No additional interim measures for soils (0 to 10 feet bgs) are recommended to address human health risks.

ES-1.2 Soil Gas

Fuel contaminants can volatilize from contaminated soil into soil gas, which may migrate into indoor air spaces if buildings are present, or may be released to ambient air. The migration of vapors from subsurface sources to indoor air within buildings is defined as vapor intrusion. NMED has developed Vapor Intrusion Screening Levels (VISLs) for areas where buildings currently exist or may be built in the future above contaminated soil gas.

On-Site Soil Gas

The soil gas exposure pathway via vapor intrusion is potentially complete for current/future commercial/industrial workers at the BFF. Although unlikely, a future hypothetical on-Site residential scenario was evaluated to inform risk management decisions. Only four buildings (Buildings 1044, 1049, 2426, and 1055) at, or adjacent to, the BFF are regularly occupied during business hours. Results of the risk characterization based on exposure point concentrations indicate that no unacceptable risk exists for current/future commercial/industrial workers at the BFF via the vapor intrusion pathway. Under the hypothetical future on-Site resident scenario, the total carcinogenic risk slightly exceeded NMED's target cancer risk level of 1x10⁻⁵.

Off-Base Soil Gas

There are currently no buildings in the area where soil gas has been detected off-Base, and as a result the exposure pathway to current receptors is incomplete. However, because COPCs in soil gas have been detected in the off-Base area within and adjacent to Bullhead Park, vapor intrusion was considered a potentially complete pathway under a future hypothetical off-Base residential scenario in the park area. Evaluating a future hypothetical residential receptor in Bullhead Park provides a conservative assessment of any current/future recreational visitors to the park, current/future commercial/industrial workers at the Veterans Affairs complex, or current/future residents beyond Ridgecrest Drive. Maximum detected concentrations in off-Base soil gas were below NMED residential soil gas VISLs. Total risks based on maximum detected concentrations in soil gas were below NMED target levels for the off-Base resident via the vapor intrusion pathway. No interim measures for off-Base soil gas are recommended.

Soil Gas to Ambient (Outdoor) Air

In addition to the vapor intrusion pathway, the HHRA also looked at potential risks from releases of soil gas to ambient air and potential uptake of soil gas by plants off-Base. Any release of soil gas COPCs into the atmosphere would be immediately diluted by ambient outdoor air movement. In addition, there is no risk to receptors from uptake by plants (gardening). The amount of soil gas at the shallow depths where garden plant roots would be found is negligible, therefore uptake of COPCs in soil gas via plant was considered an incomplete pathway.

ES-1.3 Groundwater

Impacted groundwater at the BFF is not currently used as a drinking water source and LUCs are in place to prevent exposure. Therefore, there are currently no complete exposure pathways for groundwater on-Site or off-Base. In order to inform risk management decisions and evaluate an unrestricted use scenario, domestic use of groundwater was evaluated on-Site and off-Base. Total risks calculated using NMED tapwater regional screening levels exceeded NMED target levels.

The New Mexico Office of the State Engineer issued a well drilling moratorium associated with BFF corrective action activities on February 9, 2017. The intent of this moratorium is to protect human health and prevent interference with ongoing corrective action activities by restricting the drilling of new wells and the transfer of water rights within the boundaries specified by NMED. COPCs have not been detected in off-Base water supply sentinel wells at concentrations exceeding drinking water standards. In addition, Kirtland AFB drinking water supply wells are sampled monthly and no COPCs exceeding SLs have been detected.

Based on the results of the HHRA, the interim measures and LUCs are needed to prevent direct contact with groundwater.

ES-2 Ecological Risk Assessment Results

The ERA concluded there is no risk to ecological receptors from soil, soil gas, or groundwater at the Site. There is no exposure pathway to ecological receptors from contaminated groundwater because groundwater is approximately 480 feet bgs. The potential exposure pathways to ecological receptors are through surface soil (0 to 1 foot bgs), mixed zone soil (0 to 10 feet bgs), and soil gas.

Plants and animals at the Site may be exposed to COPCs in surface soil through direct contact, accidental ingestion of soil, or ingestion of food items contaminated through bioaccumulation. Burrowing animals, such as prairie dogs and burrowing owls, could also contact mixed zone soil. Contaminants released to soil could volatilize into air voids in the soil column such as animal burrows created by burrowing mammals, birds, and reptiles. Soil gas is evaluated as a complete exposure pathway through burrow air; specifically, for the burrowing owl, which is listed as a federal species of concern.

Review of concentrations in the contaminated soil remaining on-Site indicates only lead concentrations exceeded ecological SSLs in soil. Although maximum concentrations of lead exceeded no-effects-based SLs, evaluation of other parameters such as mean and median concentrations within the Site suggest exceedances are limited in extent, or within background concentrations. In addition, the maintenance of the BFF for Site operations limits the amount and quality of ecological habitat present, and ecological exposures are expected to be minimal for this reason. The mean and median concentrations at the Site are at background concentrations, indicating the lead concentrations are naturally occurring. Given the limited extent of concentrations exceeding no-effects SLs and the limited ecological exposure potential, no unacceptable ecological risk exists at the Site due to COPCs in soils.

The ERA concluded there is no unacceptable ecological risk from soil gas when burrowing owls are considered as ecological receptors. Concentrations of COPCs in on-Site soil gas were less than available ecological SLs. Maximum HQs for the eight volatile organic compounds with SLs were less than 0.3, indicating concentrations are low compared to effect levels. In addition, evaluating soil gas concentrations at the 15 to 25 feet bgs depth interval is conservative when compared to the typical maximum burrow depth of the burrowing owl (3 feet bgs). Soil gas concentrations at typical shallow burrow depths are expected to be less due to attenuation. Therefore, no further action is proposed for soil gas concentrations in on-Site soils for protection of ecological receptors.

1 INTRODUCTION

This Risk Assessment (RA) was prepared by Kirtland Air Force Base (AFB) to evaluate the potential for human and ecological exposure to contaminants of potential concern (COPC) and any associated potential human health effects and ecological risks related to fuel releases at the Bulk Fuels Facility (BFF) site (Site). Kirtland AFB, located in Albuquerque, New Mexico, discovered the release in November 1999 at the Former Fuel Offloading Rack (FFOR) at the BFF and determined through environmental investigations that subsurface fuel releases occurred over a period of decades, as described in Section 2 of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Report (United States Army Corps of Engineers [USACE], 2017a). Resulting from these investigations, two solid waste management units (SWMU) identified as ST-106 and SS-111 were created. These SWMUs are comprised of the source area at the Site (ST-106) and the light non-aqueous phase liquid (LNAPL) identified in the groundwater (SS-111), and are discussed in greater detail in the RFI Report (USACE, 2017a). Site investigations and interim measures have been ongoing since 1999. This RA uses Site data for soil, soil gas, and groundwater collected between 2014 and 2016 to evaluate the potential for exposure and associated risk to COPCs.

Part 6.2.4.5 of Kirtland AFB's Hazardous Waste Treatment Facility Operating Permit (Permit Number [No.] NM9570024423—"Permit") allows the Permittee to submit a RA report during the investigation stage or with the Corrective Measures Evaluation Report. Kirtland AFB chose to submit this RA at the investigation stage to identify any potential human health or ecological risks at this phase of the Site cleanup (that is, near the end of the investigation stage and while interim measures are being implemented).

1.1 Risk Assessment Objectives

As stated above, the objectives of this RA are to evaluate the potential human health and ecological risks associated with COPCs detected in environmental samples related to the Site. It is noted that the Human Health Risk Assessment (HHRA) and Ecological Risk Assessment (ERA) represent a site-specific RA for the BFF and only evaluate chemicals associated with the BFF. This site-specific RA includes samples collected on-Site (in other words [i.e.], within the area of investigation on-Site) and off-Base. The results of the RA will inform regulators and the public regarding present-day exposures and potential risks, and will guide future corrective action activities at the Site, if necessary, to reduce risks.

1.2 Regulatory Context

The investigation and remediation of the Site are being implemented pursuant to the RCRA corrective action provisions in Part 6 of Kirtland AFB's Permit. The Permit is enforced by the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB), which is authorized to administer RCRA by the United States Environmental Protection Agency (EPA). Part 6 of the Permit provides requirements for investigating the nature and extent of contamination from SWMUs and areas of concern (AOC), establishes cleanup criteria, provides for the implementation of interim measures, details RA requirements, and establishes procedures for identifying and implementing any necessary corrective measures.

The RFI Report covers activities conducted under Part 6.2.2.1 of the Permit, which sets forth requirements for site investigations. The RFI Report provides the results from 16 years of investigation activities into the nature and extent of environmental media contaminated by the Site releases and

describes the interim measures that have been implemented to-date at the Site. The RFI Report was submitted to the NMED HWB on January 31, 2017 (USACE, 2017a). This RA uses data collected in support of the RFI and the interim measures, and demonstrates sufficient data have been collected to assess potential risk to human health and the environment.

This RA follows NMED's *Risk Assessment Guidance for Site Investigations and Remediation* (NMED, 2017). Typically, RAs are performed to determine risks under "baseline" or non-remediated conditions. However, appreciable removal of contamination and contaminated media has already occurred and is ongoing in the form of interim measures. Part 6.2.2.2.12 of the Permit explains that interim measures can be implemented if it is determined "such measures are necessary to reduce or prevent migration of hazardous wastes or hazardous constituents that have, or may result in, an unacceptable human or ecological receptor exposure to hazardous waste or hazardous constituents while long-term corrective action remedies are being evaluated and implemented." An interim measure is an important tool for protecting human health and the environment while other parts of the RCRA process are ongoing.

The following three community water systems, which are near the footprint of the Site groundwater plumes shown in Figure 1-1, are regulated under the Safe Drinking Water Act (SDWA):

- The Albuquerque Bernalillo County Water Utility Authority (Water Authority) provides drinking water to Bernalillo County and residential housing on-Site. The Water Authority operates the Ridgecrest Drive (Ridgecrest) well field, the closest municipal drinking water supply wells to the Site.
- The Veterans Affairs (VA) Medical Center owns and operates a drinking water supply well that serves the Medical Center and associated buildings. This well is located to the east of the Site.
- Kirtland AFB provides drinking water for on-Site industrial and office uses, the off-Base Maxwell housing complex, and the Child Development Center.

New Mexico (NM) sought and was granted primary authority for public water systems and has adopted state drinking water rules (NM Code R. §§ 20.7.10.1 - 2017.10.704). These rules are enforced by the NMED Drinking Water Bureau. All three community water systems are subject to SDWA requirements. Current and future water use is discussed in more detail in the RFI Report (USACE, 2017a; Section 7).

1.3 Summary of Site Contamination and Contaminant Transport

The RFI Report provides a detailed account of the past and current nature and extent of contamination and a Conceptual Site Model (CSM) detailing the movement of contaminants (USACE, 2017a). The following summary of the source of Site contamination and subsequent contaminant transport provides important context for the RA.

The source of contamination for the Site is historical fuel releases from the Kirtland AFB FFOR delivery infrastructure, specifically underground pipelines. These below-grade releases at the Site moved downwards through the soil until reaching groundwater located approximately 480 feet below ground surface (bgs). As discussed in RFI Report Section 7, and illustrated in the RFI Report as well as Figure 1-2 of this report, LNAPL migrated downward via a tortuous pathway, with lateral spreading occurring when less-permeable strata were reached (USACE, 2017a).

Fuel that leaked from the underground pipeline included aviation gasoline (AvGas), jet propellant 4 (JP-4), and jet propellant 8 (JP-8; USACE, 2017a). As outlined in the RFI Report, AvGas was the primary fuel stored and used at Kirtland AFB until 1975. Ethylene dibromide (EDB) was an additive used only in AvGas, so its presence is limited to before 1975 (USACE, 2017a). After 1975, Kirtland AFB transitioned to jet propellant fuels. Collectively, these types of fuel are referred to as LNAPL because they have a lower density than water and are comprised of compounds that are largely insoluble in water. In other words, if LNAPL infiltrates into the ground and reaches the water table, it will form a layer on top of the water table while the more soluble constituents dissolve into the groundwater. In addition, the volatile constituents of LNAPL can exist in vapor form in the air-filled pore space of soil (referred to as soil vapor in the RFI Report). The term "soil gas" is used by NMED in reference to this pore space in defining risk-based screening level concentrations, and the term is used in this report.

The releases of LNAPL from the fuel delivery infrastructure resulted in fuel-related contamination of environmental media in the vadose zone (the area from the ground surface to the water table) and in groundwater. Once released into this environment, fuel and constituents of fuel may exist in four phases:

- 1. Adsorbed (fuel constituents attached to soil particles)
- 2. LNAPL residual fuel (free product)
- 3. Soil gas (volatile fuel constituents as vapor in soil air pockets)
- 4. Dissolved (fuel constituents in groundwater and pore water in the vadose zone).

Dispersion, diffusion, and other transport mechanisms discussed in the RFI Report have been the factors responsible for the migration of fuel and its constituents (including EDB, benzene, and other fuel constituents) through the vadose zone and subsequently off-Base (USACE, 2017a). A distinct layer of floating LNAPL on the water table has not been consistently measured at the Site since 2012. Interim measures (for example [e.g.], soil removal at the source in 1999, and skimmer system and bioslurping from about 2008 through 2011) were implemented early on and reduced the amount of free product contributing to contamination in the environment. A significant factor impeding measurement of LNAPL has been a rising water table that has been documented from the early 20th century to the end of 2015 (USACE, 2017a; Section 5). Thus, present-day contamination is limited to dissolved constituents in groundwater (e.g., EDB, benzene, and other dissolved fuel constituents; see Figure 1-1), LNAPL that has moved into soil at the boundary of the water table, and soil gas generated from LNAPL, soil, and groundwater which exists at a depth of approximately 500 feet bgs.

The RFI Report describes the nature and extent of each form of contamination in the vadose zone and groundwater (USACE, 2017a). Table 1-1 summarizes the results of the RFI Report (USACE, 2017a) and describes the types of contamination present at the Site, both on-Site and off-Base.

Describing the nature and extent of contamination at the Site requires an understanding of possible chemical and biological transformations of LNAPL constituents, and of the relevant transport processes related to constituent migration. That is, it is important to understand the degradation of organic contaminant(s) through inorganic and biological chemical processes in the environment, and the processes by which contaminant(s) move away from the source area. For example, volatile hydrocarbon (HC) components of LNAPL are biologically degraded in soil pore spaces by indigenous bacteria under both aerobic and anaerobic conditions. This is especially true at the Site, where results of quarterly soil gas monitoring events and the rebound and respiration testing (USACE, 2017a; Section 4) indicate that

aerobic biodegradation is active in many areas of the vadose zone. Biodegradation has played a substantial role in remediating fuel constituents at the Site before, during, and after soil vapor extraction (SVE) operation. The SVE systems generally have the effect of oxygenating areas of high soil vapor concentrations to promote aerobic biodegradation. However, the SVE system has also had a drying effect on the vadose zone that might have limited biodegradation in certain areas (USACE, 2017a; Section 4). Microbial analyses performed on groundwater samples at the Site in 2013 and 2015 (USACE, 2017a; Section 6) indicate that microbial-remediated reductive debromination of EDB is occurring in-situ in groundwater, and that benzene is also being microbially degraded in groundwater.

Additionally, as some fuel HCs are metabolized, enzymes are produced that can facilitate the degradation of halogenated HC additives, such as EDB, that are commonly more resistant to biodegradation. This process is known as co-metabolism. The agreement between independent measures of anaerobic EDB degradation (excess bromide and ethene/ethane) at the Site suggest that large quantities of EDB may have degraded at the Site, possibly aided by the co-metabolism of benzene while microorganisms degraded fuel HCs within the source area and just downgradient of the benzene plume. The fate and transport properties of LNAPL and the specific constituents of LNAPL are discussed in more detail in Sections 5 and 7 of the RFI Report (USACE, 2017a).

1.4 Interim Measures

As mentioned earlier and discussed in detail in the RFI Report, Kirtland AFB has completed a number of interim measures in the source area and is continuing to implement interim measures to address COPCs in soil, soil gas, and groundwater (USACE, 2017a). Interim measures as defined in the Permit include, "actions necessary to minimize or prevent the further migration of contaminants and limit actual or potential human and environmental exposure to contaminants while long-term corrective action remedies are evaluated." These measures are important for the RA because of their role in reducing or eliminating exposure to some of the contaminated media. The following interim measures have been implemented:

- Soil Removal: Three separate excavation events removed a total of 4,822 tons (3,027 cubic yards) of contaminated soil to achieve NMED's residential screening levels (SL; USACE, 2017a; Section 4).
- **Removal of Source Infrastructure:** Removal of the source area pipelines and replacement of fueling infrastructure eliminated the source of the release (USACE, 2017a; Section 2).
- Soil Vapor Extraction: SVE systems operated at the Site from 2003 through 2015. These systems disrupted the transport pathway for soil gas by reducing the mass of volatile contaminants. These SVE systems removed approximately 775,000 equivalent-gallons of jet fuel. Subsequent to deactivation of the SVE system in Quarter (Q) 2 2015, vadose zone soil gas HC concentrations have been returning to spatial patterns reflecting non-flow conditions (USACE, 2017a; Section 4).
- LNAPL Skimmer System and Bioslurping: The LNAPL skimmer system and bioslurping removed most of the floating LNAPL from the water table. This removal limited LNAPL constituents from volatilizing into soil gas or dissolving into groundwater (USACE, 2017a; Section 5). The skimmer system, used from 2007 to 2008, removed approximately 280-gallons of LNAPL. Bioslurping, used from early 2008 until late 2011, removed 225,000 equivalent-gallons of fuel (this number is included in the total amount removed by SVE).

- **Groundwater Treatment System:** The only interim measure operating at the time of this RA is the groundwater treatment system. This system currently includes three off-Base extraction wells which pump groundwater from the dissolved-phase EDB plume to an on-Site treatment facility. This interim measure is designed to collapse, treat, and hydraulically-control the downgradient dissolved-phase EDB plume (USACE, 2017a: Section 6).
- **Groundwater Monitoring:** Continual monitoring of on-Site and off-Base groundwater monitoring wells, and drinking water supply wells prevents exposure to current receptors. This monitoring includes several different types of wells listed below:
 - Groundwater Monitoring Program: One-hundred thirty four groundwater monitoring wells are monitored regulary to delineate the nature and extent of contaminants in groundwater as described in the RFI Report (USACE, 2017a). Shallow and deep sentinel groundwater monitoring wells on-Site and off-Base are sampled quarterly to ensure early detection of potential dissolved COPCs prior to reaching drinking water supply wells. The majority of off-Base public drinking water supply wells are operated by the Water Authority. The two Water Authority wells closest to the dissolved-phase EDB plume are Ridgecrest-3 and Ridgecrest-5 (Figure 1-1). In addition, the United States Geological Survey (USGS) performs monitoring of sentinel wells on a quarterly basis (Figure 1-1).
 - *Kirtland AFB Water Supply Wells:* There are three Kirtland AFB drinking water supply wells AFB (KAFB-003, KAFB-015, and KAFB-016) near the EDB plume, which are monitored monthly when operational to ensure COPCs have not reached the on-Site drinking water supply system (Figure 1-1). All analytical results have been below project SLs. In addition, sentinel groundwater monitoring wells are located between the groundwater contaminant plume and the Kirtland AFB supply wells to provide early detection of contaminants.
 - VA Medical Center Supply Well: The VA Medical Center abuts Kirtland AFB to the north and has one drinking water supply well, which is sampled monthly (Figure 1-1). Analytical results at this location have historically been nondetect or below project SLs for project COPCs. Additionally, there are sentinel groundwater monitoring wells located between the groundwater contaminant plume and the VA Medical center supply well to provide early detection of contaminants.
 - *Privately-owned Irrigation Wells:* There are two privately-owned water supply wells in the vicinity of the plume, which are used primarily for irrigation (Figure 1-1). One of these is sampled quarterly, and results are reported to NMED. All analytical results have been below project SLs. In addition, groundwater monitoring wells are located between these irrigation wells and the EDB plume to provide early detection of contaminants.
- Land Use Controls: Current land use controls (LUC) include general access restrictions for Kirtland AFB and the BFF, and restrictions on intrusive activities within the Site in accordance with the Air Force Work Clearance Request review process. At the direction of NMED, the Office of the State Engineer has restricted the installation of private water supply wells within a 500-foot buffer around the footprint of the dissolved-phase EDB plume. LUCs considered in this RA are discussed in more detail in Section 4.2.

1.5 Organization of this Document

The remainder of this document includes the following:

- Section 2 Overview of the Risk Assessment Process A description of NMED's HHRA and ERA methodologies, including information related to the human health and ecological SLs applied in the RA.
- Section 3 Environmental Data and Data Quality A description of the environmental sampling by which the soil, soil gas, and groundwater data used in the RA were acquired, and how the data were incorporated in the RA.
- Section 4 Human Health Risk Assessment Exposure Assessment This section provides includes identification of potentially complete exposure pathways for soil, soil gas, and groundwater for on-Site and off-Base locations.
- Section 5 Human Health Risk Assessment Risk Characterization This section includes a detailed risk characterization and uncertainty analysis, and presents the conclusions and recommendations of the HHRA.
- Section 6 Ecological Risk Assessment

This section provides the results of the ERA, consisting of Phase I, Phase II Tier 1, and Phase II Tier 2 assessments.

2 OVERVIEW OF THE RISK ASSESSMENT PROCESS

The HHRA and ERA are conducted in accordance with NMED's *Risk Assessment Guidance for Site Investigations and Remediation* (NMED, 2017). NMED's Guidance incorporates readily obtainable Site data and utilizes methods from various EPA RA Guidances. The NMED Guidance is divided into two volumes:

- "Volume 1—Tier I Soil Screening Guidance Technical Background Document" discusses the methodology used to derive chemical-specific soil SLs (SSLs), tapwater SLs (TSLs), and vapor intrusion SLs (VISLs). In addition, guidance is provided to assist in identifying and evaluating appropriate exposure pathways and human or ecological receptors. Finally, it provides generic SSLs, TSLs, and VISLs for chemicals commonly found at contaminated sites based on default exposure parameters under residential and non-residential land use scenarios.
- "Volume 2—Screening Level Ecological Risk Assessments" describes NMED's procedure for the evaluation of ecological risk.

This RA is a screening level RA (SLRA) for both human and ecological receptors. As such, the focus of this SLRA is to evaluate whether 1) potentially complete exposure pathways could exist now or in the future for human or ecological receptors, and 2) to determine whether concentrations of analytes measured in environmental media present a risk to those receptors by comparison to NMED SLs and target risk values (NMED, 2017). SLs are media-specific and scenario-specific contaminant concentrations at or below which exposure would not be expected to result in an unacceptable risk. This SLRA answers the following questions:

- What are the sources, distribution, and concentrations of contaminants in soil, soil gas, and groundwater?
- Who could potentially come in contact with the contaminated soil, water, or air?
- Are the contaminant concentrations high enough to potentially cause an unacceptable risk to humans or ecological receptors (e.g., plants and wildlife)?
- Is further action needed to prevent exposure or cleanup the contamination?

As stated previously, this SLRA has been performed near the end of the investigation stage and while interim measures are being implemented. The objective of a SLRA is simply to indicate whether further evaluation, sampling, or other actions may be necessary (e.g., use of institutional or engineering controls to prevent exposure).

The Permit cites NMED Guidance, which specifies the steps that must be followed to perform a SLRA for both human and ecological receptors. These steps and their location in this RA include:

- Data quality assessment for SLRA (see Section 3)
- Development of human and ecological Conceptual Site Exposure Models (CSEM) to determine complete and incomplete exposure pathways (see Sections 4 and 6)

- Comparison of Site data with SLs and calculation of cumulative risk estimates to determine whether an unacceptable risk to human or ecological receptors from complete or potentially complete exposure pathways exists (see Sections 5 and 6)
- Assessment of uncertainties (see Sections 5.2 and 6.4).

NMED SLs incorporate a number of assumptions. Therefore, it is important to understand how the SLs are used in the SLRA, how they were developed, and why they are protective of human health and the environment. These topics are discussed in the following sections.

2.1 Human Health Risk Assessment

NMED uses a two-step approach for a HHRA. Step 1 involves comparing maximum COPC concentrations to the appropriate NMED-developed SLs. NMED SLs for soil, soil gas, and groundwater have been developed using conservative exposure assumptions. The exposure assumptions used in SL development are more likely to overestimate than underestimate potential risk (NMED, 2017). NMED SLs were derived from equations combining exposure assumptions with toxicity criteria following EPA's preferred hierarchy of toxicological data. NMED also considered different exposure scenarios, such as residential and commercial/industrial, and developed receptor-specific SLs for the different exposure scenarios. Figure 2-1 summarizes NMED's overall HHRA process. Step 1 of the NMED HHRA process uses maximum COPC concentrations and the appropriate media- and receptor-specific SL to calculate cumulative risks to human receptors. These cumulative risk estimates are compared to NMED target risk levels for carcinogenic and non-carcinogenic risks.

If the risk calculations performed using maximum concentrations of each COPC exceed NMED's target risk levels, the next step (Step 2) in the risk evaluation involves development of statistical estimates of average exposure point concentrations (EPCs). Section 3 includes a detailed analysis of the Site data to support calculation of EPCs.

The chemical-specific NMED SLs are based on a 1×10^{-5} target risk for carcinogens (risk of cancer occurrence is 1 in 100,000), or a hazard quotient (HQ) of 1.0 for non-carcinogens. A HQ is the ratio between an estimated exposure concentration (based on site data and exposure assumptions) and a concentration that is not expected to result in an adverse health effect.

2.1.1 Summary of NMED Human Health Screening Levels

NMED SLs are developed for residential, commercial/industrial, and construction exposure scenarios. Routes of exposure include dermal (absorption through skin contact with contaminants in soil or water), inhalation (absorption through the lungs from breathing), and ingestion (absorption through the gastrointestinal tract) exposures as appropriate to the exposure scenario (NMED, 2017). The assumptions NMED used to develop SLs for various exposure scenarios are described below. Section 2 in NMED's Guidance (NMED, 2017) has more detailed descriptions of the methods used to develop NMED SLs. NMED has also developed SSLs related to protection of groundwater from residual contamination in soil. Because near-surface soil remediation is complete and groundwater protection SLs are not employed in the HHRA.

2.1.1.1 Soil Screening Levels for Residential Exposure Scenarios

Residential exposures are assessed with SSLs based on child and adult human receptors. The child receptor is used as the basis for calculating SSLs for non-carcinogenic effects, and both child and adult exposures are used to assess cancer risk over an individual's lifetime. Residential exposure includes three soil exposure pathways: direct ingestion, dermal absorption, and inhalation of volatiles and dust at soil depths ranging from ground surface to 10 feet bgs. A resident is assumed to occupy a home at a site 24 hours per day for 350 days per year for 26 years (NMED, 2017; Section 2). Residential SSLs are incorporated in this HHRA to evaluate exposure to future hypothetical on-site residents and assess the unrestricted use scenario.

2.1.1.2 Soil Screening Levels for Commercial/Industrial and Construction Exposure Scenarios

Non-residential land use exposures include all industrial and commercial land uses and focuses on two types of human receptors: a commercial/industrial worker and a construction worker. These types of workers are representative of on-Site workers. These SSLs are based on adult exposure only. The commercial/industrial worker is assumed to be a long-term (i.e., 25 years) receptor exposed to surface soil (0 to 1 foot bgs) on a regular basis during the work week. The construction worker is assumed to perform instrusive operations (i.e., excavation, trenching, etcetera [etc.]) and be exposed to surface and subsurface soil (i.e., 0 to 10 feet bgs) during the entire workday for a single project of one year's duration (NMED, 2017; Section 2). The application of commercial/industrial and construction scenarios allows for appropriate screening of potential soil exposures for both surface and subsurface soils, respectively, consistent with NMED's Guidance (NMED, 2017).

2.1.1.3 Tapwater Screening Levels

NMED TSLs are used in this HHRA to evaluate risk from exposure to contaminated groundwater. The TSLs are for domestic use (as tapwater) and assume ingestion and dermal contact with contaminants in domestic/household water and inhalation of volatiles through showering or dish washing (NMED, 2017; Section 2). TSLs are used in this HHRA because the fuel contamination is in an aquifer that is currently used by public drinking water systems, although any public supply wells and privately-owned irrigation wells are located outside the impacted area of the aquifer.

2.1.1.4 Vapor Intrusion Screening Levels

Vapor intrusion occurs when soil gas migrates from subsurface media (i.e., soil and/or groundwater) through pore spaces in the vadose zone and building foundations into indoor air, potentially exposing residential and commercial/industrial receptors to volatile COPCs. VISLs have been developed by NMED to address areas where buildings may exist above contaminated soil gas. The VISLs were developed for both soil gas (when the vapor is still in the ground beneath a building) and indoor air (vapor in a building). VISLs are evaluated if 1) there are compounds present in subsurface media that are sufficiently volatile and toxic, and 2) there are existing or planned buildings where exposure could occur. A chemical is considered to be sufficiently volatile if its Henry's Law Constant is 1 x 10⁻⁵ units of moles per cubic meter for air to moles per cubic meter for water or greater and its molecular weight is approximately 200 grams per mole or less. Section 7 of the RFI Report lists the physical properties of contaminants evaluated in the RFI Report and shows that most of the COPCs evaluated in this HHRA are sufficiently volatile (USACE, 2017a). Commercial/industrial and residential soil gas VISLs are used in this HHRA to evaluate exposure to COPCs in soil gas.

2.1.2 Ecological Risk Assessment

Part 6.2.3.7 of the RCRA Permit requires the evaluation of potential ecological risk for any SWMU or AOC where there has been a release of contaminants. As required by the Permit, the ERA follows Volume 2 of NMED's Guidance (NMED, 2017), with additional documents as cited in Section 6. The purpose of the ERA is to evaluate the potential adverse effects that chemical contamination could have on plants and animals on or near the site. Furthermore, it provides a means to organize and present scientific information in a logical format for risk managers (NMED, 2017).

NMED's ERA process includes a Phase I Qualitative Assessment, and a Phase II Quantitative Assessment. Phase II consists of Tier 1 and Tier 2 screening level ERA (SLERA). The Tier 1 SLERA determines whether the site needs to have the toxicity data and risk characterization assessed in more detail. The Tier 2 SLERA findings are used to determine whether the site requires a Quantitative Site-specific Risk Assessment (NMED, 2017).

The Phase I Qualitative Assessment begins with a scoping assessment that reviews the biological and physical properties of the site, including environmental setting, land use, contaminant fate and transport mechanisms, and the area's habitats, ecological receptors, and exposure pathways. This information is used to support development of a preliminary CSEM to determine if ecological risk is possible. If it is, then a Phase II, Tier 1 SLERA is implemented by selecting representative screening ecological receptors and exposure pathways to determine exposure estimates for effects assessment and risk characterization. If warranted, a Phase II, Tier 2 SLERA is implemented, which refines the toxicity assessment using more realistic estimates of exposure, such as maximum, mean and median concentration values, as well as using area use factors to provide a refined risk characterization.

3 ENVIRONMENTAL DATA AND DATA QUALITY

The foundation for any RA is the quality and quantity of data available to determine potential risk. The specific analytes evaluated in this RA are identified in Section 3.1. The data used in the RA include soil data collected on-Site and groundwater and soil gas data collected both on-Site and off-Base; these data are discussed in Section 3.2. Data quality attributes are discussed in Section 3.3, Data Evaluation.

3.1 Selection of Contaminants of Potential Concern

Section 3 of the RFI Report examined the list of sampled analytes throughout the history of Site investigations. NMED's RA Guidance states, "...*identification of contaminants of potential concern should begin with existing knowledge of the process, product, or waste from which the release originated*" (NMED, 2017). Since the sources of contamination at the Site are AvGas, JP-4, and JP-8; the list of fuel-related constituents is known. For the purposes of the RFI Report, a list of fuel-related analytes was developed for soil, soil gas, and groundwater, and referred to in this RA as COPCs (see Table 3-1). It should be noted that not all COPCs were sampled in every medium (e.g., lead is not volatile within the expected temperature and pressure ranges at the Site, and was not analyzed in soil gas samples). In total, there are 20 COPCs across all three media. The list of COPCs differs slightly for soil, soil gas, and groundwater; however, EDB; benzene, toluene, ethylbenzene, and xylenes; naphthalene; 1,2,4-trimethylbenzene (1,2,4-TMB); and 1,2-dichloroethane (1,2-DCA) are common to all three media. Analytes previously removed from sampling suites during optimization of the groundwater monitoring program were not included as COPCs (e.g., the 97 analytes removed from the groundwater monitoring program in 2015 [USACE, 2017a]).These analytes were nondetect and/or below SLs for the previous eight quarters of analysis.

3.2 Environmental Data Evaluated in the Risk Assessment

The following sections describes the environmental data in each media that were evaluated as part of this RA.

3.2.1 Soil

Several separate on-Site soil investigations have been conducted between 2000 and 2014, as described in Section 4 of the RFI Report (USACE, 2017a). Of the different soil samples acquired during this period, two sets of soil data are relevant for assessing potential risk from present-day exposure to soil on-Site: 1) soil data from unexcavated (non-removal) areas proximal to the release area, and 2) post-excavation soil confirmation data collected after the 2014 soil removal (USACE, 2017a). The 2014 post-excavation soil data are particularly relevant to the RA because they provide the most recent shallow soil data within 20 feet of the ground surface. Soil samples collected as part of well installation were not included in this RA because they were collected from soil at depths not relevant for RA, or were part of earlier sample events and represent soil that has been removed.

The soil dataset includes samples from 14 soil boring locations that contained exceedances of the NMED 2012 SSLs, but were not excavated or were only partially excavated during the 2014 excavation activities (USACE, 2017a) and post-excavation confirmation samples collected between 0 to 10 feet bgs. Figures 3-1 and 3-2 illustrate the 14 soil sample locations where excavation was not possible due to existing underground utilities and infrastructure. Sixty-three samples were collected from the sidewalls and floor of the excavation. Twelve additional step-out confirmation samples were collected for semi-volatile organic compounds, 2-methylnaphthalene and naphthalene, when

concentrations exceeded the NMED 2012 SSLs (75 samples total were analyzed for 2-methylnaphthalene and naphthalene). 1-Methylnaphthalene was not included in the analysis for the original 63 confirmation samples, but was included in the method used to analyze the step-out confirmation samples (12 samples total analyzed for 1-methylnaphthalene). The post-excavation sample locations are presented in Figures 3-1 and 3-2 and sample results are summarized in Table 3-4.

Concentrations of COPCs in surface soil collected from 0 to 1 foot bgs are summarized in Table 3-2 and are compared to commercial/industrial worker SSLs in Section 5 per NMED RA Guidance (NMED, 2017).

Concentrations of COPCs in mixed zone soil (i.e., 0 to 10 feet bgs) are summarized in Table 3-3 and were compared to the residential or construction worker SSLs in Section 5 per NMED RA Guidance (NMED, 2017).

3.2.2 Soil Gas

Soil gas data from Q1 through Q3 2016 were used to evaluate the potential risk on-Site and off-Base from exposure to COPCs in soil gas. Soil gas data from three quarters were used in this RA to minimize the effect of the vadose zone stabilizing to natural flow conditions after the shutdown of the approximately 1,800 standard cubic feet per minute catalytic oxidizer SVE system, which occurred in Q2 2015 (USACE, 2017a). Analytical data for Q1 through Q3 2016 is included in the Q4 2016 monitoring report (USACE, 2017b).

Currently, there are 51 soil vapor monitoring (SVM) locations on-Site and five off-Base, as illustrated in Figure 3-3. Sample depth intervals at each location commonly range from a shallow interval with a well screen at 15 to 25 feet bgs to intervals at a depth of approximately 450 feet bgs. Soil gas data from all depth intervals are presented in the RFI Report (USACE, 2017a). However, for the RA, the most relevant data are the on-Site and off-Base shallow soil gas data collected at 15 to 25 feet bgs because these data best represent a potential source term for vapor intrusion into a building.

Of the 56 total locations, 35 have sample intervals at the 15 to 25-foot interval, 31 on-Site and four off-Base. Table 3-4 summarizes on-Site samples evaluated from Q1 through Q3 2016 (93 samples). Table 3-5 summarizes off-Base samples collected from Q1 through Q3 2016 (12 samples). Note that the RFI Report presents soil gas data with units of parts per million by volume, while the RA employs the units used by NMED for VISLs (i.e., micrograms per cubic meter $[\mu g/m^3]$). Soil gas data were converted to $\mu g/m^3$ from parts per billion by volume using the molecular weight of each chemical and a conversion factor of 24.45, which assumes a standard atmospheric pressure of 1 atmosphere and a standard temperature of 25 degrees Celsius. This conversion was performed to facilitate the HHRA by matching NMED soil gas VISL units.

3.2.3 Groundwater

Groundwater data from Q3 and Q4 2015, as presented in the RFI Report, were used to evaluate potential on-Site and off-Base risks from exposure to groundwater (USACE, 2017a). Section 6 of the RFI Report presents the details of the groundwater monitoring program along with the results from the beginning of monitoring in 2000 to the end of 2015 (USACE, 2017a). Tables 3-6 and 3-7 summarize the on-Base and off-Base groundwater datasets used in the HHRA. Thirty-four on-Site wells were sampled in Q3 and Q4 2015 (68 samples). Ninety-seven off-Base wells were sampled in Q3 and Q4 2015 with an additional three off-Site wells installed and sampled in Q4 2015 (197 samples; Figure 1-1).

3.3 Data Quality Evaluation

Data validation reports for soil data collected between Q1 2011 and Q4 2015, soil gas data collected from Q3 2015 through Q3 2016, and groundwater data collected from Q3 through Q4 2015 were completed in accordance with the *Quality Assurance Project Plan (QAPjP) for the Vadose Zone Investigation and Groundwater Investigation Work Plans* (USACE, 2011), and the *Soil Vapor and Drinking Water Monitoring Work Plan* (USACE, 2016), and have been presented in the associated Quarterly Pre-remedy Monitoring Reports. The requirements for data quality, quantity, and usability for the analytical data used in the RFI Report and this RA were specified in the QAPjP associated with each Work Plan. Therefore, these data have been determined to meet the data quality objectives (DQO) requirements in NMED's RA Guidance (NMED, 2017). The foundation for any RA is the quality of data available to determine potential risk. The RFI Report, which was submitted to NMED on January 31, 2017, summarizes all investigation activities and interim measures performed between November 11, 1999 and December 31, 2015. These data were collected during the multiple project investigations, which were performed in accordance with Site-specific Work Plans for each separate sampling event.

This RA uses validated data for the identified COPCs that was collected to support the RFI. Laboratory data flags are included in the project database, and no rejected data were used to evaluate the nature and extent of fuel-related contamination in the RFI Report or in this RA. The inclusion or exclusion of data within the RA, on the basis of analytical qualifiers, was performed in accordance with NMED Guidance (NMED, 2017). Data without qualifiers were retained at the reported concentration. The following procedures were followed if qualifiers were present:

- Analytical results bearing the U-qualifier (indicating that the analyte was not detected at the given reporting limit [RL]) were retained in the dataset and considered nondetects at the given RL.
- Analytical results bearing the J-qualifier (indicating that the reported value was estimated because the analyte was detected at a concentration below the RL or for other reasons), "+" qualifiers (indicating the inorganic reported value may be biased high), and "-" qualifier indicating the reported value may be biased low) were retained at the reported concentration.

If duplicate samples were collected, the following guidelines were employed to select the appropriate sample measurement:

- If both samples show that the analyte was present, the two results were averaged.
- If both samples show nondetect values, the two nondetect RLs were averaged.
- If only one sample indicated that the analyte was present, it was retained in the dataset and the nondetect value was discarded.

If all results for a COPC were nondetect, the COPC was not carried forward for risk characterization in Sections 5 or 6 (See Tables 3-2 through 3-7).

3.3.1 Soil Gas Data Quality Evaluation

The following issues were identified for soil gas data collected from the SVM locations:

- EDB was measured by two analytical methods (EPA method TO-15 and method California Air Resources Board [CARB] 422) and the results were not in agreement.
- Elevated concentrations of acetone and methyl ethyl ketone (MEK) were found in a number of samples.

To ensure the soil gas data used to assess risk met DQOs, each of these potential issues was evaluated further and the results of this evaluation are provided below. Detailed data evaluation reports are included in quarterly data quality evaluation reports. As summarized below and detailed in Attachment 1, these issues were evaluated and the analytical data were determined to be acceptable relative to the data quality indicators.

3.3.1.1 Evaluation of Soil Gas Analytical Methods for EDB

EDB in soil gas was measured in samples collected during SVM by two analytical methods: EPA method TO-15, which is a mass spectrometry detection method, and method CARB 422, which is an electron capture detection method. The TO-15 method has been used for SVM since 2010. The CARB 422 method was added in 2014 with the goal of having a method with a lower EDB detection limit in soil gas than the TO-15 method. However, a detailed assessment of soil gas data by both methods indicates the CARB 422 EDB results are not accurate; therefore, only TO-15 EDB results are used in this RA.

An investigation into the two soil gas methods for EDB is described in Attachment 1. Comparisons of the detection limits for EDB in soil gas by TO-15 and by CARB 422 are documented in a summary memo submitted to NMED in April 2017 (Kirtland AFB [KAFB], 2017). Level IV soil gas data packages and data analyses for EDB revealed a systematic difference in the magnitude of the detected values between the two methods, as well as an increase in the analytical detection limit by CARB 422 method. The following lines of evidence provide the basis for using the TO-15 EDB data in the RA rather than the CARB 422 EDB data:

- Comparison of 408 sample pairs of detected EDB results by CARB 422 and TO-15 showed a very consistent pattern of CARB 422 results two to five times higher than TO-15 results.
- Based on two laboratory control sample analyses performed by the laboratory, it appears the CARB 422 EDB results are biased approximately 1.7 times higher than the TO-15 results.
- Results of an investigation by the analytical laboratory indicate that this bias is at least partly due to improper preparation of the CARB 422 calibration standard prepared in March 2015 and used through November 2016.
- Review of 16 TO-15 analytical data packages confirms the ability of the TO-15 method to detect EDB in the presence of high concentration of other COPCs. TO-15 mass spectra with straight-chain HC mass up to 1,000 times larger than EDB mass were reviewed and determined not to impact EDB identification and quantitation.

- Mass spectrometry (i.e., TO-15) is considered a more definitive identification technique than electron capture detection (i.e., CARB 422) because the generally unique mass fragmentation patterns evaluated by mass spectrometry greatly reduce the chances for misidentification of an analyte and TO-15 is not affected by interference from other halogenated compounds.
- Review of detection limits for EDB in soil gas by TO-15 and CARB 422 indicate that approximately 70 percent (%) of the time, the detection limit (DL) for EDB by TO-15 is lower than that of CARB 422, demonstrating that for most sample locations, TO-15 is the more effective method (KAFB, 2017).

3.3.1.2 Evaluation of Acetone and MEK in Soil Gas

High levels of acetone and MEK were observed in some of the soil gas samples. The presence of these analytes is believed to be related to two sources 1) the polyvinyl chloride (PVC) glue (i.e., Oatey low volatile organic compound [VOC] purple primer) that was used to seal the SVM ports during Q1 2015 and 2) as a byproduct of biodegradation of fuel-related constituents. Acetone and MEK were not evaluated in the RA due to their relationship with these sources.

In the source area (e.g., SVMW-10-250), acetone, and MEK concentrations are similar in pattern to COPCs such as EDB and benzene. Transient production of acetone is generally correlative to sub-oxic, methanogenic environments. It is assumed that acetone production happens before the system becomes fully anaerobic (Mueller, 2011). The Q4 2016 Report (USACE, 2017b), indicates that this process may be occurring in groundwater. Thus, the report concludes persistence of the compound would indicate an active, continuing bioremediation signature. Concentrations of acetone and MEK in anaerobic areas of the vadose zone indicate this process may also be ongoing in the source area of the vadose zone.

In locations outside of the source area (e.g., KAFB-106141-250), the presence of acetone is consistent with the use of a PVC glue used to seal the sample ports in Q1 2015. This conclusion is supported by the presence of acetone and MEK in the primer and the temporal patterns of these constituents in the soil vapor monitoring points (SVMPs) data from this period. The highest concentrations of acetone and MEK were detected in the Q3 2015 soil gas data, which was the first quarter of data collected after the SVM locations were sealed. Review of chromatograms provided by the analytical laboratory demonstrates identification and quantification of the COPCs by EPA Method TO-15 was not otherwise affected by high concentrations of acetone and MEK. Soil gas data from Q1 through Q3 2016 were used in this RA.
4 HUMAN HEALTH EXPOSURE ASSESSMENT

The exposure assessment evaluates the magnitude, frequency, and duration of exposure of human receptors to contaminated media affected by site activities. A key component of the exposure assessment is the CSEM, which is based on the CSM (Section 7) described in the RFI Report (USACE, 2017a). The HHRA CSEM illustrates the potential exposure pathways by which humans could be exposed to contaminants at a site. As discussed in Section 3.1, this exposure assessment focuses on COPCs identified in the RFI Report that are related to the fuel released at the Site (USACE, 2017a).

Exposure pathways begin at source areas and progress through the environment via various fate and transport processes to potential human receptors. Schematic renderings of the on-Site and off-Base human health CSEMs are shown in Figures 4-1 and 4-2, respectively. The RFI CSM (USACE, 2017a; Section 7) sets forth the potential source areas and contaminant migration pathways. The following section details the site exposure setting and potential human receptors. A completed exposure pathway requires the following four components:

- Source and mechanism of chemical release to the environment
- Environmental transport medium for the released chemical
- Point of potential human contact with the contaminated medium
- Human uptake route at the point of exposure.

All four components must exist for an exposure pathway to be complete (or potentially complete in the future) and for exposure to occur. Incomplete exposure pathways do not result in actual exposure and are not evaluated in the risk characterization. If the exposure pathway is incomplete, there is no risk to human receptors. Complete and potentially complete exposure pathways are carried forward and evaluated in the HHRA (Section 5, Human Health Risk Characterization) to determine whether there is a potential unacceptable risk to human health.

4.1 Land Use

NMED Guidance (NMED, 2017) requires plausible exposure under both current and future land use be evaluated in the HHRA. Therefore, an understanding of current and future land use is important to accurately determine the human receptors that may be present at the Site currently or in the future. Both on-Site and off-Base land use are evaluated in the vicinity of the BFF. Human receptors are discussed in Sections 4.3 and 4.4.

4.1.1 On-Site Land Use

Kirtland AFB is an active military installation, and is expected to remain active for the foreseeable future. According to the current Kirtland AFB's Installation Development Plan, the Site is located within the "Flightline District." The Flightline District is primarily industrial, with facilities and land use dedicated to the support of airfield operations. This includes the BFF, which is where the Site source area is located on-Site. As a result, current and anticipated future land use is primarily industrial for the Site, with limited, restricted administrative use (KAFB, 2016). No transfer of military property to the public is anticipated near the Site. Twelve buildings have been identified within and adjacent to the BFF (Table 4-1). Of these 12, only four are occupied on a regular basis. Only three of those four (Buildings 1044, 1049, and 1055) are occupied full time, and consistent with the NMED commercial/industrial exposure scenario, which assumes exposure to workers eight hours a day, five days a week, 45 weeks a year for 25 years (NMED, 2017).

4.1.2 Off-Base Land Use

Figure 1-1 shows the delineation of the benzene and EDB groundwater plumes off-Base. Current land use and expected future land use above the impacted groundwater plume north of the Kirtland AFB property line (Figure 1-1) is zoned majority residential with limited commercial zoning (City of Albuquerque, 2017a).

Off-Base soil gas contamination has been measured in a smaller area than the footprint of the off-Base groundwater plume, and includes the area of Bullhead Park, the VA Medical Center parking lot, and the Air Force-owned open space. Land use in the off-Base area adjacent to the Site and overlying the vapor plume is not expected to change in the future. Land use above the area of the off-Base soil gas plume includes areas zoned as residential. It is important to note there are currently no residential or industrial buildings in the area of the off-Base soil gas plume; the majority of the area is comprised of Bullhead Park. Since the area adjacent to Bullhead Park is already established and densely developed, it is unlikely land use will change significantly in the foreseeable future. Per the City of Albuquerque, the area is zoned RA-1, which requires a minimum of 20,000 square feet of open space per dwelling unit (City of Albuquerque, 2017a). In addition, although the City of Albuquerque websites show plans for redevelopment of commercial areas north of Bullhead Park, there are no planned changes to Bullhead Park or to the residential areas (City of Albuquerque, 2017b). The large open area to the northeast, between Bullhead Park and the residential areas (Figure 3-3), is owned by the Air Force and the Air National Guard.

4.1.3 Groundwater Use

Groundwater used by on-Site workers, and on-Site residents originates from two sources as discussed in the RFI Reprt (USACE, 2017). Kirtland AFB groundwater drinking water supply wells are used for offices, irrigation, and industrial purposes, and 2) the Water Authority supplies potable water for on-Site residential housing (USACE, 2017a). There are seven Kirtland AFB drinking water supply wells in the Albuquerque Basin screened at depths of 450 to 1,000 feet bgs. The three Kirtland AFB drinking water supply wells (KAFB-003, KAFB-015, and KAFB-016) closest to the groundwater plume are monitored monthly for potential groundwater contamination. KAFB-016 has not been operational for the last few years due to ongoing repairs; however, it is scheduled to resume operation in the summer of 2017. All analytical results have been below project SLs. In addition, sentinel groundwater monitoring wells are located between the groundwater contaminant plume and the Kirtland AFB supply wells to provide early detection of contaminants.

Off-Base groundwater in the vicinity of the Site originates from three sources: Water Authority supply wells, one VA Medical Center water supply well, and two privately-owned irrigation wells. The majority of off-Base public drinking water supply wells are operated by the Water Authority. The two Water Authority wells closest to the dissolved-phase EDB plume are Ridgecrest-3 and Ridgecrest-5 (Figure 1-1). Drinking water wells used by the Water Authority for its customers are screened at a depth of approximately 1,000 feet, which is significantly deeper in the aquifer than the contaminant plume. Shallow and deep sentinel groundwater monitoring wells on-Site and off-Base, and USGS sentinel wells are sampled quarterly to ensure early detection of potential dissolved COPCs prior to reaching drinking water supply wells (Figure 1-1).

The VA Medical Center drinking water well, located approximately 750 feet west of the estimated plume boundary, is also screened at a depth of approximately 1,000 feet bgs. This VA Medical Center drinking water well has not had any contaminant detections above SLs to-date and is sampled monthly. Additionally, there are sentinel groundwater monitoring wells located between the groundwater contaminant plume and the VA Medical Center supply well to provide early detection of contaminants.

The two privately-owned water supply wells in the vicinity of the plume are used primarily for irrigation (Figure 1-1). One of these wells is sampled quarterly, and concentrations of all analytes have been below SLs since sampling began in 2008. Results of the sampling events are reported quarterly to NMED.

4.2 Land Use Controls

Knowledge of the existing LUCs is important to develop the CSEM because LUCs can limit exposure of current human receptors to contamination. LUCs include physical, legal, or administrative mechanisms restricting the use of, or limiting access to, real property to prevent or reduce risks to human health and the environment. This HHRA incorporates current LUCs to evaluate current/future industrial exposure; however future residential scenarios assume an unrestricted scenario, to include the removal of all LUCs.

Access to Kirtland AFB (and the Site) is restricted by control gates manned by security forces 24 hours per day. All qualifying unescorted personnel are required to be registered in the defense identification system using REAL ID (REAL ID Act of 2005) criteria. In addition, the BFF itself has limited access and egress. The Kirtland AFB BFF enclosure includes a fenced area with signage and an automated gate, which limits access to authorized personnel with an appropriate code. Personnel must have approval from the Base Wing Commander to work inside the BFF. Additionally, there is on-Site signage, and utilities in the BFF are marked to prevent potential damage during digging and subsurface access is limited.

Administrative procedures are in place to manage activities to prevent exposure to contaminants. All work performed on-Site, including within the BFF, must have prior approval on an Air Force Form 332. If the proposed work requires digging or other land disturbance, it must be further reviewed through the Air Force Form 103, Base Civil Engineering Work Clearance Request. As part of this land disturbance review process, the location of buried utility lines and areas of contamination are identified and steps are outlined to control the disturbance of contaminated soils.

Off-Base institutional controls include City of Albuquerque zoning as discussed in Section 4.1. In addition, at the direction of NMED, the Office of the State Engineer has restricted the installation of private water supply wells within a 500-foot buffer around the footprint of the dissolved-phase EDB plume. This restriction ensures contaminated groundwater exposure pathways to private well owners remain incomplete.

4.3 On-Site CSEM

The on-Site CSEM is shown in Figure 4-1. The LUCs discussed in Section 4.2 are incorporated in the CSEM to determine whether exposure pathways are complete or potentially complete under the current/future commercial/industrial and construction worker scenarios. The future hypothetical residential scenario, although unlikely, assumes no action (to include any LUCs) will be performed to reduce exposure.

4.3.1 On-Site Human Receptors

Based on the Kirtland AFB land uses discussed in Section 4.1, the following receptors were identified on-Site who may be exposed to contaminated media:

- Current/future commercial/industrial workers who support daily activities at the BFF. Since the replacement and automation of the fueling infrastructure in 2011, operational activities at the BFF are greatly reduced.
- Future construction workers who may engage in intrusive construction or excavation activities at the BFF. Although there is no current active construction at the BFF, construction may occur in the future to repair or replace existing infrastructure.
- Future hypothetical residents within the BFF. Although unlikely, this scenario addresses changes in on-Site land use at the BFF to include future on-Site housing. This scenario informs risk management decisions for consideration of unrestricted use and assumes no actions (to include LUCs) will be taken to reduce exposure.

4.3.2 On-Site Exposure Pathways

The following sections describe the complete, potentially complete, and incomplete exposure pathways to contaminated media on-Site for receptors evaluated quantitatively in the HHRA. As illustrated in Figure 4-1, exposure pathways to both current and future human receptors are evaluated. The current LUCs in place on-Site restrict or reduce exposure to contaminated media in some cases.

4.3.2.1 On-Site Soil Exposure Pathways

As discussed in Section 3, contaminated soil was removed to 20 feet bgs during the 2014 excavation event. Contaminated soil deeper than 20 feet bgs is considered inaccessible to human receptors. However, contaminated soil at 14 locations in the BFF was not removed due to existing infrastructure and utilities.

Runoff and erosion from contaminated surface soil to surface water is not expected to result in any complete exposure pathways for human receptors. It is highly unlikely surface water is introducing appreciable amounts of contaminated surface soil into the storm water system because 1) topography at the Site is relatively flat and 2) the majority of surface water at the Site either evaporates or infiltrates into the soil (USACE, 2017a). The amount of unexcavated surface soil (approximately 700 square feet) would have a negligible contribution to surface water runoff at the BFF.

Current/Future Commercial/Industrial Worker – Surface Soil (0 to 1 foot bgs): A complete exposure pathway exists for surface soil and dust to both current and future commercial/industrial workers at the BFF (Figure 4-1). As discussed in Section 2, the commercial/industrial worker is assumed to be a long-term receptor exposed to surface soil (0 to 1 feet bgs) on a regular basis during the work week. A limited amount of impacted surface soil was left in place following the 2014 excavation. The commercial/industrial worker is not expected to perform intrusive activities in these areas but may visit these areas during regular work activities. Currently, there are no LUCs in place to prevent commercial/industrial workers from encountering contaminated surface soil, or dust blown from surface soil by wind, therefore, direct contact with surface soil for the commercial/industrial worker is considered a complete exposure pathway. The current/future commercial/industrial worker was evaluated for exposure to surface soil via ingestion, dermal contact, and inhalation of volatiles and particulates in dust.

Future Construction Worker – **Mixed Zone Soil (0 to 10 feet bgs):** The construction worker is assumed to be exposed to mixed zone soil (0 to 10 feet bgs) during the entire workday for a single project of one year's duration (NMED, 2017; Section 2). As described in Section 4.2, LUCs at Kirtland AFB currently prevent intrusive work without prior review and approval. However, under a future unrestricted use scenario, construction activities may be performed to repair or replace existing infrastructure or for redevelopment. Therefore, exposure pathways from mixed zone soil and dust to future construction workers are potentially complete. The future construction worker was evaluated for exposure to mixed zone soil via ingestion, dermal contact, and inhalation of volatiles and particulates in dust.

Future Hypothetical Residents – Mixed Zone Soil (0 to 10 feet bgs): There are currently no residential homes on-Site. However, the future on-Site residential scenario is evaluated to inform risk management decisions and assumes unrestricted use. The future residents are assumed to be adults and children in contact with soil at depths from 0 to 10 feet bgs. A resident is assumed to occupy a home on-Site 24 hours per day for 350 days per year for 26 years (Section 2). Under this scenario, exposure pathways from mixed zone soil and dust to future residential homeowners are potentially complete (Figure 4-1). The future hypothetical resident was evaluated for exposure to mixed zone soil via ingestion, dermal contact, and inhalation of volatiles and particulates in dust.

Concentrations of COPCs in on-Site soil are evaluated in Section 5 to determine whether there is an unacceptable risk to current or future receptors at the BFF from complete or potentially complete exposure pathways.

4.3.2.2 On-Site Soil Gas (Vapor Intrusion) Exposure Pathways

COPCs can volatilize from on-Site contaminated soil or groundwater into soil gas, which can migrate into indoor air spaces if buildings are present. The migration of vapors from subsurface sources to indoor air within buildings is defined as vapor intrusion. As shown in Figure 4-1, COPCs could

volatilize from contaminated groundwater or subsurface soil. However, the water table is located at 480 feet bgs and vapors from groundwater are not expected to migrate from the top of the water table upwards to ground surface (EPA, 2012). The primary soil gas exposure pathway is the volatilization of COPCs in impacted subsurface soil to indoor air vai vapor intrusion.

Inhalation of VOCs released from soil gas to ambient (outdoor) air was considered a potentially complete but insignificant exposure pathway for all human receptors. It is unlikely appreciable amounts of contaminated soil gas are being released into the ambient air from subsurface soil on-Site because 1) almost no contaminated soil remains near the ground surface (i.e., within 20 feet of ground surface) to provide a continual source and 2) any such releases would be immediately diluted. The leaking underground pipes were decommissioned in 1999 and removed in 2010; the majority of the impacted soil has been excavated to 20 feet bgs. Volatile COPCs in soil at 0 to 10 feet were addressed as a soil exposure pathway as described in Section 4.3.2.1.

Soil gas exposure pathways for human receptors evaluated in the RA are discussed below.

Current/Future Commercial/Industrial Worker: A potentially complete vapor intrusion exposure pathway exists from soil gas to indoor air within existing buildings for current/future commercial/industrial workers at the BFF. Although there is a limited number of occupied buildings at and adjacent to the BFF (Section 4.1), there are currently no actions or LUCs in place addressing vapor intrusion specifically. The current/future commercial/industrial worker was evaluated for exposure via inhalation to COPCs in soil gas, which could be present in indoor air due to vapor intrusion.

Future Construction Worker: Because construction workers are assumed to perform all work outside, no complete exposure pathway exists for future construction workers for indoor air via vapor intrusion. Construction workers are assumed to be outdoor workers. A potentially complete exposure pathway may exist for soil gas to outdoor air within a trench. Concerns about construction worker exposure to soil gas within a trench will be captured qualitatively through the evaluation of the vapor intrusion to indoor air pathway for the current/future commercial/industrial workers in Section 5.

Future Hypothetical Resident: There are no current on-Site residential receptors within the BFF. However, should land use change in the future, residential homes could be constructed on-Site. Therefore, a potentially complete vapor intrusion exposure pathway exists from soil gas to indoor air within future residential buildings at the BFF (Figure 4-1). The future hypothetical on-Site resident was evaluated for exposure via inhalation to COPCs in soil gas, which could be present in indoor air due to vapor intrusion.

Concentrations of COPCs in on-Site soil gas are evaluated in Section 5 to determine whether there is an unacceptable risk to current or future receptors at the BFF from complete or potentially complete exposure pathways.

4.3.2.3 On-Site Groundwater Exposure Pathways

As shown in Figure 4-1, released LNAPL migrated through contaminated soil to groundwater underlying the Site. As discussed in Section 1.4, and Section 4.1.3, the active interim measures in place cause the exposure pathway to current groundwater receptors to be incomplete.

Future Users of Groundwater On-Site: To inform risk management decisions the HHRA assumed that a drinking water supply well could be installed within the on-Site portion of the contaminant plume. Therefore, direct contact pathways for groundwater were considered potentially complete, to include ingestion, dermal contact, and inhalation of volatiles during household use (such as showering or dishwashing). A second hypothetical future scenario is a future industrial worker. However, the NMED TSLs are developed to evaluate residential receptors, and assume higher exposure than that of a worker. Thus the TSLs are sufficiently protective of workers.

Concentrations of COPCs in groundwater are evaluated in Section 5 to determine whether there is an unacceptable risk to future receptors should water supply wells be installed in the contaminated portion of the aquifer based on complete or potentially complete exposure pathways.

4.4 Off-Base CSEM

The off-Base CSEM is shown in Figure 4-2. The land use and LUCs discussed in Sections 4.1 and 4.2 are incorporated in the CSEM to determine where exposure pathways are complete, potentially complete, or incomplete for the identified human receptors.

4.4.1 Off-Base Human Receptors

Based on the off-Base land uses discussed in Section 4.1, there are three types of human receptors that may be exposed to contaminated media:

- 1. Current/future recreational users at Bullhead Park or the Air Force-owned open space.
- 2. Future hypothetical off-Base residents in the footprint of Bullhead Park or the Air Force-owned open space, should land use change in the future. The City of Albuquerque has no plans to change the use of Bullhead Park, and there are currently no residential buildings present, however consideration of a future residential scenario provides information for consideration of unrestricted use.
- 3. Future users of groundwater Off-Base: Although interim measures are in place to prevent exposure to contaminated groundwater, the HHRA assumed a a drinking water supply well could be installed within the off-Base portion of the contaminant plume. Therefore, direct contact pathways for groundwater were considered potentially complete, to include ingestion, dermal contact, and inhalation of volatiles during household use (such as showering or dishwashing).

Although current/future residents north of Ridgecrest and current/future commercial/industrial workers (i.e., VA complex) were not evaluated quantitatively in the RA, consideration of the future hypothetical residents at Bullhead Park conservatively assesses these scenarios. Bullhead Park is located nearest to the contamination and is expected to have higher concentrations compared to the Ridgecrest area or the VA complex, thus estimated exposure is maximized with consideration of the future hypothetical resident at Bullhead Park.

4.4.2 Off-Base Exposure Pathways

The following sections describe the complete, potentially complete, and incomplete exposure pathways to contaminated media off-Base for receptors evaluated quantitatively in the HHRA. As illustrated in Figure 4-2, the exposure media present off-Base are limited in comparison to the on-Site exposure media. There is no contaminated surface (0 to 1 feet bgs) or mixed zone (0 to 10 feet bgs) soil off-Base. All soil exposure pathways were considered incomplete for off-Base receptors.

4.4.2.1 Off-Base Soil Gas (Vapor Intrusion) Exposure Pathways

Contaminated groundwater has migrated off-B. COPCs in groundwater could volatilize and migrate upward through the subsurface to indoor air if buildings are present. However, the water table is located at 480 feet bgs, therefore vapors from groundwater are not expected to migrate from the top of the water table upwards to the ground surface over this distance (EPA, 2012). The primary vapor intrusion exposure pathway is the volatilization of COPCs from impacted subsurface soil remaining on-Site in the area adjacent to the Base (i.e., Bullhead Park).

Current/Future Recreational Users: There are no occupied buildings in Bullhead Park or in the Air Force-owned open space. The vapor intrusion pathway from soil gas to indoor air is incomplete for current/future recreational users.

Future Hypothetical Off-Base Residents: While the City of Albuquerque has no plans to change the use of Bullhead Park, it is possible that this area could become residential in the future. If Bullhead Park was converted to residential use in the future, the exposure pathway from soil gas to indoor air could be potentially complete due to horizontal soil gas migration. The future hypothetical resident at Bullhead Park was evaluated for exposure via inhalation to COPCs in soil gas, which could be present in indoor air due to vapor intrusion. The amount of soil gas at the shallow depths where garden plant roots would be found is negligible, therefore uptake of COPCs in soil gas via plant was considered an incomplete pathway.

The concentrations of COPCs in off-Base soil gas are evaluated in Section 5 to determine whether there is an unacceptable risk to future residents from this potentially complete exposure pathway.

4.4.2.2 Off-Base Groundwater Exposure Pathways

As shown in Figure 1-1, contaminated groundwater has migrated off-Base in the direction of groundwater flow resulting in a plume that extends off-Base. Figure 4-2 illustrates the complete, potentially complete, and incomplete exposure pathways for groundwater for each human receptor.

Current/Future Recreational Users: The depth to groundwater is approximately 480 feet bgs, therefore, there is no potential for contact with groundwater at Bullhead Park. Water for drinking fountains and landscape irrigation at the park is provided by the Water Authority (City of Albuquerque, 2015). As a result, the exposure pathways for a current/future recreational user at Bullhead Park is considered incomplete for groundwater.

Future Users of Groundwater Off-Base: Although interim measures are in place to prevent exposure to contaminated groundwater, the HHRA assumed a a drinking water supply well could be installed within the off-Base portion of the contaminant plume. Therefore, direct contact pathways for groundwater were considered potentially complete, to include ingestion, dermal contact, and inhalation of volatiles during household use (such as showering or dishwashing).

There are no Water Authority drinking water supply wells installed in the impacted portion of the off-Base groundwater plume. Therefore, groundwater exposure pathways are incomplete for current off-Base receptors.

Concentrations of COPCs in groundwater are evaluated in Section 5 to determine whether there is an unacceptable risk to future receptors should water supply wells be installed in the contaminated portion of the aquifer based on complete or potentially complete exposure pathways.

5 HUMAN HEALTH RISK CHARACTERIZATION

Risk characterization evaluates information pertaining to potential exposures of human receptors to contamination and the health effects for the COPCs identified in soil, soil gas, and groundwater (Section 3.1). Exposure pathways for these media are described in Section 4; complete or potentially complete exposure pathways for current and future human receptors were evaluated quantitatively. The risk characterization for the complete and potentially complete exposure pathways is provided in Section 5.1. Key uncertainties related to the risk characterization are discussed in Section 5.2. Conclusions of the human health risk characterization are discussed in Section 5.3.

5.1 Human Health Risk Assessment

Human health risks were estimated for the receptors and exposure pathways identified as complete or potentially complete in Section 4. Risk characterization was performed using the following steps:

- 1. Appropriate NMED SLs based on exposure media (e.g., soil, soil gas, groundwater) and appropriate receptor (e.g., residential, commercial/industrial, or construction worker) were identified:
 - On-site soil concentrations for COPCs were compared to commercial/industrial, construction worker, and residential SSLs.
 - On-Site soil gas concentrations for COPCs were compared to commercial/industrial and residential soil gas VISLs.
 - Off-Base soil gas concentrations were compared to residential soil gas VISLs.
 - Both On-Site and Off-Base groundwater concentrations were compared to residential TSLs.

If NMED screening levels were not available, EPA regional screening levels (RSLs; EPA, 2016) were used. Carcinogenic RSLs were adjusted to NMED's target cancer risk of one in 100,000 (10⁻⁵). As noted in Section 2, NMED SLs represent environmental concentrations at or below which further action is not warranted under the indicated land use.

Maximum detected concentrations in each media were screened against the appropriate COPCs.

- 2. COPC-specific and cumulative cancer risks and hazard indices (HI) were calculated using the maximum concentration of each COPC as described in NMED, 2017.
 - For carcinogenic COPCs, the maximum concentration was divided by the appropriate SL and multiplied by 1×10^{-5} to derive a COPC-specific cancer risk. The cancer risks for each COPC in an exposure media were then summed for each receptor to provide the total estimated cancer risk. The sum was compared to the NMED target cancer risk level of 1×10^{-5} (NMED, 2017).

- For a non-carcinogenic COPC, a COPC-specific HQ was calculated by dividing the maximum concentration by the appropriate SL. The HQs for each COPC in an exposure media were summed for each receptor to obtain a total estimated HI. The HI was compared with the NMED target HI of 1 (NMED, 2017).
- If a COPC had both carcinogenic and non-carcinogenic effects, it was included in both the carcinogenic and non-carcinogenic risk calculations.
- 3. If the total cancer risk estimate or the total HI calculated using the maximum concentrations in an exposure medium the NMED target values, then further risk characterization was performed. In accordance with NMED Guidance (2017), EPCs were calculated in these cases. The total cancer risk and the total HI were then recalculated using the EPCs in place of the maximum concentration as described in Step 2 above.

Statistic-based EPCs were derived to quantify concentrations of COPCs in media. For the HHRA, the EPC represents the COPC concentration in a media that a potential receptor is expected to contact over a designated exposure period (NMED, 2017). COPCs concentrations, as discussed in Section 3.3, were used to calculate the 95th percentile upper confidence limit of the mean (95UCL) when the total cancer risk and HI for an exposure medium exceeded the NMED target levels.

In accordance with NMED Guidance (2017) EPCs were only calculated if the dataset for a COPC contained at least eight results with at least five detections. If a dataset contained nondetects, each nondetect was assigned a numerical value equal to its reporting limit. If an analyte was not detected in any samples, then it was not carried forward in the risk calculations. 95UCLs were calculated using the EPA's ProUCL 5.1 software. ProUCL performs distributional tests on the dataset for each COPC and calculates the most appropriate UCL based on the distribution of the dataset. The ProUCL program recommends a distribution and a value for the 95UCL, or the 99UCL as appropriate. The input and output data files for ProUCL calculations for each site are provided as Attachment 2.

5.1.1 Soil

Complete or potentially complete soil exposure pathways were identified in Section 4 for current/future on-Site industrial workers, future construction workers, and future hypothetical on-Site residents. No complete or potentially complete exposure pathways were identified for off-Base receptors for soil, as no contaminated soil exists off-Base at 0 to 10 feet bgs.

5.1.1.1 On-Site Soil Risks

As discussed in Section 3, both surface (0 to 1 foot bgs) and mixed zone soil (0 to 10 feet bgs) datasets were evaluated in this RA. The maximum detected concentrations of COPCs in surface soil and subsurface soil did not exceed NMED commercial/industrial, construction worker, or residential SSLs. Benzene and ethylbenzene were the only carcinogenic COPCs detected in soil samples collected from 0 to 10 feet bgs.

The maximum detected concentration of lead in soil at 0 to 10 feet bgs was 71 milligrams per kilogram (mg/kg), which is below the NMED SSL of 400 mg/kg.

Current/Future Commercial/Industrial Worker - Surface Soil (0 to 1 foot bgs): The total cancer risk and HI was calculated using the maximum concentrations for each COPC as shown in Tables 5-1 and 5-2, respectively. The total cancer risk was 2×10^{-10} , which is below NMED's target cancer risk level of 1×10^{-5} (Table 5-1). The total non-carcinogenic HI was 4×10^{-5} , which is below NMED's target HI of 1 (Table 5-2). The risk estimates indicate there is no unacceptable risk to current/future commercial/industrial workers at the BFF based on exposure to surface soil. No further risk evaluation was performed.

Future Hypothetical On-Site Resident – Mixed Zone Soil (0 to 10 feet bgs): Currently no residential homes exist at the BFF, and there are no plans to change land use from industrial to residential. However, should land use change in the future, a residential scenario was considered to inform the risk management process (Section 4). The total cancer risk and HI was calculated using the maximum concentrations for each COPC as shown in Tables 5-3 and Table 5-4, respectively. The total cancer risk was 8 x 10^{-8} , which is below NMED's target cancer risk level of 1 x 10^{-5} (Table 5-3). The total non-carcinogenic HI was 0.2, which is below NMED's target HI of 1 (Table 5-4). The risk estimates indicate there is no unacceptable risk to future hypothetical on-Site residents at the BFF based on exposure to mixed zone soil at 0 to 10 feet bgs. No further risk evaluation was performed.

Future Construction Worker – Mixed Zone Soil (0 to 10 feet bgs): Current LUCs prevent intrusive work at the BFF without prior review and approval. The future construction worker scenario evaluates the case where the existing LUCs are removed. The total cancer risk and HI was calculated using the maximum concentrations for each COPC as shown in Tables 5-5 and Table 5-6, respectively. The total cancer risk was 3 x 10^{-9} , which is below NMED's target cancer risk level of 1 x 10^{-5} (Table 5-5). The total non-carcinogenic HI was 0.04, which is below NMED's target HI of 1 (Table 5-6). The risk estimates indicate there is no unacceptable risk to future construction workers at the BFF based on exposure to mixed zone soil at 0 to 10 feet bgs. No further risk evaluation was performed.

5.1.1.2 Off-Base Soil Risk

No contaminated soil is present off-Base at depths of 0 to 10 feet bgs. Contaminated soil is confimed to the on-Site portion of the BFF. There are no complete exposure pathways for soil for any off-Base receptor.

5.1.2 Soil Gas

Complete and potentially complete soil gas exposure pathways via vapor intrusion to indoor air were identified in Section 4 for current/future on-Site commercial/industrial workers and future hypothetical on-Site residents - via vapor intrusion to indoor air.

No occupied buildings exist off-Base in the area of soil gas contamination, therefore there are currently no complete exposure pathways for soil gas. Although no residences are located in the area of soil gas contamination, in order to address potential changes in land use in the future, vapor intrusion to indoor air was considered a potentially complete pathway for a future hypothetical off-Base resident at Bullhead Park.

5.1.2.1 On-Site Soil Gas

Maximum detected concentrations in soil gas were compared to the NMED commercial/industrial or residential soil gas VISLs as appropriate. The cancer risk and noncancer HI were calculated using maximum detected concentrations and EPCs based on 95UCLs for the current/future commercial/industrial worker and the future hypothetical on-Site resident as described below.

Current/Future Commercial/Industrial Worker: The total cancer risk was calculated using the maximum detected concentrations for each COPC as shown in Table 5-7. The calculated total cancer risk was 6×10^{-5} , which exceeds NMED's target cancer risk level of 1×10^{-5} . Primary contributors to the total cancer risk were EDB and naphthalene, which had maximum detected concentrations that exceeded the commercial/industrial soil gas VISLs. Based on the exceedance of the NMED target cancer risk level, total cancer risk was further evaluated using EPCs based on the 95UCL. As shown in Table 5-8, the calculated total cancer risk based on the EPCs is 4×10^{-6} , which is below NMED's target cancer risk level of 1×10^{-5} .

The EPC represents the COPC concentration in a media that a potential receptor is expected to contact over a designated exposure period (NMED, 2017). To ensure that the calculated EPC was appropriately conservative, concentrations of EDB and naphthalene were evaluated in comparison to the commercial/industrial soil gas VISLs and occupied buildings. Figure 5-1 illustrates EDB concentrations in soil gas at 25 feet bgs in 2016. Only one detection from Q1 through Q3 2016 exceeded the EDB commercial/industrial soil gas VISL of 7.65 μ g/m³. This was a detection of 24 μ g/m³ at KAFB-106119-25 in Q2 2016. All other detected concentrations were below the SL. Figure 5-2 illustrates naphthalene concentrations in soil gas at 25 feet bgs in 2016 exceeded the commercial/industrial soil gas VISL of 135 μ g/m³. This was a detection of 257 μ g/m³ at KAFB-106128-25 in Q2 2016. Neither of the detections exceeding screening criteria were located within 100 feet of occupied buildings. The soil gas results indicate that employing the EPCs is appropriately conservative to evaluate potential risk from on-Site soil gas.

As shown on Table 5-9, the calculated HI based on the maximum detected COPC concentrations was 0.2, which is below NMED's target HI of 1.

Based on the total cancer risk estimate and HI, there is no unacceptable risk for current/future on-Site commercial/industrial workers due to exposure to soil gas via vapor intrusion to indoor air.

Future Hypothetical On-Site Resident: The total cancer risk was calculated using the maximum detected concentrations for each COPC as shown in Table 5-10. The calculated total cancer risk was 3×10^{-4} , which exceeds NMED's target cancer risk of 1×10^{-5} . Primary contributors to the total cancer risk were EDB, benzene, and naphthalene, which had maximum detected concentrations that exceeded the residental soil gas VISLs. Based on the exceedance of the NMED target cancer risk level, total cancer risk was further evaluated using EPCs based on the 95UCL. As shown in Table 5-11, the calculated total cancer risk based on the EPC is 2×10^{-5} , which slightly exceeds NMED's target cancer risk level of 1×10^{-5} .

As shown in Table 5-12, the calculated HI based on the maxium detected COPC concentrations was 0.9, which is below NMED's target HI of 1.

No residents are located on-Site at the BFF and land use is not expected to change from industrial in the foreseeable future. Estimated cancer risks for a future hypothetical resident exceed the NMED cancer risk target level.

5.1.2.2 Off-Base Soil Gas

Currently no residences are located near the off-Base soil gas contamination, which mainly underlies Bullhead Park, the VA Medical Center parking lot, and the Air Force-owned open space. However, if future land use were to change, consideration of a residential scenario provides information for risk management decisions and unrestricted use considerations. Maximum detected concentrations of COPCs in off-Base soil gas were compared to residential soil gas VISLs. The maximum detected concentrations of COPCs in off-Base soil gas did not exceed residential soil gas VISLs.

Future Hypothetical Off-Base Resident (Bullhead Park): The total cancer risk and HI was calculated using the maximum concentrations for each COPC as shown in Tables 5-13 and 5-14, respectively. The calculated total cancer risk based on the maximum detected concentrations was 2×10^{-6} , which is below NMED's target cancer risk level of 1×10^{-5} . The calculated total HI from the maximum COPC concentrations was 0.04, which is below NMED's target HI of 1.

Therefore, there is no unacceptable risk to a future hypothetical off-Base resident at Bullhead Park from the vapor intrusion pathway (soil gas to indoor air). Consideration of a residential scenario is conservative and protective of current receptors located farther from the areas of contamination, such as residents north of Ridgecrest, and visitors and workers at the VA Complex. Under the residential scenario, exposure is assumed to be 24 hours per day at the site, 350 days per year, for 26 years.

5.1.3 Groundwater

As discussed in Section 4, there are no current complete exposure pathways for contaminated groundwater. The Kirtland AFB water supply wells, Water Authority wells, VA Complex well, and private irrigation wells are located in areas outside the affected portion of the aquifer. LUCs are in place to prevent installation of new wells within the affected portion of the aquifer. However, in order to inform risk management decisions, a future on-Site and off-Base residential scenario was evaluated which assumes a drinking water well was installed in the affected portion of the aquifer.

Maximum detected concentrations in groundwater were compared to the NMED TSLs for residential use. The cancer risk and noncancer HI were calculated using maximum detected concentrations and EPCs based on 95UCLs for the future hypothetical on-Site and off-Base residents as described below.

The maximum detected concentration of lead in groundwater was 5.3 micrograms per Liter (μ g/L), which is below the EPA non-carcinogenic residential RSL of 15 μ g/L.

5.1.3.1 On-Site Groundwater

The total cancer risk was calculated using the maximum detected concentrations in on-Site groundwater for each carcinogenic COPC as shown in Table 5-15. The calculated total cancer risk was 5×10^{-2} , which exceeds NMED's target cancer risk level of 1×10^{-5} . Based on the exceedance of the NMED target cancer risk level, total cancer risk was further evaluated using EPCs based on the 95UCL. As shown in Table 5-16, the calculated total cancer risk based on the EPC is 5×10^{-3} , which exceeds NMED's target cancer risk level of 1×10^{-5} . Primary contributors to the cancer risk were EDB, benzene, ethylbenzene, and naphthalene.

The total HI was calculated using the maximum detected concentrations for each non-carcinogenic COPC as shown on Table 5-17. The calculated total HI was 600, which exceeds NMED's target HI of 1. Based on the exceedance of the NMED target HI, the total HI was further evaluated using EPCs based on the 95UCL. As shown in Table 5-18, the calculated total cancer risk based on the EPC is 60, which exceeds NMED's target HI of 1. The primary contributors to the HI were benzene, naphthalene, toluene, and xylenes, which each had HQs exceeding 1.

Based on the calculated total cancer risk and HI, exposure to on-Site groundwater for domestic purposes under the hypothetical future residential scenario results in an unacceptable risk.

5.1.3.2 Off-Base Groundwater

The total cancer risk was calculated using the maximum detected concentrations in off-Base groundwater for each carcinogenic COPC as shown in Table 5-19. The calculated total cancer risk was 8×10^{-3} , which exceeds NMED's target cancer risk level of 1×10^{-5} . Based on the exceedance of the NMED target cancer risk level, total cancer risk was futher evaluated using EPCs based on the 95UCL. As shown in Table 5-20, the calculated total cancer risk based on the EPC is 1×10^{-4} , which exceeds NMED's target cancer risk level. Primary contributors to the cancer risk were EDB and ethylbenzene.

The total HI was calculated using the maximum detected concentrations for each non-carcinogenic COPCs as shown on Table 5-21. The calculated total HI was 80, which exceeds NMED's target HI of 1. Primary contributors to the total HI were benzene, naphthalene, toluene, xylenes, and 1,2,4-TMB. Based on the exceedance of the NMED target HI of 1, the total HI was further evaluated using EPCs based on the 95UCL. As shown in Table 5-22 the calculated total HI based on the EPC is 0.8, which is less than the NMED target HI of 1.

Based on the calculated total cancer risk, exposure to off-Base groundwater for domestic purposes under the hypothetical future residential scenario results in an unacceptable risk.

5.2 Uncertainty Analysis

The human health risk-screening assessments are subject to varying degrees and types of uncertainty.

Aspects of data evaluation and COPC identification, exposure assessment, toxicity assessment, and the additive approach for risk characterization contribute to uncertainties in the RA process. Each or all of these uncertainties may affect the evaluation results. Specific uncertainties related to this RA are discussed in the following sections.

5.2.1 Uncertainty Related to Analytical Data Quality

The analytical data quality was evaluated for uncertainties related to the quantitation limits and it was determined that the sensitivity of DLs for COPCs in all environmental media with a low or no detection frequency (majority of samples were nondetect) were less than the analyte-specific SLs, except for three analytes in groundwater (1-methylnaphthalene; 2-methylnaphthalene; and 1,2-DCA) and one analyte in soil gas (EDB). For the three groundwater analytes (as compared to the TSL) and for EDB in soil gas

(as compared to commercial/industrial soil gas VISL), the majority (over 80%) of the nondetect samples had DLs lower than the analyte-specific SLs. With respect to DLs for EDB in soil gas compared to the residential soil gas VISL of $1.56 \,\mu g/m^3$, the DLs ranged from $1.23 \text{ to } 10.76 \,\mu g/m^3$).

However, all four of the analytes were identified as COPCs, and were included in the RA with risk estimated using maximum detected concentrations. There is a low potential for underestimation of risk for these analytes.

Other uncertainties in analytical data quality may include errors in sampling, laboratory analysis, and data analysis. However, using both maximum detected concentrations and statisticallybased EPCs is intended to provide upper-bound estimates of exposure and risks.

5.2.2 Uncertainty in Risks Related to Soil Gas Exposure

An uncertainty related to soil gas exposure was identified in the RA. NMED soil gas VISLs were developed to screen soil gas samples collected at shallow depths below a building slab. In this RA, the NMED soil gas VISLs were applied to soil gas data measured from SVMPs at 15 to 25 feet bgs. Even in cases where a COPC is detected above the soil gas VISL at a SVMP located at 15 to 25 feet bgs below a building slab, there is uncertainty whether the COPC will be detected from a shallow sub-slab sample. Fick's First Law of diffusion states that diffusive flux from a source at 25 feet bgs below a building slab will be 15 to 25 times lower than if the source were present at 1 foot from the slab. In principle, concentration gradients are affected by the presence of a slab (EPA, 2012). However, the accumulation of VOCs below a slab based on diffusion from a deep vapor source, as shown by EPA, is only possible if soil gas advection into the building is negligible. The application of soil gas VISLs to the soil gas data collected at 15 to 25 feet bgs most likely results in an overestimation of risks.

5.3 Human Health Risk Assessment Conclusions

The HHRA concludes there are no estimated unacceptable risks to current human receptors from contaminated soil, soil gas, or groundwater either on-Site or off-Base.

The HHRA identified potential unacceptable risks for exposure to on-Site soil gas under a future hypothetical residential scenario, and exposure to groundwater under a future domestic use scenario. However, there are no current complete exposure pathways for groundwater.

Interim measures are in place to prevent exposure to impacted groundwater. An additional LUC may be warranted as part of a final remedy to prevent residential use at the BFF until concentrations of COPCs in soil gas have a level that do not present an unacceptable risk.

5.3.1 Soil

Maximum detected concentations of COPCs in soil at 0 to 10 feet bgs were below NMED SSLs. The total cancer risk and HI based on maximum detected concentrations were below NMED target levels for all receptors. No impacted soil is located off-Base. No unacceptable risk was identified based on exposure to surface or mixed zone soil for any receptor on-Site at the BFF.

Recommendation: No additional interim measures are recommended for soils at 0 to 10 feet bgs.

5.3.2 Soil Gas

Twelve industrial/administrative buildings are located at the BFF or in close proximity; three of these buildings are continuously occupied. For the current/future on-Site commercial/industrial worker at the BFF, although the total cancer risk based on maximum detected concentrations in soil gas exceeded the

NMED target cancer risk level, the total cancer risk calculated using the EPCs was below 1 x 10⁻⁵. The total HI based on the maximum detected concentration was below the NMED target HI of 1. No unacceptable risks were identified for the current/future on-Site commercial/industrial worker at the BFF based on exposure to soil gas via vapor intrusion to indoor air.

No residential buildings are located at the BFF and residential use is not planned for the foreable future. However, in order to evaluated an unrestricted use scenario, risk for a hypothetical future on-Site resident was evaluated. Total cancer risks exceeded NMED's target cancer risk level. The total HI based on the maximum detected soil gas concentration was below the NMED target HI of 1.

No occupied buildings are currently located within the area of the off-Base soil gas plume. However, should land use change in the future, a hypothetical future off-Base resident scenario at Bullhead Park was evaluated. Based on the maximum detected concentrations in soil gas, the total cancer risk and HI were below NMED target levels. No unacceptable risk was identified based on exposure to soil gas via vapor intrusion to indoor air. Consideration of a future hypothetical off-Base resident at Bullhead Park is conservative and protective for current/future recreational uses at Bullhead Park. This scenario is also protective for residents north of Ridgecrest and visitors to the VA Complex, which are located farther from the impacted off-Base soil gas area.

Recommendation: Current interim measures prevent residential use at the BFF. A LUC may be needed in a future final remedy to prevent residential reuse in the BFF until concentrations of COPCs in soil gas allow unrestricted use and unlimited exposure. No additional interim measures for off-Base soil gas are recommended.

5.3.3 Groundwater

The calculated total cancer risks and HI for domestic use of on-Site and off-Base groundwater exceed NMED's target cancer risk level of 1×10^{-5} and target HI of 1. However, interim measures are in place to prevent exposure to impacted groundwater on and off-Base. There are no current complete exposure pathways to impacted groundwater.

Recommendation: No additional interim measures are recommended to prevent exposure to impacted groundwater on-Site or off-Base.

6 ECOLOGICAL RISK ASSESSMENT

This ERA follows the NMED ERA process described in Section 2.1.2 (NMED, 2017). This process determines whether unacceptable adverse risks are present or might accrue to ecological receptors as a result of hazardous substances released at the Site.

6.1 Phase I Qualitative Assessment

The primary objective of the Phase I Qualitative Assessment is to assess whether enough information is available to determine the potential for unacceptable risks to ecological receptors as a result of hazardous substance releases. Characterizing the ecological communities in the vicinity of the Site (Sections 6.1.1 to 6.1.5), assessing the particular hazardous substances released and likelihood of potential unacceptable risk to identified ecological receptors (Section 6.1.6), identifying potential exposure pathways for ecological receptors (Section 6.1.7), and developing ecological assessment endpoints (Section 6.1.8) meet this objective.

6.1.1 General Site Characteristics

The Site is located in the Arizona/New Mexico Plateau Ecoregion (Omernik, 1986). Based on information contained in the Integrated Natural Resources Management Plan (INRMP) for Kirtland AFB (2007 and 2012 update), no designated or identified critical habitats exist at Kirtland AFB. Surveys and literature indicate important habitats on Kirtland AFB include wetlands that provide water to wildlife in an otherwise arid environment, and are rare in the region. None of these wetlands are near the Site. Other important habitats on Kirtland AFB include prairie dog towns, which provide nesting habitats for the burrowing owl, and open juniper woodlands between 5,900 and 6,600 feet in elevation, which are nesting habitat for the gray vireo. The Site lies between 5,314 and 5,364 feet in elevation. Nesting habitat for gray vireo is primarily on the far eastern side of Kirtland AFB in the foothills of the Manzano Mountains and does not currently exist on the Site. Prairie dog burrows and burrowing owls have been observed on-Site inside the BFF.

6.1.2 Surface Water, Sediment, and Wetlands

No surface water, sediment, or wetlands are located at the Site. Groundwater at the Site is approximately 480 feet bgs, and would not be expressed as surface water.

6.1.3 Vegetative Communities

Vegetation of the Arizona/New Mexico Plateau Ecoregion includes grama/galleta steppe, Great Basin sagebrush, and saltbush/greasewood plants (Omernik, 1986). Before the acquisition of land for what is now Kirtland AFB, the area was rangeland used for livestock grazing and typical ranching as well as mining operations. These operations ceased, for the most part, when Kirtland AFB occupied the land in the mid-1940s. Since then, some of the vegetation has been cleared for operational developments, while the eastern half of the Base has remained primarily undisturbed.

Vegetation on-Site is sparse as shown in on-Site photographs presented in Section 2 of the RFI and in Figure 6-1 (USACE, 2017a). This is primarily due to the generally disturbed nature of the on-Site area, which is largely an industrial area that is kept clear for vehicles and equipment, and characterized by poor soils and low precipitation. From January 2010 to December 2016, the average yearly precipitation ranged from 4.7 to 11.5 inches, with an average of 7.86 inches (National Oceanic and Atmospheric

Administration [NOAA], 2017). Snowfall is not uncommon in winter months, but seldom exceeds 3 inches. The summer monsoon season from July through September accounts for one-half of the annual rainfall.

The following four plant communities on Kirtland AFB constitute the major types of vegetation:

- Grassland (includes sagebrush steppe and juniper woodlands)
- Pinyon-Juniper Woodlands
- Ponderosa Pine Woodlands
- Riparian/Wetland/Arroyo.

The BFF area is industrial, and has been disturbed during construction activities, such as the updates to the fueling infrastructure. However, based on the recorded soil types at the Site (Latene sandy loam and Wink fine sandy loam; USDA, 2013), native vegetation would typically include mesa dropseed, blue grama, broom snakeweed, and sands dropseed (Kirtland AFB, 2007 and 2012 update). These two soil types have poor to very poor potential for supporting habitat elements including grain and seed crops, domestic grasses and legumes, wild herbaceous plants, shrubs, and wetland plants (USDA, 1977). As the on-Site area is primarily industrial, vegetation consists mostly of open sandy and gravel areas with sparsely distributed grasses. The habitat surrounding the on-Site area is also sparsely vegetated with shrub/scrub, grasses, and small trees, which is typical of the Albuquerque, New Mexico area. The very low productivity of the soil is also supported by the finding that the average organic carbon in surface soil is 0.49 mg/kg (based on detected results in soil samples collected on-Site ST105 SB0524 [7]; ST105-SB0525 [7]; and ST105-SB0524 [2]).

6.1.4 Wildlife

The INRMP (Kirtland AFB, 2012) lists 55 species of mammals, 141 species of birds, 34 species of reptiles and amphibians, and three species of fish that may occur on the 52,287-acre Base. Based on the industrial nature and sparse vegetative communities on-Site (Section 6.1.3), few of these bird, mammal, and reptile species would be expected to occur on-Site. However, rabbits, coyotes, and birds, as well as evidence of prairie dogs, have been observed on-Site. No amphibians or fish would be present due to the lack of surface water at on-Site.

6.1.5 Threatened, Rare, and Endangered Species

Threatened, rare, or endangered species in the general area of Kirtland AFB include the following:

- Gray vireo state-threatened species
- Western burrowing owl federal species of concern
- Loggerhead shrike federal species of concern
- Mountain plover federal species of concern
- Texas-horned lizard federal species of concern.

Except for the Western burrowing owl, none of these species are expected on-Site. Gray vireo territories have been documented on-Site throughout the juniper woodland community between 5,850 and 6,600 feet elevation on the far eastern side of Kirtland AFB. These species occupy areas with an open canopy (i.e., less than 25%). The Loggerhead shrike has been observed on Base in grassland, pinyon-juniper woodlands, and riparian habitats. Mountain plovers are not known to occur on-Site; however, limited sightings have been documented just south of the Base on the Isleta Pueblo Indian Reservation. Appropriate nesting habitat for the Mountain plover is limited on-Site; however, the southern grasslands on-Site may potentially be used as brood-rearing habitat or during migration. The Texas-horned lizard has not been documented on-Site.

The Western burrowing owl, a federal species of concern, is a common resident at Kirtland AFB and has been monitored on-Site for more than 10 years. The Kirtland AFB INRMP (KAFB, 2012) includes a Burrowing Owl Management Plan (Appendix O). Figure 6-2 illustrates locations of Western burrowing owl nests documented in 2015. Western burrowing owls are very closely associated with the prairie dog colonies on-Site, as they use abandoned prairie dog burrows for nesting. As of 2015 there are no active nests in the vicinity of the BFF; however, prairie dog burrows are present in the BFF, and a burrowing owl was documented at a burrow in the BFF in May of 2017. Thus, the Western burrowing owl is evaluated as an ecological receptor in this RA.

In summary, there are multiple threatened, rare, or endangered species in the general area of Kirtland AFB; however, except for the Western burrowing owl, none of these species are expected on-Site.

6.1.6 Ecological Problem Formulation

The ecological problem formulation for the Site starts with the same list of analytes as the HHRA and compares those analytes to ecological screening values. This formulation process then identifies the exposure pathways, the ecological values (or receptors) to be protected, and the measures of effect used to quantify potential risk to ecological receptors at the Site.

The list of chemicals evaluated in the ERA are listed in Table 3-1 for soil and soil gas. Groundwater was not evaluated as part of the SLERA due to lack of exposure pathways to groundwater.

6.1.7 Conceptual Site Exposure Model

The CSEM identifies complete and potentially complete exposure pathways between physical media affected by Site-related contamination and potential ecological receptors. Identifying relevant exposure pathways is a critical element of the CSEM. Only exposure pathways that are complete or potentially complete are quantitatively evaluated in a Phase II Quantitative Assessment. If, under current and expected future land use scenarios, there are no potential exposure pathways for ecological receptors at the Site, there is no potential for risk, and the exposure pathway is not evaluated in Phase II. A CSEM for ecological receptors is presented in Figure 6-3.

The primary exposure medium on Base for ecological receptors is considered to be surface soil. Mixed zone soil (0 to 10 feet bgs) was considered an exposure medium for the burrowing owl and prairie dogs. NMED Guidance (NMED, 2017) states that, "For all non-burrowing ecological receptors and for shallow-rooted plants, the soil exposure intervals typical of surface conditions and is considered to be between 0 and 1 foot bgs). For all burrowing ecological receptors (and receptors that may use burrows) and deep rooted plants, the soil interval to be evaluated is 0 to 10 feet bgs."

Plants and animals on-Site may be exposed to COPCs in surface soil through direct contact, incidental ingestion of soil, or ingestion of food items that have become contaminated through bioaccumulation. Burrowing animals (i.e., burrowing owls and prairie dogs) may be exposed to mixed zone soil (0 to 10 feet bgs) via these same exposure pathways. Direct contact exposure pathways are considered complete for plants, terrestrial invertebrates, and terrestrial vertebrates, while bioaccumulation exposure pathways are complete for terrestrial invertebrates and vertebrates.

COPCs released to surface soil or mixed zone soil could volatilize into air voids in the soil column such as animal burrows created by burrowing mammals and reptiles. Because several VOCs are listed as COPCs at the Site, inhalation of soil gas in soil burrows is considered a complete exposure pathway for burrowing animals on-Site.

Exposure pathways to surface water and sediment are incomplete for all ecological receptors because there are no permanent surface water features on the Site. In addition, ecological receptors at the Site are not exposed to Site groundwater because groundwater does not reach the surface via any seeps or wetlands. Therefore, groundwater exposure pathways are considered incomplete.

6.1.8 Assessment Endpoints

Assessment endpoints identify the particular ecological resources (e.g., plants and animals, habitats, etc.) to be protected at a site. At the Site, terrestrial fauna potentially includes invertebrates, reptiles, birds, small mammals (e.g., rodents), and larger carnivorous, omnivorous, and/or browsing mammals (e.g., mule deer). The assessment endpoints used for screening are:

- 1. Protection of terrestrial plant populations and communities
- 2. Protection of soil invertebrate populations and communities
- 3. Protection of populations of herbivorous birds
- 4. Protection of populations of omnivorous birds
- 5. Protection of populations of insectivorous birds
- 6. Protection of populations of carnivorous birds
- 7. Protection of populations of herbivorous mammals
- 8. Protection of populations of omnivorous mammals
- 9. Protection of populations of insectivorous mammals
- 10. Protection of populations of carnivorous mammals.

In addition, because exposure to volatile chemicals in soil burrows is potentially a complete exposure pathway, the following is an assessment endpoint based on the inhalation exposure pathway:

1. Protection of populations of burrowing mammals.

A lack of toxicity data for Site COPCs precludes adequate quantitative evaluation of risks to reptiles at the Site; therefore, they were not included as ecological receptors for the Phase II Quantitative Assessment. The uncertainties associated with eliminating ecological receptors from quantitative evaluation because of a lack of toxicity (or other) data is considered in the uncertainty discussion in Section 6.4.

6.2 Phase II, Tier 1 Quantitative Assessment

Based on this Phase I Qualitative Assessment, it was determined that a Phase II Quantitative Assessment was warranted because ecological receptors are potentially present at the Site, and Site-related chemicals have been documented in soil and soil gas.

NMED's Phase II Quantitative Assessment starts with a Tier 1 SLERA. The Tier 1 SLERA uses conservative SLs based on concentrations demonstrated to cause no adverse effects in ecological receptors and conservative exposure assumptions based on maximum detected concentrations. The Tier 1 utilizes the initial ecological problem formulation and ecological CSEM, and identifies COPCs for further evaluation in the Tier 2 Quantitative Assessment.

6.2.1 Assessment Endpoints and Measures of Effect

Potential adverse effects to assessment endpoints listed in Section 6.1.8 are inferred from one or more measurement endpoints. The measurement endpoint is a measurable response to a stressor, in this case chemical concentration in soil, that is related to the valued attribute of the chosen assessment endpoint, in this case protection of populations of plants, invertebrates, mammals, and birds. The measurement endpoint serves as a surrogate that can be used to draw a predictive conclusion about the potential for effects of the COPC to the assessment endpoint. For the Tier 1 SLERA, the measurement endpoint for all identified assessment endpoints is comparison of chemical concentrations in soil and soil gas to conservative toxicological benchmarks based on no-observed-adverse-effect levels (NOAEL).

NOAEL toxicity values were obtained from literature sources as indicated below. SLs were obtained for as many of the assessment endpoint ecological receptor categories as possible, and the screening comparisons were conducted using the most sensitive ecological receptor category, i.e., the ecological receptor category with the lowest SL.

For inorganic constituents in soil, ecological screening levels (ESL) derived by NMED (NMED, 2017) were used preferentially over other sources of information for organics. If no SLs were available from NMED, other sources of SLs such as the Los Alamos National Laboratory (LANL; LANL, 2014) ESLs and the National Oceanic and Atmospheric Administration Screening Quick Reference Tables (Buchman, 2008) were used to identify appropriate SLs.

Screening values of soil gas concentrations of COPCs were obtained from the LANL EcoRisk Database V 3.3 (LANL, 2014). If no soil gas SL was available for a constituent in the LANL database, soil gas SLs were obtained from MWH Americas, Inc. (2011).

6.2.2 Exposure Estimation

The Tier 1 SLERA exposure estimation utilizes conservative assumptions, including use of maximum detected values and assumption of 100% bioavailability of COPCs.

The initial screening of COPCs in soil and soil gas was conducted using the maximum measured concentration in the media of interest. For surface soil, the maximum concentration in soil samples collected from 0 to 1 foot bgs were used as the screening EPC for all assessment endpoints. For mixed zone soil, the maximum concentration in soil samples collected from 0 to 10 feet bgs were used as the screening EPC for all assessment endpoints. For soil gas, the maximum measured concentration in the shallowest depth interval (15 to 25 feet bgs) of all on-Site soil gas samples from sampling conducted between Q1 2016 and Q3 2016 were used as the EPC for burrowing mammals. Use of the measured soil gas concentration at 15 to 25 feet bgs is a conservative exposure estimate, because burrowing mammals do not burrow that deeply (typically less than 3 feet bgs), and soil gas concentrations would be lower at 3 feet bgs then 15 to 25 feet bgs.

6.2.3 Ecological Risk Characterization

The Tier 1 SLERA ecological risk characterization compares conservative measures of effect with exposure estimates based on maximum detected concentrations.

6.2.3.1 Surface Soil

Eight of the 12 COPCs analyzed in the surface soil were detected in surface soil (0 to 1 foot bgs). Results of the initial screening of surface soil concentrations are presented in Table 6-1. Maximum detected concentrations of lead exceeded SLs, and therefore the analyte is retained for further evaluation in the Phase II, Tier 2 Quantitative Assessment for surface soil in the suface soil on-Site. In addition to calculating HQs for individual chemical constituents, NMED Guidance requires that the ecological screening assessment calculate a HI for each of the screening ecological receptors evaluated (NMED, 2017). The HI represents the sum of the HQ values across chemical constituents for each ecological receptor, and is intended to account for additive toxicological effects that might be missed if looking solely at individual HQs. The HI calculations for surface soil on-Site are presented in Table 6-2. Three of the 10 ecological receptors had total HIs greater than 1. Table 6-2 shows how each COPC contributes to the total HI for each ecological receptor. Lead was the only COPC that contributed significantly to HI values greater than one.

6.2.3.2 Mixed Zone Soil from Confirmation Samples

Ten of the 13 COPCs analyzed in the mixed zone soil were detected in mixed zone soil (0 to 10 feet bgs). Results of the initial screening of mixed zone soil concentrations on-Site are presented in Table 6-3. Complete exposure pathways exist for mixed zone soil to two ecological receptors evaluated in Table 6-3, prairie dogs and burrowing owls. Maximum detected concentrations of lead in confirmation samples exceeded SLs, and therefore the analyte is retained for further evaluation in the Phase II, Tier 2 Quantitative Assessment for mixed zone soil in the confirmation samples. The HI represents the sum of the HQ values across COPCs for each ecological receptor, and is intended to account for additive toxicological effects that might be missed if looking solely at individual HQs. The HI calculations for mixed zone soil on-Site are presented in Table 6-4. Both ecological receptors had total HIs greater than 1. Table 6-4 shows how each COPC contributes to the total HI for each ecological receptor. Lead was the only constituent that contributed significantly to HI values greater than 1.

6.2.3.3 Soil Gas

Twelve of the 14 potential soil gas COPCs were detected in the shallowest soil gas sampling interval of 15 to 25 feet bgs. Soil gas ESLs were available for eight of the 12 detected constituents. HQs for all eight of these constituents were less than 0.3, indicating no potential unacceptable ecological risk from soil gas concentrations for these COPCs in mammal burrows. Soil gas SLs were not available for 1,2-dibromoethane, cyclohexane, n-heptane, or n-hexane, therefore a quantitative evaluation of risk from these COPCs is not possible. Results of the soil gas are screening are presented in Table 6-5. Potential risk from COPCs without soil gas SLs is discussed further in the uncertainty analysis in Section 6.4.

6.3 Phase II, Tier 2 Quantitative Assessment

A Tier 2 SLERA includes a re-evaluation of the conservative assumptions used in the Tier 1 SLERA. Results of the Tier 2 SLERA indicate that although some detections of lead exceeded the most conservative SLs for a limited number of ecological receptors, no unacceptable risk is posed by any fuel-related constituents at the Site.

For the on-Site surface soil dataset, only lead was carried forward to the Tier 2 assessment. The maximum lead concentration (39.1 mg/kg) exceeded SLs for insectivorous birds, omnivorous birds, and herbivorous birds. Insectivorous, omnivorous, and herbivorous birds forage over defined ranges, and are not exposed to single point concentrations in the way that sessile organisms such as plants are exposed, thus use of an estimator of central tendency exposure is relevant for calculating risk to mammals and birds. Table 6-6 presents summary statistics for lead at the 0 to 1 foot bgs depth. Lead background concentrations at Kirtland AFB are 21.4 mg/kg in surface soil, and 11.8 mg/kg in subsurface soil (NMED, 2007). The lead surface soil background concentration also exceeds the SLs for insectivorous, omnivorous, and herbivorous birds. Mean and median lead concentrations of the on-Site surface soil dataset are 11 mg/kg and 8 mg/kg respectively and the dection frequency is 100%. The mean, median, and detection frequency of lead concentrations support that on-Site surface soils are within the range of background conditions at Kirtland AFB. Thus, potential risk to ecological receptors from lead cannot be differentiated from background conditions.

For mixed zone soil (0 to 10 feet bgs) only lead, based on detections in confirmation samples, was carried forward to the Tier 2 assessment for burrowing owls. The maximum lead concentration in confirmation samples (71 mg/kg) exceed SLs for small omnivorous mammals and carnivorous birds. These receptors forage over defined ranges, and are not exposed to single point concentrations in the way that sessile organisms such as plants are exposed, thus similar to surface soil an estimator of central tendency exposure is relevant to calculating risk to mammals and birds. Table 6-6 present the summary statistics for lead in the confirmation samples from 0 to 10 feet bgs. Mean and median lead concentrations of the on-Site surface soil data are 9.6 mg/kg and 4.1 mg/kg respectively, which is below the SLs for omnivorous mammals and carnivorous birds and the dection frequency is 100%. The mean, median, and detection frequency of lead concentrations support that on-Site mixed zone soils are within the range of background conditions at Kirtland AFB. Thus, potential risk to ecological receptors from lead cannot be differentiated from background conditions in mixed zone soil from 0 to 10 feet bgs.

6.4 Uncertainty Discussion

One uncertainty, which indicates the soil gas evaluation may be overly conservative, is the depth of the soil gas sample intervals. It is important to note that soil gas samples were collected between 15 and 25 feet bgs. Screening soil gas concentrations at these depths is overly conservative when applied to the typical maximum burrowing owl burrow depth of 3 feet (Cornell Lab of Ornithology, 2017). All of the detected chemicals for which soil gas SLs were available had HQ values less than 0.3, suggesting chemical concentrations in the 15 to 25 feet bgs depth interval are relatively low compared to risk levels, and those concentrations are expected to be even lower in the shallower depth interval occupied by burrowing animals.

The ERA is designed to err on the side of conservatism by utilizing NOAEL-based toxicity information and conservative assumptions such as 100% Site use, 100% bioavailability of COPCs, and uptake of COPCs in the Tier 1 SLERA. A key area of uncertainty in the Site is the lack of toxicity information for a number of ecological receptors and chemicals. This is particularly evident in the lack of ecological soil gas SLs for four of the detected chemicals in subsurface soil gas samples. This makes a quantitative evaluation of risk from these chemicals impossible for these ecological receptors.

Another example of the lack of toxicity information is the lack of ESLs for birds for many of the chemicals evaluated in soil (e.g., most polyaromatic HC compounds). Without adequate avian toxicity information, one is left to infer that levels protective of mammals are also protective of birds, which may overestimate or underestimate actual risk to birds.

The lack of available toxicity information also precluded the quantitative evaluation of reptiles at the Site. Therefore, the SLERA presumes that concentrations that are adequately protective of birds and mammals are also adequately protective of reptiles, but the accuracy of that presumption is unknown. However, for the SLERA, this uncertainty is likely not significant in the overall conclusions because of the limited extent of exceedances and the marginal ecological habitat at the Site, which both serve to limit potential ecological exposures.

6.5 Conclusions and Recommendations

This ERA follows the NMED ERA process (NMED, 2017). This process determined there are no unacceptable adverse risks present to ecological receptors as a result of COPCs present at the Site.

Given the limited extent of concentrations exceeding no-effects SLs and the limited ecological exposure potential, no unacceptable ecological risk exists at the Site due to lead in surface or mixed zone soils in the on-Site area. Although maximum detected concentrations of lead exceeded no-effects based SLs, evaluation of other parameters such as mean, median concentrations, and frequency of detects within the on-Site soil datasets suggest exceedances are limited in extent. In addition, the maintenance of the BFF for Site operations limits the amount and quality of ecological habitat present, and ecological exposures are expected to be minimal for this reason.

This ERA concludes that there is no unacceptable ecological risk present when burrowing owls are considered as possible ecological receptors. Concentrations in soil from 0 to 10 feet bgs are below the SLs or are at background concentrations and pose no unacceptable ecological risk. Concentrations of all on-Site soil gas VOCs in the 15 to 25 feet bgs interval were less than available ESLs. Though no SLs were available for four of the detected VOCs, maximum HQs for the eight VOCs with SLs were less than 0.3, indicating that concentrations are low compared to risk levels. In addition, screening soil gas

concentrations at the 15 to 25 feet bgs depth interval is overly conservative when compared to the typical maximum burrow depth of the burrowing owl (3 feet bgs). Soil gas concentrations are expected to be even lower at typical burrow depths. Therefore, no further action is proposed for soil gas concentrations in on-Site soils for protection of ecological receptors.

7 REFERENCES

- Buchman, M.F., 2008. National Oceanic and Atmospheric Administration Screening Quick Reference Tables. NOAA OR&R Report 08-1. Seattle, WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration. 34 pages.
- City of Albuquerque, 2015. City of Albuquerque Standard Specifications and Drawings Update No. 9 for Revisions and Additions to ABCWUA Sections 18, 100, 125, 131, 170, 900, 901, 905, 910, 915, 920, 921, 925, 2000, 2100, 2200, 2300, and 2400. Landscaping Sections: 1001, 1005, 1010, 1011, 1012, and 2700.
- City of Albuquerque, 2017a. Plans and Publications. https://www.cabq.gov/planning/urban-design-development/publications. Accessed January 25.
- City of Albuquerque, 2017b. Comprehensive City Zoning. https://www.cabq.gov/planning/codeenforcement/comprehensive-city-zoning-code. Accessed May 16.
- Cornell Lab of Ornithology, 2017. All about Birds: Burrowing Owl. https://www.allaboutbirds.org/guide/Burrowing_Owl/lifehistory
- EPA, 2012. Conceptual Model Scenarios of the Vapor Intrusion Pathway, EPA 530-R-10-003, OSWER 9285.7-02EP, Office of Solid Waste and Emergency Response, Washington, D.C., February.
- EPA. 2016. Regional Screening Levels Master Table. Available on-line at </www.epa.gov/...table/...Tables/...master_sl_table_run. May.
- KAFB, Integrated Natural Resources Management Plan. 2007. 2012 Update, prepared for 377th Air Base Wing, Air Force Materiel Command, April, 2007 and November, 2012.
- KAFB, 2016. August 24, 2016 correspondence between Mr. Eric H. Froehlich, Colonel, USAF, Commander, 377 ABW/CC, Kirtland AFB, NM and Mr. John Kieling, Bureau Chief, Hazardous Waste Bureau, NMED, 2905 Rodeo Park Dr. E, Santa Fe, NM, re: KAFB variance from NMED Residential Soil Screening Levels (SSLs) and Vapor Intrusion Screening Levels (VISLs) to NMED Industrial and Construction worker SSLs and Industrial VISLs.
- KAFB, 2017. April 6, 2017 correspondence between Mr. Eric H. Froehlich, Colonel, USAF, Commander, 377 ABW/CC, Kirtland AFB, NM and Mr. John Kieling, Bureau Chief, Hazardous Waste Bureau re: Request for Modification to the Work Plan for Soil Vapor Monitoring and Drinking Water Monitoring.
- LANL, 2014. ECORISK Database Release 3.3. Risk Reduction and Environmental Stewardship Remediation Service Program, Los Alamos National Laboratory, Los Alamos, NM. Available at http://www.lanl.gov/environment/cleanup/ecorisk.shtml.

- MWH Americas, Inc., 2011. Inhalation Toxicity Reference Value Updates for Use in Ecological Risk Assessments at the Santa Susana Field Laboratory, Ventura County, California, Technical Memorandum, January 7, Final. Prepared for California Department of Toxic Substance Control.
- Mueller, J. 2011. The Generation of Acetones and Ketones A Positive Process? Pollution Engineering. September.
- New Mexico Water Quality Control Commission, 2011. NMAC 20.6.2.4103, Abatement Standards and Requirements. January.
- NMED, 2007. Background Concentrations of Constituents of Concern to the Sandia National Laboratories New Mexico Environmental Restoration Project and the Kirtland Air Force Base Installation Restoration Program. March.
- NMED, 2010. Hazardous Waste Treatment Facility Operating Permit, EPA ID No. NM9570024423, Issued to U.S. Air Force for the Open Detonation Unit Located at Kirtland Air Force Base, Bernalillo County, New Mexico, by the NMED Hazardous Waste Bureau. July.
- NMED, 2017. Risk Assessment Guidance for Site Investigations and Remediation, Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program, New Mexico Environment Department, Santa Fe, NM.
- NOAA.gov. 2017. Albuquerque, New Mexico Monthly Mean Precipitation: https://www.ncdc.noaa.gov/
- Omernik, J.M, 1986. Ecoregions of the United States, Corvallis Environmental Research Laboratory, U.S. EPA.
- Real ID Act of 2005. Emergency Supplemental Appropriations Act for Defense, the Global War on Terror, and Tsunami Relief, 2005. Pub. L. 109-13, 119 Stat. 302.
- USACE, 2011. Quality Assurance Project Plan, Bulk Fuels Facility (BFF) Spill, Solid Waste Management Units ST-106 and SS-111, Kirtland Air Force Base, Albuquerque, New Mexico. Prepared by Shaw Environmental & Infrastructure, Inc. for the USACE Albuquerque District under USACE Contract No. W912DY-10-D-0014, Delivery Order 0002. April.
- USACE, 2016. Work Plan for Soil Vapor Monitoring and Drinking Water Monitoring, Solid Waste Management Unit ST-106/SS-111. Prepared by Sundance Consulting, Inc. for USACE– Albuquerque District. August 16.
- USACE, 2017a. RCRA Facility Investigation Report Solid Waste Management Unit ST-106/SS-111 Kirtland Air Force Base, New Mexico. Prepared by Sundance Consulting, Inc., for the USACE Albuquerque District under Contract No. W912PP-16-C-0002. January

- USACE, 2017b. Quarterly Monitoring Report October December 2016 and Annual Report for 2016 Bulk Fuels Facility Solid Waste Management Unit ST-106/SS-111 Kirtland Air Force Base, New Mexico. Prepared by EA Engineering, Science, and Technology, Inc., PBC., for the USACE Albuquerque District under Contract No. W912DR-12-D-0006 Delivery Order DM01. March.
- USDA, 1977. Soil Survey of Bernalillo County and Parts of Sandoval and Valencia Counties, New Mexico, June.
- USDA, 2013. Bernalillo County and Parts of Sandoval and Valencia Counties, New Mexico, Web Soil Survey, Survey Area Data: Version 10, December 17, http://websoilssurvey.ncrs.usda.gov.

FIGURES

Figure 1-1 EDB and Benzene Plumes Q4 2015 Risk Assessment Bulk Fuels Facility Kirtland Air Force Base, New Mexico	Legend Inferred EDB Contour EDB Concentrations (µg/L) 0.05 0.1 1 10 10 Benzene Concentration (µg/L) 0 - 5 5 - 10 10 - 100 100 - 1000 1000 - 10000	 Kirtland Air Force Base Installation Area Bulk Fuels Facility Area City of Albuquerque Parks Former Buried Fuel Transfer Lines Former Aboveground Fuel Transfer Lines Former Aboveground Storage Tanks Water Authority Drinking Water Supply Well VA Drinking Water Supply Well KAFB Drinking Water Supply Well USGS Sentinel Wells Groundwater Monitoring Well Location Approximate Location of Private Irrigation Well 	Acronyms: EDB = Ethylene Dibromide KAFB = Kirtland Air Force Base µg/L = micrograms per liter Q = Quarter USGS = United States Geologic VA = Veteran Affairs 0 500 1,000 2,000 3,00 1 centimeter = 200 meters 1:20 Coordinate System: NAD 1983 StatePlane New Mexico Central FIF Credits: City of Albuquerque, KAFB, ESRI Bas
---	--	---	--

Document Path: N:\Kirtland\GIS\GIS_Projects\RiskAssessmentFigures\Fig_1_1_EDB_BenzenePlumes.v1_MB.mxd

cal Survey

00 Feet 0,000

PS 3002 Feet se Map

Figure 2-1. NMED Screening Level HHRA Process

Document Path: N:\Kirtland\GIS\GIS_Projects\RiskAssessmentFigures\Figure_3_1_ExcavOvervWPumpHouse.v2.mxd

 $Document Path: N: Kirtland GIS GIS_Projects \\ Risk Assessment \\ Figure \\ 3_2 \\ Excavation \\ Overview \\ South of \\ Pump \\ House. \\ v3.mxd \\ Nather \\ Nather \\ Nather \\ Nather \\ Nather \\ Nather$

Document Path: N:\Kirtland\GIS\GIS_Projects\RiskAssessmentFigures\Figure3_3_SVMN.mxd

Notes:

- 1. Surface soil is considered to be soil between 0 and 1 feet bgs.
- 2. Subsurface soil is considered to be soil between 1 and 10 feet bgs.
- 3. Institutional controls prevent exposure pathways from being complete. Kirtland AFB administrative controls prevent intrusive work without prior review and approval. Groundwater monitoring prevents exposure to contaminated groundwater.
- 4. Commercial/industrial receptors are defined as only encountering surface soil.
- 5. There is no pathway for Kirtland AFB water consumers to come in contact with contaminated soil or air at the BFF.
- 6. Although current institutional controls prevent exposure to construction workers from soil and soil gas, institutional controls could change in the future. Therefore, this pathway is evaluated as complete.
- 7. Exposure pathway is only complete if BFF land use were to change to residential in the future.
- 8. Inhalation of COPCs from ambient outdoor air is an incomplete exposure pathway for these receptors as discussed in Section 4.3.
- 9. This complete exposure pathway represents inhalation of COPCs by construction workers working in a trench. This pathway is complete but insignificant, and any concerns for construction worker will be captured in the evaluation of industrial exposure to indoor air.
- 10. There is no pathway for commercial/industrial or construction workers to come in contact with contaminated groundwater at the BFF.
- 11. NMED requires that groundwater pollution at any place of withdrawal for the present or reasonably foreseeable future use, where the TDS concentration is 10,000 mg/L or less, shall be abated to conform to the NMWQCC standards (NMWQCC, 2011). Because of this requirement, the exposure pathways to future Kirtland AFB water consumers are assessed as complete.

Key:

0 •

Acronyms and Abbreviations:

AFB = Air Force Base AvGas = aviation gasoline BFF = Bulk Fuels Facility bgs = below ground surface COPC = contaminant of potential concern FFOR = Former Fuel Offloading Rack JP-4 = jet propellant 4

Figure 4-1. On-Site Conceptual Site Exposure Model

FUTURE							
F ercial strial ker	BFF Construction Worker	BFF BFF nstruction Residential Worker Homeowner					
	• (6)	●(7)	O(5)				
	• (6)	●(7)	O(5)				
	• (6)	●(7)	O(5)				
	• (6)	● (7)	O(5)				
4)	• (6)	●(7)	O(5)				
4)	• (6)	● (7)	O(5)				
	0	•(7)	O(5)				
3)	• (9)	O(8)	O(5)				
0)	O(10)	O(10)	● (11)				
0)	O(10)	O(10)	● (11)				
0)	O(10)	O(10)	•(11)				

Incomplete Pathway Complete Pathway

JP-8 = jet propellant 8 KAFB = Kirtland Air Force Base mg/L = milligram per Liter NMED = New Mexico Environment Department NMWQCC = New Mexico Water Quality Control Commission TDS = total dissolved solids

Figure 4-2. Off-Base Conceptual Site Exposure Model

Notes:

- 1. No pathway exists for current or future Bullhead Park users to be exposed to contaminated air or groundwater.
- 2. There is no exposure pathway from contaminated air off-Base to current or future drinking water supply well water consumers or private well owners.
- 3. Exposure pathway is only complete if Bullhead Park land use were to change to residential in the future.
- 4. Inhalation of COPCs from outdoor air is an incomplete exposure pathway for all receptors as discussed in Section 4.4.
- 5. Exposure to receptors while gardening due to uptake from plants or biota is incomplete. The amount of soil gas is insignificant at plant root depths. In addition, there is no contaminated soil, and plants will not uptake contaminated soil gas.
- 6. Institutional controls prevent exposure pathways from being complete. See Sections 4.2 and 4.4.
- 7. There is no exposure pathway from contaminated groundwater off-Base to current or future recreational Bullhead Park users.
- 8. NMED requires that groundwater pollution at any place of withdrawal for the present or reasonably foreseeable future use, where the TDS concentration is 10,000 mg/L or less, shall be abated to conform to the NMWQCC standards (NMWQCC, 2011). Because of this requirement, the exposure pathways to future water consumers are assessed as complete.

Key:

AN RECEPTORS							
	FUT	URE					
ecreational Ilhead Park Users	Residential Homeowners in Bullhead Park	Water Authority Drinking Water Supply Well Consumer	Private Well Owner				
O (1)	• (3)	O(2)	O(2)				
O(4)	O(4)	O(4)	O(4)				
O(5)	O(5)	O(5)	O(5)				
O(1)	O(7)	•(8)	•(8)				
O(1)	O(7)	•(8)	•(8)				
O(1)	O(7)	•(8)	•(8)				

0 •

Incomplete Pathway

Complete Pathway

Acronyms and Abbreviations:

COPC = contaminant of potential concern

mg/L = milligram per Liter

NMED = New Mexico Environment Department

NMWQCC = New Mexico Water Quality Control Commission

TDS = total dissolved solids

Document Path: N:\Kirtland\GIS\GIS_Projects\RiskAssessmentFigures\EDB Concentrations in soil gas at 25 feet.mxd

Document Path: N:\Kirtland\GIS\GIS Projects\RiskAssessmentFigures\Naphthalene Concentrations in soil gas at 25 feet.mxd

Legend

Kirtland Air Force Base Installation Area

Bulk Fuels Facility Area

Buildings

Roads

Existing Aboveground Fuel Transfer Lines

Current Aboveground Tanks

Building 1032

Trees west of Bulk Fuels Facility

Prairie Dog burrows on-Site

Projection NAD 1927 StatePlane New Mexico Central FIPS 3002 Feet

Figure 6-1

Current Bulk Fuels Facility Infrastructure

Risk Assessment

Bulk Fuels Facility Kirtland Air Force Base, New Mexico

Document Path: N:\Kirtland\GIS\GIS_Projects\RiskAssessmentFigures\BurrowingOwls.v1.mxd

Notes:

- 1. Surface soil is considered to be soil between 0 and 1 feet bgs.
- 2. Subsurface soil is considered to be soil between 1 and 10 feet bgs.
- 3. No aquatic plants or invertebrates are present at the Site.
- 4. There is no pathway for terrestrial plants, invertebrates, and animals to encounter subsurface soil or subsurface water/sediment.
- 5. There is no pathway for terrestrial plants, invertebrates, and surface dwelling animals to come in contact with burrow air.
- 6. Bioaccumulation to biotic tissue does not occur in plants.
- 7. Groundwater is approximately 480 feet bgs at the Site. There is no pathway for ecological receptors to come in contact with groundwater.

Key:

 O
 Incomplete Pathway

 •
 Complete Pathway

Acronyms and Abbreviations:

bgs = below ground surface KAFB = Kirtland Air Force Base SWMU = solid waste management unit

TABLES

Table ES-1. Human Health Risk Assessment Results Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

	HHRA Results								
Receptor	Complete Exposure Pathways	Cumulative Carcinogenic Risk	Cumulative Non- Carcinogenic Hazard Index	EPC Carcinogenic Risk	EPC Non- Carcinogenic Hazard Index	Current Risk to Human Health?			
			On-Site						
Current and Future	Surface Soil	2x10 ⁻¹⁰	0.00004	N/A	N/A	No: concentrations do not exceed target risk levels			
Worker	Soil Gas (Indoor)	6x10⁻⁵	0.2	4x10 ⁻⁶	N/A	No: concentrations do not exceed target risk levels			
Future BFF Construction Worker	Mixed Zone Soil	3x10 ⁻⁹	0.04	N/A	N/A	No: concentrations do not exceed target risk levels			
Future Residential	Mixed Zone Soil	8x10 ⁻⁸	0.2	N/A	N/A	No: concentrations do not exceed target risk levels			
BFF	Soil Gas (Indoor)	3x10 ⁻⁴	0.9	2x10 ⁻⁵	N/A	No: No current exposure pathway			
Future KAFB Water Consumer	Groundwater	5x10 ⁻²	600	5x10 ⁻³	70	No: No current exposure pathway			
			Off-Base						
Current Bullhead Park Recreational User	None	N/A	N/A	N/A	N/A	No: No current exposure pathway			
Future Residential Homeowner in Bullhead Park	Soil Gas (Indoor)	2x10 ⁻⁶	0.04	N/A	N/A	No: No current pathway, calculated risk highly protective			
Future Water Authority Drinking Water Supply Well Consumer/Private Well Owner	Groundwater	8x10 ⁻³	80	1x10 ⁻⁴	0.8	No: No current exposure pathway			

Acronyms and Abbreviations:

BFF = Bulk Fuels Facility

EPC = exposure point concentration

HHRA = Human Health Risk Assessment

KAFB = Kirtland Air Force Base

N/A = not applicable

SWMU = solid waste management unit

Bold = Bolded numbers exceed NMED target risk level (NMED, 2017).

Table 1-1. Current Nature and Extent of Site Contaminationas Presented in the RFI ReportRisk Assessment ReportBulk Fuels Facility, SWMU ST-106/SS-111Kirtland Air Force Base, New Mexico

Type of Contamination	Present On-Site	Present Off-Base
Shallow soil	Yes : Removed to 20 feet bgs in the area of releases to NMED 2012 residential soil SLs, except for a small unexcavated soil area around infrastructure (1/3 acre)	No
Deep soil to top of water table	Yes : Residual fuel along LNAPL migration pathway from the source area to the water table approximately 500 feet east of the source area	No, with exception of soil directly above water table
Soil Gas	Yes : Highest concentrations in area of releases directly below underground pipelines from 50 to 300 feet bgs	Yes : Low intermittent concentrations detectible 25 to 450 feet bgs
Free-phase LNAPL floating on groundwater	Unknown : Only intermittent sheens of LNAPL measured since Q1 2012 due to LNAPL interim measures, degradation, and rising water levels; the RFI Report identified vertical extent of smearing of residual LNAPL as a data gap and recommended further investigation. Rising water table could encounter trapped LNAPL in vadose zone	No: No free-phase LNAPL measured since Q1 2012 due to LNAPL interim measures, degradation, and rising water levels.
Groundwater	Yes: LNAPL reached groundwater approximately 500 feet east of the area of releases; the soluble fuel constituents dissolved into groundwater and transported off-Base in the direction of groundwater flow (north-northeast direction)	Yes: Dissolved-phase contamination (benzene and EDB) transported downgradient

Acronyms and Abbreviations:

bgs = below ground surface EDB = ethylene dibromide LNAPL = light non-aqueous phase liquid NMED = New Mexico Environment Department Q = Quarter RFI = Resource Conservation Recovery Act (RCRA) Facility Investigation SL = screening level SWMU = Solid Waste Management Unit

Table 3-1. RCRA Facility Investigation Report List of COPCs Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

COPC	Soil	Soil Gas	Groundwater
1,2,4-Trimethylbenzene	✓	✓	✓
1,2-Dibromoethane (EDB)	✓	✓	✓
1,2-Dichloroethane	✓	✓	✓
1-Methylnaphthalene	✓		✓
2-Methylnaphthalene	✓		✓
Acetophenone			✓
Benzene	✓	~	✓
Cyclohexane		✓	
Ethylbenzene	✓	\checkmark	✓
Hexadecane	✓		
Isopropylbenzene (cumene)	✓		
Lead	✓		✓
m & p-Xylenes		\checkmark	
МТВЕ	✓	~	
n-Heptane		✓	
n-Hexane		~	
Naphthalene	✓	~	✓
o-Xylene		✓	
Toluene	✓	✓	✓
Xylenes (total)	\checkmark	\checkmark	\checkmark

Acronyms and Abbreviations:

COPC = contaminant of potential concern

MTBE = methyl tert-butyl ether

RCRA = Resource Conservation and Recovery Act

SWMU = solid waste management unit

Table 3-2. On-Site Surface Soil (0 to 1 foot bgs) Summary Statistics Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

COPC	Total Number of Samples	Number of Detects	Percent Nondetect (%)	Maximum Detect (mg/kg)	Minimum Detect (mg/kg)	Distribution	EPC ^a (mg/kg)	EPC Method
1,2,4-Trimethylbenzene	14	1	93	0.00038	0.00038	N/A	0.00038 ^c	Maximum Detection
1,2-Dibromoethane (EDB)	14	0	100	N/A	N/A	N/A	N/A ^b	N/A
1,2-Dichloroethane	14	0	100	N/A	N/A	N/A	N/A ^b	N/A
2-Methylnaphthalene	14	3	79	0.14	0.012	N/A	0.14 ^c	Maximum Detection
Benzene	14	11	21	0.0013	0.00020	Nonparametric	0.00074	95% KM (t) UCL
Ethylbenzene	14	1	93	0.00030	0.00030	N/A	0.00030 ^c	Maximum Detection
Isopropylbenzene	14	0	100	N/A	N/A	N/A	N/A ^b	N/A
Lead	14	14	0	39	3.6	Gamma	16	95% Adjusted Gamma UCL
MTBE	14	0	100	N/A	N/A	N/A	N/A ^b	N/A
Naphthalene	14	1	93	0.0064	0.0064	N/A	0.0064 ^c	Maximum Detection
Toluene	14	10	29	0.0013	0.00022	Nonparametric	0.00071	95% KM (t) UCL
Xylenes (total)	14	1	93	0.00063	0.00063	N/A	0.00063 ^c	Maximum Detection

^a EPCs were calculated using EPA's ProUCL 5.1 (Attachment 2); All nondetects were given the value of the MDL.

^bNo detections. COPC will not be carried through the risk screening as discussed in Section 3.3, any uncertainty with detection limits will be discussed in Section 5.2

^c Four or fewer detections. Maximum detection was used as EPC.

Note: Field duplicate samples are averaged with their corresponding normal samples. Note: The COPCs 1-methylnaphthalene and hexadecane were not analyzed in this sample set.

Acronyms and Abbreviations:

% = percent bgs = below ground surface COPC = contaminant of potential concern EPA = United States Environmental Protection Agency EPC = exposure point concentration KM = Kaplan-Meier Statistics MDL = method detection limit MTBE = methyl tert-butyl ether mg/kg = milligram per kilogram N/A = not applicable, chemical not detected SWMU = solid waste management unit UCL = upper confidence limit

Table 3-3. On-Site Mixed Zone Soil (0 to 10 feet bgs) Summary Statistics Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

COPC	Total Number of Samples ^a	Number of Detects	Percent Nondetect (%)	Maximum Detect (mg/kg)	Minimum Detect (mg/kg)	Distribution	EPC ^b (mg/kg)	EPC Method
1,2,4-Trimethylbenzene	105	18	83	20	0.00018	Nonparametric	2.7	99% KM (Chebyshev) UCL
1,2-Dibromoethane (EDB)	105	0	100	N/A	N/A	N/A	N/A ^c	N/A
1,2-Dichloroethane	105	0	100	N/A	N/A	N/A	N/A ^c	N/A
1-Methylnaphthalene	12	1	92	0.33	0.33	N/A	0.33 ^d	Maximum Detection
2-Methylnaphthalene	117	9	92	16	0.012	Gamma	1.2	95% KM Approximate Gamma UCL
Benzene	105	41	61	0.0033	0.00013	Gamma	0.0077	95% Gamma Approximate UCL
Ethylbenzene	105	12	89	0.47	0.00021	Nonparametric	0.030	95% KM (Chebyshev) UCL
Isopropylbenzene	105	1	99	0.29	0.29	N/A	0.29 ^d	Maximum Detection
Lead	105	105	0	71	1.1	Nonparametric	14	95% Chebyshev (Mean, Sd) UCL
МТВЕ	105	0	100	N/A	N/A	N/A	N/A ^c	N/A
Naphthalene	117	15	87	16	0.00021	Gamma	1.3	95% KM Approximate Gamma UCL
Toluene	105	37	65	0.0045	0.00022	Lognormal	0.00088	KM H-UCL (KM-Log)
Xylenes (total)	105	16	85	3.8	0.00049	Nonparametric	0.22	95% KM (Chebyshev) UCL

^a Initially, 42 unexcavated soil samples were collected between 0 and 10 feet for all COPCs listed except 1-methylnaphthalene. Then, 63 confirmation samples were collected between 0 to 10 feet depth interval for all COPCs listed except for 1-methylnaphthalene. Twelve step out confirmation samples were collected over the same depth interval for only 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene.

^b EPCs were calculated using EPA's ProUCL 5.1 (Attachment 2); All nondetects were given the value of the MDL.

^c No detections. COPC will not be carried through the risk screening as discussed in Section 3.3, any uncertainty with detection limits will be discussed in Section 5.2

^d Four or fewer detections. Maximum detection was used as EPC.

Note: Field duplicate samples are averaged with their corresponding regular samples. Note: The COPC hexadecane not analyzed for in this sample set.

Acronyms and Abbreviations:

% = percent bgs = below ground surface COPC = contaminant of potential concern EPA = United States Environmental Protection Agency EPC = exposure point concentration KM = Kaplan-Meier Statistics MDL = method detection limit MTBE = methyl tert-butyl ether mg/kg = milligram per kilogram N/A = not applicable, chemical not detected SWMU = solid waste management unit UCL = upper confidence limit Sd = standard deviation Section 3

Table 3-4. On-Site Soil Gas Summary Statistics, 25-foot Depth (µg/m³) Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

СОРС	Total Number of Samples	Number of Detects	Percent Nondetect (%)	Maximum Detect (µg/m ³)	Minimum Detect (µg/m³)	Distribution	EPC ^a (µg/m ³)	EPC Method
1,2,4-Trimethlbenzene	93	72	23	640	1.2	Nonparametric	58	95% KM (Chebyshev) UCL
1,2-Dibromoethane (EDB)	93	17	82	24	1.3	Lognormal	1.5	95% H-UCL (KM-Log)
1,2-Dichloroethane	93	0	100	N/A	N/A	N/A	N/A ^b	N/A
Benzene	93	58	38	480	1.3	Lognormal	10	95% H-UCL (KM-Log)
Cyclohexane	93	26	72	380	3.4	Nonparametric	39	95% KM Chebyshev UCL
Ethylbenzene	93	61	34	240	1.3	Nonparametric	24	95% KM Chebyshev UCL
m & p-Xylenes	93	79	15	610	3.1	Nonparametric	86	95% KM Chebyshev UCL
MTBE	93	0	100	N/A	N/A	N/A	N/A ^b	N/A
Naphthalene	93	67	28	260	1.4	Nonparametric	24	95% KM Chebyshev UCL
n-Heptane	93	38	59	490	1.5	Nonparametric	43	95% KM Chebyshev UCL
n-Hexane	93	27	71	600	1.3	Nonparametric	44	95% KM Chebyshev UCL
o-Xylene	93	76	18	280	1.3	Nonparametric	35	95% KM Chebyshev UCL
Toluene	93	89	4	900	1.9	Lognormal	63	95% H-UCL (KM-Log)
Xylenes (total)	93	79	15	910	3.1	Nonparametric	120	95% KM Chebyshev UCL

^a EPCs were calculated using EPA's ProUCL 5.1 (Attachment 2); All nondetects were given the value of the MDL.

^b No detections. COPC will not be carried through the risk screening as discussed in Section 3.3, any uncertainty with detection limits will be discussed in Section 5.2

Note: Field duplicate samples are averaged with their corresponding normal samples.

Acronyms and Abbreviations:

% = percent COPC = contaminant of potential concern

EPA = United States Environmental Protection Agency

EPC = exposure point concentration

KM = Kaplan-Meier Statistics

- MDL = method detection limit
- MTBE = methyl tert-butyl ether
- $\mu g/m^3 = microgram per cubic meter$

N/A = not applicable, chemical not detected

SWMU = solid waste management unit

UCL = upper confidence limit

Kirtland AFB Risk Assessment Bulk Fuels Facility, SWMU ST-106/SS-111 Section 3

Table 3-5. Off-Base Soil Gas Summary Statistics, 25-foot Depth (μg/m³) Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

COPC	Total Number of Samples	Number of Detects	Percent Nondetect (%)	Maximum Detect (µg/m³)	Minimum Detect (µg/m³)	Distribution	EPC ^a (µg/m ³)	EPC Method
1,2,4-Trimethylbenzene	12	10	17	9.3	1.3	Nonparametric	4.2	95% KM Chebyshev UCL
1,2-Dibromoethane (EDB)	12	0	100	N/A	N/A	N/A	N/A ^b	N/A
1,2-Dichloroethane	12	0	100	N/A	N/A	N/A	N/A ^b	N/A
Benzene	12	8	33	6.1	1.5	Lognormal	2.7	95% H-UCL (KM-Log)
Cyclohexane	12	2	83	6.5	4.5	N/A	6.5 [°]	Maximum Detection
Ethylbenzene	12	8	33	4.8	1.3	Nonparametric	2.6	95% KM (t) UCL
m & p-Xylenes	12	12	0	40	2.9	Gamma	20	95% Gamma Adjusted UCL
MTBE	12	0	100	N/A	N/A	N/A	N/A ^b	N/A
Naphthalene	12	6	50	4.3	2.0	Nonparametric	2.7	95% KM (t) UCL
n-Heptane	12	2	83	2.5	2.2	N/A	2.5 [°]	Maximum Detection
n-Hexane	12	3	75	6.0	2.2	N/A	6.0 ^c	Maximum Detection
o-Xylene	12	11	8	17	1.4	Gamma	10	95% Gamma Adjusted UCL
Toluene	12	12	0	16	3.0	Normal	12	95% Student's-t UCL
Xylenes (total)	12	12	0	56	2.9	Gamma	28	95% Gamma Adjusted UCL

^a EPCs were calculated using EPA's ProUCL 5.1 (Attachment 2); All nondetects were given the value of the MDL.

^b No detections. COPC will not be carried through the risk screening as discussed in Section 3.3, any uncertainty with detection limits will be discussed in Section 5.2

^c Four or fewer detections. Maximum detection was used as EPC.

Note: Field duplicate samples are averaged with their corresponding normal samples.

Acronyms and Abbreviations:

% = percent

- COPC = contaminant of potential concern
- EPA = United States Environmental Protection Agency
- EPC = exposure point concentration
- KM = Kaplan-Meier Statistics
- MDL = method detection limit
- $MTBE = methyl \ tert-butyl \ ether$
- $\mu g/m^3 = microgram per cubic meter$
- N/A = not applicable, chemical not detected
- SWMU = solid waste management unit
- UCL = upper confidence limit

Table 3-6. On-Site Groundwater Summary Statistics (µg/L) Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

COPC	Total Number of Samples	Number of Detects	Percent Nondetect (%)	Maximum Detect (μg/L)	Minimum Detect (µg/L)	Distribution	EPC ^a (µg/L)	EPC Method
1,2,4-Trimethylbenzene	68	20	71	490	1	Gamma	73	95% KM Approximate Gamma UCL
1,2-Dibromoethane (EDB)	68	21	69	93	0.037	Gamma	9.2	95% KM Approximate Gamma UCL
1,2-Dichloroethane	68	7	90	5.5	1.1	Nonparametric	0.96	95% KM (t) UCL
1-Methylnaphthalene	68	14	79	99	1.8	Nonparametric	12	95% KM (t) UCL
2-Methylnaphthalene	68	9	87	110	8.4	Nonparametric	12	95% KM (t) UCL
Acetophenone	68	16	76	4,500	77	Nonparametric	510	95% KM (t) UCL
Benzene	68	22	68	16,000	0.28	Gamma	1700	95% KM Approximate Gamma UCL
Ethylbenzene	68	20	71	1,600	0.58	Gamma	230	95% KM Approximate Gamma UCL
Lead	68	5	93	3.4	1.6	Nonparametric	1.7	95% KM (t) UCL
Naphthalene	68	20	71	230	0.64	Gamma	32	95% KM Approximate Gamma UCL
Toluene	68	19	72	21,000	1.4	Gamma	2600	95% KM Approximate Gamma UCL
Xylenes (total)	68	20	71	5,100	1.9	Gamma	650	95% KM Approximate Gamma UCL

^a EPCs were calculated using EPA's ProUCL 5.1 (Attachment 2); All nondetects were given the value of the MDL.

Note: Field duplicate samples are averaged with their corresponding normal samples.

Acronyms and Abbreviations:

% = percent

- COPC = contaminant of potential concern
- EPA = United States Environmental Protection Agency
- EPC = exposure point concentration
- KM = Kaplan-Meier Statistics
- MDL = method detection limit
- $\mu g/L = microgram per Liter$
- SWMU = solid waste management unit
- UCL = upper confidence limit

Table 3-7. Off-Base Groundwater Summary Statistics (µg/L) Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

COPC	Total Number of Samples	Number of Detects	Percent Nondetect (%)	Maximum Detect (µg/L)	Minimum Detect (μg/L)	Distribution	EPC ^a (µg/L)	EPC Method
1,2,4-Trimethylbenzene	197	6	97	120	1.0	Gamma	4.4	95% KM Approximate Gamma UCL
1,2-Dibromoethane (EDB)	197	69	65	12	0.011	Nonparametric	0.62	95% KM Chebyshev UCL
1,2-Dichloroethane	197	36	82	5.5	0.30	Lognormal	0.45	95% H-UCL (KM-Log)
1-Methylnaphthalene	197	7	96	20	5.6	Nonparametric	1.3	95% KM (t) UCL
2-Methylnaphthalene	197	2	99	9.9	1.6	N/A	9.9 ^b	Maximimum Detection
Acetophenone	197	7	96	900	1.7	Gamma	35	95% KM Approximate Gamma UCL
Benzene	197	12	94	2,200	0.54	Lognormal	0.90	95% H-UCL (KM-Log)
Ethylbenzene	197	10	95	900	2.7	Gamma	33	95% KM Approximate Gamma UCL
Lead	197	7	96	5.3	1.5	Nonparametric	1.6	95% KM (t) UCL
Naphthalene	197	9	95	35	0.94	Nonparametric	1.1	95% KM (t) UCL
Toluene	197	5	97	2,900	0.31	Nonparametric	74	95% KM (t) UCL
Xylenes (total)	197	5	97	540	16	Nonparametric	15	95% KM (t) UCL

^a EPCs were calculated using EPA's ProUCL 5.1 (Attachment 2); All nondetects were given the value of the MDL.

^bFour or fewer detections. Maximum detection was used as EPC.

Note: Field duplicate samples are averaged with their corresponding normal samples.

Acronyms and Abbreviations:

- % = percent COPC = contaminant of potential concern EPA = United States Environmental Protection Agency EPC = exposure point concentration KM = Kaplan-Meier Statistics MDL = method detection limit µg/L = microgram per Liter N/A = not applicable, chemical not detected SWMU = solid waste management unit
- UCL = upper confidence limit

Table 4-1. On-Site Occupied Buildings Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

On-Site Building Survey Results							
Building Number	Description of Use	Regularly Occupied?					
1026	Helium gas storage	No					
1027	Fuel transfer area, roof but no walls	No					
1032	Offices, occupied 5 to 8 hours per week	No					
1033	Pump House	No					
1036	Storage area	No					
1041	Fuel station, roof but no walls	No					
1044	Air Guard office, always occupied during business hours	Yes					
1049	Navy Surveillance, always occupied during business hours	Yes					
1055	Air Guard office, always occupied during business hours	Yes					
2403	Fuel station, roof but no walls	No					
2404	Fuel station, roof but no walls	No					
2426	BFF Contractor's office, occupied 20 to 23 hours per week	Yes					

Acronyms and Abbreviations:

BFF = Bulk Fuels Facility SWMU = solid waste management unit

Table 5-1. Current/Future On-Site Commercial/Industrial Worker, Surface Soil (0 to 1 foot bgs), Cancer Risk Estimate Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	СОРС	Maximum Detected Concentration	NMED SSL ^a	Units	Cumulative Cancer Risk
Soil	Benzene	0.0013	86.5	mg/kg	2E-10
depth	Ethylbenzene	0.00030	365	mg/kg	8E-12
Sum					2E-10

^a NMED carcinogenic Commercial/Industrial SSLs (NMED, 2017).

Note: Sum may not add up exactly due to significant figures and rounding.

Acronyms and Abbreviations:

bgs = below ground surface COPC = contaminant of potential concern mg/kg = milligram per kilogram NMED = New Mexico Environment Department SSL = soil screening level SWMU = solid waste management unit

Table 5-2. Current/Future On-Site Commercial/Industrial Worker, Surface Soil (0 to 1 foot bgs), Noncancer Hazard Index Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	COPC	Maximum Detected Concentration	NMED SSL ^a	Units	Cumulative Hazard Quotient
	1,2,4-Trimethylbenzene	0.00038	1,800 ^b	mg/kg	0.0000002
Soil	2-Methylnaphthalene	0.14	3,370	mg/kg	0.00004
	Benzene	0.0013	724	mg/kg	0.000002
0 to 1 foot	Ethylbenzene	0.0003	28,800	mg/kg	0.0000001
depth	Naphthalene	0.0064	16,800	mg/kg	0.0000004
	Toluene	0.0013	61,100	mg/kg	0.0000002
	Xylenes (total)	0.00063	4,240	mg/kg	0.0000001
HI					0.00004

^a NMED non-carcinogenic Commercial/Industrial SSLs are used except where noted (NMED, 2017). ^b EPA non-carcinogenic Composite Worker Regional SSL (EPA, 2017).

LIA non-carchiogenie Composite Worker Regional SSE (EFA, 2017).

Note: Sum may not add up exactly due to significant figures and rounding.

Acronyms and Abbreviations:

bgs = below ground surface COPC = contaminant of potential concern EPA = United States Environmental Protection Agency HI = hazard index mg/kg = milligram per kilogram NMED = New Mexico Environment Department SSL = soil screening level SWMU = solid waste management unit

Table 5-3. Future Hypothetical On-Site Resident, Mixed Zone Soil (0 to 10 feet bgs), Cancer Risk Estimate Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	СОРС	Maximum Detected Concentration	NMED SSL ^a	Units	Cumulative Cancer Risk
Soil	Benzene	0.0033	17.7	mg/kg	2E-09
0 to 10 foot	Ethylbenzene	0.47	74.5	mg/kg	6E-08
depth	1-Methylnaphthalene	0.33	172	mg/kg	2E-08
Sum					8E-08

^a NMED non-carcinogenic Residential SSLs (NMED, 2017).

Note: Sum may not add up exactly due to significant figures and rounding.

Acronyms and Abbreviations:

bgs = below ground surface COPC = contaminant of potential concern mg/kg = milligram per kilogram NMED = New Mexico Environment Department SSL = soil screening level SWMU = solid waste management unit

Table 5-4. Future Hypothetical On-Site Resident, Mixed Zone Soil (0 to 10 feet bgs), Noncancer Hazard Index Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	COPC	Maximum Detected Concentration	NMED SSL ^a	Units	Cumulative Hazard Quotient
	1,2,4-Trimethylbenzene	20	300 ^b	mg/kg	0.07
	1-Methylnaphthalene	0.33	4,060	mg/kg	0.00008
	2-Methylnaphthalene	16	232	mg/kg	0.07
Soil	Benzene	0.0033	114	mg/kg	0.00003
0 to 10 foot	Ethylbenzene	0.47	3,920	mg/kg	0.0001
depth	Isopropylbenzene	0.29	2,350	mg/kg	0.0001
	Naphthalene	16	1,160	mg/kg	0.01
	Toluene	0.0045	5,220	mg/kg	0.000009
	Xylenes (total)	3.8	863	mg/kg	0.004
HI					0.2

^a NMED non-carcinogenic Residential SSLs are used except where noted (NMED, 2017).

^b EPA non-carcinogenic Resident Regional SSL (EPA, 2017).

Note: Sum may not add up exactly due to significant figures and rounding.

Acronyms and Abbreviations:

bgs = below ground surface COPC = contaminant of potential concern EPA = United States Environmental Protection Agency HI = hazard index mg/kg = milligram per kilogram NMED = New Mexico Environment Department SSL = soil screening level SWMU = solid waste management unit

Table 5-5. Future On-Site Construction Worker, Mixed Zone Soil (0 to 10 feet bgs), Cancer Risk Estimate Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	СОРС	Maximum Detected Concentration	NMED SSL ^a	Units	Cumulative Cancer Risk
Soil	Benzene	0.0033	420	mg/kg	8E-11
0 to 10 foot	Ethylbenzene	0.47	1,760	mg/kg	3E-09
depth	1-Methylnaphthalene	0.33	6,060	mg/kg	5E-10
Sum					3E-09

^a The NMED carcinogenic Construction Worker SSLs (NMED, 2017).

Note: Sum may not add up exactly due to significant figures and rounding.

Acronyms and Abbreviations:

bgs = below ground surface COPC = contaminant of potential concern mg/kg = milligram per kilogram NMED = New Mexico Environment Department SSL = soil screening level SWMU = solid waste management unit

Table 5-6. Future On-Site Construction Worker, Mixed Zone Soil (0 to 10 feet bgs), Noncancer Hazard Index Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	СОРС	Maximum Detected Concentration	NMED Soil Screening Level ^a	Units	Cumulative Hazard Quotient
	1,2,4- Trimethylbenzene	20	1,800 ^b	mg/kg	0.01
	1-Methylnaphthalene	0.33	17,600	mg/kg	0.00002
Cail	2-Methylnaphthalene	16	1,000	mg/kg	0.02
	Benzene	0.0033	141	mg/kg	0.00002
depth	Ethylbenzene	0.47	5,750	mg/kg	0.00008
deptil	Isopropylbenzene	0.29	2,710	mg/kg	0.0001
	Naphthalene	16	5,020	mg/kg	0.003
	Toluene	0.0045	14,000	mg/kg	0.000003
	Xylenes (total)	3.8	791	mg/kg	0.005
HI					0.04

^a NMED non-carcinogenic Construction Worker SSLs are used except where noted (NMED, 2017).

^b EPA non-carcinogenic Composite Worker Regional SSL (EPA, 2017).

Note: Sum may not add up exactly due to significant figures and rounding.

Acronyms and Abbreviations:

bgs = below ground surface COPC = contaminant of potential concern EPA = United States Environmental Protection Agency HI = hazard index mg/kg = milligram per kilogram NMED = New Mexico Environment Department SSL = soil screening level SWMU = solid waste management unit

Table 5-7. Current/Future On-Site Commercial/Industrial Worker, Soil Gas Maximum Concentrations, Cancer Risk Estimate Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	СОРС	Maximum Detected Concentration*	NMED VISL ^a	Units	Cumulative Cancer Risk
Soil Gas,	1,2-Dibromoethane (ethylene dibromide; EDB)	24	7.65	µg/m³	3E-05
25-foot	Benzene	480	588	µg/m³	8E-06
depth, all	Ethylbenzene	240	1,840	µg/m³	1E-06
locations	Naphthalene	260	135	µg/m³	2E-05
Sum					6E-05 ^b

* Based on data from Q1 through Q3 2016.

^a NMED carcinogenic Commercial/Industrial Soil Gas VISLs are used (NMED, 2017).

^b Total cancer risk for soil gas exceeds the 1x10⁻⁵ target cancer risk level (NMED, 2017) and is further evaluated using statistic-based exposure point concentration (See Table 5-8).

Note: Sum may not add up exactly due to significant figures and rounding.

Bold = Bolded numbers exceed NMED target cancer risk level (NMED, 2017).

Acronyms and Abbreviations:

COPC = contaminant of potential concern $\mu g/m^3$ = microgram per cubic meter NMED = New Mexico Environment Department Q = Quarter SWMU = solid waste management unit VISL = vapor intrusion screening level

Table 5-8. Current/Future On-Site Commercial/Industrial Worker, Soil Gas EPC Concentrations, Cancer Risk Estimate Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	COPC	EPC*	NMED VISL ^a	Units	Cancer Risk
Soil Gas, on-Site,	1,2-Dibromoethane (ethylene dibromide; EDB)	1.5	7.65	µg/m³	2E-06
25-foot	Benzene	10	588	µg/m³	2E-07
depth, all	Ethylbenzene	24	1,840	µg/m³	1E-07
locations	Naphthalene	24	135	µg/m³	2E-06
Sum					4E-06

* Based on data from Q1 through Q3 2016. EPCs were calculated using EPA's ProUCL 5.1.

^a NMED carcinogenic Commercial/Industrial VISLs are used (NMED, 2017).

Note: Sum may not add up exactly due to significant figures and rounding.

Acronyms and Abbreviations:

COPC = contaminant of potential concern EPA = United States Environmental Protection Agency EPC = exposure point concentration $\mu g/m^3$ = microgram per cubic meter NMED = New Mexico Environment Department Q = Quarter SWMU = Solid Waste Management Unit VISL = vapor intrusion screening level

Table 5-9. Current/Future On-Site Commercial/Industrial Worker, Soil Gas Maximum Concentration, Noncancer Hazard Index Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	COPC	Maximum Detected Concentration*	NMED VISL ^a	Units	Cumulative Hazard Quotient
	1,2,4-trimethylbenzene	640	8,670 ^b	µg/m³	0.07
	Cyclohexane	380	867,000 ^b	µg/m³	0.0004
Soil Gas,	n-heptane	490	60,000 ^b	µg/m³	0.008
on-Site,	n-hexane	600	115,000	µg/m³	0.005
all locations	Toluene	900	918,000	µg/m³	0.001
	m- and p-xylenes	610	16,400	µg/m³	0.04
	o-xylene	280	16,400	µg/m³	0.02
	Xylenes (total)	910	16,400	µg/m³	0.06
HI					0.2

* Based on data from Q1 through Q3 2016.

^a NMED non-carcinogenic Commercial/Industrial Soil Gas VISLs are used except where noted (NMED, 2017).

^b No NMED VISL is available. NMED VISLs for soil gas are calculated by applying an attenuation factor (alpha) of 0.03 to an indoor air screening level (NMED, 2017), where alpha is the ratio of the presumed indoor air concentration to the concentration in soil gas immediately below a building foundation. An equivalent VISL was calculated by dividing the June 2017 EPA non-carcinogenic Composite Worker Air Regional SL (EPA, 2017) by 0.03.

Note: Sum may not add up exactly due to significant figures and rounding.

Acronyms and Abbreviations:

COPC = contaminant of potential concern EPA = United States Environmental Protection Agency HI = hazard index $\mu g/m^3$ = microgram per cubic meter NMED = New Mexico Environment Department Q = Quarter SL = screening level SWMU = solid waste management unit VISL = vapor intrusion screening level

Table 5-10. Future Hypothetical On-Site Resident, Soil Gas Maximum Concentrations, Cancer Risk Estimate Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	СОРС	Maximum Detected Concentration*	NMED VISL ^a	Units	Cumulative Cancer Risk
Soil Gas,	1,2-Dibromoethane (ethylene dibromide; EDB)	24	1.56	µg/m³	2E-04
on-Site, 25-foot depth	Benzene	480	120	µg/m³	4E-05
all locations	Ethylbenzene	240	374	µg/m³	6E-06
	Naphthalene	260	27.5	µg/m³	9E-05
Sum					3E-04 ^b

* Based on data from Q1 through Q3 2016.

^a NMED carcinogenic Residential Soil Gas VISLs are used (NMED, 2017).

^b Total cancer risk for soil gas exceeds the 1x10⁻⁵ target cancer risk level (NMED, 2017) and is further evaluated using statistic-based exposure point concentration (See Table 5-11).

Note: Sum may not add up exactly due to significant figures and rounding.

Bold = Bolded numbers exceed NMED target cancer risk level (NMED, 2017).

Acronyms and Abbreviations:

COPC = contaminant of potential concern $\mu g/m^3$ = microgram per cubic meter NMED = New Mexico Environment Department Q = Quarter SWMU = solid waste management unit VISL = vapor intrusion screening level

Table 5-11. Future Hypothetical On-Site Resident, Soil Gas EPCs, Cancer Risk Estimate Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	COPC	EPC*	NMED VISL ^a	Units	Cancer Risk
Soil Gas, on-Site,	1,2-Dibromoethane (ethylene dibromide; EDB)	1.5	1.56	µg/m³	1E-05
25-foot	Benzene	10	120	µg/m³	8E-07
depth, all	Ethylbenzene	24	374	µg/m³	6E-07
locations	Naphthalene	24	27.5	µg/m³	9E-06
Sum					2E-05

* Based on data from Q1 through Q3 2016. EPCs were calculated using EPA's ProUCL 5.1.

^a NMED carcinogenic Residential VISLs are used (NMED, 2017).

Note: Sum may not add up exactly due to significant figures and rounding.

Bold = Bolded numbers exceed NMED target cancer risk level (NMED, 2017).

Acronyms and Abbreviations:

COPC = contaminant of potential concern EPA = United States Environmental Protection Agency EPC = exposure point concentration $\mu g/m^3$ = microgram per cubic meter NMED = New Mexico Environment Department Q = Quarter SWMU = solid waste management unit VISL = vapor intrusion screening level

Table 5-12. Future Hypothetical On-Site Resident, Soil Gas Maximum Concentrations, Noncancer Hazard Index Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	СОРС	Maximum Detected Concentration*	NMED Residential VISL ^a	Units	Cumulative Hazard Quotient
	1,2,4- Trimethylbenzene	640	2,100 ^b	µg/m³	0.3
	Cyclohexane	380	210,000 ^b	µg/m³	0.002
Soil Gas,	n-Heptane	490	14,000 ^b	µg/m³	0.04
on-Site, 25-foot depth	n-Hexane	600	24,300	µg/m³	0.02
all locations	Toluene	900	174,000	µg/m³	0.005
	m- and p-Xylenes	610	3,480	µg/m³	0.2
	o-Xylene	280	3,480	µg/m³	0.08
	Xylenes (total)	910	3,480	µg/m³	0.3
HI					0.9

* Based on data from Q1 through Q3 2016.

^a NMED non-carcinogenic Residential Soil Gas VISLs are used unless not available (NMED, 2017).

^b No NMED Soil Gas VISL is available. NMED Soil Gas VISLs are calculated by applying an attenuation factor (alpha) of 0.03 to an indoor air screening level (NMED, 2017), where alpha is the ratio of the presumed indoor air concentration to the concentration in soil gas immediately below a building foundation. An equivalent soil gas VISL was calculated by dividing the June 2017 EPA Resident Regional Air SL (EPA, 2017) by 0.03.

Note: Sum may not add up exactly due to significant figures and rounding.

Acronyms and Abbreviations:

COPC = contaminant of potential concern EPA = United States Environmental Protection Agency HI = hazard index $\mu g/m^3$ = microgram per cubic meter NMED = New Mexico Environment Department Q = Quarter SL = screening level SWMU = solid waste management unit VISL = vapor intrusion screening level

Table 5-13. Future Hypothetical Off-Base Resident, Soil Gas Maximum Concentrations, Cancer Risk Estimate Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	СОРС	Maximum Detected Concentration*	NMED Residential VISL ^a	Units	Cumulative Cancer Risk
Soil Gas, off-Base, 25-foot depth, all locations	Benzene	6.1	120	µg/m³	5E-07
	Ethylbenzene	4.8	374	µg/m³	1E-07
	Naphthalene	4.3	27.5	µg/m³	2E-06
Sum					2E-06

* Based on data from Q1 through Q3 2016.

^a NMED carcinogenic Residential Soil Gas VISLs are used (NMED, 2017).

Note: Sum may not add up exactly due to significant figures and rounding.

Acronyms and Abbreviations:

COPC = contaminant of potential concern $\mu g/m^3$ = microgram per cubic meter NMED = New Mexico Environment Department Q = Quarter SWMU = solid waste management unit VISL = vapor intrusion screening level

Table 5-14. Future Hypothetical Off-Base Resident, Soil Gas Maximum Concentrations, Noncancer Hazard Index Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	СОРС	Maximum Detected Concentration*	NMED Residential VISL ^a	Units	Cumulative Hazard Quotient
Soil Gas, off-Base, 25-foot depth, all locations	1,2,4- Trimethylbenzene	9.3	2,100 ^b	µg/m³	0.004
	Cyclohexane	6.5	210,000 ^b	µg/m³	0.00003
	n-Heptane	2.5	14,000 ^b	µg/m³	0.0002
	n-Hexane	6.0	24,300	µg/m³	0.0002
	Toluene	16	174,000	µg/m³	0.00009
	m- and p-Xylenes	40	3,480	µg/m³	0.01
	o-Xylene	17	3,480	µg/m³	0.005
	Xylenes (total)	56	3,480	µg/m³	0.02
HI					0.04

* Based on data from Q1 through Q3 2016.

^a NMED non-carcinogenic Residential Soil Gas VISLs are used except where noted (NMED, 2017).

^b No NMED Soil Gas VISL is available. NMED Soil Gas VISLs are calculated by applying an attenuation factor (alpha) of 0.03 to an indoor air screening level (NMED, 2017), where alpha is the ratio of the presumed indoor air concentration to the concentration in soil gas immediately below a building foundation. An equivalent soil gas VISL was calculated by dividing the June 2017 EPA non-carcinogenic Resident Air Regional SL (EPA, 2017) by 0.03.

Note: Sum may not add up exactly due to significant figures and rounding.

Acronyms and Abbreviations:

COPC = contaminant of potential concern EPA = United States Environmental Protection Agency HI = hazard index $\mu g/m^3$ = microgram per cubic meter NMED = New Mexico Environment Department Q = Quarter SL = screening level SWMU = solid waste management unit VISL = vapor intrusion screening level

Table 5-15. Future On-Site Domestic Water User, Groundwater Maximum Concentrations, Cancer Risk Estimate Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	COPC	Maximum Detected Concentration*	NMED Residential Tapwater Screening Level ^a	Units	Cumulative Cancer Risk
On-Site Groundwater (as Tapwater)	1,2-Dibromoethane (ethylene dibromide; EDB)	93	0.0747	µg/L	1E-02
	1,2-Dichloroethane	5.5	1.71	µg/L	3E-05
	1-Methylnaphthalene	99	11.4	µg/L	9E-05
	Benzene	16,000	4.55	µg/L	4E-02
	Ethylbenzene	1,600	15.0	µg/L	1E-03
	Naphthalene	230	1.65	µg/L	1E-03
Sum					5E-02 ^b

* Based on data from Q3 and Q4 2015.

^a NMED carcinogenic Residential Tapwater SLs are used (NMED, 2017).

^b Total cancer risk for soil gas exceeds the 1×10^{-5} target cancer risk level (NMED, 2017) and is further evaluated using statistic-based exposure point concentration (See Table 5-16).

Note: Sum may not add up exactly due to significant figures and rounding.

Bold = Bolded numbers exceed NMED target cancer risk level (NMED, 2017).

Acronyms and Abbreviations:

COPC = contaminant of potential concern $\mu g/L = microgram per Liter$ NMED = New Mexico Environment Department Q = Quarter SL = screening levelSWMU = solid waste management unit

Table 5-16. Future On-Site Domestic Water User, Groundwater EPCs, Cancer Risk Estimate Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	COPC	EPC*	NMED Residential Tapwater Screening Level ^a	Units	Cancer Risk
On-Site Groundwater (as Tapwater)	1,2-Dibromoethane (ethylene dibromide; EDB)	9.2	0.0747	µg/L	1E-03
	1,2-Dichloroethane	0.96	1.71	µg/L	6E-06
	1-Methylnaphthalene	12	11.4	µg/L	1E-05
	Benzene	1,700	4.55	µg/L	4E-03
	Ethylbenzene	230	15.0	µg/L	2E-04
	Naphthalene	32	1.65	μg/L	2E-04
Sum					5E-03

* Based on data from Q3 and Q4 2015. EPCs were calculated using EPA's ProUCL 5.1.

^a NMED carcinogenic Residential Tapwater SLs are used (NMED, 2017).

Note: Sum may not add up exactly due to significant figures and rounding.

Bold = Bolded numbers exceed NMED target cancer risk level (NMED, 2017).

Acronyms and Abbreviations:

COPC = contaminant of potential concern EPA = United States Environmental Protection Agency EPC = exposure point concentration $\mu g/L$ = microgram per Liter NMED = New Mexico Environment Department Q = Quarter SL = screening level SWMU = solid waste management unit

Table 5-17. Future On-Site Domestic Water User, Groundwater Maximum Concentrations, Noncancer Hazard Index Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	СОРС	Maximum Detected Concentration*	NMED Residential Tapwater Screening Level ^a	Units	Cumulative Hazard Quotient
	1,2-Dibromoethane (ethylene dibromide; EDB)	93	16.9	µg/L	6
	1,2-Dichloroethane	5.5	13.0	µg/L	0.4
	1,2,4-Trimethylbenzene	490	56 ^b	µg/L	9
	1-Methylnaphthalene	99	611	µg/L	0.2
On-Site Groundwater (as Tapwater)	2-Methylnaphthalene	110	35.1	µg/L	3
	Acetophenone	4,500	1,920	µg/L	2
	Benzene	16,000	33.2	µg/L	500
	Ethylbenzene	1,600	800	µg/L	2
	Naphthalene	230	6.11	µg/L	40
	Toluene	21,000	1,090	µg/L	20
	Xylenes (total)	5,100	193	µg/L	30
HI					600 ^c

* Based on data from Q3 and Q4 2015.

^a NMED non-carcinogenic Residential Tapwater SLs are used except where noted (NMED, 2017).

^b EPA non-carcinogenic Resident Regional Tapwater SL (EPA, 2017).

^c Hazard index sum exceeds NMED target hazard index of 1 (NMED, 2017) and is further evaluated using statistic-based exposure point concentration (see Table 5-18).

Note: Sum may not add up exactly due to significant figures and rounding.

Bold = Bolded numbers exceed NMED target HI of 1 (NMED, 2017).

Acronyms and Abbreviations:

COPC = contaminant of potential concern EPA = United States Environmental Protection Agency HI = hazard index $\mu g/L$ = microgram per Liter NMED = New Mexico Environment Department Q = Quarter SL = screening level SWMU = solid waste management unit

Table 5-18. Future On-Site Domestic Water User, Groundwater EPCs, Noncancer Hazard Index Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	СОРС	EPC*	NMED Residential Tapwater Screening Level ^a	Units	Hazard Quotient
	1,2-Dibromoethane (ethylene dibromide; EDB)	9.2	16.9	µg/L	0.5
	1,2-Dichloroethane	0.96	13.0	µg/L	0.07
	1,2,4-Trimethylbenzene	73	56 ^b	µg/L	1
	1-Methylnaphthalene	12	611	µg/L	0.02
On-Site Croundwater	2-Methylnaphthalene	12	35.1	µg/L	0.3
(as Tapwater)	Acetophenone	510	1,920	µg/L	0.3
	Benzene	1700	33.2	µg/L	50
	Ethylbenzene	230	800	µg/L	0.3
	Naphthalene	32	6.11	µg/L	5
	Toluene	2,600	1,090	µg/L	2
	Xylenes (total)	650	193	µg/L	3
HI					70

* Based on data from Q3 and Q4 2015. EPCs were calculated using EPA's ProUCL 5.1.

^a NMED non-carcinogenic Residential Tapwater SLs are used except where noted (NMED, 2017).

^b EPA non-carcinogenic Resident Regional Tapwater SL (EPA, 2017).

Note: Sum may not add up exactly due to significant figures and rounding.

Bold = Bolded numbers exceed NMED target HI of 1 (NMED, 2017).

Acronyms and Abbreviations:

COPC = contaminant of potential concern EPA = United States Environmental Protection Agency EPC = exposure point calculation HI = hazard index $\mu g/m^3$ = microgram per cubic meter NMED = New Mexico Environment Department Q = Quarter SL = screening level SWMU = solid waste management unit
Table 5-19. Future Off-Base Domestic Water User, Groundwater Maximum Concentrations, Cancer Risk Estimate Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	COPC	Maximum Detected Concentration*	NMED Residential Tapwater Screening Level ^a	Units	Cumulative Cancer Risk
	1,2-Dibromoethane (ethylene dibromide; EDB)	12	0.0747	µg/L	2E-03
Off-Base	1,2-Dichloroethane	5.5	1.71	µg/L	3E-05
Groundwater	1-Methylnaphthalene	20	11.4	µg/L	2E-05
(as Tapwater)	Benzene	2,200	4.55	µg/L	5E-03
	Ethylbenzene	900	15.0	µg/L	6E-04
	Naphthalene	35	1.65	µg/L	2E-04
Sum					8E-03 ^b

* Based on data from Q3 and Q4 2015.

^a NMED carcinogenic Residential Tapwater SLs are used (NMED, 2017).

^b Total cancer risk exceeds the 1x10⁻⁵ target cancer risk level (NMED, 2017) and is further evaluated using statistic-based exposure point concentration (see Table 5-20).

Note: Sum may not add up exactly due to significant figures and rounding.

Bold = Bolded numbers exceed NMED target cancer risk level (NMED, 2017).

Acronyms and Abbreviations:

COPC = contaminant of potential concern $\mu g/L = microgram per Liter$ NMED = New Mexico Environment Department Q = Quarter SL = screening levelSWMU = solid waste management unit

Table 5-20. Future Off-Base Domestic Water User, Groundwater EPCs, Cancer Risk Estimate Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	COPC	EPC*	NMED Residential Tapwater Screening Level ^a	Units	Cancer Risk
	1,2-Dibromoethane (ethylene dibromide; EDB)	0.62	0.0747	µg/L	8E-05
Off-Base	1,2-Dichloroethane	0.45	1.71	µg/L	3E-06
Groundwater	1-Methylnaphthalene	1.3	11.4	µg/L	1E-06
(as Tapwater)	Benzene	0.90	4.55	µg/L	2E-06
	Ethylbenzene	33	15.0	µg/L	2E-05
	Naphthalene	1.1	1.65	μg/L	7E-06
Sum					1E-04

* Based on data from Q3 and Q4 2015. EPCs were calculated using EPA's ProUCL 5.1.

^a NMED carcinogenic Residential Tapwater SLs are used (NMED, 2017).

Note: Sum may not add up exactly due to significant figures and rounding.

Bold = Bolded numbers exceed NMED target cancer risk level (NMED, 2017).

Acronyms and Abbreviations:

COPC = contaminant of potential concern EPA = United States Environmental Protection Agency EPC = exposure point concentration $\mu g/L$ = microgram per Liter NMED = New Mexico Environment Department Q = Quarter SL = screening level SWMU = solid waste management unit

Table 5-21. Future Off-Base Domestic Water User, Groundwater Maximum Concentrations, Noncancer Hazard Index Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	COPC	Maximum Detected Concentration*	NMED Residential Tapwater Screening Level ^a	Units	Cumulative Hazard Quotient
	1,2-Dibromoethane (ethylene dibromide; EDB)	12	16.9	µg/L	0.7
	1,2-Dichloroethane	5.5	13.0	µg/L	0.4
	1,2,4-Trimethylbenzene	120	56 ^b	µg/L	2
011 Date	1-Methylnaphthalene	20	611	µg/L	0.03
Off-Base Croundwater	2-Methylnaphthalene	9.9	35.1	µg/L	0.3
(as Tapwater)	Acetophenone	900	1,920	µg/L	0.5
(as rapwater)	Benzene	2,200	33.2	µg/L	70
	Ethylbenzene	900	800	µg/L	1
	Naphthalene	35	6.11	µg/L	6
	Toluene	2,900	1,090	µg/L	3
	Xylenes (total)	540	193	µg/L	3
HI					80 ^c

* Based on data from Q3 and Q4 2015.

^a NMED non-carcinogenic Residential Tapwater SLs are used except where noted (NMED, 2017).

^b EPA non-carcinogenic Resident Regional Tapwater SL (EPA, 2017).

^c Hazard index exceeds NMED target hazard index of 1 (NMED, 2017) and is further evaluated using statistic-based exposure point concentration (see Table 5-22).

Note: Sum may not add up exactly due to significant figures and rounding.

Bold = Bolded numbers exceed NMED target risk values (NMED, 2017).

Acronyms and Abbreviations:

COPC = contaminant of potential concern EPA = United States Environmental Protection Agency HI = hazard index $\mu g/L$ = microgram per Liter NMED = New Mexico Environment Department Q = Quarter SL = screening level SWMU = solid waste management unit

Table 5-22. Future Off-Base Domestic Water User, Groundwater EPCs, Noncancer Hazard Index Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Medium	COPC	EPC*	NMED Residential Tapwater Screening Level ^a	Units	Hazard Quotient
	1,2-Dibromoethane (ethylene dibromide; EDB)	0.62	16.9	µg/L	0.04
	1,2-Dichloroethane	0.45	13.0	µg/L	0.03
	1,2,4-Trimethylbenzene	4.4	56 ^b	µg/L	0.08
011 Date	1-Methylnaphthalene	1.3	611	µg/L	0.002
Off-Base Croundwater	2-Methylnaphthalene	9.9	35.1	µg/L	0.3
Groundwater	Acetophenone	35	1,920	µg/L	0.02
(as rapwater)	Benzene	0.90	33.2	µg/L	0.03
	Ethylbenzene	33	800	µg/L	0.04
	Naphthalene	1.1	6.11	µg/L	0.2
	Toluene	74	1,090	µg/L	0.07
	Xylenes (total)	15	193	µg/L	0.08
HI					0.8

* Based on data from Q3 and Q4 2015. EPCs were calculated using EPA's ProUCL 5.1.

^a NMED non-carcinogenic Residential Tapwater SLs are used except where noted (NMED, 2017).

^b EPA non-carcinogenic Resident Regional Tapwater SL (EPA, 2017).

Note: Sum may not add up exactly due to significant figures and rounding.

Acronyms and Abbreviations:

COPC = contaminant of potential concern EPA = United States Environmental Protection Agency EPC = exposure point calculation HI = hazard index $\mu g/L$ = microgram per Liter NMED = New Mexico Environment Department Q = Quarter SL = screening level SWMU = solid waste management unit

Table 6-1. Ecological Screening of On-Site Surface Soil (0 to 1-foot depth interval) Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

		Ecological Soil Screening Level ^a mg/kg										
COPC	Plant ESL	Soil Invertebrate ESL	Small Herbivorous Mammal ESL	Small Omnivorous Mammal ESL	Insectivorous Mammal ESL	Carnivorous Mammal ESL	Herbivorous Bird ESL	Omnivorous Bird ESL	Insectivorous Bird ESL	Carnivorous Bird ESL	Maximum Concentration (mg/kg)	Maximum HQ
1,2,4- Trimethylbenzene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.00038	N/A
1,2- Dibromoethane (Ethylene Dibromide, EDB)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	N/A
1,2-Dichloroethane	N/A	N/A	32 ^b	452	89 ^b	2010	0.85 ^b	21.8	4.6 ^b	167	ND	N/A
2- Methylnaphthalene	N/A	N/A	95 ^b	24 ^b	16 ^b	4200 ^b	N/A	N/A	N/A	N/A	0.14	8.8E-03
Benzene	N/A	N/A	31 ^b	240	47 ^b	1070	N/A	N/A	N/A	N/A	0.0013	4.2E-05
Ethylbenzene	N/A	N/A	N/A	5.16 °	N/A	N/A	N/A	N/A	N/A	N/A	0.00030	5.8E-05
Isopropylbenzene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	N/A
Lead	120 ^b	1700 ^b	330 ^b	42.7	72 ^b	190	21 ^b	7.7	14 ^b	59.3	39	5.1
MTBE (Methyl tert- butyl ether)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	N/A
Naphthalene	1 b	N/A	11 ^b	130	27 ^b	578	3.4 ^b	71	16 ^b	546	0.0064	6.4E-03
Toluene	200 ^b	N/A	54 ^b	236	23 b	1050	N/A	N/A	N/A	N/A	0.0013	5.7E-05
Xylenes (total)	100 ^b	N/A	6.2 ^b	19.1	1.4 ^b	84.8	90 ^b	506	41 ^b	3890	0.00063	4.5E-4

Table 6-1. Ecological Screening of On-Site Surface Soil (0 to 1-foot depth interval) (CONCLUDED) Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Bolded values indicate lowest ESL. Shaded values indicate hazard quotients greater than 1.

^a Unless otherwise noted, all ESLs are from NMED's Risk Assessment Guidance for Investigation and Remediation (NMED, 2017).

^b When ESLs from NMED were not promulgated, ESLs from LANL EcoRisk Database V 3.3 (LANL, 2014) were used.

^c Region 5 screening level for shrew or vole, obtained from National Oceanic and Atmospheric Administration Screening Quick Reference Table (Buchman, 2008).

Note: COPCs 1-methylnaphthalene and hexadecane were not analyzed for in this sample set.

Acronyms and Abbreviations:

COPC = contaminant of potential concern ESL = Ecological Screening Level HQ = hazard quotient LANL = Los Alamos National Laboratory mg/kg = milligram per kilogram N/A = not available NMED = New Mexico Environment Department SWMU = solid waste management unit

Table 6-2. Hazard Index Calculations for On-Site Surface Soil (0 to 1-foot depth interval)

Risk Assessment Report

Bulk Fuels Facility, SWMU ST-106/SS-111

Kirtland Air Force Base, New Mexico

COPC	Plant HQ	Soil Invert HQ	Herbivorous Mammal HQ	Small Omnivorous Mammal HQ	Insectivorous. Mammal HQ	Carnivorous Mammal HQ	Herbivorous. Bird HQ	Omnivorous Bird HQ	Insectivorous Bird HQ	Carnivorous Bird HQ
1,2,4- Trimethylbenzene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Dibromoethane (Ethylene Dibromide, EDB)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Dichloroethane	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2-Methylnaphthalene	N/A	N/A	0.0015	0.0058	0.0088	3.3E-05	N/A	N/A	N/A	N/A
Benzene	N/A	N/A	4.2E-05	5.4E-06	2.8E-05	1.2E-06	N/A	N/A	N/A	N/A
Ethylbenzene	N/A	N/A	N/A	5.8E-05	N/A	N/A	N/A	N/A	N/A	N/A
Isopropylbenzene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lead	0.33	0.023	0.12	0.91	0.54	0.21	1.9	5.1	2.8	0.66
MTBE (Methyl tert- butyl ether)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Naphthalene	0.0064	N/A	0.00058	4.9E-05	0.00024	1.1E-05	0.0019	9.0E-05	0.00040	1.2E-05
Toluene	6.5E-6	N/A	2.4E-05	5.5E-06	5.7E-05	1.2E-06	N/A	N/A	N/A	N/A
Xylenes (total)	6.3E-6	N/A	0.00010	3.3E-05	0.00045	7.4E-06	7.0E-06	1.2E-06	1.5E-05	1.6E-07
Hazard Index	0.33	0.023	0.12	0.92	0.55	0.21	1.9	5.1	2.8	0.66

Shaded values indicate HQs or HIs greater than 1.

Note: COPCs 1-methylnaphthalene and hexadecane were not analyzed for in this sample set.

Acronyms and Abbreviations:

COPC = contaminant of potential concern HI = hazard index HQ = hazard quotient N/A = not available SWMU = solid waste management unit Kirtland AFB Risk Assessment Bulk Fuels Facility SWMU ST-106/SS-111

Table 6-3. Ecological Screening of Mixed Zone Soil (0 to 10 feet bgs) Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

	Ecological Soil Screening Level ^a (mg/kg)						
COPC	Small Omnivorous Mammal ESL	Carnivorous Bird ESL	Maximum Concentration (mg/kg)	Maximum HQ			
1,2,4- Trimethylbenzene	N/A	N/A	20	N/A			
1,2-Dibromoethane (Ethylene Dibromide, EDB)	N/A	N/A	ND	N/A			
1,2-Dichloroethane	452	167	ND	N/A			
1-Methylnaphthalene	N/A	N/A	0.33	N/A			
2-Methylnaphthalene	24 ^b	N/A	16	0.67			
Benzene	240	N/A	0.0033	0.000014			
Ethylbenzene	5.16 ^c	N/A	0.47	0.091			
lsopropylbenzene	N/A	N/A	0.29	N/A			
Lead	42.7	59.3	71	1.7			
MTBE (Methyl tert- butyl ether)	N/A	N/A	ND	N/A			
Naphthalene	130	546	16	0.12			
Toluene	236	N/A	0.0045	0.000019			
Xylenes (total)	19.1	3,890	3.8	0.20			

Table 6-3. Ecological Screening of Mixed Zone Soil (0 to 10 feet bgs) (CONCLUDED) Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Bolded values indicate lowest Ecological Screening Level Shaded values indicate hazard quotients greater than 1

^a Unless otherwise noted, all ecological screening levels are from NMED's Risk Assessment Guidance for Investigation and Remediation (NMED 2017).

^b Ecological screening levels are from LANL EcoRisk Database V 3.3 (LANL 2014).

^c Region 5 screening level for shrew or vole, obtained from NOAA Screening Quick Reference Table (SQuiRT) (Buchman 2008).

Note: COPC Hexadecane were not analyzed for in this sample set.

Acronyms and Abbreviations:

COPC = contaminant of potential concern HQ = hazard quotient LANL = Los Alamos National Laboratory mg/kg = milligram per kilogram NOAA = National Oceanic and Atmospheric Administration N/A = not available ND = nondetect SWMU = Solid Waste Management Unit

Table 6-4. Hazard Calculations of Mixed Zone Soil (0 to 10 feet bgs) Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

COPC	Small Omnivorous Mammal HQ	Carnivorous Bird HQ
1,2,4- Trimethylbenzene	N/A	N/A
1,2-Dibromoethane (Ethylene Dibromide, EDB)	N/A	N/A
1,2-Dichloroethane	N/A	N/A
1-Methylnaphthalene	N/A	N/A
2-Methylnaphthalene	0.67	N/A
Benzene	0.000014	N/A
Ethylbenzene	0.091	N/A
Isopropylbenzene	N/A	N/A
Lead	1.7	1.2
MTBE (Methyl tert- butyl ether)	N/A	N/A
Naphthalene	0.12	0.029
Toluene	0.000019	N/A
Xylenes (total)	0.20	0.00098
Hazard Index	2.7	1.2

Shaded values indicate HIs and HQs greater than 1.

Note: COPC Hexadecane were not analyzed for in this sample set.

Acronyms and Abbreviations:

COPC = contaminant of potential concern HI = hazard index HQ = hazard quotient N/A = not available ND = nondetect SWMU = solid waste management unit

Table 6-5. Ecological Screening of Soil Gas Concentrations On-Site (15 to 25-foot depth interval) Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

COPC	Maximum Detected Concentration	Soil Gas (Burrowing Mammal) ESL	Units	Source	Does COPC Exceed ESL? ^a
1,2-Dibromoethane (Ethylene Dibromide [EDB])	0.024	N/A	mg/m ³	N/A	N/A
1,2-Dichloroethane	ND	41	mg/m³	LANL	Ν
1,2,4-Trimethylbenzene	0.64	7.8	mg/m³	MWH	Ν
Benzene	0.48	25	mg/m³	LANL	Ν
Cyclohexane	0.38	N/A	mg/m³	N/A	N/A
Ethylbenzene	0.24	23	mg/m³	MWH	Ν
n-Heptane	0.49	N/A	mg/m³	N/A	N/A
n-Hexane	0.60	N/A	mg/m³	N/A	N/A
Methyl tert-butyl ether (MTBE)	ND	N/A	mg/m³	N/A	Ν
Naphthalene	0.26	1.9	mg/m³	MWH	Ν
Toluene	0.90	60	mg/m³	LANL	Ν
Xylenes (total)	0.91	87	mg/m³	LANL	Ν
m- and p-Xylenes	0.61	7.8	mg/m ³	MWH	N
o-Xylene	0.28	7.8	mg/m³	MWH	Ν

Acronyms and Abbreviations:

COPC = contaminant of potential concern ESL = Ecological Screening Level LANL = Los Alamos National Laboratory EcoRisk Database v3.3 (2014) mg/m³ = milligram per cubic meter MWH = MWH Americas (2011) N = no N/A = not available ND = nondetect SWMU = solid waste management unit

Table 6-6. Summary Statistics for Tier 2 Ecological COPCs Risk Assessment Report Bulk Fuels Facility, SWMU ST-106/SS-111 Kirtland Air Force Base, New Mexico

Сорс	COPC Number De of Free Samples		Maximum (mg/kg)	Mean (mg/kg)	Median (mg/kg)	Screening Level ^a (mg/kg)
Surface Soil 0 to 1-foot						
Lead	14	100%	39	11	8.1	7.7ª
Mixed Zone Soil 0 to 10 feet						
Lead	105	100%	71	9.3	5.5	59.3 ^b

^a NMED's Risk Assessment Guidance for Investigation and Remediation for omnivorous birds (NMED, 2017).

^b NMED's Risk Assessment Guidance for Investigation and Remediation for carnivorous birds (NMED, 2017).

Acronyms and Abbreviations:

% = percent

COPC = contaminant of potential concern

mg/kg = milligram per kilogram

NMED = New Mexico Environmental Department

SWMU = solid waste management unit

Attachment 1.

Investigation of Bias in EDB Analytical Results by Soil Gas Method CARB 422

TABLE OF CONTENTS

ACI	RONY	MS AND ABBREVIATIONSii
LIS	TOF	FIGURESiii
1	INTE	RODUCTION1
2	ANA	LYTICAL METHOD COMPARISON2
	2.1	Investigation of Possible Interferants in CARB 422 Chromatograms
	2.2	Investigation of the Effect of High Concentrations of VOCs on EDB Detections by TO-15 3
3	INVI	ESTIGATION OF ANALYTICAL BIAS4
4	SUM	MARY
5	REF	ERENCES7

ACRONYMS AND ABBREVIATIONS

%	percent
±	plus or minus
×	times
ALS	ALS Environmental
CARB 422 CCV	California Air Resources Board Method 422 continuing calibration verification
ECD EDB e.g. EPA	electron capture detector ethylene dibromide for example United States Environmental Protection Agency
GC	gas chromatograph
ICV	initial calibration verification
i.e.	in other words
LCS	laboratory control sample
MS	mass spectrometer
ppbv	parts per billion by volume
Q	Quarter
RA	Risk Assessment
Site SOP SVMP SWMU	SWMU ST-106/SS-111 standard operating procedure soil vapor monitoring point solid waste management unit
TO-15	EPA Compendium Method TO-15
VOC	volatile organic compound

LIST OF FIGURES

- Figure A1-1. Ratio of CARB 422 and TO-15 EDB Soil Gas Results; Detected Values Only
- Figure A1-2. Scatterplot of CARB 422 and TO-15 EDB Soil Gas Results; Detected Values Only
- Figure A1-3. Overlaid Sample Chromatograms
- Figure A1-4. Overlaid Sample Chromatograms with Continuing Calibration Verification (CCV)
- Figure A1-5. EDB TO-15 Mass Spectrum with Fuel to EDB Ratio of Approximately 10
- Figure A1-6. EDB TO-15 Mass Spectrum with Fuel to EDB Ratio of Approximately 100
- Figure A1-7. EDB TO-15 Mass Spectrum with Fuel to EDB Ratio of Approximately 1000

1 INTRODUCTION

This Attachment provides information supporting the data evaluation presented in Section 3.3 of the solid waste management unit (SWMU) ST-106/SS-111 (Site) Risk Assessment (RA). As discussed in Section 3.3 of the Site RA, review of summary statistics and data plots identified that the analytical results for ethylene dibromide (EDB), which was measured in soil gas by two separate methods, are biased higher in one method than the other (Figures A1-1 and A1-2). This issue warranted an investigation of the EDB soil gas data. Results of this investigation indicate that the bias is due to problems with the laboratory standard operating procedure (SOP) for preparation of calibration standards for California Air Resources Board Method 422 (CARB 422) analysis. It is recommended that soil gas EDB data by United States Environmental Protection Agency (EPA) Compendium Method TO-15 (TO-15) be used for analysis in this RA.

EDB was measured in soil gas by two separate analytical methods, CARB 422 and TO-15. A comparison of 408 EDB soil gas concentration results by CARB 422 and TO-15 shows a very consistent pattern of higher values for CARB 422. Quarter (Q) 3 2015 through Q3 2016 soil gas data was used for this evaluation (USACE, 2017a; USACE, 2017b). Figure A1-1 is a histogram showing the frequency of ratios when comparing EDB soil gas concentration ratios for CARB 422 to TO-15. These EDB soil gas results demonstrate that in 99 percent (%) of detected samples, CARB 422 EDB concentrations were higher than the TO-15 EDB concentrations. Additionally, 92% of the EDB soil gas concentration results showed one to five times higher EDB concentrations by the CARB-422 method. Figure A1-2 is a log-scale scatterplot of soil gas EDB results by the two methods. The EDB soil gas concentrations are tightly clumped along a line indicating EDB concentration ranges had precision and a high degree of consistency by the two methods. However, the line is skewed above the one-to-one ratio, confirming that the EDB soil gas concentrations are higher when analyzed by the CARB 422 method.

To understand what caused this bias the following investigation steps were performed:

- 1. Laboratory data packages with results of both methods were reviewed to determine if:
 - a. an interferent could be responsible for the elevated EDB soil gas concentration results by CARB 422, or
 - b. high concentrations of other volatile organic compounds (VOC) could be affecting TO-15 EDB soil gas concentration results; and
- 2. Laboratory SOPs and calibration standards used in the CARB 422 and TO-15 methods were reviewed by ALS Environmental (ALS).

2 ANALYTICAL METHOD COMPARISON

EDB concentrations in soil gas samples were analyzed by ALS using two different methods: CARB 422 and TO-15. EDB was the only VOC analyzed by CARB 422. EDB and 60 other VOCs were analyzed by TO-15. To evaluate these methods for the bias observed by CARB 422, laboratory data packages were requested. Four data packages were obtained from Q3 2015 and 11 data packages from Q1 2016. Section 2.1 describes a review of CARB 422 chromatograms focusing on identification of EDB and the possibility that an interferent could be responsible for elevated EDB results by this method. Section 2.2 describes the results of a review of laboratory data packages focusing on the ability of TO-15 to identify and quantitate EDB soil gas concentrations in the presence of high VOC concentrations such as methyl ethyl ketone and acetone that were observed after using glue to seal soil vapor monitoring points (SVMPs) in Q1 2015.

CARB 422 was developed to measure hazardous air pollutants in stack gases from stationary sources (in other words [i.e.], fixed emitters of air pollutants) and the air sample is collected on sorbent traps, or by a stainless-steel vessel or vacuum bottle. The method utilizes a gas chromatograph (GC) with an electron capture detector (ECD). The GC separates the VOCs of interest by temperature over a time range and the ECD detects the VOCs. ECDs only respond to VOCs with electronegative components and are restricted to halogenated VOCs such as fluorine, chlorine, bromine, and iodine. The resulting chromatogram is a series of peaks, each of which indicates a detected halogenated VOC.

TO-15 was developed to measure VOCs in ambient air and the air sample is collected on sorbent traps, or by a stainless-steel vessel or vacuum bottle. Like CARB 422, it also uses a GC to separate the VOCs by temperature over a time range, but the detector is a mass spectrometer (MS) rather than an ECD. A mass spectrum collects a chromatogram for each peak and compares the sample spectrum to a reference spectra which are collected under similar instrument conditions. Identification of specific VOCs is based on three factors: 1) retention time (identified in the ALS TO-15 SOP as ± 0.1 minutes), 2) the mass fragmentation pattern, and 3) the relative intensity of the target ions (masses). Mass spectrometry is considered a more definitive identification technique than ECD because of the unique mass fragmentation patterns obtained by the GC MS and the reduced chance of misidentification of a VOC.

2.1 Investigation of Possible Interferants in CARB 422 Chromatograms

CARB 422 EDB soil gas concentrations are consistently elevated relative to TO-15 values in samples collected from Q3 2015 through Q3 2016 at 284 SVMPs with varying depth intervals (USACE, 2017a; USACE, 2017b), and EDB concentrations ranging over orders of magnitude (Figure A1-1 and A1-2). The consistency of this bias suggests no plausible basis for suspecting another interferent could be present when analyzing for EDB soil gas concentrations by CARB 422. However, to confirm whether this conclusion was accurate, EDB soil gas concentration results from 16 laboratory data packages were evaluated to determine if interferent was creating the high bias observed by the CARB 422.

It is important to note that the ECD responds equally to all halogenated VOCs, and the peaks are identified based on the time at which they elute from the GC column and are detected (retention time). In ALS's SOP for CARB 422, retention time windows are defined as ± 0.1 minutes of the retention time of the daily continuing calibration verification (CCV) standard. Therefore, for ALS's CARB 422 EDB analyses, any peak appearing within the retention time window defined by the CCV is automatically identified as EDB by the instrument software and quantitated.

After the entire analytical sequence has been completed, the ALS analyst reviews the instrument identifications. Using professional judgment, the analyst may remove a detection that indicated a

positive detection. Often this occurs when the analyst has reason to believe the peak is actually an interfering compound. When reviewing the laboratory data packages, peaks identified as EDB by the software were manually edited by the analyst and approved by the supervisor to be removed as an EDB detection. The ALS analyst overlaid each sample chromatogram with the chromatogram of the bracketing CCVs to determine which peak should be identified as EDB detection.

Example chromatograms illustrating this process were provided by ALS and are shown in Figures A1-3 and A1-4. In Figure A1-3, the chromatogram shows that the instrument software identified the 2.779 minute peak as EDB; however, as shown in Figure A1-4, when the sample chromatogram was overlaid with the bracketing CCVs, it was clear that the retention time of the sample peak did not match that of EDB in the CCV chromatogram. The identification of the 2.779 minute peak as EDB was then manually deleted. Once discarded as a valid EDB detect, no further consideration was given to this peak.

The review of the laboratory data packages found that ALS was adhering closely to the laboratory SOP when identifying EDB by CARB 422. There is no indication that ALS was incorrectly identifying other closely eluting halogenated VOCs as EDB. It is unlikely that interference was causing the high EDB soil gas concentration bias observed by CARB 422. In addition, there is no evidence that an interferent exists based on review of the halogenated VOCs measured by TO-15.

2.2 Investigation of the Effect of High Concentrations of VOCs on EDB Detections by TO-15

The potential interfering effect of high VOC concentrations on the accuracy of analytical results for EDB by TO-15 was assessed. Sixteen laboratory data packages were evaluated to determine if EDB soil gas concentrations were detected in the presence of high VOC concentrations.

Figures A1-5 through A1-7 depict TO-15 mass spectra from Site samples collected in Q1 2016 with varying mass ratios (i.e., approximately 10, 100, and 1000 times [×]) of fuel to EDB. In Figure A1-5, the mass of fuels exceeded the mass of EDB by $10\times$ and the EDB ions (i.e., 107 and 109) were visible in the spectrum along with fuel ions such as 57 and 71. When the mass of fuels are about $100\times$ (Figure A1-6) or $1000\times$ (Figure A1-7) than the mass of EDB, the EDB ions were not visible in the spectra because EDB detections were dwarfed by the underlying fuel ions. However, the EDB ions (i.e., 107 and 109) were detected by the instrument despite the high fuel concentrations such as n-hexane, decane, heptane, etcetera in soil gas samples.

In addition, all EDB soil gas total ion chromatographs from the data packages accurately depicted the EDB identification in the samples evaluated. This can be observed in Figures A1-5 through A1-7 in the bottom-right corner of each figure where the EDB sample chromatographs in blue were overlaid with the laboratory chromatograph in black. The identification and quantification of EDB results were not affected by high concentrations of other VOCs.

3 INVESTIGATION OF ANALYTICAL BIAS

The consistent, unidirectional bias in EDB soil gas concentrations were determined not to be due to an interferent in the CARB 422 analysis (Section 2.1) or high VOC concentrations invalidating identification of EDB soil gas concentrations by TO-15 (Section 2.2). To further investigate why EDB soil gas results were biased high by CARB 422; the Air Force reviewed the ALS SOPs for both CARB 422 and TO-15. It was determined that TO-15 and CARB 422 used laboratory control samples (LCSs; i.e., working standards) made from different concentrated stock standards purchased from commercial vendors; however, these stock standards were each prepared differently when creating the standards for each method. For TO-15, the stock standard was diluted into individual standards using an automated dispensing system; whereas, for CARB 422 the stock standards were diluted by hand dispensing into low and high calibration standards, which were diluted again by hand into individual standards. Although there were differences in preparation of the LCSs, it was hypothesized that the LCS from each method could be analyzed by the other method to provide information on the CARB 422 bias.

The Air Force requested ALS to analyze the CARB 422 LCS on the GC MS instrument that was used for TO-15 for this project and determined the EDB recovery was 58%. The TO-15 LCS was analyzed on the GC ECD instrument (i.e., GC21) that was used for CARB 422 for this project, but the LCS overwhelmed the instrument and provided no useful information. ALS then calibrated a different GC ECD instrument for CARB 422 and analyzed the "old" CARB 422 LCS (the same LCS used on GC MS and on GC21) and the EDB recovery was 60%.

These low EDB recoveries demonstrates a problem with the preparation of the CARB 422 LCS(s) and the calibration curve used on the GC ECD instrument which returns too high EDB soil gas concentrations. For instance, if the "old" CARB 422 LCS was 10 parts per billion by volume (ppbv) and was previously verified as 10 ppbv by the project GC ECD instrument (i.e., GC21), but when analyzed by two other instruments yielded only 6 ppbv. Working in the opposite direction, a sample known to contain 6 ppbv of EDB would give a result of 10 ppbv on the project GC ECD (i.e., GC21) and will bias EDB soil gas concentrations higher.

When questioned as to the root cause of this discrepancy, ALS theorized that the two initial calibration standards (i.e., the hand-dispensed low and high standards, which were diluted by hand into working standards) and the initial calibration verification (ICV) standard were not allowed to sufficiently equilibrate prior to dilution and analysis. Both standards were made on July 21, 2015. Per the ALS SOP, the equilibration time is 15 to 20 minutes. It was determined all EDB soil gas samples analyzed by CARB 422 were on one instrument (i.e., GC21) using one of two stored calibrations curves on the instrument dated July 21, 2015 and July 29, 2015. Both of the stored calibration curves were performed using the two initial calibration standards which were diluted and the ICV standard made on July 21, 2015. Additionally, ALS did not explain why an automated dispensing system was not used for CARB 422 were affected by improper standard preparations. It is not possible to determine if the equilibrium time and/or hand dispensing contributed more to the improper standard preparations (for example [e.g.], all LCSs and ICV). ALS released a Non-Conformance Corrective Action Report outlining the discrepancy (KAFB, 2017).

The primary information available about the bias between the TO-15 and CARB 422 methods comes from the ALS Non-Conformance Corrective Action Report (KAFB, 2017), and 58% and 60% EDB recovery when analyzing LCS on GC MS and on the different GC ECD instruments, respectively. These two LCS analyses indicate that the CARB 422 EDB soil gas results are biased on average about 1.7

times higher than the TO-15 results. Although the 1.7 times higher is a smaller bias for CARB 422 than that observed one to five higher EDB soil gas concentration results (Figure A1-1); it is still within the range and casts doubt on the reliability of all CARB 422 EDB soil gas concentration results.

4 SUMMARY

The results of these investigations recommend TO-15 EDB soil gas concentration results be used in this RA for the following reasons:

- CARB 422 EDB soil gas concentration results were consistently biased high in relation to TO-15 EDB soil gas results.
- Investigation of laboratory SOPs indicates that preparation of calibration standards is responsible for the bias in CARB 422 concentrations.
- The identification and quantification of EDB soil gas concentrations by TO-15 was not affected by high VOC concentrations such as fuel-related analytes from the Site.

The future use of CARB 422 may be considered where it is important to evaluate EDB soil gas concentrations in the presence of high VOC concentrations, such as monitoring the effectiveness of bioventing or air-lifting interim measures in the source area (KAFB, 2017; NMED 2017). However, this method will only be used if ALS SOP issues for the CARB 422 method are resolved.

5 REFERENCES

- KAFB, 2017. Correspondence from Eric H. Froehlich, Base Commander, Kirtland AFB, NM to Mr. John Kieling, Bureau Chief, Hazardous Waste Bureau, New Mexico Environment Department, regarding Requesting a Modification to the Work Plan for Soil Vapor Monitoring and Drinking Water Monitoring, August 2016, Solid Waste Management Unit ST-106/SS-111, Bulk Fuels Facility Solid Waste Management Unit ST-106/SS-111, Kirtland Air Force Base, EPA ID# NM9570024423, HWB-KAFB-13-MISC. 03 April.
- NMED, 2017. Correspondence from Juan Carlos Borrego, Deputy Secretary, New Mexico Environment Department to Colonel E. Froehlich, Base Commander and Lt. Colonel W. Acosta, Civil Engineer Office, Kirtland AFB, NM, regarding Modification Request to the Work Plan for Soil Vapor and Drinking Water Monitoring, August 2016, 27 April.
- USACE, 2017a. RCRA Facility Investigation Report Solid Waste Management Unit ST-106/SS-111 Kirtland Air Force Base, New Mexico. Prepared by Sundance Consulting, Inc., for the USACE Albuquerque District under Contract No. W912PP-16-C-0002. January
- USACE, 2017b. Quarterly Monitoring Report October December 2016 and Annual Report for 2016 Bulk Fuels Facility Solid Waste Management Unit ST-106/SS-111 Kirtland Air Force Base, New Mexico. Prepared by EA Engineering, Science, and Technology, Inc., PBC., for the USACE Albuquerque District under Contract No. W912DR-12-D-0006 Delivery Order DM01. March.

FIGURES

Figure A1-1. Ratio of CARB 422 and TO-15 EDB Soil Gas Results; Detected Values Only¹

¹Four outlier paired samples were removed from the graphic to facilitate the visualization.

*Q3 2015 through Q3 2016 soil gas data was used for this evaluation (USACE, 2017a; USACE, 2017b).

Figure A1-2. Scatterplot of CARB 422 and TO-15 EDB Soil Gas Results; Detected Values Only

*Q3 2015 through Q3 2016 soil gas data was used for this evaluation (USACE, 2017a; USACE, 2017b).

Figure A1-3. Overlaid Sample Chromatograms

Each colored trace is a Site sample chromatogram. The y-axis is the relative intensity of the peak and the x-axis is the retention time, with the leftmost hash mark at 1.50 minutes and the rightmost hash mark at 4.00 minutes. The instrument files used to construct this overlay are identified at the top of the figure. The peak identified as ethylene dibromide by the instrument software is denoted by its retention time of 2.779 minutes.

Figure A1-4. Overlaid Sample Chromatograms with Continuing Calibration Verification (CCV)

As the CCV peak did not overlap with the peak identified as ethylene dibromide (EDB) by the instrument, the analyst manually eliminated the EDB detect. Each colored trace is a Site sample chromatogram. The y-axis is the relative intensity of the peak and the x-axis is the retention time, with the leftmost hashmark at 1.50 minutes and the rightmost hashmark at 4.00 minutes. The instrument files used to construct this overlay are identified at the top of the window. The CCV is the large peak appearing underneath the files names and the smaller peak to the right of the CCV is the peak identified by the instrument as EDB. The elution times of the smaller peaks are identified above the peak maxima.

Figure A1-5. EDB TO-15 Mass Spectrum with Fuel to EDB Ratio of Approximately 10

For each spectrum on the left, the y-axis is the percent abundance of the mass detected and the x-axis is the detected mass. The total ion chromatogram in the bottom-right corner is the abundance of the target ion on the y-axis and the retention time on the x-axis. The top block of text in the upper right details sample specific items such as amount of EDB detected, retention time, retention time difference from the expected retention time, file name, and date of analysis. The lower block of text lists the target and secondary ions, the total peak area, the ratio of the secondary ion (109) to the primary ion (107), and the expected ratio range.

Figure A1-6. EDB TO-15 Mass Spectrum with Fuel to EDB Ratio of Approximately 100

For each spectrum on the left, the y-axis is the percent abundance of the mass detected and the x-axis is the detected mass. The top spectra (Ref) is a reference spectrum from a reference sample under similar conditions. The middle spectrum (Raw) is the spectrum collected from the sample at the maxima of the ethylene dibromide (EDB) peak. The bottom spectrum (Sub) is the result of subtracting the reference from the sample spectrum. The total ion chromatogram in the bottom-right corner is the abundance of the target ion on the y-axis and the retention time on the x-axis. The top block of text in the upper right details sample specific items such as amount of EDB detected, retention time, retention time difference from the expected retention time, file name, and date of analysis. The lower block of text lists the target and secondary ions, the total peak area, the ratio of the secondary ion (109) to the primary ion (107), and the expected ratio range.

Figure A1-7. EDB TO-15 Mass Spectrum with Fuel to EDB Ratio of Approximately 1000

For each spectrum on the left, the y-axis is the percent abundance of the mass detected and the x-axis is the detected mass. The total ion chromatogram in the bottom-right corner is the abundance of the target ion on the y-axis and the retention time on the x-axis. The top block of text in the upper right details sample specific items such as amount of ethylene dibromide (EDB) detected, retention time, retention time difference from the expected retention time, file name, and date of analysis. The lower block of text lists the target and secondary ions, the total peak area, the ratio of the secondary ion (109) to the primary ion (107), and the expected ratio range.

Attachment 2.

ProUCL Input and Output Data Files

Attachment 2 (Continued)

Unexcavated Soil Samples from 0 to 1 foot Depth (Input)

	A	В	С	D	E	F
1	1,2,4-Trimethylbenzene	d_1,2,4-Trimethylbenzene		1,2-Dibromoethane	d_1,2-Dibromoethane	
2	0.000109	0		0.000491	0	
3	0.000147	0		0.000502	0	
4	0.000101	0		0.000675	0	
5	0.000099	0		0.000466	0	
6	0.000134	0		0.000454	0	
7	0.000097	0		0.000615	0	
8	0.000105	0		0.000446	0	
9	0.000159	0		0.000484	0	
10	0.0002965	0		0.000733	0	
11	0.000157	0		0.001365	0	
12	0.000119	0		0.000722	0	
13	0.000112	0		0.000547	0	
14	0.000154	0		0.000518	0	
15	0.000375	1		0.000707	0	

	G	Н	J	K	L	М	Ν
1	1,2-Dichloroethane	d_1,2-Dichloroethane	Benzene	d_Benzene		Ethylbenzene	d_Ethylbenzene
2	0.000163	0	0.000142	0		0.000196	0
3	0.000167	0	0.000106	0		0.0002	0
4	0.000224	0	0.0001	0		0.00027	0
5	0.000155	0	0.00115	1		0.000186	0
6	0.000151	0	0.00107	1		0.000181	0
7	0.000204	0	0.000581	1		0.000246	0
8	0.000148	0	0.000866	1		0.000178	0
9	0.000161	0	0.000345	1		0.000193	0
10	0.000244	0	0.0002805	1		0.000293	0
11	0.0004535	0	0.0002035	1		0.0005465	0
12	0.00024	0	0.0002205	1		0.000219	0
13	0.000182	0	0.001312	1		0.000207	0
14	0.000172	0	0.000752	1		0.000283	0
15	0.000235	0	0.000485	1		0.000297	1

	0	Р	Q	R	S			
1		Isopropylbenzene	d_lsopropylbenzene		MTBE (Methyl tert-butyl ether)			
2		0.000083	0		0.000214			
3		0.000085	0		0.000219			
4		0.000115	0		0.000294			
5		0.000079	0		0.000203			
6		0.000077	0		0.000198			
7		0.000105	0		0.000268			
8		0.000076	0		0.000194			
9		0.000082	0		0.000211			
10		0.000125	0		0.00032			
11		0.0002325	0		0.000596			
12		0.000123	0		0.000315			
13		0.000093	0		0.000239			
14		0.000088	0		0.000226			
15		0.00012	0		0.000308			
	Т	U	V	W	Х	Y	Z	AA
----	----------------------------------	---	-------------	---------------	---	-----------	-----------	----
1	d_MTBE (Methyl tert-butyl ether)		Naphthalene	d_Naphthalene		Toluene	d_Toluene	
2	0		0.000157	0		0.000219	0	
3	0		0.00016	0		0.000353	0	
4	0		0.000216	0		0.0006585	0	
5	0		0.000149	0		0.000249	0	
6	0		0.000145	0		0.000224	1	
7	0		0.000196	0		0.000719	1	
8	0		0.000142	0		0.000873	1	
9	0		0.000155	0		0.000253	1	
10	0		0.000234	0		0.0006	1	
11	0		0.0004365	0		0.000745	1	
12	0		0.000175	0		0.0002205	1	
13	0		0.000165	0		0.001315	1	
14	0		0.000226	0		0.001	1	
15	0		0.00638	1		0.000587	1	

	AB	AC
1	Xylenes (total)	d_Xylenes (total)
2	0.000392	0
3	0.000527	0
4	0.000364	0
5	0.000355	0
6	0.00048	0
7	0.000348	0
8	0.000378	0
9	0.000573	0
10	0.0010695	0
11	0.000564	0
12	0.000427	0
13	0.000404	0
14	0.000552	0
15	0.000633	1

	А	В	С	D	E
1	2-Methylnaphthalene	d_2-Methylnaphthalene		Lead	d_Lead
2	0.0519	1		17.2	1
3	0.00952	0		3.63	1
4	0.00995	0		4.66	1
5	0.00989	0		4.49	1
6	0.009535	0		7.335	1
7	0.00945	0		6.45	1
8	0.139	1		7.42	1
9	0.00949	0		11.9	1
10	0.012	1		9.01	1
11	0.00958	0		9.5	1
12	0.00931	0		8.16	1
13	0.00941	0		39.1	1
14	0.00906	0		18.2	1
15	0.00953	0		5.46	1

Attachment 2 (Continued)

Unexcavated Soil Samples from 0 to 1 foot Depth (Output)

	A	В	С	D	E	F	G	Н	I	J	K		L
1					UCL Statis	tics for Data	Sets with No	on-Detects					
2				1									
3		User Sele	cted Options										
4	Da	ate/Time of Co	omputation	ProUCL 5.14	4/5/2017 3:4	8:56 PM							
5			From File	WorkSheet_	a.xls								
6		Ful	II Precision	OFF									
7		Confidence	Coefficient	95%									
8	Number	of Bootstrap	Operations	2000									
9													
10	1,2,4-Trime	ethylbenzene											
11													
12						General	Statistics						
13			Total	Number of C	bservations	14			Numbe	r of Distinct O	bservations	s 1	14
14				Numbe	er of Detects	1				Number of N	Non-Detects	s 1	13
15			N	umber of Dist	inct Detects	1			Numbe	er of Distinct N	Non-Detects	s 1	13
16													
17	Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set!												
18	It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).												
19													
20				The data s	et for variab	le 1,2,4-Trim	nethylbenzen	ie was not pr	ocessed!				
21													
22													
23	1,2-Dibrom	oethane											
24													
25						General	Statistics						
26			Total	Number of C	bservations	14			Numbe	r of Distinct O	bservations	s 1	14
27				Numbe	er of Detects	0				Number of N	Non-Detects	s 1	14
28			N	umber of Dist	inct Detects	0			Numb	er of Distinct N	Non-Detects	s 1	14
29													
30		Warr	ning: All obse	ervations are	Non-Detects	(NDs), there	efore all stati	stics and est	imates shou	ld also be ND	s!		
31		Specifi	cally, sample	e mean, UCLs	s, UPLs, and	other statist	tics are also	NDs lying be	low the large	est detection l	imit!		
32	•	The Project T	eam may de	cide to use a	Iternative sit	e specific va	lues to estim	ate environn	nental paran	neters (e.g., E	PC, BTV).		
33													
34				The data	a set for varia	able 1,2-Dib	romoethane	was not proc	essed!				
35													
36													
37	1,2-Dichlor	oethane											
38													
39						General	Statistics						
40			Total	Number of C	bservations	14			Numbe	r of Distinct O	bservations	s 1	14
41				Numbe	er of Detects	0				Number of N	Non-Detects	s 1	14
42			N	umber of Dist	inct Detects	0			Numb	er of Distinct N	Non-Detects	s 1	14
43							1						
41		Warr	ning: All obse	ervations are	Non-Detects	(NDs), there	efore all stati	stics and est	imates shou	ld also be ND	s!		
14		Specifi	cally, sample	e mean, UCLs	s, UPLs, and	other statist	tics are also	NDs lying be	low the large	est detection I	imit!		
46	·	The Project T	eam may de	cide to use a	Iternative sit	e specific va	lues to estim	ate environn	nental paran	neters (e.g., E	PC, BTV).		
17											· ·		
+/ /0	l			The data	a set for vari	able 1,2-Dic	hloroethane	was not proc	essed!				
40 40	l							•					
49 50													
50 E1	Benzene												
51													
52													

	A B C D E	F	G H I J K L								
53		General	Statistics								
54	Total Number of Observations	14	Number of Distinct Observations 14								
55	Number of Detects	11	Number of Non-Detects 3								
56	Number of Distinct Detects	11	Number of Distinct Non-Detects 3								
57	Minimum Detect	2.0350E-4	Minimum Non-Detect 1.0000E-4								
58			Maximum Non-Detect 1.4200E-4								
59	Variance Detects	1.5659E-7	Percent Non-Detects 21.43%								
60	Median Detects	5.0000E-4	SD Detects 3.957 IE-4								
61		0.202	Kuttorio Detecto 1222								
62	Moon of Longod Detects	0.393	SD of Lagged Detects 0.675								
63		-7.515	SD 01 Logged Delects 0.075								
64	Norn	nal GOF Tes	st on Detects Only								
65	Shaniro Wilk Test Statistic	0.92	Shapiro Wilk GOF Test								
66	5% Shapiro Wilk Critical Value	0.85	Detected Data appear Normal at 5% Significance Level								
67	Lilliefors Test Statistic	0.151	Lilliefors GOF Test								
68	5% Lilliefors Critical Value	0.251	Detected Data appear Normal at 5% Significance Level								
69	Detected Data	appear Norm	nal at 5% Significance Level								
70											
71	Kaplan-Meier (KM) Statistics usin	ig Normal Cr	ritical Values and other Nonparametric UCLs								
72	KM Mean	5.4039E-4	KM Standard Error of Mean 1.1377E-4								
73	KM SD	4.0588E-4	95% KM (BCA) UCL 7.1946E-4								
74	95% KM (t) UCL	7.4187E-4	95% KM (Percentile Bootstrap) UCL 7.1704E-4								
76	95% KM (z) UCL	7.2753E-4	95% KM Bootstrap t UCL 7.6333E-4								
77	90% KM Chebyshev UCL	8.8171E-4	95% KM Chebyshev UCL 0.00104								
78	97.5% KM Chebyshev UCL	0.00125	99% KM Chebyshev UCL 0.00167								
79		4									
80	Gamma GOF	Tests on De	etected Observations Only								
81	A-D Test Statistic	0.313	Anderson-Darling GOF Test								
82	5% A-D Critical Value	0.735	Detected data appear Gamma Distributed at 5% Significance Level								
83	K-S Test Statistic	0.142	Kolmogorov-Smirnov GOF								
84	5% K-S Critical Value	0.257	Detected data appear Gamma Distributed at 5% Significance Level								
85	Detected data appear	r Gamma Dis	stributed at 5% Significance Level								
86											
87	Gamma	Statistics on	n Detected Data Only								
88	k hat (MLE)	2.783	k star (bias corrected MLE) 2.084								
89	Theta hat (MLE)	2.3737E-4	Theta star (bias corrected MLE) 3.1689E-4								
90	nu hat (MLE)	61.22	nu star (bias corrected) 45.85								
91	Mean (detects)	6.6050E-4									
92		0									
93	Gamma ROS	Statistics us									
94	GROS may not be used when data s	set has > 50%	% NDS with many tied observations at multiple DLs								
95	Ear such situations CROS	mothod mov	as <1.0, especially when the sample size is small (e.g., <15-20)								
96		inleutou may	y yield incorrect values of OCLS and BTVS								
97	Eor gamma distributed detected data. BTVs		en ure sample size is small.								
98	Ninimum										
99		0.01									
100		0.01									
101	k hat (MI F)	0.637	k star (bias corrected MLE) 0.548								
102		0.00418	Theta star (bias corrected MLE) 0.040								
103	nu hat (MLE)	17.84	nu star (bias corrected) 15.35								
104											

	A B C D E	F	G	Н		I	J	K	L
105	Adjusted Level of Significance (β)	0.0312			•			(15.05.0)	0 700
106	Approximate Chi Square Value (15.35, α)	7.508		05%	Adjus	Adjustor	Square Va	ue (15.35, β)	6.792
107	95% Gamma Approximate OCL (use when th>-30)	0.00544		95%	Gamma	Aujustet		; when h<50)	0.00602
108	Estimates of G	amma Parar	neters using	NKM Estim	ates				
109	Mean (KM)	5.4039E-4			4100			SD (KM)	4.0588E-4
110	Variance (KM)	1.6474E-7					SE	of Mean (KM)	1.1377E-4
112	k hat (KM)	1.773						k star (KM)	1.44
112	nu hat (KM)	49.63						nu star (KM)	40.33
114	theta hat (KM)	3.0486E-4					th	eta star (KM)	3.7517E-4
115	80% gamma percentile (KM)	8.3979E-4				90% (gamma pe	rcentile (KM)	0.00114
116	95% gamma percentile (KM)	0.00143				99% (gamma pe	rcentile (KM)	0.00208
117		1	J						
118	Gamm	na Kaplan-Mo	eier (KM) St	atistics					
119	Approximate Chi Square Value (40.33, α)	26.78			Adjus	ted Chi S	Square Va	ue (40.33, β)	25.32
120	95% Gamma Approximate KM-UCL (use when n>=50)	8.1386E-4		95% Garr	nma Adji	usted KN	1-UCL (use	• when n<50)	8.6075E-4
121			atastad Obs)mh <i>i</i>				
122	Shaniro Wilk Test Statistic				Shar	niro Wilk	GOE Test		
123	5% Shapiro Wilk Critical Value	0.327	De	tected Data	annear		nal at 5%	Significance	evel
124	Lilliefors Test Statistic	0.137				liefors G	OF Test		
125	5% Lilliefors Critical Value	0.251	De	tected Data	a appear	Loanorr	nal at 5%	Significance	Level
126	Detected Data ap	pear Lognor	mal at 5% \$	Significance	Level	- 3 -			
127	· · · · · ·			•					
120	Lognormal ROS	S Statistics L	Jsing Impute	ed Non-Det	tects				
130	Mean in Original Scale	5.4308E-4					Mean	in Log Scale	-7.851
131	SD in Original Scale	4.1820E-4					SD	in Log Scale	0.896
132	95% t UCL (assumes normality of ROS data)	7.4102E-4				95% Pe	ercentile B	ootstrap UCL	7.1786E-4
133	95% BCA Bootstrap UCL	7.4261E-4					95% Bo	otstrap t UCL	7.6008E-4
134	95% H-UCL (Log ROS)	0.00112							
135									
136	Statistics using KM estimates of	on Logged D	ata and Ass	suming Log	normal [Distributi	on		
137	KM Mean (logged)	-7.877				050/ 0	K	M Geo Mean	3.7953E-4
138	KM SD (logged)	0.9				95% Cr	itical H Va	lue (KM-Log)	2.632
139	KM Standard Error of Mean (logged)	0.252				050/ 0-	95% H-U		0.0011
140	KM Standard Error of Mean (logged)	0.9				95% CI			2.032
141		0.202							
142		DL /2 S	tatistics						
143	DL/2 Normal				DL/2	Log-Tra	Insformed		
144	Mean in Original Scale	5.3139E-4					Mean	in Log Scale	-7.996
140	SD in Original Scale	4.3161E-4					SD	in Log Scale	1.13
140	95% t UCL (Assumes normality)	7.3568E-4					95%	6 H-Stat UCL	0.00164
148	DL/2 is not a recommended me	ethod, provid	ed for comp	arisons and	d historie	cal reaso	ons		
149									
150	Nonparame	etric Distribut	tion Free UC	CL Statistics	S				
151	Detected Data appea	r Normal Dis	tributed at 5	5% Significa	ance Lev	/el			
152									
153		Suggested	UCL to Use	•					
154	95% KM (t) UCL	7.4187E-4							
155									
156	Note: Suggestions regarding the selection of a 95%	6 UCL are pr	rovided to h	elp the use	r to sele	ct the mo	ost approp	riate 95% UC	L.

	A	В	С	D	E	F	G	Н	1	J	K		L
157		These reco	F	Recommenda	ations are bas	sed upon da	ta size, data o	distribution,	and skewne	ess. h Maichle ar	nd I ee (2006))	
158	Lla). Non	
159		Jwever, sint										Jan.	
160	Ethylbenze	ne											
161													
162						General	Statistics						
163			Total	Number of (hearvations	1/	Otatistica		Numb	ar of Distinct	Observations	1	Λ
164			10141	Number of C	or of Detects	1			Numbe	Number of		1	7 7
165			N		tinct Detects	1			Numh	er of Distinct	Non-Detects	1	3
166	3 Number of Distinct Detects I Number of Distinct Non-De										Non-Delecto		5
167	Warning: Only and distinct data value was detected! Drel (OL (or any other software) should get be used or such a data and												
168	It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g. EPC, BTV)												
169													
170	The data set for variable Ethylbenzene was not processed!												
171													
172													
173	Isopropylbenzene												
174													
175						General	Statistics						
1/6			Total	Number of C	Observations	14			Numbe	er of Distinct	Observations	1.	4
177				Numbe	er of Detects	0				Number of	Non-Detects	1	4
1/8			N	umber of Dis	tinct Detects	0			Numh	er of Distinct	Non-Detects	1	4
1/9													
180		War	nina: All obse	ervations are	Non-Detects	(NDs), there	efore all statis	stics and es	timates sho	uld also be N	Dsl		
181	varming: All observations are non-petects (NDS), therefore all statistics and estimates should also be NDS! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!												
182	-	The Project 1	Team may de	cide to use a	Iternative site	e specific va	lues to estima	ate environ	mental para	meters (e.a.,	EPC. BTV).		
183		,	, ,										
104				The da	ta set for var	iable Isopror	oylbenzene w	as not proc	essed!				
185								•					
100													
107	MTBE (Met	hyl tert-butyl	l ether)										
100	•												
109						General	Statistics						
101			Total	Number of C	Observations	14			Numbe	er of Distinct	Observations	1.	4
102				Numbe	er of Detects	0				Number of	Non-Detects	1	4
102			N	umber of Dis	tinct Detects	0			Numb	er of Distinct	Non-Detects	1	4
19/						<u> </u>	<u> </u>					1	
194		War	ning: All obse	ervations are	Non-Detects	(NDs), there	efore all statis	stics and es	timates sho	uld also be N	Ds!		
196		Specifi	ically, sample	mean, UCL	s, UPLs, and	other statist	ics are also N	NDs lying b	elow the larg	est detection	limit!		
107		The Project 7	Team may de	cide to use a	Iternative sit	e specific va	lues to estimation	ate environ	mental para	meters (e.g.,	EPC, BTV).		
108													
100				The data set	for variable N	ITBE (Methy	/l tert-butyl et	her) was no	ot processed	!			
200													
201													
202	Naphthalen	e											
202	<u> </u>												
203						General	Statistics						
204			Total	Number of C	Observations	14			Numbe	er of Distinct	Observations	1.	4
205				Numbe	er of Detects	1				Number of	Non-Detects	1	3
200			N	umber of Dis	tinct Detects	1			Numb	er of Distinct	Non-Detects	1	3
207 20₽						<u> </u>	<u> </u>						
∠∪0													

	A	B	C	D	E	F F	G	H H		J	K	L	L	
209	lt is suga	ested to use a	iy one distinct	ata value	was detecte	a! Prouce	(or any other s	to estimate	environmenta	l narameter		BTV		
210	11.10 00.99									in puramotor.	5 (0.g., <u> </u>		,.	
211				The	data set for	variable Na	phthalene was	s not proces	sed!					
212														
213														
214	Toluene													
215														
217	General Statistics													
218			Total I	Number of C	bservations	14			Number	of Distinct C)bservations	14	1	
219				Numbe	er of Detects	10				Number of I	Non-Detects	4		
220			Nu	mber of Dist	tinct Detects	10			Number	r of Distinct I	Non-Detects	4		
221				Mini	mum Detect	2.2050E-4	ŀ			Minimum	Non-Detect	2.190	00E-4	
222				Maxi	mum Detect	0.00132	2			Maximum	Non-Detect	6.585	50E-4	
223				Varia	nce Detects	1.2868E-7	1			Percent I	Non-Detects	28	3.57%	
224				М	ean Detects	6.5365E-4	ŀ				SD Detects	3.587	72E-4	
225				Med	dian Detects	6.5950E-4	ŀ				CV Detects	0	.549	
226				Skewn	ess Detects	0.352				Kurt	osis Detects	-0.	.343	
227			ľ	Mean of Log	ged Detects	-7.499				SD of Log	ged Detects	0	.646	
228														
229	Normal GOF Test on Detects Only													
230			Sh	apiro Wilk T	est Statistic	0.935			Shapiro Will	GOF Test				
231			5% Sh	apiro Wilk C	critical Value	0.842	De	etected Data	appear Norm	nal at 5% Sig	inificance Le	vel		
232	Lilliefors Test Statis					0.168	8 Lilliefors GOF Test							
233			5%	6 Lilliefors C	ritical Value	0.262	De	etected Data	appear Norm	nal at 5% Sig	jnificance Le	vel		
234				Det		appear No	mai at 5% Sigi	nificance Le	vei					
235			Konlon M	loior (KM) S	totiotico unir	a Normal (Critical Values	and other N	opporomotrio					
236			rapian-iv		KM Mean					Standard F	rror of Mean	0 70r	515-5	
237						3 1173E-	r		IXIVI			n 9.7951E-5		
238				95%		7 1084E-4	r L		95% KM (Pe	ercentile Bor	otstran) UCI	6.892	23E-4	
239				95%	KM (z) UCI	6.9849E-4	L			5% KM Boo	otstrap t UCI	7.346	58F-4	
240			9(0% KM Che	bvshev UCL	8.3123E-4			9	5% KM Che	bvshev UCL	9.643	33E-4	
241			97.5	5% KM Che	byshev UCL	0.0011	5		9	9% KM Che	byshev UCL	0.0	00151	
242					-						-	[
243				G	iamma GOF	Tests on [Detected Obse	rvations Onl	у					
244				A-D T	est Statistic	0.465		A	nderson-Darl	ing GOF Te	st			
246				5% A-D C	ritical Value	0.732	Detected	d data appea	ar Gamma Dis	stributed at 5	5% Significar	ice Le	evel	
247				K-S T	est Statistic	0.201		I	Kolmogorov-S	Smirnov GOF	-			
248				5% K-S C	ritical Value	0.268	Detected	d data appea	ar Gamma Dis	stributed at 5	5% Significar	ice Le	evel	
249				Detected	data appea	r Gamma D	istributed at 5°	% Significan	ce Level					
250														
251					Gamma	Statistics	on Detected Da	ata Only						
252					k hat (MLE)	3.168			k s	tar (bias cor	rected MLE)	2	.285	
253				The	ta hat (MLE)	2.0630E-4			Theta s	tar (bias cor	rected MLE)	2.861	12E-4	
254				n	u hat (MLE)	63.37				nu star (bia	s corrected)	45	5.69	
255	5 Mean (detects													
256														
257				G	amma ROS	Statistics	using Imputed	Non-Detects	S					
258			GROS may	not be used	when data s	set has > 5	0% NDs with m	nany tied obs	servations at r	multiple DLs				
259		GROS may	/ not be used	when kstar o	of detects is	is is small such as <1.0, especially when the sample size is small (e.g., <15-20)								
260			For	such situati	ons, GROS	method ma	may yield incorrect values of UCLs and BTVs							

		ally true whe	n the comple cize is small	-
261	For gamma distributed detected data. BTVs a	and UCLs ma	n the sample size is small.	
262	Minimum	2 2050E-4	Mean	0.00332
263	Maximum	0.01	Median	8.000052
264	SD	0.01	(V)	0.0000E-4 1 321
265	sb k bat (MLE)	0.00433	k star (bias corrected MLE)	0.546
266	Theta bat (MLE)	0.00524	Theta star (bias corrected MLE)	0.040
267	nu bat (MLE)	17 77		15.3
268	Adjusted Lovel of Significance (R)	0.0312		15.5
269	Aujusted Level of Significance (p)	7 /69	Adjusted Chi Square Value (15.20. 8)	6 754
270	Approximate Chi Square Value (15.50, d)	0.00681	Adjusted Chi Square Value (15.50, p)	0.754
271		0.00081		0.00755
272	Estimates of G	amma Daran	notors using KM Estimatos	
273	Loundles of G	5 3737E /		3 11735 1
274		1 100/E 7	SE of Moon (KM)	0.7051E 5
275		2 /2	SE of Mean (KM)	1.057
276	K lidt (KM)	68.04	k star (KM)	F4 70
277	that hat (KM)	00.04	thata star (KM)	04.79 2 7462E 4
278	200% gamma paraantila (KM)		00% gamma paraentila (KM)	0.00105
279		0.0000L-4		0.00103
280	95% gamma percentile (KW)	0.00126	99% gamma percentile (KM)	0.0016
281	Comm	o Konlon Ma	ion ///A). Statistica	
282	Approximete Chi Square Volue (54.70, s)	20 70	Her (NM) Statistics	27
283	Approximate Chi Square Value (54.79, d)	30.70 7 50205 4	Adjusted Chi Square Value (54.79, p)	37 7 05765 4
284	95% Gamma Approximate KM-OCE (use when h>=50)	7.5920E-4	95% Gamma Aujusted KM-OCE (use when h<50)	7.9570⊑-4
285		E Test on De	stacted Observations Only	
286	Shapira Wilk Tast Statistic		Shaniro Wilk GOE Test	
287	5% Shapiro Wilk Critical Value	0.002	Detected Data appear Lognormal at 5% Significance L	ovol
288		0.042		
289	5% Lilliofors Critical Value	0.250	Detected Data appear Lognormal at 5% Significance L	ovol
290	5% Einerors Critical Value		mal at 5% Significance Loval	
291		pear Lognon		
292	L ognormal PO	S Statistics I I	sing Imputed Non-Detects	
293	Mean in Original Scale	5 25/2E_/	Mean in Log Scale	-7 797
294		3.6662E-4	SD in Log Scale	0.748
295	95% t LICL (assumes normality of ROS data)	6.0801E-1	95% Percentile Bootstran LICI	6.8302E-4
296	95% RCA Rootetran LICI	6.9425E-4	95% Rootstrap t LICI	7.3550E-4
297		8.9522F-4		,
298		5.00LLL-T		
299	Statistics using KM estimates of	on Loaged Da	ata and Assuming Lognormal Distribution	
300	KM Mean (logged)	-7.741	KM Geo Mean	4.3469E-4
301	KM SD (logged)	0.656	95% Critical H Value (KM-Log)	2.288
302	KM Standard Error of Mean (logged)	0.188	95% H-UCL (KM -Log)	8.1757E-4
303	KM SD (logged)	0.656	95% Critical H Value (KM-Log)	2.288
304	KM Standard Error of Mean (logged)	0.188		00
305		5.100		
306		DL/2 St	atistics	
307	DL/2 Normal	552 00	DL/2 Log-Transformed	
308	Mean in Original Scale	5 1973E-4	Mean in Log Scale	-7 84
309	SD in Original Scale	3.7376F-4	SD in Log Scale	0.811
310	95% t UCL (Assumes normality)	6.9663F-4	95% H-Stat LCI	9.5883F-4
311	DI /2 is not a recommended me	ethod. provide	ed for comparisons and historical reasons	5.000L-7
312		anda, provide		

	А	В	С	D	E	F	G	Н	I	J	K	L
313												
314					Nonparame	tric Distribut	ion Free UCI	L Statistics				
315				Detected	Data appea	r Normal Dis	tributed at 5%	% Significanc	æ Level			
316												
317	Suggested UCL to Use											
318	95% KM (t) UCL 7.1084E-4											
319												
320	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.											
321	Recommendations are based upon data size, data distribution, and skewness.											
322	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).											
323	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.											
324												
325	Xylenes (tot	al)										
326												
327						General	Statistics					
328			Total	Number of C	bservations)	14			Numbe	r of Distinct C	Observations	14
329				Numbe	er of Detects	1				Number of	Non-Detects	13
330			N	umber of Dist	inct Detects	1			Numbe	er of Distinct	Non-Detects	13
331												
332	١	Varning: On	ly one distind	t data value	was detected	d! ProUCL (o	r any other s	oftware) sho	uld not be u	sed on such	a data set!	
333	It is sugge	sted to use a	alternative si	te specific va	lues determi	ned by the F	Project Team	to estimate e	environment	al parameter	s (e.g., EPC,	BTV).
334												
335				The d	ata set for va	ariable Xylen	es (total) wa	s not proces	sed!			
336												
337												

	A B C	D E	F	G	П	I		J	ĸ			L
1		UCL Statis	tics for Data	Sets with No	n-Detects							
2	User Selected Optic	ons										
3	Date/Time of Computatio	n ProUCL 5.14/6/2017 10:	22:44 AM									
4	From Fil	e WorkSheet.xls										
6	Full Precisio	n OFF										
7	Confidence Coefficier	nt 95%										
8	Number of Bootstrap Operation	s 2000										
9												
10											-	
11	Lead											
12	2											
13			General	Statistics								-
14	Тс	tal Number of Observations	14			Numb	ber of E	Distinct	Observa	itions		4
15			0.00			Numb	er of N	lissing	Observa	tions)
16		Minimum	3.63						M	Vlean		0.89
17		Maximum	39.1					<u>C+d</u>		edian	<u> </u>	7.79
18		Coefficient of Variation	9.230 0.818					3.0.	Skow	ness		2.409
19			0.040						UKEW	1033		L.70J
20			Normal (GOF Test								
21		Shapiro Wilk Test Statistic	0.704			Shapiro V	Nilk G	OF Tes	t			
22	5%	Shapiro Wilk Critical Value	0.874		Data Not	Normal a	at 5% S	Significa	ance Lev	el		
23		Lilliefors Test Statistic	0.274			Lilliefor	rs GOF	Test				
24 25		5% Lilliefors Critical Value	0.226	6 Data Not Normal at 5% Significance Level								
25		Data Not	Normal at 5	% Significanc	e Level							
27												
28		As	suming Norr	nal Distributio	on							
29	95%	Normal UCL			95%	UCLs (Ad	justed	for Ske	wness)		-	
30		95% Student's-t UCL	15.27		ç	95% Adjus	sted-C	LT UCI	_ (Chen-1	1995)	1	6.71
31						95% Mod	lified-t	UCL (J	ohnson-1	1978)	1	5.54
32												
33			Gamma	GOF Test								
34		A-D Test Statistic	0.635	Datasta	Anders	son-Darlin	ig Gam	ima GC				
35		5% A-D Critical Value	0.745	Detected		r Gamma			20E Tool	incar		.evei
36		5% K-S Critical Value	0.21	Detected	data anneai	r Gamma	Distrik		t 5% Sigr	nificar		مريما
37		Detected data appear	Gamma Dis	tributed at 59	6 Significanc		Distrib		. 0 /0 Olgi	inical		
38					e eignitearie	0 2010						
39			Gamma	Statistics								
40		k hat (MLE)	2.405				k star	(bias co	orrected I	MLE)	-	1.938
41		Theta hat (MLE)	4.529			Thet	a star	(bias co	orrected I	MLE)	Ę	5.623
43		nu hat (MLE)	67.35				nu	star (b	ias corre	cted)	5	4.25
44		MLE Mean (bias corrected)	10.89	0.89 MLE Sd (bias corrected						cted)	-	7.826
45			I		A	Approxima	ate Chi	Squar	e Value (0.05)	3	8.33
46	Ac	ljusted Level of Significance	0.0312				Adjust	ed Chi	Square \	/alue	3	6.56
47												
48		Ase	suming Gam	ma Distributio	on							
49	95% Approximate Gan	15.42		95% Adj	usted Ga	mma L	JCL (us	e when r	า<50)	1	6.17	
50												
51			Lognorma	GOF Test								
52		Shapiro Wilk Test Statistic	0.941		Shapi	iro Wilk Lo	ognorn	nal GO	F Test			

	A B C D E	F	G H I J K	L							
53	5% Shapiro Wilk Critical Value	0.874	Data appear Lognormal at 5% Significance Level								
54	Lilliefors Test Statistic	0.161	Lilliefors Lognormal GOF Test								
55	5% Lilliefors Critical Value	0.226	Data appear Lognormal at 5% Significance Level								
56	Data appear	Lognormal a	at 5% Significance Level								
57											
58		Lognorma	I Statistics								
59	Minimum of Logged Data	1.289	Mean of logged Data	2.166							
60	Maximum of Logged Data	3.666	SD of logged Data	0.64							
61											
62	Assu	Iming Logno	rmal Distribution								
63	95% H-UCL	16.02	90% Chebyshev (MVUE) UCL	16.17							
64	95% Chebyshev (MVUE) UCL	18.73	97.5% Chebyshev (MVUE) UCL	22.27							
65	99% Chebyshev (MVUE) UCL	29.24									
66											
67	7 Nonparametric Distribution Free UCL Statistics										
68	Data appear to follow a Discernible Distribution at 5% Significance Level										
69											
70	Nonpar	ametric Dist	ribution Free UCLs								
71	95% CLT UCL	14.95	95% Jackknife UCL	15.27							
72	95% Standard Bootstrap UCL	14.85	95% Bootstrap-t UCL	20.07							
73	95% Hall's Bootstrap UCL	29.71	95% Percentile Bootstrap UCL	15.09							
74	95% BCA Bootstrap UCL	1/									
75	90% Chebyshev(Mean, Sd) UCL	18.3	95% Chebyshev(Mean, Sd) UCL	21.66							
76	97.5% Chebyshev(Mean, Sd) UCL	26.31	99% Chebyshev(Mean, Sd) UCL	35.46							
77		0									
78											
79	95% Adjusted Gamma UCL	16.17									
80	Note: Our set is a set of the set										
81	Note: Suggestions regarding the selection of a 95%	o UCL are pr	ovided to help the user to select the most appropriate 95% OCL.								
82	These recommendations are based upon the requ	lte of the cir	a size, data distribution, and skewness.								
83	However, simulations results will not cover all Pool M		te: for additional incident the upper may want to consult a statisticie	n							
84											
85	2-Methylnanhthalene										
86											
87		General	Statistics								
88	Total Number of Observations	14	Number of Distinct Observations	14							
89	Number of Detects	3	Number of Non-Detects	11							
90	Number of Distinct Detects	3	Number of Distinct Non-Detects	11							
91	Minimum Detect	0.012	Minimum Non-Detect	0.00906							
92	Maximum Detect	0.139	Maximum Non-Detect	0.00995							
93	Variance Detects	0.00422	Percent Non-Detects	78.57%							
94	Mean Detects	0.0676	SD Detects	0.0649							
95	Median Detects	0.0519	CV Detects	0.96							
96	Skewness Detects	1.026	Kurtosis Detects	N/A							
9/	Mean of Logged Detects	-3.118	SD of Logged Detects	1.233							
98		-		-							
39	Warnina: Da	ata set has o	only 3 Detected Values.								
100	This is not enough to comp	ute meaning	ful or reliable statistics and estimates.								
101											
102											
103	Norm	al GOF Test	t on Detects Only								
104			•								

105	Shapiro Wilk Test Statistic	0.956	Shapiro Wilk GOF Test	L
105	5% Shapiro Wilk Critical Value	0.767	Detected Data appear Normal at 5% Significance Leve	əl
106	Lilliefors Test Statistic	0.262	Lilliefors GOF Test	
107	5% Lilliefors Critical Value	0.425	Detected Data appear Normal at 5% Significance Leve	əl
108	Detected Data a	ppear Norm	al at 5% Significance Level	-
109				
110	Kaplan-Meier (KM) Statistics using	a Normal Cri	itical Values and other Nonparametric UCLs	
111	KM Mean	0.0216	KM Standard Error of Mean	0.0112
112	KM SD	0.0344	95% KM (BCA) UCL	N/A
113	95% KM (t) UCL	0.0415	95% KM (Percentile Bootstrap) UCL	N/A
114	95% KM (z) UCL	0.0401	95% KM Bootstrap t UCL	N/A
110	90% KM Chebyshev UCL	0.0553	95% KM Chebyshev UCL	0.0706
110	97.5% KM Chebyshev UCL	0.0918	99% KM Chebyshev UCL	0.133
117				
110	Gamma GOF	Tests on De	tected Observations Only	
119	Not Enc	ough Data to	Perform GOF Test	
120		-		
121	Gamma	Statistics on	Detected Data Only	
122	k hat (MLE)	1.32	k star (bias corrected MLE)	N/A
123	Theta hat (MLE)	0.0513	Theta star (bias corrected MLE)	N/A
124	nu hat (MLE)	7.917	nu star (bias corrected)	N/A
126	Mean (detects)	0.0676		
120				
127	Gamma ROS	Statistics us	ing Imputed Non-Detects	
129	GROS may not be used when data so	et has > 50%	6 NDs with many tied observations at multiple DLs	
130	GROS may not be used when kstar of detects is a	small such a	s <1.0, especially when the sample size is small (e.g., <15-20)	
131	For such situations, GROS r	nethod may	yield incorrect values of UCLs and BTVs	
132	This is especia	ally true whe	n the sample size is small.	
133	For gamma distributed detected data, BTVs a	nd UCLs ma	ay be computed using gamma distribution on KM estimates	
134	Minimum	0.01	Mean	0.0224
135	Maximum	0.139	Median	0.01
136	SD	0.0354	CV	1.583
137	k hat (MLE)	1.168	k star (bias corrected MLE)	0.965
138	Theta hat (MLE)	0.0191	Theta star (bias corrected MLE)	0.0232
139	nu hat (MLE)	32.71	nu star (bias corrected)	27.03
140	Adjusted Level of Significance (β)	0.0312		
141	Approximate Chi Square Value (27.03, α)	16.18	Adjusted Chi Square Value (27.03, β)	15.07
142	95% Gamma Approximate UCL (use when n>=50)	0.0373	95% Gamma Adjusted UCL (use when n<50)	N/A
143				
144	Estimates of Ga	amma Paran	neters using KM Estimates	
145	Mean (KM)	0.0216	SD (KM)	0.0344
146	Variance (KM)	0.00118	SE of Mean (KM)	0.0112
147	k hat (KM)	0.396	k star (KM)	0.359
148	nu hat (KM)	0.0540	nu star (KM)	10.04
149	theta hat (KM)	0.0546	theta star (KM)	0.0603
150	80% gamma percentile (KM)	0.0344	90% gamma percentile (KM)	0.0622
151	95% gamma percentile (KM)	0.0932	99% gamma percentile (KM)	0.172
152	0	o Konlan M	sion ///M/ Statiation	
153	Gamm	a napian-Me		2 475
154	Approximate Cni Square value (10.04, α)	3.90/	Adjusted Chi Square Value (10.04, β)	3.475
155	95% Gamma Approximate KM-UCL (use when n>=50)	0.0547	95% Gamma Adjusted KM-UCL (use when n<50)	0.0624

	А	В	С	D	E	F	G	Н		J	K	L
157				Lo	ognormal GO	F Test on De	etected Obse	ervations Onl	у			
158			S	hapiro Wilk T	Test Statistic	0.987			Shapiro Wi	lk GOF Test		
159			5% SI	hapiro Wilk C	Critical Value	0.767	Dete	ected Data a	opear Logno	ormal at 5% S	Significance L	evel
160				Lilliefors 7	Test Statistic	0.218			Lilliefors	GOF Test		
161			5	% Lilliefors C	Critical Value	0.425	Dete	ected Data a	opear Logno	ormal at 5% S	Significance L	evel
162				Dete	cted Data ap	pear Lognor	mal at 5% Si	ignificance Lo	evel			
163												
164				Lo	gnormal ROS	Statistics L	Ising Impute	d Non-Detec	ts			
165				Mean in O	riginal Scale	0.0146				Mean	in Log Scale	-7.825
166				SD in O	riginal Scale	0.0384				SD	in Log Scale	2.596
167		95% t L	JCL (assume	es normality o	of ROS data)	0.0328			95%	Percentile Bo	ootstrap UCL	N/A
168			9	95% BCA Bo	ootstrap UCL	N/A				95% Boo	otstrap t UCL	N/A
169				95% H-UC	L (Log ROS)	0.812						
170												
171			Statis	tics using KN	V estimates o	n Logged D	ata and Assu	uming Logno	rmal Distribu	ution		
172				KM M	ean (logged)	-4.364				KN	M Geo Mean	0.0127
173				KM	SD (logged)	0.8			95% (Critical H Val	ue (KM-Log)	2.479
174			KM Standa	rd Error of M	ean (logged)	0.262				95% H-UC	CL (KM -Log)	0.0304
175				KM	SD (logged)	0.8			95% (Critical H Val	ue (KM-Log)	2.479
176			KM Standa	rd Error of M	ean (logged)	0.262						
177												
178						DL/2 St	atistics					
179			DL/2 N	Normal					DL/2 Log-1	ransformed		
180				Mean in O	riginal Scale	0.0182				Mean	in Log Scale	-4.87
181				SD in O	riginal Scale	0.037				SD	in Log Scale	1.066
182			95% t l	JCL (Assume	es normality)	0.0357				95%	H-Stat UCL	0.0319
183			DL/2 i	s not a recor	mmended me	thod, provid	ed for compa	arisons and h	istorical rea	sons		
184												
185					Nonparame	tric Distribut	ion Free UCI	L Statistics				
186				Detected	l Data appear	Normal Dis	tributed at 59	% Significand	e Level			
187												
188						Suggested	UCL to Use					
189				95%	5 KM (t) UCL	0.0415						
190												
191		Note: Sugge	stions regard	ling the selec	ction of a 95%	UCL are pr	ovided to he	Ip the user to	select the r	nost appropr	iate 95% UCL	
192			F	Recommenda	ations are bas	ed upon dat	a size, data	distribution, a	and skewne	SS.		
193		These recor	mmendations	s are based ι	upon the resu	Its of the sin	nulation studi	ies summariz	ed in Singh	, Maichle, an	d Lee (2006).	
194	Ho	wever, simu	lations result	s will not cov	/er all Real W	orld data se	ts; for additic	onal insight th	ne user may	want to cons	ult a statistici	an.
195												

Attachment 2 (Continued)

Mixed Soil Samples from 0 to 10 foot Depth (Input)

	A	В	С	D	E	F
1	1,2,4-Trimethylbenzene	d_1,2,4-Trimethylbenzene		1,2-Dibromoethane	d_1,2-Dibromoethane	
2	20	1		1.43	0	
3	12	1		1 15	0	
4	4.26	1		0.004	0	
4	4.30	1		0.094	0	
5	2.8	1		0.076	0	
6	1	1		0.046	0	
7	0.635	1		0.039	0	
8	0.31	1		0.024	0	
9	0.19	1		0.024	0	
10	0.1	0		0.02	0	
11	0.026	0		0.0051	0	
10	0.020	0		0.0010	0	
12	0.0054	0		0.0046	0	
13	0.0044	0		0.0042	0	
14	0.0044	0		0.0041	0	
15	0.0044	0		0.0041	0	
16	0.00118	1		0.001365	0	
17	0.00107	1		0.00119	0	
10	0.00105	1		0.0008545	0	
10	0.00103	1		0.0008343	0	
19	0.00103	1		0.000824	U	
20	0.00102	1		0.000819	0	
21	0.0008545	0		0.000815	0	
22	0.000824	0		0.000811	0	
23	0.000819	0		0.000802	0	
24	0.000811	0		0.000798	0	
25	0.000802	0		0 000794	0	
20	0.000708	0		0.000765	0	
20	0.000798	0		0.000705	0	
27	0.000765	0		0.000761	0	
28	0.000754	0		0.000754	0	
29	0.000747	0		0.000748	0	
30	0.000746	0		0.000747	0	
31	0.000739	0		0.000746	0	
32	0 000735	0		0 000739	0	
22	0.0007305	0		0.000735	0	
33	0.0007303	0		0.000733	0	
34	0.000726	0		0.000733	0	
35	0.000722	0		0.0007305	0	
36	0.000722	1		0.000726	0	
37	0.000718	0		0.000725	0	
38	0.000717	0		0.000722	0	
39	0.000715	0		0.000722	0	
40	0.000715	0		0.000718	0	
41	0.000710	0		0.000717	0	
41	0.000702	0		0.000717	0	
42	0.000697	0		0.000715	0	
43	0.000696	0		0.000/15	0	
44	0.000693	0		0.000707	0	
45	0.000688	0		0.000702	0	
46	0.000687	0		0.000697	0	
47	0.000687	0		0.000696	0	
48	0 000678	0		0 000693	0	
10	0.000677	<u> </u>		0.000688	о О	
49	0.000077	0		0.00000	0	
50	0.000675	U		0.00087	U	
51	0.000674	0		0.000687	0	
52	0.000671	0		0.000678	0	
53	0.000665	0		0.000677	0	
54	0.000663	0		0.000675	0	
55	0.000662	0		0.000675	0	
56	0.000662	0		0 000674	0	
55	0.00066	0		0.000671	о О	
57	0.000651	0		0.000071	0	
58	0.000051	U		0.00005	U	
59	0.000651	Ű		0.000663	0	
60	0.000642	0		0.000662	0	
61	0.000613	0		0.000662	0	
62	0.00061	0		0.000662	0	
63	0.000584	1		0.00066	0	
6/	0 000545	0		0.000657	0	
65	0.000393	0		0.000651	0	
00	0.000302	U 1		0.000001	0	
00	0.000373	-		0.00001	U	
67	0.000374	0		0.000642	0	

	A	В	С	D	E	F
1	1,2,4-Trimethylbenzene	d_1,2,4-Trimethylbenzene		1,2-Dibromoethane	d_1,2-Dibromoethane	
68	0.00037	0		0.0006315	0	
69	0.000369	0		0.000618	0	
70	0.00036	0		0.000615	0	
71	0.000305	0		0.000613	0	
72	0.0002965	0		0.00061	0	
73	0.000259	0		0.000602	0	
74	0.000223	1		0.000602	0	
75	0.000179	1		0.0006015	0	
76	0.0001655	0		0.000587	0	
77	0.000162	0		0.000586	0	
78	0.000159	0		0.000581	0	
79	0.000157	0		0.0005655	0	
80	0.000154	0		0.000565	0	
81	0.000147	0		0.00056	0	
82	0.000144	0		0.000556	0	
83	0.000137	0		0.000547	0	
84	0.000134	0		0.000546	0	
85	0.000134	0		0.000546	0	
86	0.000131	0		0.000545	0	
87	0.000131	0		0.000526	0	
88	0.000127	0		0.000518	0	
89	0.000126	0		0.000518	0	
90	0.000122	0		0.000508	0	
91	0.000121	0		0.000502	0	
92	0.000119	0		0.000493	0	
93	0.000118	0		0.000491	0	
94	0.000114	0		0.000489	0	
95	0.000112	0		0.000484	0	
96	0.000112	0		0.000475	0	
97	0.00011	0		0.000466	0	
98	0.000109	0		0.000463	0	
99	0.000107	0		0.000454	0	
100	0.000106	0		0.000446	0	
101	0.000105	0		0.000382	0	
102	0.000103	0		0.000374	0	
103	0.000101	0		0.00037	0	
104	0.000101	0		0.000369	0	
105	0.000099	0		0.00036	0	
106	0.000097	0		0.000305	0	
107						
108						
109						
110						
111						
112						
113						
114						
115						
116						
117						
118						

	G	H		J	K
1	1,2-Dichloroethane	d_1,2-Dichloroethane		1-Methylnaphthalene	d_1-Methylnaphthalene
2	0.474	0		0.33	1
3	0.382	0		0.012	0
4	0 14	0		0.011	0
5	0.11	0		0.011	0
6	0.066	0		0.0062	0
0	0.000	0		0.0002	0
/	0.056	0		0.006	0
8	0.035	0		0.006	0
9	0.035	0		0.0059	0
10	0.03	0		0.0056	0
11	0.0073	0		0.0056	0
12	0.0066	0		0.0056	0
13	0.006	0		0.0055	0
14	0.006	0			
15	0.006	0			
16	0.000	0			
10	0.0008345	0			
17	0.000824	0			
18	0.000819	0			
19	0.000815	0			
20	0.000811	0			
21	0.000802	0			
22	0.000798	0			
23	0.000794	0			
24	0.000765	0			
25	0 000754	0			
20	0.0007.07	0			
20	0.000747	0			
27	0.000746	0			
28	0.000739	0			
29	0.000735	0			
30	0.0007305	0			
31	0.000726	0			
32	0.000725	0			
33	0.000722	0			
34	0.000718	0			
35	0.000717	0			
26	0.000715	0			
30	0.000715	0			
37	0.000715	0			
38	0.000702	0			
39	0.000697	0			
40	0.000696	0			
41	0.000693	0			
42	0.000688	0			
43	0.000687	0			
44	0.000687	0			
45	0.000678	0			
46	0.000677	0			
47	0.000675	0			
10	0.000674	0			
+0	0.000074	0			
49	0.000071	0			
50	0.000000	0			
51	0.000663	U -			
52	0.000662	0			
53	0.000662	0			
54	0.00066	0			
55	0.000651	0			
56	0.000651	0			
57	0.000642	0			
58	0.000613	0			
59	0.00061	0			
60	0.000545	0			
61	0.000040	0 0			
01	0.0004000	0			
02	0.000396	U			
63	0.000382	0			
64	0.000374	0			
65	0.00037	0			
66	0.000369	0			
67	0.00036	0			

	G	H	I	J	K
1	1,2-Dichloroethane	d_1,2-Dichloroethane		1-Methylnaphthalene	d_1-Methylnaphthalene
68	0.000305	0			
69	0.0002525	0			
70	0.000248	0			
71	0.000244	0			
72	0.00024	0			
73	0.000235	0			
74	0.000224	0			
75	0.00022	0			
76	0.000218	0			
77	0.00021	0			
78	0.000205	0			
79	0.000204	0			
80	0.0002	0			
81	0.0002	0			
82	0.0002	0			
83	0.0002	0			
84	0.000195	0			
04 95	0.000193	0			
86	0.000193	0			
00	0.000100	0			
07	0.000186	0			
00 90	0.000185	0			
00	0.000103	0			
01	0.000181	0			
92	0.000181	0			
92	0.000175	0			
94	0.000172	0			
95	0.000172	0			
96	0.000169	0			
97	0.000167	0			
98	0.000164	0			
99	0.000163	0			
100	0.000163	0			
101	0.000161	0			
102	0.000158	0			
103	0.000155	0			
104	0.000154	0			
105	0.000151	0			
106	0.000148	0			
107					
108					
109					
110					
111					
112					
113					
114					
115					
116					
117					
118					

	L	М	N	0	Р	Q
1		2-Methvinaphthalene	d 2-Methvinaphthalene		Benzene	d Benzene
2		16	1		0 276	0
2		14	1		0.222	0
3		14	1		0.222	0
4		13	1		0.09	0
5		8.13	1		0.073	0
6		1.5	1		0.044	0
7		0.66	0		0.037	0
8		0.64	0		0.023	0
٥ ٥		0.64	0		0.023	0
3		0.64	0		0.025	0
10		0.64	0		0.02	0
11		0.64	0		0.0049	0
12		0.64	0		0.0044	0
13		0.64	0		0.004	0
14		0.63	0		0.004	0
15		0.63	0		0.004	0
16		0.375	0		0.00225	1
10		0.375	0		0.00325	1
17		0.14	0		0.003035	1
18		0.14	0		0.00256	1
19		0.14	0		0.0023	1
20		0.139	1		0.0022	1
21		0.13	0		0.002015	1
22		0.13	0		0.00196	1
22		0.13	0		0.00130	1
23		0.13	0		0.00172	1
24		0.13	0		0.001312	1
25		0.13	0		0.00119	1
26		0.13	0		0.00116	1
27		0.13	0		0.00115	1
28		0.125	0		0.00107	1
20		0.120	0		0.00104	1
29		0.12	0		0.00104	1
30		0.0996	0		0.000866	1
31		0.0975	0		0.000861	1
32		0.07	0		0.0008545	0
33		0.07	0		0.000844	1
34		0.07	0		0.000824	0
25		0.060	0		0.000810	0
35		0.009	0		0.000813	0
36		0.069	0		0.000811	0
37		0.068	0		0.000802	0
38		0.067	0		0.0008	1
39		0.067	0		0.000798	0
40		0.067	0		0.000765	0
<u>41</u>		0.0665	0		0.000763	1
40		0.000	0		0.000760	0
42		0.000	0		0.000754	0
43		0.066	0		0.000752	I
44		0.066	0		0.00075	1
45		0.066	0		0.000747	0
46		0.066	0		0.000746	0
47		0.065	0		0.000739	0
10		0.065	0		0.000735	0
+0		0.000	0 0		0.0007305	0
49		0.005	0		0.0007305	U
50		0.065	0		0.000/22	0
51		0.064	0		0.000719	1
52		0.064	0		0.000718	0
53		0.064	0		0.000717	0
54		0.064	0		0.000715	0
54	<u> </u>	0.06/	<u> </u>		0.000715	<u> </u>
55		0.004	0		0.000713	0
56		0.064	U		0.000702	U
57		0.063	0		0.000697	0
58		0.063	0		0.000696	0
59		0.063	0		0.000693	0
60		0.063	0		0.000688	0
61		0.063	0		0.000687	0
01		0.000	0		0.000007	0
62		0.003	U		1,80000.0	U
63		0.063	0		0.000678	0
64		0.062	0		0.000677	0
65		0.062	0		0.000675	0
66		0.062	0		0.000674	0
67		0.062	0		0.000671	0

	L	М	Ν	0	Р	Q
1		2-Methylnaphthalene	d_2-Methylnaphthalene		Benzene	d_Benzene
68		0.0519	1		0.000665	0
69		0.0487	0		0.000663	0
70		0.0472	0		0.000662	0
71		0.0266	1		0.000662	0
72		0.013	0		0.00066	0
73		0.012	1		0.000651	0
74		0.012	0		0.000651	0
75		0.012	0		0.000626	1
76		0.0104	0		0.000619	1
77		0.0104	0		0.000613	0
78		0.00998	0		0.00061	0
79		0.00997	0		0.000581	1
80		0.00995	0		0.000577	1
81		0.009905	0		0.000572	1
82		0.00989	0		0.000545	0
83		0.009865	0		0.000544	1
84		0.00984	0		0.000495	1
85		0.00979	0		0.000485	1
86		0.00979	0		0.000382	0
87		0.00978	0		0.000374	0
88		0.00978	0		0.000373	1
89		0.00977	0		0.00037	0
90		0.00971	0		0.000369	0
91		0.00971	0		0.00036	0
92		0.00967	0		0.000354	1
93		0.00966	0		0.000345	1
94		0.00963	0		0.000323	1
95		0.00958	0		0.000305	0
96		0.00955	0		0.000288	1
97		0.00954	0		0.0002805	1
98		0.00954	0		0.0002205	1
99		0.009535	0		0.000217	1
100		0.00953	0		0.0002115	1
101		0.00952	0		0.0002035	1
102		0.00952	0		0.000142	0
103		0.00951	0		0.000131	1
104		0.00949	0		0.000106	0
105		0.00945	0		0.0001	0
106		0.00943	0		0.000098	0
107		0.00941	0			
108		0.00931	0			
109		0.00906	0			
110		0.0065	0			
111		0.0063	0			
112		0.0063	0			
113		0.0062	0			
114		0.0059	0			
115		0.0059	0			
116		0.0059	0			
117		0.0059	0			
118		0.0058	0			

	R	S	Т	U	V	W	Х
1		Ethylbenzene	d_Ethylbenzene		Isopropylbenzene	d_lsopropylbenzene	
2		0.57	0		0.29	1	
3		0.47	1		0.243	0	
4		0.46	0		0.196	0	
5		0.23	1		0.065	0	
6		0.088	0		0.057	0	
7		0.043	0		0.053	0	
, 0		0.040	0		0.033	0	
0		0.030	0		0.032	0	
9		0.023	0		0.032	0	
10		0.019	0		0.027	0	
11		0.0047	0		0.017	0	
12		0.0043	0		0.0035	0	
13	-	0.0039	0		0.0029	0	
14		0.0039	0		0.0029	0	
15		0.0038	0		0.0029	0	
16		0.001064	1		0.0008545	0	
17		0.0008545	0		0.000824	0	
18		0.000851	1		0.000819	0	
19		0.000824	0		0.000815	0	
20		0.000819	0		0.000811	0	
21		0.000815	0		0.000802	0	
22		0.000811	0		0.000798	0	
23		0.000802	0		0.000794	0	
23		0.000002	0		0.000765	0	
24		0.000796	0		0.000763	0	
25		0.000765	0		0.000734	0	
26		0.000754	0		0.000747	0	
27		0.000747	0		0.000746	0	
28		0.000746	0		0.000739	0	
29		0.000739	0		0.000735	0	
30		0.000735	0		0.0007305	0	
31		0.0007345	1		0.000726	0	
32		0.0007305	0		0.000725	0	
33		0.000726	0		0.000722	0	
34		0.000725	0		0.000718	0	
35		0.000722	0		0.000717	0	
36		0.000718	0		0.000715	0	
37		0.000717	0		0.000715	0	
38		0.000715	0		0.000702	0	
39		0 000715	0		0.000697	0	
40		0.000702	0		0.000696	0	
40 A1		0.000697	0		0.000693	0	
12		0.00000	0		0.000688	0	
42		0.000030	0		0.000000	0	
43		0.000093	0		0.000687	0	
44		0.000007	0		0.00087	0	
45		0.000687	0		0.00078	0	
46		0.000687	0		0.000677	0	
4/		0.000678	U		0.000675	U	
48		0.000677	0		0.000674	0	
49		0.000675	0		0.000671	0	
50		0.000674	0		0.000665	0	
51		0.000671	0		0.000663	0	
52		0.000665	0		0.000662	0	
53		0.000663	0		0.000662	0	
54		0.000662	0		0.00066	0	
55		0.000662	0		0.000651	0	
56		0.00066	0		0.000651	0	
57		0.000659	1		0.000642	0	
58		0.000651	0		0.000613	0	
59		0.000651	0		0.00061	0	
60		0.000642	0		0.000545	0	
61		0.000613	0		0.000382	0	
60		0.00061	<u> </u>		0.000374	0	
62		0.0005/65	n 0		0.00074	0	
03		0.0005405	0		0.00037	0	
04		0.000405	U 1		0.000303	0	
00		0.000477			0.00030	0	
00		0.000477	U		0.000305	0	
67		0.000459	1		0.0002325	U	

	R	S	Т	U	V	W	Х
1		Ethylbenzene	d_Ethylbenzene		Isopropylbenzene	d_lsopropylbenzene	
68		0.000382	0		0.000203	0	
69		0.000375	1		0.0001295	0	
70		0.000374	0		0.000127	0	
71		0.00037	0		0.000125	0	
72		0.000369	0		0.000123	0	
73		0.00036	0		0.00012	0	
74		0.000344	1		0.000115	0	
75		0.000305	0		0.000113	0	
76		0.000304	0		0.0001115	0	
77		0.000299	0		0.0001075	0	
78		0.000297	1		0.000105	0	
79		0.000293	0		0.000105	0	
80		0.000283	0		0.000102	0	
81		0.00027	0		0.000102	0	
82		0.000265	0		0.000102	0	
83		0.000252	0		0.0001	0	
84		0.000247	0		0.0001	0	
85		0.000246	0		0.000099	0	
86		0.000241	0		0.000096	0	
87		0.000235	0		0.000096	0	
88		0.000234	0		0.000095	0	
89		0.000232	0		0.000095	0	
90		0.000224	0		0.000093	0	
91		0.000222	0		0.000093	0	
92		0.000219	0		0.000093	0	
93		0.000218	0		0.000089	0	
94		0.00021	1		0.000088	0	
95		0.000207	0		0.000088	0	
96		0.000203	0		0.000086	0	
97		0.0002	0		0.000085	0	
98		0.000197	0		0.000084	0	
99		0.000196	0		0.000083	0	
100		0.000196	0		0.000083	0	
101		0.000193	0		0.000082	0	
102		0.00019	0		0.000081	0	
102		0.000186	0		0.000079	0	
104		0.000185	0		0.000079	0	
105		0.000181	0		0.000077	0	
105		0.000178	0		0.000076	0	
107		0.000170	v		0.000070	v	-
107							
100							
110							
111							
112							+
112							+
11/							
114							
110							
110							
110							
110							L

	Y	Z	AA	AB	AC	AD
1	Lead	d_Lead		MTBE (Methyl tert-butyl ether)	d_MTBE (Methyl tert-butyl ether)	
2	71	1		0.622	0	
3	59	1		0.502	0	
4	46	1		0.31	0	
5	42.2	1		0.25	0	
6	12	1		0.15	0	
7	30.1	1		0.13	0	
/	39.1	1		0.13	0	
ð	35	1		0.08	0	
9	25	1		0.079	0	
10	22	1		0.067	0	
11	18.8	1		0.017	0	
12	18.2	1		0.015	0	
13	18	1		0.014	0	
14	18	1		0.014	0	
15	17.2	1		0.013	0	
16	17	1		0.0008545	0	
17	14	1		0.000824	0	
18	14	1		0.000819	0	
10	13.5	1		0.000815	0	
20	10.0	1		0.000813	0	
20	11.0	1		0.00002	0	
21	11.3	1		0.000802	0	
22	11.255			0.000/98	U	
23	11	1		0.000/94	0	
24	10.1	1		0.000765	0	
25	9.56	1		0.000754	0	
26	9.5	1		0.000747	0	
27	9.01	1		0.000746	0	
28	8.6	1		0.000739	0	
29	8.45	1		0.000735	0	
30	8.28	1		0.0007305	0	
31	8.16	1		0.000726	0	
32	8 11	1		0.000725	0	
22	8.1	1		0.000720	ů O	
24	7.0	1		0.000722	0	
34	7.9	1		0.000718	0	
35	7.6	1		0.000717	0	
36	7.6	1		0.000/15	0	
37	7.42	1		0.000715	0	
38	7.335	1		0.000702	0	
39	7.34	1		0.000697	0	
40	7.28	1		0.000696	0	
41	7.12	1		0.000693	0	
42	6.79	1		0.000688	0	
43	6.62	1		0.000687	0	
44	6.6	1		0.000687	0	
45	6.5	1		0 000678	0	
45	6.45	1		0.000677	0	
40	6.7J	1		0.000675	0	
4/	0.21	1		0.000075	0	
48	0.15			0.000674	0	
49	6	1		0.000671	U	
50	5.88	1		0.000665	0	
51	5.8	1		0.000663	0	
52	5.8	1		0.000662	0	
53	5.585	1		0.000662	0	
54	5.46	1		0.00066	0	
55	5.3	1		0.000651	0	
56	5.3	1		0.000651	0	
57	5.13	1		0.000642	0	
58	4.85	1		0.000613	0	
50	4 66	1		0.00061	0	
60	1.50	1		0.00001	0	
61	4.55 / 55	1		0.000545	0	
01	4.00	1		0.000345	0	
62	4.55	1		0.0002	0	
63	4.5			0.000382	U	
64	4.5	1		0.000374	0	
65	4.49	1		0.00037	0	
66	4.2	1		0.000369	0	
67	4.1	1		0.00036	0	

Lead d_Lead MTBE (Methyl tert-butyl ether) d_MTBE (Methyl tert-butyl ether) 68 4.1 1 0.000332 0 69 4.07 1 0.000326 0 70 4 1 0.000326 0 71 3.93 1 0.000315 0 72 3.9 1 0.000305 0 73 3.8 1 0.000305 0 74 3.66 1 0.000294 0 75 3.655 1 0.0002865 0 1 76 3.63 1 0.000275 0 1 78 3.54 1 0.000263 0 1 79 3.5 1 0.000263 0 1 80 3.5 1 0.000263 0 1 81 3.4 1 0.000265 0 1 82 3.4 1 0.000266 0 1 <t< th=""></t<>
68 4.1 1 0.000332 0 69 4.07 1 0.000326 0 70 4 1 0.000326 0 71 3.93 1 0.000315 0 72 3.9 1 0.000308 0 73 3.8 1 0.000305 0 74 3.66 1 0.000294 0 75 3.655 1 0.000289 0 76 3.63 1 0.000275 0 77 3.6 1 0.000275 0 78 3.54 1 0.000268 0 80 3.5 1 0.000263 0 81 3.4 1 0.0002625 0 82 3.4 1 0.000256 0 84 3.12 1 0.000256 0 84 3.12 1 0.000254 0 86 2.9
69 4.07 1 0.000326 0 70 4 1 0.00032 0 71 3.93 1 0.000315 0 72 3.9 1 0.000308 0 73 3.8 1 0.000305 0 74 3.66 1 0.000294 0 75 3.655 1 0.000289 0 76 3.63 1 0.0002865 0 77 3.6 1 0.000275 0 78 3.54 1 0.000268 0 79 3.5 1 0.000263 0 80 3.5 1 0.000263 0 81 3.4 1 0.000262 0 83 3.3 1 0.000266 0 84 3.12 1 0.000256 0 85 3 1 0.000256 0 86 2.9 1 0.0002465 0
70 4 1 0.00032 0 71 3.93 1 0.000315 0 72 3.9 1 0.000308 0 73 3.8 1 0.000305 0 74 3.66 1 0.000294 0 75 3.655 1 0.000289 0 76 3.63 1 0.000275 0 78 3.54 1 0.00027 0 79 3.5 1 0.000263 0 80 3.5 1 0.000262 0 81 3.4 1 0.000262 0 83 3.3 1 0.000262 0 84 3.12 1 0.000256 0 85 3 1 0.000256 0 86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
72 3.9 1 0.000308 0 73 3.8 1 0.000305 0 74 3.66 1 0.000294 0 75 3.655 1 0.000289 0 76 3.63 1 0.000285 0 77 3.6 1 0.000275 0 78 3.54 1 0.000275 0 79 3.5 1 0.000268 0 80 3.5 1 0.000263 0 81 3.4 1 0.000262 0 82 3.4 1 0.000262 0 83 3.3 1 0.000262 0 84 3.12 1 0.000256 0 85 3 1 0.000256 0 86 2.9 1 0.0002465 0 87 2.9 1 0.0002465 0
73 3.8 1 0.000305 0 74 3.66 1 0.000294 0 75 3.655 1 0.000289 0 76 3.63 1 0.0002865 0 77 3.6 1 0.000275 0 78 3.54 1 0.000275 0 79 3.5 1 0.000268 0 80 3.5 1 0.000263 0 81 3.4 1 0.000262 0 82 3.4 1 0.000262 0 83 3.3 1 0.000256 0 84 3.12 1 0.000256 0 85 3 1 0.000256 0 86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
74 3.66 1 0.000294 0 75 3.655 1 0.000289 0 76 3.63 1 0.0002865 0 77 3.6 1 0.000275 0 78 3.54 1 0.000268 0 79 3.5 1 0.000263 0 80 3.5 1 0.000263 0 81 3.4 1 0.0002625 0 82 3.4 1 0.000266 0 83 3.3 1 0.000262 0 84 3.12 1 0.000256 0 85 3 1 0.000256 0 86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
75 3.655 1 0.000289 0 76 3.63 1 0.0002865 0 77 3.6 1 0.000275 0 78 3.54 1 0.00027 0 79 3.5 1 0.000268 0 80 3.5 1 0.000263 0 81 3.4 1 0.0002625 0 82 3.4 1 0.000266 0 83 3.3 1 0.000262 0 84 3.12 1 0.000256 0 85 3 1 0.000256 0 86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
76 3.63 1 0.0002865 0 77 3.6 1 0.000275 0 78 3.54 1 0.00027 0 79 3.5 1 0.000268 0 80 3.5 1 0.000265 0 81 3.4 1 0.000262 0 82 3.4 1 0.000266 0 83 3.3 1 0.000266 0 84 3.12 1 0.000256 0 85 3 1 0.000256 0 86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
77 3.6 1 0.000275 0 78 3.54 1 0.00027 0 79 3.5 1 0.000268 0 80 3.5 1 0.000263 0 81 3.4 1 0.0002625 0 82 3.4 1 0.000266 0 83 3.3 1 0.000266 0 84 3.12 1 0.000256 0 85 3 1 0.000256 0 86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
78 3.54 1 0.00027 0 79 3.5 1 0.000268 0 80 3.5 1 0.000263 0 81 3.4 1 0.0002625 0 82 3.4 1 0.000262 0 83 3.3 1 0.000256 0 84 3.12 1 0.000256 0 85 3 1 0.000254 0 86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
79 3.5 1 0.000268 0 80 3.5 1 0.000263 0 81 3.4 1 0.0002625 0 82 3.4 1 0.000262 0 83 3.3 1 0.000256 0 84 3.12 1 0.000256 0 85 3 1 0.000254 0 86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
80 3.5 1 0.000263 0 81 3.4 1 0.0002625 0 82 3.4 1 0.000262 0 83 3.3 1 0.000256 0 84 3.12 1 0.000256 0 85 3 1 0.000254 0 86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
81 3.4 1 0.0002625 0 82 3.4 1 0.000262 0 83 3.3 1 0.000256 0 84 3.12 1 0.000256 0 85 3 1 0.000256 0 86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
82 3.4 1 0.000262 0 83 3.3 1 0.000256 0 84 3.12 1 0.000256 0 85 3 1 0.000256 0 86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
83 3.3 1 0.000256 0 84 3.12 1 0.000256 0 85 3 1 0.000254 0 86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
84 3.12 1 0.000256 0 85 3 1 0.000254 0 86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
85 3 1 0.000254 0 86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
86 2.9 1 0.0002465 0 87 2.9 1 0.000246 0
87 2.9 1 0.000246 0
88 2.8 1 0.000244 0
89 2.7 1 0.000243 0
90 2.6 1 0.000239 0
91 2.5 1 0.000238 0
92 2.5 1 0.000238 0
93 2.4 1 0.000229 0
94 2.4 1 0.000226 0
95 2.4 1 0.000226 0
96 2.3 1 0.000222 0
97 2.3 1 0.000219 0
98 2.2 1 0.000215 0
99 2 1 0.000214 0
100 1.9 1 0.000213 0
101 1.6 1 0.000211 0
102 1.3 1 0.000207 0
103 1.3 1 0.000203 0
104 1.2 1 0.000202 0
105 1.2 1 0.000198 0
106 1.1 1 0.000194 0
107
108
109
110
111
112
113
114
115
116
117
118

	AE	AF	AG	AH	AI	AJ	AK	AL
1	Naphthalene	d_Naphthalene		Toluene	d_Toluene		Xylenes (total)	<pre>d_Xylenes (total)</pre>
2	16	1		0.688	0		3.8	1
3	15	1		0.554	0		1.11	0
4	12	1		0.091	0		1	1
-	10.0	1		0.073	0		0 808	0
5	10.9	1		0.073	0		0.696	0
6	7.69	1		0.044	0		0.58	1
7	1.1	1		0.038	0		0.28	1
8	0.84	1		0.024	0		0.24	0
9	0.31	1		0.023	0		0.1	0
10	0.068	0		0.02	0		0.063	0
11	0.018	0		0 0049	0		0.013	0
12	0.012	0		0.00446	1		0.012	0
12	0.012	0		0.00440	1		0.012	0
13	0.011	0		0.0044	0		0.011	0
14	0.011	1		0.00413	1		0.011	0
15	0.01	1		0.004	0		0.011	0
16	0.00638	1		0.004	0		0.003825	1
17	0.0062	0		0.004	0		0.00365	1
18	0.006	0		0.003975	1		0.003165	1
19	0.006	0		0.00371	1		0 00254	1
20	0.000	0		0.00323	1		0.00234	1
20	0.0059	0		0.00323	1		0.00234	1
21	0.0056	0		0.00299	1		0.00221	1
22	0.0056	0		0.00276	1		0.001965	1
23	0.0056	0		0.00273	1		0.00171	0
24	0.0055	0		0.00264	1		0.00165	0
25	0.0037	0		0.00229	1		0.00164	0
26	0.003	0		0.00223	1		0.00162	0
27	0.003	0		0.00222	1		0.0016	0
27	0.000	0		0.00170	1		0.0016	0
20	0.003	0		0.00179	1		0.0016	0
29	0.00171	0		0.00139	1		0.00153	0
30	0.00165	0		0.001315	1		0.00151	0
31	0.00164	0		0.00129	1		0.001495	0
32	0.00163	0		0.00103	1		0.00149	0
33	0.00162	0		0.00103	1		0.00149	1
34	0.0016	0		0.001	1		0.00148	0
35	0.0016	0		0.000873	1		0 00147	0
26	0.00150	0		0.0008545	0		0.001465	0
30	0.00159	0		0.0008343	0		0.001405	0
37	0.00153	0		0.000824	0		0.00145	0
38	0.00151	0		0.000819	0		0.00144	0
39	0.001495	0		0.000811	0		0.00144	0
40	0.00149	0		0.000802	0		0.00143	0
41	0.00148	0		0.000798	0		0.00143	0
42	0.00147	0		0.000795	1		0.00143	0
43	0.001465	0		0.000795	1		0.0014	0
40	0.001/15	0		0.000784	1		0.00130	0
44	0.00140	0		0.000765			0.00139	0
45	0.00145	0		0.000765	U _		0.00139	U
46	0.00144	U		0.000/64			0.00139	U
47	0.00144	0		0.000755	1		0.00138	0
48	0.00143	0		0.000754	0		0.00137	0
49	0.00143	0		0.000754	1		0.00137	0
50	0.00143	0		0.000747	0		0.00136	0
51	0.0014	0		0.000746	0		0.00135	0
52	0.00139	0		0.000745	1		0.00135	0
52	0.00130	n 0		0.000725	0		0.00135	0
55	0.00133	0		0.000730	0		0.00133	0
54	0.00139	0		0.0007305	0		0.00134	U
55	0.00138	0		0.000/22	0		0.00133	0
56	0.00137	0		0.000719	1		0.00133	0
57	0.00137	0		0.000718	0		0.00132	0
58	0.00136	0		0.000717	0		0.00132	0
59	0.00135	0		0.000715	0		0.00132	0
60	0.00135	0		0.000715	0		0.00132	1
61	0.00135	<u> </u>		0.000702	<u> </u>		0.0013	0
60	0.00134	0 0		0.000702			0.0013	0
02	0.00134	0		0.000097	0		0.0013	0
63	0.00133	U		0.000696	U		0.00128	U
64	0.00133	0		0.000694	1		0.00123	0
65	0.00132	0		0.000693	0		0.00122	0
66	0.00132	0		0.000688	0		0.00109	0
67	0.00132	0		0.000687	0		0.0010695	0

	AE	AF	AG	AH	Al	AJ	AK	AL
1	Naphthalene	d_Naphthalene		Toluene	d_Toluene		Xylenes (total)	d_Xylenes (total)
68	0.0013	0		0.000678	0		0.001	1
69	0.0013	0		0.000677	0		0.000932	0
70	0.00128	0		0.000675	0		0.000763	0
71	0.00123	0		0.000674	0		0.0007485	0
72	0.00122	0		0.000671	0		0.00074	0
73	0.0010975	1		0.000665	0		0.000738	0
74	0.00109	0		0.000663	0		0.00072	0
75	0.00103	1		0.000662	0		0.000633	1
76	0.000945	1		0.000662	0		0.00061	0
77	0.000763	0		0.00066	0		0.0005945	0
78	0.0007485	0		0.0006585	0		0.000584	0
79	0.00074	0		0.00061	0		0.000573	0
80	0.000738	0		0.000604	1		0.000564	0
81	0.00072	0		0.0006	1		0.000552	0
82	0.00061	0		0.000587	1		0.000527	0
83	0.0004365	0		0.00050875	1		0.000517	0
84	0.000381	0		0.000429	1		0.0004935	0
85	0.000243	0		0.000382	0		0.000492	1
86	0.000239	0		0.000374	0		0.000483	0
87	0.000234	0		0.00037	0		0.00048	0
88	0.000226	0		0.000369	0		0.000458	0
89	0.000216	0		0.00036	0		0.000454	0
90	0.000212	0		0.000353	0		0.000438	0
91	0.00021	1		0.000305	0		0.000435	0
92	0.0002015	0		0.000298	0		0.000427	0
93	0.000197	0		0.00028	0		0.000426	0
94	0.000196	0		0.00027	0		0.000411	0
95	0.000192	0		0.000268	0		0.000404	0
96	0.000192	0		0.000263	0		0.000404	0
97	0.000187	0		0.000253	0		0.000397	0
97	0.000187	0		0.000253	1		0.000392	0
90	0.000186	0		0.000249	0		0.000385	0
100	0.0001805	0		0.000249	0		0.000382	0
100	0.0001005	0		0.000245	0		0.000302	0
101	0.000178	0		0.000240	0		0.000371	0
102	0.000175	0		0.000230	0		0.000364	0
103	0.000173	0		0.000223	1		0.000362	0
104	0.000174	0		0.000224	1		0.000355	0
105	0.000174	0		0.0002203	0		0.000333	0
100	0.000165	0		0.000213	0		0.000340	0
107	0.000163	0						
108	0.000162	0						
109	0.000159	0						
110	0.000158	0						
110	0.000157	0						
112	0.000155	0						
113	0.000155	0						
114	0.000152	0						
115	0.000149	0						
116	0.000148	0						
117	0.000145	U						
118	0.000142	0						

Attachment 2 (Continued)

Mixed Soil Samples from 0 to 10 foot Depth (Output)

	А	В	С	D	E	F	G	Н		J	K		L			
1		•	•		UCL Stat	istics for Data	a Sets with Non	-Detects			•					
2																
- 2		User	Selected Ontions													
3		Data/Timo	of Computation		17/6/2017	1.21.20 DM										
4				FIDUCE 5	.17/0/2017	4.31.20 FIVI										
5			From File	workSnee	et.xis											
6			Full Precision	OFF												
7		Confide	ence Coefficient	95%												
8	Numbe	er of Bootst	trap Operations	2000												
9				1												
10	1.2.4-Trir	nethvibenz	rene													
11	.,_,															
10						Conorol	Statiation									
12						General	Statistics			<u> </u>		0.1				
13			I otal Nu	mber of Ob	servations	105			Number of	Distinct Of	oservations	94				
14				Number	of Detects	18			N	umber of N	on-Detects	87				
15			Numb	er of Distir	nct Detects	18			Number of	f Distinct N	lon-Detects	77				
16				Minim	um Detect	1.7900E-4				Minimum	Non-Detect	9.7000	E-5			
17				Maxim	um Detect	20				Maximum	Non-Detect	0.1				
18				Varian	ce Detects	28.09				Percent N	on-Detects	82.8	36%			
10				Mo	an Detects	2 295					SD Detects	53				
19				Mad		2.233					OD Detects	0.0	-			
20				Iviedia	an Detects	0.00113					CV Detects	2.3	1			
21				Skewne	ss Detects	2.812				Kurto	sis Detects	7.8	02			
22			Me	an of Logg	ed Detects	-3.84			:	SD of Logg	jed Detects	4.2	46			
23																
24					No	rmal GOF Tes	st on Detects O	nly								
25			Shan	iro Wilk Te	st Statistic	0.511		-	Shapiro W	ilk GOF Te	est					
20			5% Shan	iro Wilk Cri	tical Value	0.897	Dete	ected Data	Not Norm	al at 5% Si	anificance I	evel				
20			070 0100	illiofore To	et Statistia	0.007	Dea		Lillioforo							
27			E0(1		st Statistic	0.374	Date		Lineiors	GOF Test		I				
28			5% L	Illiefors Cri	tical value	0.202	Dete	ected Data	Not Norm	al at 5% SI	gnificance L	.evei				
29				D	etected Da	ata Not Norma	al at 5% Signific	cance Lev	el							
30																
31			Kaplan-M	eier (KM) S	Statistics u	ing Normal Critical Values and other Nonparametric UCLs										
32					KM Mean	0.393	0.393 KM Standard Error of									
33					KM SD	2.301	2.301 95% KM (BCA)									
24				95%	(M (t) LICI	0.777		(stran) UCL	0.8	05						
34				050/01		0.774		strop t UCL	2.0	47						
35			00%	90 /0 1		0.774			2.1	4/						
36			90%	KM Cheby	shev UCL	1.087			95%	6 KM Cheb	yshev UCL	1.4	01			
37			97.5%	KM Cheby	shev UCL	1.837			99%	6 KM Cheb	yshev UCL	2.6	93			
38																
39				G	amma GO	F Tests on D	etected Observ	ations On	ly							
40				A-D Te	st Statistic	1.408		An	derson-Da	rling GOF	Test					
/1			!	5% A-D Cri	tical Value	0.924	Detected	Data Not G	Gamma Dis	tributed at	5% Signific	ancele	evel			
42				K-S Te	st Statistic	0.322		K	olmogorov	-Smirnov (ROF					
42				5% K C C		0.022	Detected	Data Mat C		tributod at	5% Cianifi-	anca ! -				
43			;	5 /0 N-3 UI		0.229				in indred at	J /0 SIGUILIC	ance Le	5VEI			
44				Detecte	u Data No	i Gamma Dis	unduted at 5% S	ogniticanc	e levei							
45							_									
46					Gamm	a Statistics o	n Detected Data	a Only								
47				k	hat (MLE)	0.163			k star	(bias corre	ected MLE)	0.1	73			
48				Theta	hat (MLE)	14.11			Theta star	(bias corre	ected MLE)	13.3	3			
49				nu	hat (MLE)	5.855			n	u star (bias	corrected)	6.2	12			
50	L			Mea	n (detects)	2,295				(/					
50 E1					(2010010)		1					<u> </u>				
51					Somme DO	C Statiation		on Datast								
52			0500		aamma KO	S SIATISTICS U	ising imputed N	UII-Detect	 							
53			GROS may n	ot be used	when data	set has > 50%	% NDs with man	y tied obse	ervations a	t multiple [JLS					
54		GROS m	nay not be used w	hen kstar o	of detects is	s small such a	is <1.0, especia	lly when th	e sample :	size is sma	III (e.g., <15	-20)				
55			For	such situati	ions, GROS	S method may	yield incorrect	values of l	JCLs and E	BTVs						
56				Т	his is espe	cially true whe	en the sample si	ize is smal	I.							
57		For a	amma distributed	detected	data, BTVs	and UCLs ma	ay be computed	using gan	nma distrib	ution on KI	M estimates					
52		8			Minimum	1.7900F-4		3 9			Mean	04	02			
50					Maximum	20					Madian	0.01				
59						20						0.0	E 4			
60					SD	2.311					UV.	5./	04 00			
61				k	nat (MLE)	0.206			k star	(bias corre	ected MLE)	0.2	06			
62				Theta	hat (MLE)	1.952			Theta star	(bias corre	ected MLE)	1.9	48			
63				nu	hat (MLE)	43.2			n	u star (bias	corrected)	43.3	3			
64			Adjusted Lev	vel of Signi	ficance (β)	0.0477					,					
65		An	proximate Chi So	uare Value	(43.30. α)	29.21		Adius	sted Chi So	uare Value	e (43.30. B)	29.0)5			
66	0	 5% Gamm	a Annrovimate III		en n>=50)	0 595	05	% Gamma			when n<50	0 5	99			
00	3				ion ne -00)	0.000	35		, ajusieu	SOL (USE V		0.0				

	Α		В	С	E	D	E		F	G		Н					J		Κ		L	
67																						
68						Es	timates	of Ga	mma Para	ameters us	sing K	M Est	imate	es								
69						ľ	Mean (Kl	N)	0.393									S	D (KN	1)	2.301	
70						Vari	ance (Kl	N)	5.296							S	E of	Mea	ın (KN	1)	0.231	
71							k hat (Kl	N)	0.0292									k sta	ar (KN	1)	0.0347	
72						n	u hat (Kl	Ú)	6.138								n	nu sta	ar (KN	1)	7.296	
73						thet	a hat (Kl	v)	13.46								the	ta sta	ar (KN	ń.	11.32	
74				80%	aamma	perce	entile (KI	(N	0.0106					90%	% aa	mma	perc	centi	le (KN	1)	0.324	
75				95%	namma	nerce	entile (Kl	(N)	1 722					999	<u>% да</u>	mma	ner	enti	le (KM	1)	9 738	
75				0070	gamma	poro		•••)								.,	0.700					
70							6	mma	Kanlan-M	laiar (KM)	Stati	etice										
77			Δ.	anrovimata Chi	Caucra	Valu	Ga (7.20	aiiiiiia ~\			Statis	auca	A dive	atad C	hi C				7 20 0		2 206	
78	050/	0	A	proximate Chi			e (7.30,	α) ο	2.334	0			Auju	sted C			e vai	ue (/	/.30, p	2)	2.290	
/9	95%	Gam	па Ар	proximate Kivi-	OCL (us	se wn	en n>-5	0)	1.23	9	5% G	amma	Auju	isteu r			use	wher	111<50	"	1.20	
80													-									
81						LC	gnorma	GOF	· lest on L		Dser	vations	s On	ly 								
82				Sh	apiro Wi	ilk Te	st Statis	tic	0.834				S	Shapiro	o Wil	k GC	DF Te	est				
83				5% Sha	apiro Wi	lk Cri	tical Val	Je	0.897		Detec	ted Da	ata N	ot Log	norn	nal at	5%	Sign	ifican	ce l	_evel	
84					Lilliefo	rs Te	st Statis	tic	0.308					Lillie	fors	GOF	Tes	t				
85				5%	6 Lilliefor	rs Cri	tical Val	Je	0.202		Detec	ted Da	ata N	ot Log	norn	nal at	5%	Sign	ifican	ce l	_evel	
86						Def	tected D	ata No	ot Lognori	mal at 5%	Signi	ficanc	e Lev	vel								
87																						
88						Lo	gnormal	ROS	Statistics	Using Imp	outed	Non-D	Detec	ts								
89					Mean ir	n Oriç	ginal Sca	le	0.393							Me	an ir	n Log	g Scal	е	-16.34	
90					SD ir	n Orig	ginal Sca	le	2.312								SD ir	n Log	g Scal	e	6.175	
91		ç	95% t	UCL (assumes	normali	ity of	ROS dat	a)	0.768					95% I	Perc	entile	Boo	otstra	ap UC	L	0.809	
92				9!	5% BCA	Boot	tstrap U0	CL	0.991						!	95%	Boot	strar	t UC	L	2.125	
93					95% H-	UCL	(Loa RO	S) 34	433									•				
94							(-3-	- / -														
95				Statis	stics usi	na Kl	M estima	ates o	n Loaaed	Data and	Assu	mina L	oand	ormal I	Distr	ibutio	on					-
96					KM	1 Mea	n (logge	d) -	-8 247								KM	l Geo	o Mea	n 2	6203F-4	
97						KMS	D (logge	d)	2 651					95% (Critic	alH	Valu	ie (K	M-L or	1)	4 127	
00				KM Standard	I Error of	f Mea	n (logge	d)	0.269					0070	QI QI	5% H				<u>"</u>	0.0258	
00					k k	KMS	D (logge	d)	2 651					95% (Critic	al H	Valu	e (K	M-Log	יי ו)	4 127	
100				KM Standard	I Error of	f Mea	n (logge	d)	0.269					0070	onac	Jaim	Valu			,,	1.127	
100						i wiec	in (logge	u)	0.203													
101									0 /2 0	Statiation												
102				2/ 10	Normal				0023					1 21		rono	form	od				
103					Meenir	- 0	rinal Car		0.204				L		og-i	Ma			- 600		7 665	
104					Mean Ir		Jinal Sca		0.394							IVIE				e	-7.000	
105				050/ +11/					2.312											e I	2.092	
106				95% t U	JL (ASSL	umes	normain	y)	0.769							5	15%	H-5t	at UC	L	0.053	
107				DL/2	is not a	recol	nmende	a met	tnoa, prov	ided for co	ompar	isons	and	nistori	cal r	easo	ns					
108												<u></u>										
109							Nonpar	ametr	ric Distribu		UCL	Statist	tics									
110					Data	do no	ot follow	a Dis	cernible D	istribution	at 59	% Sign	nifica	nce Le	evel							
111																						
112									Suggested	UCL to U	se											
113				99%	% KM (C	heby	shev) U(Ľ	2.693													
114		_																				
115		Note	: Sug	gestions regard	ding the	selec	tion of a	95% l	UCL are p	rovided to	help t	he use	er to s	select	the r	nost	appro	opria	te 95	%ι	JCL.	
116				F	Recomm	enda	tions are	e base	ed upon da	ta size, da	ta dis	tributio	on, ar	nd ske	wne	SS.						
117		The	ese rec	commendations	s are bas	sed u	pon the	results	s of the sin	nulation st	udies	summ	narize	ed in S	ingh	, Mai	chle,	and	Lee (200	06).	
118	Н	lowev	ver, sir	nulations result	ts will no	ot cov	er all Re	al Wo	orld data se	ets; for add	litiona	l insigl	ht the	user	may	want	to c	onsu	ılt a st	atis	stician.	
119																				_		
120	1,2-Dibro	moet	thane																			
121								_			_						_					
122									General	Statistics												
123				Total N	Number o	of Ob	servatio	ns 1	105				Ν	lumbe	r of [Distin	ct O	bser	vation	s	93	
124					Nur	mber	of Detec	ts	0						Nu	mbei	of N	lon-[Detect	s	105	
125				Nur	mber of I	Distir	nct Detec	ts	0					Numbe	er of	Disti	nct N	lon-[Detect	s	93	
126																						
127			Wa	arning: All obs	ervation	s are	Non-De	tects	(NDs), the	erefore all	statis	stics a	nd es	stimate	es sh	nould	also	be	NDs!			
128			Spec	ifically, sample	e mean.	UCL	.s, UPLs	, and	other stat	istics are a	also N	IDs lyi	ing b	elow tl	he la	irges	t det	ectio	on lim	it!		
129		The I	Projec	t Team may de	ecide to	use	alternati	ve site	e specific	values to e	estim	ate en	viron	menta	al pa	rame	ters	(e.a.	, EPC), B	TV).	
130				,											•		-				•	
131	L				The	e dat	a set for	varia	ble 1.2-Di	bromoethe	ane w	as not	proc	essed	11							
132	l												F									
122	<u> </u>																					
12/	1.2-Dich	ornet	hane																			
125	.,	5.001																				
100									General	Statistics												

	А	В	С	D E		F	G	Н		J	K	L
137			Total Nu	mber of Observati	ons	105	05 Number of			Distinct Ob	servations	91
138				Number of Dete	ects	0			Nu	mber of N	on-Detects	105
139			Numt	per of Distinct Dete	ects	0			Number of	Distinct N	on-Detects	91
140												
141		W	/arning: All obser	vations are Non-C)ete	cts (NDs), the	erefore all statis	stics and e	stimates sl	nould also	be NDs!	
142		Spe	cifically, sample i	mean. UCLs. UPL	s. a	and other stat	istics are also N	NDs Ivina b	pelow the la	araest dete	ection limit!	
143		The Proie	ct Team may dec	ide to use alterna	tive	site specific	values to estimation	ate enviro	nmental pa	rameters (e.a. EPC.	BTV).
143							raidee to count				(o.g., o,	
144				The data set fr	n v	ariable 1 2-Di	chloroethane w	as not pro	cessedi			
140					/ ••			as not pro	003304:			
140												
147	1_Mothvi	nanhthalai	no									
140	1-weary	парпалаю										
149						General	Statistics					
150			Total Nu	mber of Observati	one	12			Number of	Distinct Ob	servations	8
151			Total Nu	Number of Det		1				mbor of N	on Dotooto	11
152			Nume	Number of Dete		1			Number of		on Detects	7
153			Num		cis	1			Number of	DISUNCEN	UII-Delecis	/
154		Momine		data value was d	-			officiana) al	hauld nat h		avah a dat	
155	It is sugg	warning:	Only one distinct			sted! Prouch	Or any other s	onware) si		e useu on	such a dau	
156	it is sugg	jested to u	ise alternative site	specific values of	Jete	ermined by the	e Project Team	to estimat	e environn	iental para	ameters (e.	J., EPC, BTV).
157				The data ant fai		dabla d Mash						
158					va	nable I-Meth	yinaphtnaiene v	was not pro	ocessea!			
159												
160												
161	2-Methyl	naphthalei	ne									
162												
163						General	Statistics					
164			I otal Nu	mber of Observation	ons	117			Number of	Distinct Ob	servations	65
165				Number of Dete	ects	9			Nu	imber of N	on-Detects	108
166			Numb	per of Distinct Dete	ects	9			Number of	Distinct N	on-Detects	57
167				Minimum De	tect	0.012				Minimum N	Non-Detect	0.0058
168				Maximum De	tect	16			I	Maximum N	Non-Detect	0.66
169				Variance Dete	ects	47.36				Percent N	on-Detects	92.31%
170				Mean Dete	ects	5.873				e e e e e e e e e e e e e e e e e e e	SD Detects	6.882
171				Median Dete	ects	1.5				(CV Detects	1.172
172				Skewness Dete	ects	0.531				Kurtos	sis Detects	-1.893
173			Me	an of Logged Dete	ects	-0.278			S	SD of Logg	ed Detects	2.968
174												
175					No	rmal GOF Te	st on Detects O	nly				
176			Shap	oiro Wilk Test Stati	stic	0.786			Shapiro Wi	lk GOF Te	st	
177			5% Shap	iro Wilk Critical Va	lue	0.829	Det	ected Data	Not Norma	al at 5% Sig	gnificance L	.evel
178				_illiefors Test Stati	stic	0.293			Lilliefors	GOF Test		
179			5% L	illiefors Critical Va	lue	0.274	Det	ected Data	Not Norma	al at 5% Sig	gnificance L	.evel
180				Detecter	d Da	ata Not Norm	al at 5% Signific	cance Lev	el			
181												
182			Kaplan-M	eier (KM) Statistic	s u	sing Normal (Critical Values a	and other I	Nonparame	etric UCLs		
183				KM M	ean	0.458			KM St	andard Err	or of Mean	0.234
184				KM	SD	2.384				95% KM ((BCA) UCL	0.875
185				95% KM (t) L	JCL	0.846		95%	6 KM (Perce	entile Boot	strap) UCL	0.854
186				95% KM (z) l	JCL	0.843			95%	KM Boots	strap t UCL	1.078
187			90%	KM Chebyshev L	JCL	1.159			95%	KM Cheby	yshev UCL	1.477
188			97.5%	, KM Chebyshev L	JCL	1.918			99%	KM Cheby	yshev UCL	2.784
189												
190				Gamma	GC	F Tests on D	etected Observ	ations On	ly			
191				A-D Test Stati	stic	0.655		An	derson-Da	rling GOF	Test	
192				5% A-D Critical Va	lue	0.802	Detected da	ata appear	Gamma Di	stributed a	t 5% Signifi	cance Level
193				K-S Test Stati	stic	0.222		K	olmogorov-	Smirnov G	BOF -	
194				5% K-S Critical Va	lue	0.3	Detected da	ata appear	Gamma Di	stributed a	t 5% Signifi	cance Level
195				Detected data a	ppe	ar Gamma D	stributed at 5%	Significar	nce Level		<u> </u>	
196												

	Α	в	С	D		Ξ	F	G	Н		J	К	L			
107		5		D		- amm	a Statistics o	n Detected Dat	a Only	<u> </u>	v		E			
197							0.001		a only	l. atau	(h:== ====		0.005			
198					k nat (VILE)	0.331			K Star	(bias corre	ected MLE)	0.295			
199				Thet	a hat (MLE)	17.73			Theta star	(bias corr	ected MLE)	19.92			
200				n	u hat (l	MLE)	5.962			n	u star (bias	s corrected)	5.308			
201				Me	an (det	ects)	5 873									
201							0.070									
202		-														
203					Gamm	a RO	S Statistics u	sing imputed N	Ion-Detect	IS						
204			GROS may n	ot be use	d when	data	set has > 50%	has > 50% NDs with many tied observations at multiple DLs								
205	GR	OS m	ay not be used w	vhen kstar	r of det	ects is	s small such a	mall such as <1.0, especially when the sample size is small (e.g., <15								
206			For	such situa	tions (GROS	S method may	vield incorrect	values of l	JCI s and F	BTVs					
200					This is	0000	cially true who	n the sample s	izo is smo							
207					11115 15	espe										
208		For ga	amma distributed		i data,	BIVS	and UCLs ma	ay be computed	using gan	nma distrib	ution on Ki	vi estimates				
209					Mini	mum	0.01					Mean	0.461			
210					Maxi	mum	16					Median	0.01			
211						SD	2.393					CV	5.192			
212		-			k hat (MIE)	0 209			k star	(hias corr	ected MLE)	0.209			
212		-		The			0.200			These star			0.200			
213				The	a nat (i		2.200			Theta star	(bias com		2.203			
214				n	u hat (MLE)	48.89			n	u star (bias	s corrected)	48.97			
215			Adjusted Le	vel of Sigi	nificanc	;e (β)	0.0479									
216		App	roximate Chi So	uare Valu	ie (48.9	97, α)	33.91		Adju	sted Chi Sc	uare Valu	e (48.97, β)	33.75			
217	95% G	amma	Approximate U	CL (use w	, hen n>	=50)	0.666	95	% Gamma	Adjusted I	UCL (use v	when n<50)	0.669			
217			, approximate e	02 (000		,	0.000			., ajaotoa						
∠1ŏ	-		-				0	maters and a state	14 E-+'				-			
219				E	sumat	es of	Gamma Para	meters using K	INI Estima	les						
220					Mean	(KM)	0.458					SD (KM)	2.384			
221				Va	riance	(KM)	5.682				SE of	Mean (KM)	0.234			
222					k hat	(KM)	0.0369					k star (KM)	0.0417			
223		-			nu hat	(KM)	8 64				n	u star (KM)	9 752			
223				the	to hot		12 / 1				that	ta star (KM)	10.00			
224				LITE			12.41				linei		10.99			
225			80% ga	amma per	centile	(KM)	0.0302			90% ga	amma perc	centile (KM)	0.533			
226			95% ga	amma per	centile	(KM)	2.248			99% ga	amma perc	entile (KM)	10.67			
227																
228						Gam	ma Kaplan-M	eier (KM) Stati	stics							
220		Δr	nrovimate Chi S	Soliare Va	<u>م (0</u>	75 a)	3 787		ou.oo انه۵	usted Chi S	auare Val	up (9 75 B)	3 7/1			
229	050/ 0				lue (3.7	5, u)	1.170	050/ 0	Auj			ue (5.75, p)	1.101			
230	95% Gamn	na App	proximate Kivi-U	CL (use w	nen n>	·=50)	1.179	95% G	amma Adj	usted Kivi-	JCL (use v	when h<50)	1.194			
231																
232				L	.ognor	mal G	OF Test on D	Detected Obser	vations Or	nly						
233			Shap	oiro Wilk T	est Sta	atistic	0.852			Shapiro W	ilk GOF Te	əst				
23/		-	5% Shan	iro Wilk C	ritical \	/alue	0.829	Detecte	d Data an	near Loono	ormal at 5%	6 Significand	e l evel			
204					The oct Sta	tistic	0.020	2010010		Lilliofore	GOE Tool	e olgriniouric				
235					651 012	10300	0.233	Datast		LINCIUS	GOF Tes	(<u>O'aa</u> ifaaaa				
236			5% L	-Illietors C	ritical v	/aiue	0.274	Detecte	ed Data ap	pear Logno	ormai at 5%	6 Significand	e Level			
237				Det	ected I	Data a	appear Logno	ormal at 5% Sig	nificance	Level						
238																
239		-		L	ognorn	nal R	OS Statistics	Using Imputed	Non-Dete	cts						
240			N	lean in Or	iginal S	Scale	0 452	<u> </u>			Mean ir	n Log Scale	-13 19			
240		-			riginal	Scalo	2 305				SD ir		5.038			
241				30 11 01		Scale	2.395				301	TLUY Scale	5.036			
242	9	/5% t L	ICL (assumes n	ormality o	f ROS	data)	0.819			95% Per	centile Boo	otstrap UCL	0.861			
243			95%	6 BCA Bo	otstrap	UCL	0.997				95% Boot	strap t UCL	1.101			
244			95	5% H-UCI	(Log I	ROS)	19.65									
245																
246			Statisti	cs usina l	(M est	imate	s on Loaaed	Data and Assu	mina Loar	ormal Dist	ribution					
247				KM MA	an (loc		_4 725		9 - 091			Geo Moon	0 00887			
24/						geu)	1.720			050/ 000			0.00007			
248				KM	SD (100	yged)	1.529			95% Criti	cai H Valu	e (NIVI-LOG)	2.//1			
249			KM Standard E	Error of Me	ean (log	gged)	0.156			9	5% H-UCI	_ (KM -Log)	0.0423			
250				KM	SD (log	gged)	1.529			95% Criti	cal H Valu	e (KM-Log)	2.771			
251			KM Standard E	Error of Me	ean (loo	ged)	0.156									
252						- /	1	1								
252																
104							פ מי וח	tatietice								
200							DL/2 S	tatistics			F ara a f	- 4				
253			DL/2 N	ormal			DL/2 S	tatistics		DL/2 Log-1	Fransform	ed				
253 254 255			DL/2 N	ormal Mean in Or	iginal (Scale	DL/2 S	itatistics		DL/2 Log-	Fransform Mean ir	ed n Log Scale	-3.697			
255 255 256			DL/2 N	ormal /lean in Or SD in Or	iginal s	Scale Scale	DL/2 S 0.498 2.388	itatistics		DL/2 Log-	Fransform Mean ir SD ir	ed n Log Scale n Log Scale	-3.697			
255 255 255 256			DL/2 No M 95% t UCI	ormal Iean in Or SD in Or	iginal (iginal (Scale Scale	DL/2 S 0.498 2.388 0.864			DL/2 Log-	Fransform Mean ir SD ir 95%	ed 1 Log Scale 1 Log Scale H-Stat UCI	-3.697 1.833 0.227			
253 254 255 256 257			DL/2 No M 95% t UCL	ormal Mean in Or SD in Or (Assume	iginal (iginal (s norm	Scale Scale ality)	DL/2 S 0.498 2.388 0.864 method_provi	ded for compet	tisons and	DL/2 Log-	Fransform Mean ir SD ir 95%	ed n Log Scale n Log Scale H-Stat UCL	-3.697 1.833 0.227			
253 254 255 256 257 258			DL/2 No N 95% t UCL DL/2 is	ormal Mean in Or SD in Or (Assume not a reco	riginal S riginal S s norm ommer	Scale Scale ality) ided i	DL/2 S 0.498 2.388 0.864 method, provi	itatistics ded for compar	isons and	DL/2 Log-	Fransform Mean ir SD ir 95%	ed n Log Scale n Log Scale H-Stat UCL	-3.697 1.833 0.227			
255 255 255 256 257 258 259			DL/2 No N 95% t UCL DL/2 is	ormal Mean in Or SD in Or (Assume not a reco	iginal § iginal § s norm ommer	Scale Scale ality) nded i	DL/2 S 0.498 2.388 0.864 method, provi	ded for compar	isons and	DL/2 Log-	Transform Mean ir SD ir 95% reasons	ed n Log Scale n Log Scale H-Stat UCL	-3.697 1.833 0.227			
253 254 255 256 257 258 259 260			DL/2 No M 95% t UCL DL/2 is	ormal /lean in Or SD in Or (Assume not a reco	iginal S iginal S s norm ommer Non	Scale Scale Iality) Inded I	DL/2 S 0.498 2.388 0.864 method, provi	ded for compar tion Free UCL	risons and Statistics	DL/2 Log-	Transform Mean ir SD ir 95%	ed h Log Scale h Log Scale H-Stat UCL	-3.697 1.833 0.227			
253 254 255 256 257 258 259 260 261			DL/2 Ni M 95% t UCL DL/2 is	ormal Mean in Or SD in Or (Assume not a reco Detecte	riginal S riginal S Is norm Dommer Non d Data	Scale Scale ality) nded i paran appe	DL/2 S 0.498 2.388 0.864 method, provi netric Distribu	ded for compar tion Free UCL istributed at 5%	isons and Statistics 5 Significa	DL/2 Log- historical	Transform Mean ir SD ir 95%	ed h Log Scale h Log Scale H-Stat UCL	-3.697 1.833 0.227			
255 254 255 256 257 258 259 260 261 262			DL/2 Ni M 95% t UCL DL/2 is	ormal Mean in Or SD in Or (Assume not a reco Detecte	iginal S iginal S s norm ommer Non d Data	Scale Scale ality) nded i paran appe	DL/2 S 0.498 2.388 0.864 method, provi netric Distribu par Gamma D	ded for compar tion Free UCL istributed at 5%	risons and Statistics 5 Significa	DL/2 Log- historical nce Level	Transform Mean ir SD ir 95%	ed h Log Scale h Log Scale H-Stat UCL	-3.697 1.833 0.227			
255 254 255 256 257 258 259 260 261 262 262			DL/2 N N 95% t UCL DL/2 is	ormal Mean in Or SD in Or (Assume not a rec Detecte	iginal S iginal S s norm ommer Non d Data	Scale Scale ality) nded i paran appe	DL/2 S 0.498 2.388 0.864 method, provi netric Distribu nar Gamma D	ded for compar tion Free UCL istributed at 5%	isons and Statistics Significa	DL/2 Log- historical	Transform Mean ir SD ir 95%	ed h Log Scale h Log Scale H-Stat UCL	-3.697 1.833 0.227			
253 254 255 256 257 258 259 260 261 262 263			DL/2 N M 95% t UCL DL/2 is	ormal Mean in Or SD in Or (Assume not a reco Detecte	iginal S iginal S is norm ommer Non d Data	Scale Scale ality) nded i paran appe	DL/2 S 0.498 2.388 0.864 method, provi metric Distribu par Gamma D Suggested	tatistics ded for compar tion Free UCL istributed at 5% UCL to Use	isons and Statistics 5 Significa	DL/2 Log-	Transform Mean ir SD ir 95%	ed h Log Scale h Log Scale H-Stat UCL	-3.697 1.833 0.227			

	۸	В	C	D		F	G	Ц	1	1 1	K					
0.05	~	Б	C	D	L	1	G	11		5	N.	L				
265																
266		Note: Sugg	gestions regardin	ig the seled	ction of a 95	5% UCL are p	rovided to help	the user to	select the	most appro	priate 95%	UCL.				
267			Re	commenda	ations are b	ased upon da	ita size, data dis	stribution, a	ind skewne	ess.						
268		These rec	commendations a	are based u	upon the res	sults of the sir	nulation studies	summariz	ed in Sinał	n. Maichle.	and Lee (20	06).				
200	Ц		nulations results	will not on		World data or	te: for addition	l incight th		wont to or		isticion				
269	п	owever, sin		WIII HOL COV				a msigni ui	e user may							
270																
271	Benzene															
272																
273						Genera	Statistics									
270			Total Nu	mbor of Ot	neorvatione	105			Number of	Distinct Of	servations	98				
274			Total Nu			105						50				
275				Number	r of Detects	41			N	umber of N	on-Detects	64				
276			Numb	per of Disti	nct Detects	41			Number of	f Distinct N	on-Detects	57				
277				Minim	num Detect	1.3100E-4				Minimum I	Non-Detect	9.8000E-5				
278				Maxim	num Detect	0.00325				Maximum I	Non-Detect	0.276				
279				Varian	nce Detects	6.3136E-7				Percent N	on-Detects	60.95%				
275				Mo	an Dotocto	0.6083E /					SD Detects	7 04585 4				
280						3.0303∟-4					JD Delects	7.34302-4				
281				Medi	ian Detects	7.5000E-4				(JV Detects	0.819				
282				Skewne	ess Detects	1.412				Kurto	sis Detects	1.325				
283			Me	an of Logg	ed Detects	-7.245			;	SD of Logg	ed Detects	0.807				
284							1									
205					No	rmal GOF Te	st on Detects O	nlv								
200			Chor		nt Ctatiatia	0.921		,y	Shopiro W							
286			Shap		est Statistic	0.631			Shapiro w		181	<u> </u>				
287			5% Shap	iro Wilk Cr	itical Value	0.941	Det	ected Data	Not Norm	al at 5% Si	gnificance L	.evel				
288			I	Lilliefors Te	est Statistic	0.211			Lilliefors	GOF Test	:					
289			5% L	ected Data	Not Norm	al at 5% Si	gnificance L	evel								
290				0	Detected Da	ata Not Norm	al at 5% Signifi	cance Lev	el							
200																
291	Kaplan-Mejer (KM) Statistics using Normal Critical Values and other Nonparametric UCLs															
292		Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs														
293	293 KM Mean 5.9356E-4 KM Standard Error of Mean															
294					KM SD	6.4088E-4				95% KM	(BCA) UCL	7.1342E-4				
295				95%	KM (t) UCL	7.1119E-4		95%	6 KM (Perc	entile Boot	strap) UCL	7.1317E-4				
296				95% k	KM (z) UCL	7.1014E-4			95%	6 KM Boot	strap t UCL	7.2480E-4				
200			90%	KM Cheb		8 0618E-4			95%	KM Cheh	vshev UCI	9 0249F-4				
297			07.6%	KM Chab		0.00102 4			000/	KM Chab	yohev UCL	0.0012				
298			97.5%		ysnev UCL	0.00104			99%		ysnev UCL	0.0013				
299																
300				C	Gamma GC	F Tests on D	etected Observ	ations On	ly							
301				A-D Te	est Statistic	0.529		An	derson-Da	rling GOF	Test					
302				5% A-D Cr	itical Value	0.762	Detected da	ata appear	Gamma D	istributed a	at 5% Sianifi	cance Level				
303				K-S Te	est Statistic	0 1 1 6		K	Imogorov	-Smirnov (OF					
303						0.110	Detected d	oto oppoor		istributed a	+ 5% Signifi					
304				5% K-5 U		0.14	Delected da		Gamma D	Istributed a	it 5% Signin					
305				Detected	i data appe	ar Gamma D	istributed at 5%	Significal	nce Level							
306																
307					Gamm	a Statistics o	n Detected Dat	a Only								
308				ŀ	k hat (MLE)	1.777			k star	· (bias corre	ected MLE)	1.664				
309				Theta	hat (MLE)	5.4563E-4			Theta star	(bias corre	ected MLE)	5.8295E-4				
210				ni	Lbat (MLE)	1/5.8			n	u star (hias	corrected)	136 /				
310				iiu ۱۰	$\frac{1}{2} \frac{1}{2} \frac{1}$				11		concoleu)	100.7				
311				IVIES	in (uelects)	J.0303E-4						L				
312																
313				(Gamma RC	S Statistics u	using Imputed N	Ion-Detect	S							
314			GROS may n	ot be used	l when data	set has > 50°	% NDs with mar	ny tied obse	ervations a	t multiple D)Ls					
315		GROS m	ay not be used v	vhen kstar	of detects i	s small such a	as <1.0, especia	ally when th	e sample s	size is sma	II (e.q., <15	-20)				
316			For	such situat	tions GRO	S method may	vield incorrect	values of l	ICLs and F	RTVs		,				
017				-	This is espe	oiolly true wh	on the comple of		1							
31/		F	omme diasticot	ا دامخمام ا	dote DTY		en uie sample s	n∠⊂ is Silidi	n. Amerikani	ution an 14	1 001-00-00					
318		⊢or g	amma distributed	u aetected	uata, BIVs	and UCLs m	ay be computed	i using gan	ıma dıstrıb	ution on Kl	vi estimates					
319					Minimum	1.3100E-4					Mean	0.00647				
320					Maximum	0.01					Median	0.01				
321					SD	0.00445					CV	0.688				
327				L	(MIF)	0 972			k star	hias corre	ected MI EV	0.95				
322				Thete		0.00666			Thota atar	(bias corre		0.00691				
323				THEE		0.00000			meta stal			100 5				
324				nı	u nat (MLE)	204			n	u star (bias	corrected)	199.5				
325			Adjusted Le	vel of Sign	ificance (β)	0.0477										
326		Арр	roximate Chi Squ	are Value	(199.54, α)	167.9		Adjust	ed Chi Squ	are Value	(199.54, β)	167.5				
327	9	5% Gamma	a Approximate U	CL (use wł	hen n>=50)	0.0077	95	5% Gamma	Adjusted	UCL (use v	vhen n<50)	0.00771				
220				, .						(/					
JZ0																

	A	В	С	D	E	F	G	Н			J	K	L
329				Est	imates of	Gamma Para	ameters using K	M Estimat	les				
330				Ν	lean (KM)	5.9356E-4		SD (KM)	1) 6.4088E-4				
331				Varia	ance (KM)	4.1073E-7					SE of N	Mean (KM)	7.0872E-5
222				1	(hat (KM)	0.858					1	(star (KM)	0.84
332						0.000					r		170.04
333				nu	I nat (KIVI)	180.1		-			nu	I star (KIVI)	176.3
334				theta	a hat (KM)	6.9197E-4					theta	a star (KM)	7.0694E-4
335			80% ga	amma perce	ntile (KM)	9.6732E-4			909	% ga	mma perce	entile (KM)	0.00143
336			95% ga	amma perce	ntile (KM)	0.00189			999	% ga	mma perce	entile (KM)	0.00299
337													•
338					Gan	nma Kaplan-N	leier (KM) Stati	stics					
330		Ann	roximate Chi Squ	are Value (176.32 a)	146.6		Adjust	ed Chi	Sau	are Value ((176.32 B)	146.2
240	95%	Gamma Ar	provimate KM-L		n = 50	7 1385E-4	95% G	amma Adi		KM_I		$\frac{1}{100} = \frac{1}{100} = \frac{1}{100}$	7 1568E-1
340	3578	Сапппа Ар			51112-30)	7.1303L-4	35 /8 G	ianina Auj	usteu r				7.1300L-4
341													
342				LO	gnormal (Jetected Obser	vations Or	niy				
343			Shap	piro Wilk Tes	st Statistic	0.973			Shapiro	o Wi	lk GOF Te	st	
344			5% Shap	iro Wilk Crit	ical Value	0.941	Detecte	ed Data ap	pear Lo	ogno	rmal at 5%	Significan	ce Level
345			I	Lilliefors Tes	st Statistic	0.0654			Lillie	fors	GOF Test		
346			5% L	illiefors Crit	ical Value	0.137	Detecte	ed Data ap	pear Lo	ogno	rmal at 5%	Significan	ce Level
347				Detec	ted Data	appear Logno	ormal at 5% Sig	nificance l	evel	-		-	
240													
340				Loc	normal P		Lising Imputed	Non Doto	oto				
349								NUII-Dele	CIS		·		7.05
350			N	riean in Orig	mai Scale	0.0090E-4					iviean in	Log Scale	-7.85
351				SD in Orig	inal Scale	ь.0209E-4	-				SD in	Log Scale	0.758
352		95% t	UCL (assumes n	ormality of F	ROS data)	6.4842E-4			95%	Perc	entile Boot	tstrap UCL	6.5147E-4
353			95%	6 BCA Boot	strap UCL	6.7131E-4					95% Boots	trap t UCL	6.6518E-4
354			95	5% H-UCL (Log ROS)	6.0345E-4		-					
355						1							1
356			Statisti	cs usina KN	l estimate	es on Loaaed	Data and Assu	mina Loan	ormal	Dist	ibution		
357				KM Mea	n (logged)	-7 861		0.0			KM	Geo Mean	3 8564F-4
250				KM SI		0.911			95%	Criti	al H Value	(KM-Log)	2.13
300			KM Standard F	Triar of Moo		0.311			5570	Onico			7 06225 4
359			KIVI Stanuaru E		n (logged)	0.123			050/	9	5% H-UCL		7.0033E-4
360				KM SI) (logged)	0.911			95%	Critic	cal H Value	e (KM-Log)	2.13
361			KM Standard E	Fror of Mea	n (logged)	0.123							
362													
363						DL/2 \$	Statistics						
364			DL/2 N	ormal					DL/2 L	.og-T	ransforme	d	
365			Ν	lean in Orio	inal Scale	0.00448				-	Mean in	Log Scale	-7.321
366				SD in Oria	inal Scale	0.0181		-			SD in	Log Scale	1 455
267			95% t LICI	(Assumes	normality	0.0074					95% -		0.00279
307			DI /2 ia		mondad		ided for compo	deene end	histori		55701		0.00275
368			DL/2 IS	not a recon	Imenaea	metrioa, prov	ided for compar	isons and	niston	ical r	easons		
369													
370					Nonpara	metric Distrib	ution Free UCL	Statistics					
371				Detected	Data app	ear Gamma D	istributed at 5%	5 Significar	nce Le	vel			
372													
373						Suggested	I UCL to Use						
374			95% KM Appr	oximate Ga	mma UCL	7.1385E-4		95% G	ROS A	Appro	oximate Ga	mma UCL	0.0077
375			· · · ·										
376		Note: Sug	gestions regardin	ig the select	ion of a 9	5% UCL are n	rovided to help t	the user to	select	the r	nost appro	priate 95%	UCL.
377			Ra	commendat	tions are h	ased unon da	ita size data dis	tribution a	ind ske	wne	ss		
270		These rea	commendations a	are based	on the re	sults of the sir	nulation studios	summori z	ed in C	Singh	Maichlo	and Lee (2)	106)
3/8		11030100				Morld data	to: for oddition			me	, wort to a		icticion
379	H	owever, sir	nulations results	WIII NOT COVE	er all Real	vvonu uata se	ets, for additiona	ii insight th	e user	тау	want to co	insult a stat	เธแตลก.
380													
381	Ethylbenz	zene											
382													
383						Genera	Statistics						
384			Total Nu	mber of Obs	servations	105		_	Numbe	er of I	Distinct Ob	servations	99
385				Number	of Detects	12	1			Nu	mber of No	on-Detects	93
386	1		Numb	per of Distin	ct Detects	12			Numb	er of	Distinct No	on-Detects	87
387				Minim	um Detect	2.1000F-4					Minimum N	Ion-Detect	1.7800E-4
200				Mavim		0.47				N	/aximum N	Ion-Detect	0.57
200				Variant	Detecto	0.77					Dorcont N	n Dotooto	98 570/
389				valiano		0.0211							0145
390				Mea	In Detects	0.0588					5	Detects	0.145
				Media	in Detects	5.7200E-4					C	V Detects	2.472
391							A						
391 392				Skewnes	s Detects	2.579					Kurtos	sis Detects	6.411
391 392 393			Ме	Skewnes an of Logge	ss Detects d Detects	2.579 -6.538				S	Kurtos D of Logge	sis Detects ed Detects	6.411 2.58

	A	В	С	D	E	F	G	Н		J	K		L	
395					No	rmal GOF Te	st on Detects O	nly						
396			Shap	oiro Wilk Te	st Statistic	0.48			Shapiro Wi	ilk GOF Te	est			
397			5% Shap	iro Wilk Cri	tical Value	0.859	Det	ected Data	a Not Norma	al at 5% Si	ignificance	_evel		
398			l	Lilliefors Te	st Statistic	0.488			Lilliefors	GOF Tes	t			
399			5% L	illiefors Cri	tical Value	0.243	Det	ected Data	a Not Norma	al at 5% Si	ignificance	_evel	-	
400				D	etected D	ata Not Norma	al at 5% Signifi	cance Lev	rel		-			
401							•							
402			Kaplan-M	eier (KM) S	Statistics u	sing Normal (Critical Values a	and other	Nonparame	etric UCLs	;			
403					KM Mean	0.00699			KM St	andard Er	ror of Mean	0.00	522	
404					KM SD	0.0509				95% KM	(BCA) UCL	0.01	16	
405				95% ł	KM (t) UCL	0.0156		95%	% KM (Perc	entile Boo	tstrap) UCL	0.01	16	
406				95% K	(M (z) UCL	0.0156			95%	6 KM Boot	strap t UCL	1.8	15	
407			90%	KM Cheby	/shev UCL	0.0226			95%	KM Cheb	vshev UCL	0.02	297	
408			97.5%	KM Cheby	/shev UCL	0.0396			99%	KM Cheb	yshev UCL	0.05	589	
409				,	,						,	1		
410				G	amma GC	F Tests on D	etected Observ	ations On	lv					
411				A-D Te	st Statistic	2 668		Ar	nderson-Da	rlina GOF	Test			
412				5% A-D Cri	tical Value	0.873	Detected	Data Not (Gamma Dis	tributed at	5% Signific	ance Le	evel	
112			<u>_</u>	K-S Te	st Statistic	0.478	20100104	K	olmogorov-	Smirnov (GOF			
413				5% K-S Cri	tical Value	0.272	Detected	Data Not (Gamma Dis	tributed at	5% Signific	ancele	avel	
414				Detecte	d Data No	t Gamma Dis	tributed at 5% s	Significan	re i evel	and atou at	o /o olgrinic			
415				Dottoold				Signinoun				-		
410					Gamm	a Statistics o	n Detected Dat	a Only						
417				k	hat (MLE)	0 199		a Only	k star	(hias corr	ected MLE)	0.2	05	
410				Theta	hat (MLE)	0.195			Theta star	(bias corr		0.2	87	
419				nu	hat (MLE)	4 773			nicia siai	ustar (hias		1.0	13	
420				Mea		0.0588					s conecteu)	4.5	15	
421				wiea	ii (uelecis)	0.0000						L		
422					amma PC	Statistics (eina Imputed N	Ion-Detec	te					
423			CPOS may n		when data	sot bas > 509		v tied obs	onvotions of	t multiplo [2 6			
424		CPOS n	GINOS IIIay II	whon ketar	of dotocts i		$\approx < 1.0$ ospocia	lly when t			JLS	20)		
425		GROST	Eor			S Sindii Such a	is < 1.0, especia				iii (e.y., <13	-20)		
420			1013	T	his is send	cially true who	an the sample s			51 V 5				
427		For c	amma distributer	h detected b	data RTVs	and LICLs m	en the sample s		nma distribi	ution on K	Mostimator			
420		1016		u delected (Minimum			using gai			Moon		156	
429					Movimum	0.47					Modian	0.01	1	
430						0.47						3.1	05	
431				k	bat (MLE)	0.0490			k etar	/bias corr		0.0	55 64	
432				Thota	hat (MLE)	0.003			Thota star		ected MLE)	0.01	19	
433				nieta	bot (MLE)	185.3			111010 3101	Letar (bias		191 /	10	
434			Adjusted Lo	vol of Signi	ficance (B)	0.0477			III		s conecteu)	101.4		
430		۸nn	rovimate Chi Squ	ver of olgrif	(181 38 m)	151.2		Δdiue	ted Chi Sau	ara Valua	(181 38 8)	150 \$	2	
430	9	747 5% Camm			(101.50, 0)	0.0187	95	% Gamma			$\frac{(101.30, p)}{(101.30, p)}$	0.01	187	
437	5				len n/ -50)	0.0107		o Camina			when h < 50)	0.01		
430				Fe	timates of	Gamma Para	meters using k	M Estima	tes					
433				N	Mean (KM)	0.00699					SD (KM)	0.05	509	
1/1				Vari	ance (KM)	0.00259				SF of	Mean (KM)	0.00	522	
441				van	k hat (KM)	0.0189				02.01	k star (KM)	0.00	247	
442				n	u hat (KM)	3.96				n	u star (KM)	5.02	81	
443				thet	a hat (KM)	0.371				the	ta star (KM)	0.1	83	
444			80% ga	amma nerce	entile (KM)	1 9136E-5			90% as	mma nerr	entile (KM)	0.00	228	
445			95% ge	amma perce	entile (KM)	0.0218			99% ge	mma perc	entile (KM)	0.00	89	
440			55 /6 yz			0.0210	1		00 /0 yc	iu pert		<u></u>		
447					Garr	ma Kanlan-M	leier (KM) Stati	stics						
440		^	nnroximate Chi S	auare Valu	(5.18 m)	1 227		Δdi	usted Chi S		UP (5 18 R)	1.0	11	
449	Q5%	A Gamma Ar	provimate KM II		$\ln n > = 50$	0.0202	05% 0	مت مستع ۵ط	iusted KM I		when $n < 50$		299	
400	5578	Gamina Ap		SE (USE WII	-50)	0.0230	3578 C	anna Au				0.02		
401				1.0	anormal	OF Teet on T)etected Obsor	vatione O	nlv					
452			Char		st Statistic	0.6/7			Shaniro W		eet			
403			5% Shan		tical Value	0.850	Detor	ted Data	Not Lognor	mal at 5%	Significance			
454			5 % Shap		et Statistia	0.009	Delec	Lea Daid I	Lillioform			, Level		
455			E0/ 1		tical Value	0.301	Data	ted Data I		nal at 5%	Significance			
400			5 /0 L			a Not Logner	Delet nal at 5% Signi	ficance I		nai at J /0	Significance	, Level		
45/				De	iscisu Dal	a NOLLOYHON	nai at 0 % Signi		5401					
430	1													
	А	В	С	D	E	F	G	Н			J		K	L
------------	------------	-------------	---------------------	----------------	------------------	------------------	--------------------	---------------	------------	--------	-------------	---------	----------	----------------
459				Lo	gnormal R	OS Statistics	Using Imputed	Non-Dete	cts					
460			Ν	lean in Ori	- ainal Scale	0.00672					Mean ir	Loa	Scale	-12.36
461			•	SD in Ori	ninal Scale	0.0509					SD ir		Scale	2 361
401		OE0/ +		ormolity of		0.0000			050/ 5	Joro	ontilo Doc	tetror		0.0157
462		95% l	OCL (assumes n			0.015			95% F	erc				0.0157
463			95%	% BCA B00	tstrap UCL	0.0223					95% BOOt	strap	TUCL	2.033
464			9.	5% H-UCL	(Log ROS)	1.6540E-4								
465														
466			Statisti	cs using K	M estimate	es on Logged	Data and Assu	iming Logr	normal D	Distr	ibution			
467				KM Mea	an (logged)	-8.306					KM	Geo	Mean	2.4692E-4
468				KM S	D (logged)	1.088			95% C	Critic	al H Valu	e (KM	1-Log)	2.29
469			KM Standard E	Fror of Mea	an (logged)	0.118				95	5% H-UCI	(KM	-Log)	5.6953E-4
470				KMS	D (logged)	1.088			95% C	Critic	al H Valu	e (KM	1-Loa)	2.29
470			KM Standard F	Fror of Me	n (logged)	0.118						• (. 209/	
471					in (loggou)	0.110								
472						DI /2 S	totiotico							
473										- T		- d		
474				ormai		0.0400				og-i	ransform	a		
475			Ν	lean in Ori	ginal Scale	0.0129					Mean ir	Log	Scale	-7.752
476				SD in Ori	ginal Scale	0.0615					SD ir	1 Log	Scale	1.743
477			95% t UCL	. (Assumes	normality)	0.0229					95%	H-Stat	t UCL	0.00328
478			DL/2 is	not a reco	mmended	method, provi	ded for compa	risons and	l historic	cal re	easons			
479														
480					Nonpara	metric Distribu	tion Free UCL	Statistics						
/81				Data do n	ot follow a	Discernible D	istribution at 5	% Signific:	ancele	vel				
400				Dulu uo II	ot tonott a			/o olgillilo						
482						Suggested								
483			05%			Suggested								
484			95%	KINI (Cheby	snev) UCL	0.0297								
485														
486		Note: Sug	gestions regardir	ng the seled	tion of a 9	5% UCL are pi	rovided to help	the user to	select t	he n	nost appro	opriate	e 95%	UCL.
487			Re	commenda	tions are b	ased upon da	ta size, data dis	stribution, a	and skev	vnes	SS.			
488		These re	commendations a	are based u	pon the re	sults of the sin	nulation studies	summariz	ed in Si	ngh,	Maichle,	and L	_ee (20	006).
489	Н	lowever, si	mulations results	will not cov	er all Real	World data se	ets; for additiona	al insight th	ne user r	may	want to c	onsult	t a stat	istician.
490														
491	Isopropy	benzene												
492														
102						General	Statistics							
404			Total Nu	mber of Ot	sorvations	105			Numbor	r of I		ne orve	ations	87
494			Total No	Numbor	of Dotocto	1			Number	Niu	mbor of N		atocte	104
495			Nicces			1			Niverslave	INU.				104
496			NUM	ber of Distil	nct Detects	I			Numbe	er of	Distinct N	on-De	etects	86
497														
498		Warning:	Only one distinct	data value	was dete	cted! ProUCL	(or any other s	software) s	hould no	ot be	e used on	such	n a dat	a set!
499	It is sugg	jested to u	ise alternative sit	e specific v	alues det	ermined by the	e Project Team	to estima	te enviro	onm	ental par	amete	ers (e.	J., EPC, BTV).
500														
501				The da	ta set for v	variable Isopro	pylbenzene w	as not pro	cessed!					
502														
503														
504														
505	Lead													
505	2000													
500						Ganaral	Statietice							
507			Total No.	mbor of O	con otion-	105			Number	c of r	Distinct O	2000	otiona	88
508			i otai Nu		oei valions	105			Number			Jaciva	ation	00
509									Number	OT IV	ussing O	JServa	ations	0
510	l				Minimum	1.1							wean	9.274
511					Maximum	71						М	ledian	5.46
512					SD	11.76					Std. Er	ror of	Mean	1.147
513			(Coefficient of	of Variation	1.268						Skev	vness	3.131
514														
515						Normal	GOF Test							
516	1		Shai	oiro Wilk Te	est Statistic	0.609			Shapiro	Wil	k GOF Te	est		
517			5%	Shapiro W	ilk P Value	0		Data Not	Normal	at 5	% Sianifi	cance	Level	
510			0.0		st Statistic	0 275			أمالا ا	ore	GOF Tee	1		
510			E0/ 1	illioforo Cr	itical Value	0.0867		Data Not	Normal	2+ F	% Cianifi	Sanco		
519			5/61				50/ Qianifiaar -		nonnal	ດເປ	Ju Olgriffe	ance	Level	
520					Data N	iot normal at a	o % orgninicanc	e revei						
521														
522						Assuming Nor	mal Distributio	n						
523			95% Noi	mal UCL		1		95%	UCLs (A	\dju	sted for S	kewn	ess)	
524				95% Stud	ent's-t UCL	11.18		95%	Adjuste	d-Cl	LT UCL ((Chen-	1995)	11.54
525								95%	6 Modifie	ed-t	UCL (Joh	nson-	1978)	11.24
526	1					•	•						-	
020														
520						Gamma	GOF Test							
520 527				A-D T4	est Statistic	Gamma	GOF Test	Anders	son-Darl	lina	Gamma (30F 1	Test	

	А	В	С	D	E	F	G	Н		J	К	L
529				5% A-D Crit	tical Value	0.776	Data	Not Gamn	na Distribut	ed at 5% S	ignificance	Level
530				K-S Te	st Statistic	0.167		Kolmogo	rov-Smirno	v Gamma	GOF Test	
531				5% K-S Crit	tical Value	0.0903	Data	Not Gamn	na Distribut	ed at 5% S	ignificance	Level
532				Dat	ta Not Gar	nma Distribut	ed at 5% Signif	ficance Le	vel			
533												
534						Gamma	Statistics					
535				k	hat (MLE)	1.27			k star	(bias corre	ected MLE)	1.24
536				Theta	hat (MLE)	7.304			Theta star	bias corre	cted MLE)	7.481
537				nu	hat (MLE)	266.6			ทเ	star (bias	corrected)	260.3
538			MLE	Mean (bias	corrected)	9.274			ML	E Sd (bias	corrected)	8.329
539					,			Appro	oximate Ch	i Square V	, alue (0.05)	224
540			Adjusted	Level of Si	anificance	0.0477		FF	Adius	ed Chi Sa	uare Value	223.5
541					5							
542					A	ssuming Gar	nma Distributio	n				
5/3	9	5% Approx	imate Gamma U	CL (use whe	n n>=50))	10.78	95	% Adiuste	d Gamma I	JCL (use w	(hen n<50)	10.8
543		e in the prove		02 (000 1110					u danna (
545						Lognorma	al GOF Test					
546			Sha	niro Wilk Te	st Statistic	0.955		Shani	ro Wilk I or	normal G(OF Test	
540			5%	Shaniro Wi	lk P Value	0.00569	Г	Data Not L	ognormal a	t 5% Signif	icance Leve	 _
547			0,0	l illiefors Te	st Statistic	0.0889	-		efors Logn	ormal GOF		
540			5%	Lilliefors Crit	tical Value	0.0867	Г	Data Not L	ognormal a	5% Signif	icance Leve	
549			570		Data Not		t 5% Significan		ognormara	t 570 Olgrin		<u></u>
550						Lognormara	t 576 Significan	CE LEVEI				
551						Lognorm	al Statiation					-
552			Mir		agod Doto					Moon of la	agod Data	1 79/
553			IVIII		gyeu Dala	0.0955					ggeu Dala	0.971
554			IVIA		ygeu Dala	4.203				50 01 10	iggeu Dala	0.071
555							arma al Diatributi					
556				0		Suming Logn	onnai Distributi	on	00% Cha	huchou (M		11.01
557				90		10.41			90% Che	bysnev (M		12.09
558			95% Ch	ebysnev (IVI)	VUE) UCL	12.37			97.5% Che	bysnev (IVI	VUE) UCL	13.98
559			99% Ch	ebyshev (M	VUE) UCL	17.13						
560					NI			O 1 1 1 1 1 1				
561					Nonparan			Statistics	•			
562					Data do not	t follow a Disc	cernible Distribi	ution (0.05)			
563												
564					Nonp	arametric Dis		JCLS				
565			0.50/ 0.	95%	CLIUCL	11.16				95% Jaci	knife UCL	11.18
566			95% Sta	andard Boot	strap UCL	11.13			050/ 0	95% Boots	strap-t UCL	11.//
567			95%	Hairs Boot	strap UCL	11.52			95% Perc	entile Boo	tstrap UCL	11.27
568			955	% BCA Boot	strap UCL	11.52					0.0.100	
569			90% Cheb	yshev(Mean	, Sd) UCL	12.72			95% Cheby	shev(Mear	n, Sd) UCL	14.28
570			97.5% Cheb	yshev(Mean	i, Sd) UCL	16.44			99% Cheby	shev(Mear	n, Sd) UCL	20.69
571												
572						Suggested	UCL to Use					
573			95% Cheby	vshev (Mean	i, Sd) UCL	14.28						
574		Nec 0			···· · · · -	0/ LIC						
575		Note: Sug	gestions regardii	ng the select	uon ot a 95	0% UCL are p	rovided to help t	ne user to	select the r	nost appro	priate 95%	UCL.
576		T 1	Re	ecommenda	tions are b	ased upon da	ta size, data dis	tribution, a	and skewne	SS.		200
577		I hese re	commendations	are based u	pon the res	sults of the sin	nulation studies	summariz	ea in Singh	, Maichle,	and Lee (20	Ub).
578	H	lowever, si	mulations results	will not cove	er all Real	world data se	ets; tor additiona	II Insight th	e user may	want to co	onsult a stati	stician.
579												
580	MTBE (N	lethyl tert-l	outyl ether)									
581												
582						General	Statistics					
583			Total Nu	umber of Ob	servations	105			Number of	Distinct Ob	servations	97
584				Number	of Detects	0			Nu	mber of N	on-Detects	105
585			Num	ber of Distin	ct Detects	0			Number of	Distinct N	on-Detects	97
586							-					
587		W	arning: All obse	vations are	Non-Dete	cts (NDs), the	erefore all statis	stics and e	stimates sl	nould also	be NDs!	
588		Spee	cifically, sample	mean, UCL	s, UPLs, a	nd other stati	istics are also N	IDs lying l	pelow the la	argest dete	ection limit!	
589		The Projec	t Team may dec	ide to use a	alternative	site specific	values to estimation	ate enviro	nmental pa	rameters (e.g., EPC,	BTV).
590												
591			TT	ne data set f	or variable	MTBE (Mether	nyl tert-butyl eth	ner) was n	ot processe	ed!		
592												

593	A	5	U U	D	E	F	G	Н	I	J	K	L		
593 594 Naphthalene														
594	Naphtha	lene												
595							<u></u>							
596			TatalNL			General	Statistics							
597			I otal Nu	Imper of Op	servations	117		I	Number of	Distinct Observ	ations	94		
598			Num	Number	of Detects	15			Numbere	Ender of Non-D	etects	102		
599			Num	Der of Distir Minim	um Detects	15 2 1000E /			Number o	Minimum Non I	Detects			
600				Maxim	um Detect	16				Maximum Non-I	Detect	0.068		
602				Varian	ne Detects	38.07				Percent Non-D		87 18%		
602				Me	an Detects	4 258				SD D	etects	6 17		
604				Media	an Detects	0.31				CV D	etects	1.449		
605				Skewne	ss Detects	1.047				Kurtosis D	etects	-0.678		
606			Me	an of Logg	ed Detects	-2.143			;	SD of Logged D	etects	4.18		
607												I		
608					No	rmal GOF Tes	st on Detects C	Inly						
609	Shapiro Wilk Test Statistic 0.707 Shapiro Wilk GOF Test													
610			5% Shap	oiro Wilk Cri	tical Value	0.881	Det	ected Data	Not Norm	al at 5% Signific	ance L	evel		
611				Lilliefors Te	st Statistic	0.362								
612			5% I	_illiefors Cri	tical Value	0.22	Det	ected Data	Not Norm	al at 5% Signific	ance L	Level		
613				D	etected Da	ata Not Norma								
614	4 5 Kaplan-Meier (KM) Statisti													
615			Kaplan-M	eier (KM) S	Statistics u	sing Normal (Critical Values							
616					KM Mean	0.546			KM S	andard Error of	Mean	0.246		
617					KM SD	2.566				95% KM (BCA	() UCL	0.953		
618				95% k	KM (t) UCL	0.953		95%	KM (Perc	entile Bootstrap) UCL	0.959		
619				95% K	M (z) UCL	0.95			95%	6 KM Bootstrap	t UCL	1.176		
620			90%	6 KM Cheby	shev UCL	1.283			95%	KM Chebyshe	v UCL	1.616		
621			97.5%	6 KM Cheby	shev UCL	2.079			99%	KM Chebyshe	v UCL	2.989		
622														
623				G	iamma GC	F Tests on D	etected Observ	ations Onl	у					
624				A-D Te	st Statistic	0.839		An	derson-Da	rling GOF Test				
625				5% A-D Cri	tical Value	0.881	Detected d	ata appear	Gamma D	istributed at 5%	Signifi	cance Level		
626				K-S Te	st Statistic	0.233		Ka	olmogorov	-Smirnov GOF				
627				5% K-S Cri	tical Value	0.245	Detected d	ata appear	Gamma D	istributed at 5%	Signifi	cance Level		
628				Detected	data appe	ar Gamma D	istributed at 5%	6 Significar	ICE LEVEI					
629						o Ctotiotico o	- Detected Det							
630				k	Gamm				k eto:			0.208		
631				ĸ		0.204			K SIAI					
632				Thoto	hat (MLE)	20.95			Thoto stor	(bias corrected	MLE)	20.40		
633				Theta	hat (MLE)	20.85			Theta star	(bias corrected	MLE)	20.49		
h 3/I				Theta nu Maa	hat (MLE) hat (MLE)	20.85 6.126			Theta star	(bias corrected (bias corrected u star (bias corre	I MLE) I MLE) ected)	20.49 6.234		
625				Theta nu Mea	hat (MLE) hat (MLE) hat (MLE) n (detects)	20.85 6.126 4.258			Theta star	bias corrected (bias corrected) u star (bias corr	MLE) MLE) ected)	0.208 20.49 6.234		
635				Theta nu Mea	hat (MLE) hat (MLE) hat (MLE) n (detects)	20.85 6.126 4.258	sing Imputed N	lon-Detect	Theta star	bias corrected (bias corrected) (bias co	I MLE) I MLE) ected)	0.208 20.49 6.234		
635 636			GBOS may r	Theta nu Mea Cont be used	hat (MLE) hat (MLE) hat (MLE) n (detects)	20.85 6.126 4.258 S Statistics u	ising Imputed N	Non-Detect	Theta star n s	t multiple DL s	I MLE) I MLE) ected)	0.208 20.49 6.234		
635 636 637		GBOS m	GROS may r	Theta nu Mea O not be used	hat (MLE) hat (MLE) hat (MLE) n (detects)	20.85 6.126 4.258 S Statistics u set has > 509	ising Imputed N % NDs with mar	Non-Detect ny tied obse	n Theta star n S ervations a	t multiple DLs	I MLE) I MLE) ected)	20.49 6.234		
635 636 637 638 639		GROS m	GROS may r nay not be used v For	Theta nu Mea O not be used when kstar o such situati	hat (MLE) hat (MLE) hat (MLE) n (detects) hamma RC when data of detects in	20.85 6.126 4.258 S Statistics u set has > 50% s small such a	sing Imputed N % NDs with mar as <1.0, especia	Non-Detect by tied obse ally when the values of L	s ervations a e sample s ICL s and E	t multiple DLs	I MLE) I MLE) ected) g., <15-	20.49 6.234		
635 636 637 638 639 640		GROS n	GROS may r nay not be used v For	Theta nu Mea O not be used when kstar o such situati	hat (MLE) hat (MLE) hat (MLE) n (detects) amma RC when data of detects i ons, GROS his is espe	20.85 6.126 4.258 PS Statistics u set has > 50% s small such a S method may cially true wh	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s	Non-Detect by tied obse ally when th values of U size is smal	s s ervations a e sample s JCLs and E	t multiple DLs size is small (e.g	I MLE) I MLE) ected) g., <15-	20.49 6.234 20)		
635 636 637 638 639 640 641		GROS n	GROS may r nay not be used v For namma distribute	Theta nu Mea O not be used when kstar o such situati T d detected	hat (MLE) hat (MLE) hat (MLE) n (detects) amma RC when data of detects i ons, GRO his is espedata, BTVs	20.85 6.126 4.258 S Statistics u set has > 50% s small such a S method may cially true who and UCLs ma	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s av be computed	Non-Detect ny tied obse ally when th values of L size is smal d using gam	s s ervations a e sample s JCLs and E I.	t multiple DLs size is small (e.g TVs	I MLE) I MLE) ected) g., <15-	20.49 6.234 20)		
635 636 637 638 639 640 641 642		GROS n For g	GROS may r nay not be used v For gamma distribute	Theta nu Mea Ot be used when kstar of such situati T d detected of	hat (MLE) hat (MLE) hat (MLE) n (detects) amma RC when data of detects i ons, GROS his is espedata, BTVs Minimum	20.85 6.126 4.258 S Statistics u set has > 50% s small such a S method may cially true who and UCLs ma 2.1000E-4	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s ay be computed	Non-Detect ny tied obse ally when th values of L size is smal d using gam	s s ervations a e sample s JCLs and E I. ma distrib	t multiple DLs size is small (e.g BTVs	I MLE) I MLE) ected) g., <15- iimates Mean	20.49 6.234 20) 20) 0.555		
635 636 637 638 639 640 641 642 642		GROS m For ç	GROS may r nay not be used v For gamma distribute	Theta nu Mea Conot be used when kstar of such situati T d detected of	hat (MLE) hat (MLE) hat (MLE) n (detects) Gamma RC when data of detects i ons, GROS his is espe data, BTVs Minimum Maximum	20.85 6.126 4.258 S Statistics u set has > 509 s small such a S method may ecially true who and UCLs ma 2.1000E-4 16	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s ay be computed	Non-Detect ny tied obse ally when th values of L size is smal d using gam	s s ervations a e sample s JCLs and E I. mma distrib	t multiple DLs size is small (e.c BTVs	I MLE) I MLE) ected) g., <15- imates Mean Iedian	0.208 20.49 6.234 20) 20) 0.555 0.01		
635 636 637 638 639 640 641 642 643 644		GROS m For g	GROS may r nay not be used v For gamma distribute	Theta nu Mea Conot be used when kstar of such situati T d detected of	hat (MLE) hat (MLE) hat (MLE) n (detects) m (detects)	20.85 6.126 4.258 S Statistics u set has > 509 s small such a S method may ecially true who and UCLs ma 2.1000E-4 16 2.575	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s ay be computed	Non-Detect ny tied obse ally when th values of L size is smal d using gam	s s ervations a e sample s JCLs and E I. mma distrib	t multiple DLs size is small (e.c BTVs ution on KM est	I MLE) I MLE) ected) g., <15- iimates Mean Iedian CV	20.49 6.234 20) 20) 20) 0.555 0.01 4.642		
635 636 637 638 639 640 641 642 643 644 645		GROS m For g	GROS may r nay not be used v For gamma distribute	Theta nu Mea Conot be used when kstar of such situati d detected of k	hat (MLE) hat (MLE) hat (MLE) n (detects) m (detects)	20.85 6.126 4.258 S Statistics u set has > 509 s small such a S method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s ay be computed	Non-Detect ny tied obse ally when th values of L size is smal d using gam	s s ervations a e sample s JCLs and E I. mma distrib	t multiple DLs size is small (e.g BTVs ution on KM est	I MLE) I MLE) ected) , <15- Mean Median CV I MLE)	20.49 6.234 20) 20) 20) 0.555 0.01 4.642 0.2		
635 636 637 638 639 640 641 642 643 644 645 646		GROS m	GROS may r nay not be used v For gamma distribute	Theta nu Mea C not be used when kstar o such situati T d detected o k theta	hat (MLE) hat (MLE) hat (MLE) in (detects) m (detects)	20.85 6.126 4.258 S Statistics u set has > 50% s small such a S method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s ay be computed	Jon-Detect ny tied obse ally when th values of U size is smal d using garr	s s rvations a e sample s JCLs and E I. ma distrib k star Theta star	t multiple DLs size is small (e.c BTVs ution on KM est (bias corrected (bias corrected	I MLE) I MLE) ected) g., <15- imates Mean Iedian CV I MLE) I MLE)	20.49 6.234 20) 20) 20) 0.555 0.01 4.642 0.2 2.778		
635 636 637 638 639 640 641 642 643 644 645 644 645 646 647		GROS m	GROS may r nay not be used v For jamma distribute	Theta nu Mea C not be used when kstar o such situati T d detected o k theta k Theta nu	hat (MLE) hat (MLE) hat (MLE) in (detects) m (detects)	20.85 6.126 4.258 S Statistics u set has > 50% s small such a S method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s ay be computed	Non-Detect ny tied obse ally when th values of L size is smal d using garr	s s rvations a e sample s JCLs and E I. ma distrib k star Theta star n	t multiple DLs size is small (e.g BTVs ution on KM est (bias corrected (bias corrected u star (bias corrected u star (bias corrected	IMLE) IMLE) ected) g., <15- imates Mean Iedian CV IMLE) IMLE) ected)	0.208 20.49 6.234 20) 0.555 0.01 4.642 0.2 2.778 46.71		
635 636 637 638 639 640 641 642 643 644 645 646 646 647 648		GROS n	GROS may r nay not be used v For jamma distribute	Theta nu Mea Conot be used when kstar of such situati T d detected of k Theta nu vvel of Signi	hat (MLE) hat (MLE) hat (MLE) n (detects) m (detects)	20.85 6.126 4.258 S Statistics u set has > 50% s small such a S method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479	sing Imputed N % NDs with mar s <1.0, especia y yield incorrect en the sample s ay be computed	Non-Detect ny tied obse ally when th values of L size is smal d using gam	s s s ervations a e sample s JCLs and E I. ma distrib k star Theta star n	t multiple DLs size is small (e.g BTVs ution on KM est (bias corrected (bias corrected u star (bias corrected u star (bias corrected	MLE) MLE) ected) ected) g., <15- imates Mean fedian CV MLE) MLE) ected)	0.208 20.49 6.234 20) 0.555 0.01 4.642 0.2 2.778 46.71		
635 635 636 637 638 639 640 641 642 643 644 645 646 645 646 647 648 649		GROS m For g	GROS may r nay not be used v For jamma distribute Adjusted Le proximate Chi So	Theta nu Mea of be used when kstar of such situati T d detected of k Theta nu vel of Signi quare Value	hat (MLE) hat (MLE) hat (MLE) n (detects) m (detects) m (detects) m (detects) for a sepe data, BTVs Minimum Maximum SD hat (MLE) hat (MLE) hat (MLE) ficance (β) (46.71, α)	20.85 6.126 4.258 S Statistics u set has > 50% s small such a S method may cially true whe and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479 32.03	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s ay be computed	Non-Detect hy tied obse ally when th values of L size is smal d using garr d using garr	star Theta star n servations a e sample s JCLs and E I. ma distrib k star Theta star n sted Chi Sc	t multiple DLs size is small (e.g BTVs ution on KM est (bias corrected (bias corrected (bias corrected u star (bias corrected u star (bias corrected	MLE) MLE) ected) ected) g., <15- imates Mean dedian CV Mean dedian CV MLE) MLE) ected) .71, β)	0.208 20.49 6.234 20) 0.555 0.01 4.642 0.2 2.778 46.71 31.88		
635 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650		GROS m For g Ap 95% Gamm	GROS may r nay not be used v For jamma distribute Adjusted Le proximate Chi So a Approximate U	Theta nu Mea G not be used when kstar o such situati T d detected d d detected k Theta nu vel of Signi quare Value CL (use wh	hat (MLE) hat (MLE) hat (MLE) n (detects) m (detects) m (detects) data at a of detects i ons, GROS his is esped data, BTVs Minimum Maximum SD hat (MLE) hat (MLE) hat (MLE) hat (MLE) ficance (β) (46.71, α) en n>=50)	20.85 6.126 4.258 S Statistics u set has > 509 s small such a S method may cially true whe and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479 32.03 0.809	Ising Imputed N % NDs with mar as <1.0, especia v yield incorrect en the sample s ay be computed	Non-Detect hy tied obse ally when th values of L size is smal d using garr d using garr Adjus	servations a e sample s JCLs and E I. mma distrib k star Theta star n sted Chi Sc Adjusted	t multiple DLs size is small (e.g strvs ution on KM est (bias corrected (bias corrected (bias corrected u star (bias corrected)	MLE) MLE) ected) g., <15- imates Mean Median CV MLE) MLE) ected) .71, β) n<50)	0.208 20.49 6.234 20) 0.555 0.01 4.642 0.2 2.778 46.71 31.88 0.813		
635 636 637 638 639 640 641 642 643 644 645 644 645 646 647 648 649 650 651		GROS m For g Ap 95% Gamm	GROS may r nay not be used v For jamma distribute Adjusted Le proximate Chi So a Approximate U	Theta nu Mea G not be used when kstar o such situati T d detected o k Theta nu vel of Signi quare Value CL (use wh	hat (MLE) hat (MLE) hat (MLE) hat (MLE) in (detects) data (MLE) hat is esped data, BTVs Minimum Maximum SD hat (MLE) hat (MLE) hat (MLE) ficance (β) (46.71, α) en n>=50)	20.85 6.126 4.258 S Statistics u set has > 509 s small such a S method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479 32.03 0.809	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s ay be computed	Non-Detect hy tied obse ally when th values of L size is smal d using garr d using garr Adjus 5% Gamma	sted Chi Sc Adjusted	(bias corrected (bias corrected u star (bias corrected u star (bias corrected size is small (e.c 3TVs ution on KM est (bias corrected (bias corrected u star (bias corrected))	MLE) MLE) ected) g., <15- imates Mean Median CV MLE) MLE) MLE) ected) .71, β) n<50)	0.208 20.49 6.234		
635 636 637 638 639 640 641 642 643 644 645 644 645 646 647 648 649 650 651 652		GROS n For g Ap 95% Gamm	GROS may r nay not be used v For jamma distribute Adjusted Le proximate Chi Sc a Approximate U	Theta nu Mea G not be used when kstar o such situati T d detected o k Theta nu vel of Signi quare Value CL (use wh	hat (MLE) hat (MLE) hat (MLE) hat (MLE) in (detects) data (MLE) hat is esped data, BTVs Minimum Maximum Maximum SD hat (MLE) hat (MLE) hat (MLE) hat (MLE) ficance (β) (46.71, α) en n>=50)	20.85 6.126 4.258 S Statistics u set has > 50% s small such a 5 method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479 32.03 0.809 Gamma Para	Ising Imputed N % NDs with mar as <1.0, especia r yield incorrect en the sample s ay be computed ay be computed generation of the sample sameters using P	Non-Detect ny tied obse ally when th values of L size is smal d using garr d using garr	s Theta star n s ervations a e sample s JCLs and E l. ma distrib k star Theta star n sted Chi Sc Adjusted es	t multiple DLs size is small (e.c 3TVs ution on KM est (bias corrected (bias corrected u star (bias corrected)	MLE) MLE) ected) g., <15- mates Mean Median CV MLE) MLE) MLE) ected) .71, β) n<50)	0.208 20.49 6.234		
635 636 637 638 639 640 641 642 643 644 645 644 645 646 647 648 649 650 651 652 653		GROS n For g Ap 95% Gamm	GROS may r nay not be used v For gamma distribute distribute Adjusted Le proximate Chi Sc a Approximate U	Theta nu Mea O tot be used when kstar o such situati T d detected o k Theta nu vel of Signi quare Value CL (use wh	hat (MLE) hat (MLE) hat (MLE) hat (MLE) in (detects) mamma RC when data of detects in ons, GROS his is espe data, BTVs Minimum Maximum Maximum Maximum Maximum SD hat (MLE) hat (MLE) hat (MLE) hat (MLE) hat (MLE) hat (MLE) ficance (β) (46.71, α) en n>=50) timates of Mean (KM)	20.85 6.126 4.258 S Statistics u set has > 50% s small such a S method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479 32.03 0.809 Gamma Para 0.546	Ising Imputed N % NDs with mar as <1.0, especia r yield incorrect en the sample s ay be computed get get get meters using h	Non-Detect ny tied obse ally when th values of L size is smal d using garr d using garr Adjus 5% Gamma	s s ervations a e sample s JCLs and E I. Imma distrib k star Theta star n sted Chi Sc Adjusted	t multiple DLs size is small (e.c att on KM est vition on	MLE) MLE) ected) ected) g., <15- mattes Mean Median CV MLE) MLE) ected) .71, β) n<50)	0.208 20.49 6.234 20) 0.555 0.01 4.642 0.2 2.778 46.71 31.88 0.813 2.566		
$\begin{array}{c} 635\\ 636\\ 637\\ 638\\ 639\\ 640\\ 641\\ 642\\ 643\\ 644\\ 645\\ 646\\ 647\\ 648\\ 649\\ 650\\ 651\\ 652\\ 653\\ 654\\ \end{array}$		GROS n For ç Ap 95% Gamm	GROS may r nay not be used v For gamma distribute Adjusted Le proximate Chi So a Approximate U	Theta nu Mea G not be used when kstar of such situati T d detected of k Theta nu vel of Signi quare Value CL (use wh Es N	hat (MLE) hat (MLE) hat (MLE) n (detects) m (MLE) hat (MLE) hat (MLE) hat (MLE) hat (MLE) hat (MLE) hat (MLE) hat (MLE) hat (MLE) ficance (β) (def.71, α) en n>=50) timates of Mean (KM) ance (KM)	20.85 6.126 4.258 S Statistics u set has > 50% s small such a S method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479 32.03 0.809 Gamma Para 0.546 6.582	Ising Imputed N % NDs with mar as <1.0, especia r yield incorrect en the sample s ay be computed ay be computed 98 meters using P	Non-Detect ny tied obse ally when th values of L size is smal d using garr d using garr Adjus 5% Gamma	s s ervations a e sample s JCLs and E I. ma distrib k star Theta star n sted Chi Sc Adjusted	(bias corrected u star (bias corrected u star (bias corrected size is small (e.c BTVs ution on KM est vition on KM est (bias corrected u star (bias corrected u star (bias corrected u star (bias corrected u star (bias corrected star (bias corrected u star (bias corrected star (bias corrected u star (bias corrected u star (bias corrected u star (bias corrected star (bias corrected u star (bias corrected u star (bias corrected star (bias corrected u star (bias corrected))	MLE) MLE) ected) g., <15- imates Mean Median CV MLE) MLE) ected) .71, β) n<50)	0.208 20.49 6.234 20) 0.555 0.01 4.642 0.2 2.778 46.71 31.88 0.813		
$\begin{array}{c} 635\\ 636\\ 637\\ 638\\ 639\\ 640\\ 641\\ 642\\ 643\\ 644\\ 645\\ 646\\ 646\\ 646\\ 649\\ 650\\ 651\\ 652\\ 653\\ 654\\ 655\\ \end{array}$		GROS m For g Ap 95% Gamm	GROS may r nay not be used v For gamma distribute Adjusted Le proximate Chi So a Approximate U	Theta nu Mea G not be used when kstar of such situati T d detected of k Theta nu vel of Signi quare Value CL (use wh Es N	hat (MLE) hat (MLE) hat (MLE) n (detects) iamma RC when data of detects i ons, GROS his is esped data, BTVs Minimum Maximum SD hat (MLE) hat (MLE) hat (MLE) hat (MLE) ficance (β) (46.71, α) en n>=50) timates of Mean (KM) ance (KM) k hat (KM)	20.85 6.126 4.258 S Statistics u set has > 50% s small such a 5 method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479 32.03 0.809 Gamma Para 0.546 6.582 0.0453	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s ay be computed ay be computed 95 meters using H	Non-Detect ny tied obse ally when th values of L size is smal d using gam d using gam d using gam d using gam d using gam d using gam	s s ervations a e sample s JCLs and E I. ma distrib k star Theta star n sted Chi Sc Adjusted	t multiple DLs size is small (e.c BTVs ution on KM est (bias corrected (bias corrected (bias corrected u star (bias corrected u star (bias corrected UCL (use when SE SE of Mear k sta	MLE) MLE) ected) g., <15- imates Mean dedian CV MLE) MLE) ected) .71, β) n<50) D (KM) n (KM) r (KM)	0.208 20.49 6.234 20) 0.555 0.01 4.642 0.2 2.778 46.71 31.88 0.813 2.566 0.246 0.0498		
$\begin{array}{c} 635\\ 636\\ 637\\ 638\\ 639\\ 640\\ 641\\ 642\\ 643\\ 644\\ 645\\ 646\\ 647\\ 648\\ 649\\ 655\\ 655\\ 655\\ 655\\ 655\\ 655\\ 655\\ \end{array}$		GROS m For g Ap 95% Gamm	GROS may r nay not be used v For gamma distribute Adjusted Le proximate Chi So a Approximate U	Theta nu Mea G not be used when kstar of such situati T d detected of k Theta nu vel of Signi quare Value CL (use wh Es N Vari	hat (MLE) hat (MLE) hat (MLE) n (detects) m (MLE) hat (MLE) hat (MLE) hat (MLE) hat (MLE) hat (MLE) hat (MLE) hat (MLE) hat (MLE) ficance (β) (def.71, α) en n>=50) timates of Mean (KM) ance (KM) k hat (KM) u hat (KM)	20.85 6.126 4.258 S Statistics u set has > 50% s small such a 5 method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479 32.03 0.809 Gamma Para 0.546 6.582 0.0453 10.6	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s ay be computed y be computed ay be computed	Non-Detect ny tied obse ally when th values of L size is smal d using gam d using gam d using gam d using gam d using gam d using gam	s s ervations a e sample s JCLs and E I. ma distrib k star Theta star n sted Chi Sc Adjusted es	t multiple DLs size is small (e.c BTVs ution on KM est (bias corrected (bias corrected (bias corrected u star (bias corrected u star (bias corrected u star (bias corrected star (bias corrected star (bias corrected u star (bias corrected star (bias corrected u star (bias corected u star (bias corre	MLE) MLE) ected) g., <15- imates Mean dedian CV MLE) MLE) mLE) ected) .71, β) n<50) D (KM) n (KM) r (KM) r (KM)	0.208 20.49 6.234 20) 20) 0.555 0.01 4.642 0.2 2.778 46.71 31.88 0.813 2.566 0.246 0.0498 11.66		
$\begin{array}{c} 635\\ 636\\ 637\\ 638\\ 639\\ 640\\ 641\\ 642\\ 643\\ 644\\ 645\\ 646\\ 647\\ 648\\ 649\\ 655\\ 655\\ 655\\ 655\\ 655\\ 655\\ 655\\ 65$		GROS m For g Ap 95% Gamm	GROS may r nay not be used v For yamma distribute Adjusted Le proximate Chi So a Approximate U	Theta nu Mea G not be used when kstar of such situati T d detected of k Theta nu vel of Signi quare Value CL (use wh CL (use wh CL (use vh CL (use th CL (use th) CL (use th CL (use th) CL	hat (MLE) hat (MLE) hat (MLE) n (detects) m (detects)	20.85 6.126 4.258 S Statistics u set has > 509 s small such a S method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479 32.03 0.809 Gamma Para 0.546 6.582 0.0453 10.6 12.05	Ising Imputed N % NDs with mar as <1.0, especia r yield incorrect en the sample s ay be computed y be computed 98 meters using P	Non-Detect ny tied obse ally when th values of L size is smal d using gam d using gam Adjus 5% Gamma KM Estimat	s s ervations a e sample s JCLs and E I. ma distrib k star Theta star n sted Chi Sc Adjusted es	t multiple DLs size is small (e.c BTVs ution on KM est (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected u star (bias corrected u star (bias corrected star (bias corrected star (bias corrected u star (bias corrected star (bias corrected star (bias corrected star (bias corrected star (bias corrected u star (bias corrected star (b	MLE) MLE) ected) g., <15- imates Mean Median CV MLE) MLE) ected) .71, β) n<50) D (KM) n (KM) r (KM) r (KM)	0.208 20.49 6.234 20) 0.555 0.01 4.642 0.2 2.778 46.71 31.88 0.813 2.5666 0.246 0.0498 11.66 10.96		
$\begin{array}{c} 635\\ 636\\ 637\\ 638\\ 639\\ 640\\ 641\\ 642\\ 643\\ 644\\ 645\\ 646\\ 647\\ 648\\ 649\\ 655\\ 655\\ 655\\ 655\\ 655\\ 655\\ 655\\ 65$		GROS m For g Ap 95% Gamm	GROS may r nay not be used v For gamma distribute Adjusted Le proximate Chi Sc a Approximate U	Theta nu Mea G not be used when kstar of such situati T d detected of k Theta nu vel of Signi quare Value CL (use wh CL (use wh CL (use the CL (use th	hat (MLE) hat (MLE) hat (MLE) n (detects) m (detects)	20.85 6.126 4.258 S Statistics u set has > 509 s small such a S method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479 32.03 0.809 Gamma Para 0.546 6.582 0.0453 10.6 12.05 0.0732	Ising Imputed N % NDs with mar as <1.0, especia r yield incorrect en the sample s ay be computed gay be comput	Non-Detect ny tied obse ally when th values of L size is smal d using gam d using gam Adjus 5% Gamma	s Theta star n s ervations a e sample s JCLs and E I. ma distrib k star Theta star n sted Chi Sc Adjusted es 90% ga	t multiple DLs size is small (e.c BTVs ution on KM est (bias corrected (bias corrected)))))	MLE) MLE) ected) g., <15- imates Mean Median CV MLE) MLE) ected) .71, β) n<50) D (KM) n (KM) r (KM) r (KM) r (KM) e (KM)	0.208 20.49 6.234 20) 20) 0.555 0.01 4.642 0.2 2.778 46.71 31.88 0.813 2.566 0.246 0.0498 11.66 10.96 0.83		
$\begin{array}{c} 635\\ 635\\ 636\\ 637\\ 638\\ 639\\ 640\\ 641\\ 642\\ 643\\ 644\\ 645\\ 646\\ 647\\ 648\\ 645\\ 656\\ 657\\ 658\\ 655\\ 656\\ 657\\ 658\\ 659\\ \end{array}$		GROS m For g Ap 95% Gamm	GROS may r nay not be used v For gamma distribute Adjusted Le proximate Chi Sc a Approximate U 80% ga 80% ga	Theta nu Mea Conot be used when kstar of such situati Theta d detected of k Theta nu vel of Signi quare Value CL (use wh Es N Vari n thet amma perce amma perce	hat (MLE) hat (MLE) hat (MLE) n (detects) m (detects)	20.85 6.126 4.258 S Statistics u set has > 509 s small such a S method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479 32.03 0.809 Gamma Para 0.546 6.582 0.0453 10.6 12.05 0.0732 2.901	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s ay be computed gay be comput	Non-Detect ny tied obse ally when th values of L size is smal d using gam d using gam Adjus 5% Gamma	s Theta star n s ervations a e sample s JCLs and E I. ma distrib k star Theta star n sted Chi Sc Adjusted es 90% ga 99% ga	t multiple DLs size is small (e.c BTVs ution on KM est (bias corrected (bias corrected))))))	MLE) MLE) ected) g., <15- imates Mean Iedian CV MLE) MLE) ected) 	0.208 20.49 6.234 20) 20) 0.555 0.01 4.642 0.2 2.778 46.71 31.88 0.813 2.566 0.246 0.0498 11.66 10.96 0.83 11.89		
$\begin{array}{c} 635\\ 636\\ 637\\ 638\\ 639\\ 640\\ 641\\ 642\\ 643\\ 644\\ 645\\ 646\\ 647\\ 648\\ 646\\ 655\\ 656\\ 655\\ 656\\ 657\\ 658\\ 659\\ 660\\ \end{array}$		GROS m For g Ap 95% Gamm	GROS may r nay not be used v For gamma distribute Adjusted Le proximate Chi Sc a Approximate U 80% ga 80% ga	Theta nu Mea Conot be used when kstar of such situati T d detected of k Theta nu vel of Signi quare Value CL (use wh CL (use wh CL (use wh CL (use mh ctheta nu vari ctheta nu nu nu nu nu nu nu nu nu nu nu nu nu	hat (MLE) hat (MLE) hat (MLE) n (detects) m (detects)	20.85 6.126 4.258 S Statistics u set has > 50% s small such a S method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479 32.03 0.809 Gamma Para 0.546 6.582 0.0453 10.6 12.05 0.0732 2.901	sing Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s ay be computed gay be compute	Non-Detect ny tied obse ally when th values of L size is smal d using gam d using gam Adjus S% Gamma	s Theta star n s ervations a e sample s JCLs and E I. ma distrib k star Theta star n sted Chi Sc Adjusted es 90% ga 99% ga	t multiple DLs size is small (e.c BTVs ution on KM est (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected star (bias corrected (bias corrected)))))))	MLE) MLE) ected) g., <15- imates Mean fedian CV MLE) MLE) m<50) 0 (KM) n (KM) r (KM) r (KM) r (KM) r (KM) g (KM) e (KM)	0.208 20.49 6.234 20) 0.555 0.01 4.642 0.2 2.778 46.71 31.88 0.813 2.566 0.246 0.0498 11.66 10.96 0.83 11.89		
$\begin{array}{c} 635\\ 636\\ 637\\ 638\\ 639\\ 640\\ 641\\ 642\\ 643\\ 644\\ 645\\ 646\\ 647\\ 648\\ 646\\ 647\\ 648\\ 645\\ 655\\ 656\\ 655\\ 656\\ 657\\ 658\\ 659\\ 660\\ 661\\ \end{array}$		GROS m For g Ap 95% Gamm	GROS may r nay not be used v For gamma distribute Adjusted Le proximate Chi Sc a Approximate U 80% ga 80% ga	Theta nu Mea C not be used when kstar o such situati T d detected o k Theta nu vel of Signi quare Value CL (use wh CL (use wh Es N Vari n thet amma perco	hat (MLE) hat (MLE) hat (MLE) n (detects) m (detects)	20.85 6.126 4.258 S Statistics u set has > 50% s small such a S method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479 32.03 0.809 Gamma Para 0.546 6.582 0.0453 10.6 12.05 0.0732 2.901 ma Kaplan-M	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s ay be computed gay be comput	Non-Detect ny tied obse ally when th values of L size is smal d using gam Adjus S% Gamma KM Estimat	s Theta star n s ervations a e sample s JCLs and E I. ma distrib k star Theta star n sted Chi Sc Adjusted es 90% ga 99% ga	t multiple DLs size is small (e.c BTVs ution on KM est (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected scorrected (bias corrected (bias corrected)))))	MLE) MLE) ected) g., <15- imates Mean fedian CV MLE) MLE) mCV MLE) n<50) 0 (KM) n (KM) r (KM) r (KM) r (KM) r (KM) e (KM)	0.208 20.49 6.234 20) 0.555 0.01 4.642 0.2 2.778 46.71 31.88 0.813 2.566 0.246 0.0498 11.66 10.96 0.83 11.89		
$\begin{array}{c} 635\\ 636\\ 637\\ 638\\ 639\\ 640\\ 641\\ 642\\ 643\\ 644\\ 645\\ 646\\ 647\\ 648\\ 649\\ 655\\ 656\\ 655\\ 656\\ 655\\ 656\\ 657\\ 658\\ 659\\ 660\\ 661\\ 662\\ 662\\ 662\\ 662\\ 662\\ 662\\ 662$		GROS m For g Ap 95% Gamm	GROS may r nay not be used v For gamma distribute Adjusted Le proximate Chi So a Approximate U 80% ga 95% ga	Theta nu Mea C not be used when kstar o such situati T d detected o k Theta nu vel of Signi quare Value CL (use wh CL (use wh) CL (use w	hat (MLE) hat (MLE) hat (MLE) hat (MLE) n (detects) m (MLE) hat (MLE)	20.85 6.126 4.258 S Statistics u set has > 50% s small such a S method may cially true who and UCLs ma 2.1000E-4 16 2.575 0.199 2.786 46.58 0.0479 32.03 0.809 Gamma Para 0.546 6.582 0.0453 10.6 12.05 0.0732 2.901 ma Kaplan-W 5.006	Ising Imputed N % NDs with mar as <1.0, especia y yield incorrect en the sample s ay be computed gybe computed gybe get meters using N get get get get get get get get get get	Non-Detect ny tied obse ally when th values of L size is smal d using gam Adjus S% Gamma KM Estimat	sted Chi So 90% ga 99% ga	t multiple DLs size is small (e.c BTVs ution on KM est (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected (bias corrected star (bias corrected (bias corrected) (bias corected) (MLE) MLE) ected) g., <15- imates Mean fedian CV MLE) MLE) mCV MLE) n<50) 0 (KM) n (KM) r (KM) r (KM) r (KM) r (KM) e (KM) e (KM)	0.208 20.49 6.234 20) 0.555 0.01 4.642 0.2 2.778 46.71 31.88 0.813 2.566 0.246 0.0498 11.66 10.96 0.83 11.89		

	А	В	С	D	E	F	G	Н		J	K	L
663	95%	Gamma Ap	oproximate KM-U	CL (use wh	ien n>=50)	1.272	95% (Gamma Adji	usted KM-I	JCL (use w	vhen n<50)	1.286
664												
665				Lo	ognormal G	OF Test on I	Detected Obse	rvations On	ly			
666			Shap	oiro Wilk Te	st Statistic	0.873		5	Shapiro Wi	ilk GOF Te	st	
667			5% Shap	iro Wilk Cri	tical Value	0.881	Dete	cted Data N	lot Lognorr	nal at 5% S	Significance	Level
668			l	_illiefors Te	st Statistic	0.181			Lilliefors	GOF Test		
669			5% L	illiefors Cri	tical Value	0.22	Detect	ed Data app	bear Logno	ormal at 5%	Significan	ce Level
670			C	Detected Da	ata appear	Approximate	Lognormal at	5% Signific	ance Leve	əl		
671												
672				Log	gnormal R	OS Statistics	Using Imputed	Non-Dete	cts			
673			N	lean in Orig	ginal Scale	0.546				Mean in	Log Scale	-16.42
674				SD in Orig	ginal Scale	2.577				SD in	Log Scale	6.174
675		95% t	UCL (assumes no	ormality of	ROS data)	0.941			95% Perc	centile Boo	tstrap UCL	0.959
676			95%	6 BCA Boot	tstrap UCL	1.104				95% Boots	strap t UCL	1.124
677			95	5% H-UCL	(Log ROS)	2476						
678												
679			Statistic	cs using Kl	M estimate	s on Logged	Data and Assu	iming Logn	ormal Dist	ribution		
680				KM Mea	an (logged)	-7.919				KM	Geo Mean	3.6382E-4
681				KM S	D (logged)	2.672			95% Criti	cal H Value	e (KM-Log)	4.192
682			KM Standard E	rror of Mea	an (logged)	0.261			9	5% H-UCL	. (KM -Log)	0.0366
683				KM S	D (logged)	2.672			95% Criti	cal H Value	e (KM-Log)	4.192
684			KM Standard E	rror of Mea	an (logged)	0.261						
685						DI /0.4						
686			51 (6)			DL/2 S	statistics					
687			DL/2 N	ormal		0 5 4 7			DL/2 Log-I	ransforme		7.000
688			IV	lean in Orig	ginal Scale	0.547				Mean in	Log Scale	-7.022
689				SD in Orig	ginal Scale	2.576				SD in	Log Scale	2.669
690			95% t UCL	(Assumes	normality)	0.942	ded fer eener		historical	95% F	H-Stat UCL	0.0888
691			DL/2 IS	not a recor	mmenaea	metnoa, prov	ded for compa	risons and	nistorical	reasons		
692					Nonnoron	notrio Diotribu	tion Free UCI	Statiation				
693				Detected	Data anne	ar Gamma D	istributed at 59					
694				Delected			istributed at 07	oliginitai	100 10401			
695						Suggester	UCL to Use					
697			95% KM Appr	oximate Ga	mma UCI	1 272						
698			ee to tall tall tall									
699		Note: Sua	aestions regardin	a the selec	tion of a 95	5% UCL are p	rovided to help	the user to	select the	most appro	priate 95%	UCL.
700		J	Re	commenda	tions are b	ased upon da	ta size, data di	stribution, a	nd skewne	SS.		
701		These re	commendations a	are based u	pon the res	sults of the sir	nulation studies	summarize	ed in Singh	, Maichle,	and Lee (20	006).
702	H	lowever, si	nulations results	will not cov	er all Real	World data se	ets; for addition	al insight the	e user may	want to co	onsult a stat	istician.
703												
704	Toluene											
705												
706						General	Statistics					
707			Total Nu	mber of Ob	servations	105		1	Number of	Distinct Ob	servations	96
708				Number	of Detects	37			Νι	umber of N	on-Detects	68
709			Numb	per of Distin	nct Detects	35			Number of	Distinct N	on-Detects	63
710				Minim	um Detect	2.2050E-4				Minimum N	Non-Detect	2.1900E-4
711				Maxim	um Detect	0.00446				Maximum N	Non-Detect	0.688
712				Varian	ce Detects	1.4870E-6				Percent N	on-Detects	64.76%
713				Mea	an Detects	0.00155				S	SD Detects	0.00122
714				Media	an Detects	0.001				(CV Detects	0.787
715				Skewne	ss Detects	1.012				Kurto	sis Detects	-0.159
716			Me	an of Logge	ed Detects	-6.781			5	SD of Logg	ed Detects	0.825
717												
718					No	rmal GOF Te	st on Detects C	Only				
719			Shap	oiro Wilk Te	st Statistic	0.845		8	Shapiro Wi	lk GOF Te	st	
720			5% Shap	iro Wilk Cri	tical Value	0.936	De	tected Data	Not Norma	al at 5% Sig	gnificance L	evel
721			l	Lilliefors Te	st Statistic	0.232			Lilliefors	GOF Test		
722			5% L	illiefors Cri	tical Value	0.144	De	tected Data	Not Norma	al at 5% Sig	gnificance L	_evel
723				D	etected Da	ata Not Norm	al at 5% Signifi	cance Leve	əl			
724												

	Δ	В	C		D	F	F	G	н			ĸ	· ·
705		D	 Kanlai	n-Meier	· (KM) 9	Statietice u	eing Normal (L Critical Values :	and other M	lonnarame	atric LICLs		
725			Rupiu		(100)					KM O			
/26						r ivi ivlean	1.8992E-4			KIVI St	anuard Err	or or Mean	1.0008E-4
727						KM SD	9.9030E-4				95% KM (BCA) UCL	9.5878E-4
728					95% ł	<m (t)="" th="" ucl<=""><th>9.6530E-4</th><th></th><th>95%</th><th>5 KM (Perc</th><th>entile Boots</th><th>strap) UCL</th><th>9.7818E-4</th></m>	9.6530E-4		95%	5 KM (Perc	entile Boots	strap) UCL	9.7818E-4
729					95% K	(M (z) UCL	9.6374E-4			95%	6 KM Boots	strap t UCL	9.8064E-4
730			(90% KM	1 Cheby	vshev UCL	0.00111			95%	KM Cheby	vshev UCI	0.00125
730					1 Chab		0.00115			00%	KM Chab		0.00120
/31			97	.5% KIV	I Cheby	ysnev UCL	0.00145			99%	Kivi Cheby	/snev UCL	0.00164
732													
733					G	amma GC	OF Tests on D	etected Observ	ations Onl	y			
734					A-D Te	est Statistic	0.965		An	derson-Da	rling GOF	Test	
735				5%	A-D Cri	itical Value	0.763	Detected	Data Not G	amma Dis	tributed at	5% Signific	ance Level
736					K-S Te	st Statistic	0 164		K	olmogorov-	Smirnov G	OF	
700				5%		itical Value	0.101	Detected	Data Not G	Commo Die	tributed at l	5% Signific	
/3/				576			0.147	Delected					
738					Jetecte	a Data No	a Gamma Dis	Induted at 5% a	Significand	e Levei			
739													
740						Gamm	na Statistics o	n Detected Dat	a Only				
741					k	hat (MLE)	1.755			k star	(bias corre	ected MLE)	1.631
742					Theta	hat (MLE)	8.8272E-4			Theta star	(bias corre	ected MLE)	9.5000E-4
7/3					nu	hat (MLE)	129.9			nı	, star (hias	corrected)	120.7
743					Maa	n (dotooto)	0.00155						
744					wea	ii (uelecis)	0.00155						<u> </u>
745													
746					G	amma RC	DS Statistics u	sing Imputed N	lon-Detect	s			
747			GROS ma	ay not b	e used	when data	set has > 50°	% NDs with mar	ny tied obse	ervations a	t multiple D	Ls	
748		GROS m	hay not be use	ed wher	n kstar (of detects i	s small such a	is <1.0, especia	ally when th	e sample s	ize is smal	l (e.g., <15	-20)
749			-	For such	h situati	ions. GRO	S method may	vield incorrect	values of L	JCLs and E	TVs		
750					Т	This is esne	cially true wh	on the sample s	ize is smal	1			
750		For a	ommo diatrib	utod do	to oto d						itian on KN	1 aatimataa	
/51		FOLG	jamma uisuno	uteu de	lected				i using gan	ima uisuibi		n estimates	0.00700
752						Minimum	2.2050E-4					Mean	0.00702
753						Maximum	0.01					Median	0.01
754						SD	0.00412					CV	0.587
755					k	hat (MLE)	1.352			k star	(bias corre	ected MLE)	1.32
756					Theta	hat (MLE)	0.00519			Theta star	(bias corre	cted MLE)	0.00532
750					n	hat (MLE)	284			n	ustar (hias	corrected)	277.2
757			A		110		204					conecteu)	211.2
/58			Adjusted		or Signi	ficance (p)	0.0477					<u></u>	000 /
759		Арр	roximate Chi	Square	Value	(277.17, α)	239.6		Adjust	ed Chi Squ	are Value	(277.17, β)	239.1
760	9	5% Gamm	a Approximat	e UCL ((use wh	nen n>=50)	0.00812	95	5% Gamma	Adjusted l	JCL (use w	/hen n<50)	0.00814
761													
762					Es	timates of	Gamma Para	meters using k	M Estimat	es			
763					1	Mean (KM)	7.8992E-4					SD (KM)	9.9030E-4
764					Vari	iance (KM)	9 8069F-7				SE of I	Mean (KM)	1 0568E-4
704					v an	k hot (KM)	0.626				02 011	k eter (KM)	0.624
765							0.030						0.024
766					n	iu hat (KM)	133.6				ทเ	J star (KM)	131.1
767					thet	ta hat (KM)	0.00124				theta	a star (KM)	0.00127
768			80%	% gamm	na perce	entile (KM)	0.0013			90% ga	imma perce	entile (KM)	0.00204
769			95%	% gamm	na perco	entile (KM)	0.0028			99% ga	imma perce	entile (KM)	0.00465
770				-	-	. ,						,	1
771						Gan	ma Kaplan-M	leier (KM) Stati	stics				
770		۸nn	rovimato Chi	Squara	Value	(121 12 a)	105.7		Adjust	od Chi Sau	aro Valuo	(121 12 8)	105.4
772	050/				value	(131.13, u)		059/ 0				(131.13, p)	
//3	90%	Gamma Ap	pioximate KI	vi-UCL (use wh	ien n>=50)	9.0018E-4	95% 6	aanima Adj	usieŭ KIVI-l	JCL (use w	nen n≤50)	3.0312E-4
774													
775					Lo	ognormal (OF Test on I	Detected Obser	vations Or	nly			
776			S	Shapiro '	Wilk Te	est Statistic	0.944			Shapiro Wi	lk GOF Te	st	
777			5% S	hapiro \	Wilk Cri	itical Value	0.936	Detecte	ed Data ap	pear Logno	ormal at 5%	Significan	ce Level
778				Lillie	fors Te	st Statistic	0.126			Lilliefors	GOF Test		
770			5	منالنا %	fore Cri	itical Value	0.144	Detect	ad Data an		rmal at 5%	Significan	
779					Dete		0.144				innai at 370	Significan	
780					Dete	cted Data	appear Logno	ormai at 5% Sig	inificance i	_evei			
781													
782					Lo	gnormal R	OS Statistics	Using Imputed	Non-Dete	cts			
783				Mear	n in Oriç	ginal Scale	7.1029E-4				Mean in	Log Scale	-7.794
784				SE) in Orio	ginal Scale	9.5302E-4				SD in	Log Scale	0.939
785		95% t	UCL (assume	es norm	ality of	ROS data)	8.6464F-4			95% Per	entile Boo	tstran LICI	8.5817F-4
700		00701	(0000116	05% D		tetron UCI	8 71655 4				05% Booto	tran + UCI	8 84365 4
186				30% BC			0.7 100E-4				90 /0 D00IS	map i UCL	0.0430E-4
787				95% I	H-UCL	(Log ROS)	7.8126E-4						
788													
789			Sta	tistics u	ising K	M estimate	es on Logged	Data and Assu	ming Logn	ormal Dist	ribution		
790				ŀ	KM Mea	an (logged)	-7.668				KM	Geo Mean	4.6778E-4
701				-	KMS	(loaned)	0.932			95% Criti	cal H Value	e (KM-Log)	2.148
700			KM Standa	rd Error	of Mor		0.106			0		(KM -L og)	8 79255 1
792							0.100			9			0.70200-4
793			101.0	. =	NVI S	iogged) יי	0.932			95% Criti	uai 🗆 Value	; (rivi-log)	2.148
794			KM Standa	rd Error	ot Mea	an (logged)	0.106						

	А	В	С	D	E	F	G	Н		J	K	L
795												
796						DL/2 S	Statistics					
797			DL/2 N	ormal					DL/2 Log-1	Fransforme	ed	
798			Ν	lean in Orig	ginal Scale	0.0082				Mean in	Log Scale	-7.215
799			050/ 1101	SD in Orig	ginal Scale	0.0431				SD in	Log Scale	1.569
800			95% t UCL	(Assumes	normality)	0.0152				95%	H-Stat UCL	0.00388
801			DL/2 IS	not a recol	mmenaea	metnoa, prov	ided for compa	risons and	nistorical	reasons		
802					Mannanan	a atula Diatulha	tion Free LIO	Otatiatian				
803				Detected F	Nonparar		Distributed at E			1		
804					Jata appea	r Lognormal	Distributed at 5	% Significa	ance Leve			
805						Suggostor						
800												
007						0.75256-4						
000		Note: Suc	nestions regardir	n the selec	tion of a 95	% LICL are n	rovided to help t	the user to	select the	most annro	onriate 95%	
810		11010. 000	Re	commenda	tions are h	ased upon da	ta size data dis	tribution a	nd skewne			002.
811		These re	commendations a	are based u	non the res	sults of the sir	nulation studies	summariz	ed in Sinah	Maichle	and Lee (20)06)
812	Н	owever. si	imulations results	will not cov	er all Real	World data se	ets: for additiona	l insight th	e user may	want to co	onsult a stat	istician.
813									,			
814	Xylenes ((total)										
815		. ,										
816						General	Statistics					
817			Total Nu	mber of Ob	servations	105			Number of	Distinct Ob	oservations	87
818				Number	of Detects	16			Νι	umber of N	on-Detects	89
819			Numl	ber of Distir	nct Detects	16			Number of	f Distinct N	on-Detects	73
820				Minim	um Detect	4.9200E-4				Minimum I	Non-Detect	3.4800E-4
821				Maxim	um Detect	3.8			I	Maximum I	Non-Detect	1.11
822				Varian	ce Detects	0.922				Percent N	on-Detects	84.76%
823				Me	an Detects	0.355				5	SD Detects	0.96
824				Media	an Detects	0.00244				(CV Detects	2.703
825				Skewne	ss Detects	3.494				Kurto	sis Detects	12.82
826			Me	an of Logg	ed Detects	-4.802			ç	SD of Logg	ed Detects	2.891
827												
828				·	No	rmal GOF Te	st on Detects O	nly	<u></u>		-	
829			Snap 5% Shar		st Statistic	0.434	Det		Snapiro wi		en:finance l	
830			5% Snap	ITO WIIK CI	tical value	0.887	Det	ected Data			gnificance L	evei
831			E9/ 1	Lilliefors Te	st Statistic	0.393	Det	acted Date	Lillet Norm	GUF Test	anificance l	
832 022			5701			0.213	al at 5% Signifi				grinicance L	ever
033							ai at 576 Olymin		61			
034			Kanlan-M	eier (KM) S	Statistics u	sing Normal (Critical Values a	and other M	Vonnarame	atric UCLs		
836			Tuplan II		KM Mean	0 0547			KM St	andard Fri	ror of Mean	0.0388
837					KM SD	0.385				95% KM	(BCA) UCL	0.136
838				95% ł	KM (t) UCL	0.119		95%	6 KM (Perc	entile Boot	(Strap) UCL	0.127
839				95% K	(M (z) UCL	0.119				6 KM Boot	strap t UCL	0.428
840			90%	KM Cheby	shev UCL	0.171			95%	KM Cheb	yshev UCL	0.224
841			97.5%	6 KM Cheby	shev UCL	0.297			99%	KM Cheb	yshev UCL	0.441
842												
843				G	amma GO	F Tests on D	etected Observ	ations On	ly			
844				A-D Te	st Statistic	2.46		An	derson-Da	rling GOF	Test	
845				5% A-D Cri	tical Value	0.887	Detected	Data Not C	amma Dis	tributed at	5% Significa	ance Level
846				K-S Te	st Statistic	0.425		Ko	olmogorov-	-Smirnov C	GOF	
847				5% K-S Cri	tical Value	0.239	Detected	Data Not G	amma Dis	tributed at	5% Significa	ance Level
848				Detecte	ed Data No	t Gamma Dis	tributed at 5% \$	Significanc	e Level			
849						- 04-11-11	- D-4	- 0.1				
850					Gamm	a Statistics o	n Detected Dat	a Only				0.001
851					nat (MLE)	0.196			k star	(DIAS COTTO	ected MLE)	0.201
852				Theta	hat (MLE)	1.813			i neta star	(DIAS COTT	ected MLE)	1./b8
853				nu	nat (IVILE)	0.272			nı	u star (DIas	correctea)	0.429
854				wea	ii (ueiecis)	0.555						
855				~	amma DO	S Statiation ·	ieina Imputed N	lon-Detect	·e			
020			GROS may r	not he used	when data	set has > 500	% NDs with mar	v tied ober	ervations of	t multinla r)l s	
007 859		GROS	may not be used w	when kstar	of detects in	s small such a	as <1.0 esnecia	lly when th	e samnle s	size is sma	(e.a. <15.	-20)
850			For	such situati	ions. GROS	S method may	vield incorrect	values of I	JCLs and F	BTVs	(0.9., 10	
860				T	his is espe	cially true wh	en the sample s	ize is smal	.			
861		For	gamma distribute	d detected	data, BTVs	and UCLs m	ay be computed	using gam	nma distrib	ution on KI	M estimates	
551					,			3 5				

	А	В	С	D	E	F	G	н	1	J	K	L
862				M	linimum	4.9200E-4			•		Mean	0.0626
863				Ма	aximum	3.8					Median	0.01
864					SD	0.385					CV	6.156
004				k ha		0.359			k sta	r (hias corre	cted MLE)	0.355
800				Thoto ho		0.000			Thoto sto	r (bias corre		0.000
866				Tileta lia		0.174			Theta Sta			0.170
867			A 12	nu na		75.42			ſ	nu star (blas	corrected)	74.0
868			Adjusted Le	vel of Significa	ance (B)	0.0477					(74.00.0)	== 10
869		Ар	proximate Chi So	quare Value (7	4.60, α)	55.71		Adjus	sted Chi S	quare Value	e (74.60, β)	55.48
870	ç	5% Gamm	a Approximate U	CL (use when	n>=50)	0.0838	95	5% Gamma	Adjusted	UCL (use w	/hen n<50)	0.0842
871												
872				Estim	ates of	Gamma Para	ameters using k	M Estimat	tes			
873				Mea	an (KM)	0.0547					SD (KM)	0.385
874				Varian	ce (KM)	0.148				SE of I	Mean (KM)	0.0388
875				k h	at (KM)	0.0202					< star (KM)	0.026
876				nu h	at (KM)	4.246				nı	u star (KM)	5.458
877				theta h	at (KM)	2.707				theta	a star (KM)	2.106
878			80% ga	amma percenti	ile (KM)	2.2549E-4			90% c	amma perc	entile (KM)	0.0212
879			95% ga	amma percent	ile (KM)	0.182			99% c	amma perc	entile (KM)	1.463
880			g-							,		
881					Gam	ma Kanlan-N	Aeier (KM) Stati	stics				
001		Δ	nnrovimate Chi S	Square Value (5.46 a)	1 369		Δdiu	isted Chi	Sauara Valu	0 (5 / 6 B)	1 3/2
882	050/		approximate KM L		$\frac{5.40, u}{2.50}$	0.019	059/ 0				(0.40, p)	0.000
883	95%	Gamma Ap	oproximate Kim-O	CL (use when	1/-50)	0.216	95% 6	amma Auj		-OCL (use w	nen n<50)	0.225
884												
885					ormal G		Detected Obser	vations Or	11y 01 1 14			
886			Shap	biro Wilk Test	Statistic	0.768			Shapiro V	VIIK GOF Te	st	
887			5% Shap	piro Wilk Critica	al Value	0.887	Deteo	cted Data N	Not Logno	rmal at 5% S	Significance	Level
888				Lilliefors Test	Statistic	0.354			Lilliefor	s GOF Test		
889			5% L	-illiefors Critica	al Value	0.213	Deteo	cted Data N	lot Logno	rmal at 5% S	Significance	Level
890				Detec	ted Data	a Not Lognor	mal at 5% Signi	ificance Le	vel			
891												
892				Logno	ormal R	OS Statistics	Using Imputed	Non-Dete	cts			
893			N	lean in Origina	al Scale	0.0541				Mean in	Log Scale	-12.9
894				SD in Origina	al Scale	0.387				SD in	Log Scale	3.862
895		95% t	UCL (assumes n	ormality of RO	S data)	0.117			95% Pe	rcentile Boo	tstrap UCL	0.125
896			95%	6 BCA Bootstr	ap UCL	0.191				95% Boots	strap t UCL	0.385
897			95	5% H-UCL (Lo	g ROS)	0.0379						
898					,							
899			Statisti	cs usina KM e	stimate	s on Loaaed	Data and Assu	mina Loan	ormal Dis	stribution		
900				KM Mean (loaaed)	-7.417				KM	Geo Mean	6.0122E-4
001				KM SD (logged)	1 586			95% Cri	tical H Value	(KM-Log)	2 816
002			KM Standard F	Fror of Mean (logged)	0 164			0070 011	95% H-UCI	(KM -L og)	0.00328
902					logged)	1 586			05% Cri	tical H Value		2 816
903			KM Standard F		logged)	0.164			33 % CH		(INIVI-LOG)	2.010
904					iogyeu)	0.104						
905						DI /2 (Statiation					
906				ormol		DL/2 3	วเสแรแตร			Teorof	d	
907			DL/2 N			0.0000			DUZ LOG	- I ranstorme		0.000
908			N	lean in Origina	al Scale	0.0663				Mean in	Log Scale	-6.899
909				SD in Origina	al Scale	0.391				SD in	Log Scale	2.007
910			95% t UCL	. (Assumes no	rmality)	0.13				95% H	I-Stat UCL	0.0145
911			DL/2 is	not a recomm	nended i	method, prov	rided for compa	risons and	historical	reasons		
912												
913				N	onparan	netric Distrib	ution Free UCL	Statistics				
914				Data do not f	ollow a	Discernible D	Distribution at 5	% Significa	ance Leve			
915												
916						Suggester	d UCL to Use					
917			95% I	KM (Chebyshe	ev) UCL	0.224						
918						1	<u> </u>					
919		Note: Sug	gestions regardin	ng the selection	n of a 95	5% UCL are n	provided to help	the user to	select the	most appro	priate 95%	UCL.
920			Re	commendation	ns are h	ased upon da	ata size, data dis	stribution	ind skewn	less.		-
021		These rea	commendations a	are based upor	n the res	sults of the sir	mulation studies	summariz	ed in Sing	h Maichle	and Lee (20	06)
022	ц	OWEVEr cir	mulations results	will not cover	all Real	World data of	ets: for addition	al insight th		w want to co	nsult a stat	istician
922		GWGVEI, SI		will not cover a	an ivedi	wonu udla St		a məiyin til			nouil a Sidi	
923												

Attachment 2 (Continued)

Soil Vapor Samples from Q1 through Q3 2016, On-Base (Input)

	A	В	С	D	E
1	1,2,4-TRIMETHYLBENZENE	d_1,2,4-TRIMETHYLBENZENE		1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE)	d_1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE)
2	1.28	0		1.38	0
3	3.24	1		1.31	0
4	1.62	1		1.31	0
5	81.11	1		3.19	1
6	5.41	1		2.23	0
7	4.77	1		1.38	0
8	5.41	1		1.31	0
9	5.41	1		1.38	0
10	9.34	1		1.38	0
11	5.9	1		1.38	0
12	12.29	1		1.31	0
13	3.29	1		1.31	0
14	5.9	1		1.31	0
15	290.03	1		3.76	1
16	117.98	1		2	1
17	35.39	1		3,46	1
18	19.66	1		2.31	1
19	1.28	0		1.38	0
20	1.23	0		1.38	0
21	32.94	1		1.38	0
21	7.87	1		1.38	0
23	2.26	1		1.38	0
24	1.77	1		1.38	0
25	3.49	1		1.31	0
26	2.41	1		1.46	0
27	2.29	1		1.46	0
28	2.7	1		1.42	0
29	3	1		1.38	0
30	5.41	1		1.31	0
31	2.7	1		1.31	0
32	2.9	1		1.31	0
33	1.18	0		1.31	0
34	1.23	0		1.31	0
35	5.01	1		1.31	0
36	2.11	1		1.31	0
37	2.16	1		1.31	0
38	2.51	1		1.23	0
39	31.21	1		1.31	1
40	1.18	1		1.23	0
41	1.43	1		1.23	0
42	4.28	1		1.23	0
43	8.85	1		1.77	1
44	13.27	1		1.61	1
45	14.26	1		1.54	1
46	7.87	1		1.46	1
47	8.85	1		1.31	0
48	221.21	1		3.23	1
49	18.19	1		2.69	1
50	639.05	1		2.38	1
51	113.06	1		23.82	1
52	1.23	0		1.34	0
53	1.25	0		1.31	0
54	1.18	0		1.31	0
55	1.18	0		1.31	0

	A	В	С	D	E
1	1,2,4-TRIMETHYLBENZENE	d_1,2,4-TRIMETHYLBENZENE		1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE)	d_1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE)
56	1.67	1		1.31	0
57	11.8	1		1.31	0
58	2.06	1		1.23	0
59	1.18	0		1.31	0
60	1.18	0		1.31	0
61	1.77	1		1.23	0
62	1.82	1		1.23	0
63	1.33	1		1.23	0
64	2.11	1		1.38	0
65	4.47	1		1.38	0
66	2.02	1		1.31	0
67	3.69	1		1.46	0
68	23.6	1		2.07	1
69	9.83	1		1.61	1
70	3.42	1		1.38	0
71	1.23	0		1.38	0
72	1.28	0		1.31	0
73	1.52	1		1.31	0
74	7.37	1		1.31	0
75	28.51	1		4.15	1
76	2.75	1		1.38	0
77	6.88	1		1.31	0
78	113.06	1		1.31	0
79	19.42	1		1.08	0
80	1.33	0		1.84	0
81	1.18	0		1.38	0
82	1.77	0		1.31	0
83	1.18	0		1.31	0
84	8.85	1		1.27	0
85	83.57	1		1.23	0
86	3.54	1		1.23	0
87	1.18	0		1.61	0
88	1.18	0		1.31	0
89	1.97	1		1.23	0
90	4.18	1		1.23	0
91	1.18	0		1.23	0
92	1.18	0		1.23	0
93	2.46	1		1.31	0
94	1.62	1		1.31	0

	F	G	Н	I	J	K	L	М	N	0
1		1,2-DICHLOROETHANE	d_1,2-DICHLOROETHANE		BENZENE	d_BENZENE		CYCLOHEXANE	d_CYCLOHEXANE	
2		1.38	0		1.37	0		2.48	0	
3		1.34	0		1.31	0		2.41	0	
4		1.3	0		1.34	1		2.34	0	
5		1.34	0		40.73	1		2.43	0	
6		1.38	0		24.6	1		4.13	0	
7		2.23	0		3	1		2.48	0	
8		1.34	0		2.72	1		48.19	1	
9		1.42	0		6.07	1		2.58	0	
10		1.38	0		3.03	1		4.13	1	
10		1 34	0		7.35	1		2.34	0	
12		1.38	0		13.1	1		5.85	1	
12		13	0		8.63	1		3.44	1	
14		1 34	0		3.83	1	_	4 47	1	
14		1.34	0		479.2	1		378.63	1	
10		1 38	0		63.89	1		22.37	1	
10		1 38	0		12.1	1		15/ 0	1	
1/		1.30	0		38.24	1		7 02	1	
18		1.40	0		1 27	0		2 / 9	0	
19		1.30	0		1.37	0		2.40	0	
20		1.30	0		1.37	0		2.31	0	
21		1.4	0		5.11	1		2.40	0	
22		1.30	0		15.07	1		2.40	0	
23		1.34	0		2.01	1		2.46	0	
24		1.34	0		2.01	1		2.44	0	
25		1.30	0		1.41	0		2.41	0	
26		1.42	0		1.44	0		2.38	0	
2/		1.4	0		1.37	0		2.38	0	
28		1.34	0		1.34	0		2.55	0	
29		1.34	0		1.34	0		2.46	0	
30		1.42	0		1.34	1		2.44	0	
31		1.34	0		1.9	1		2.41	0	
32		1.30	0		1.44	0		2.41	0	
33		1.52	0		1.20	0		2.39	0	
34		1.25	0		5.11	1		2.36	0	
35		1.25	0		0.11	1		2.34	0	
36		1.3	0		2.30	1		2.34	0	
37		1.3	0		1.82	1		2.31	0	
38		1.3	U		2.43	1		2.27	Ű	
39		1.34	U		14.38	1		2.41	0	
40		1.20	0		1.20	1		2.27	0	
41		1.25	U		1.85			2.24	U 	
42		1.25	U		1./9	1		5.51	1	
43		1.3	U		0.07	1		2.31	U 	
44		1.3	U		7.03	1		5.51	1	
45		1.34	U		0./1	1		4.82		
46		1.25	0		11.82	1		3.79	1	
47		1.25	Ű		3.19	1		3.44	1	
48		1.25	Ű		35.14	1		/5./3	1	
49		1.3	Ű		11.18	1		8.61	1	
50		1.25	Ű		35.14	1		148.01	1	
51		1.3	0		99.04	1		41.31	1	
52		1.3	0		1.34	0		2.38	0	
53		1.3	0		1.28	0		2.41	0	
54		1.3	0		1.28	0		2.34	0	
55		1.3	0		1.28	0		2.34	0	

	F	G	Н	I	J	K	L	М	Ν	0
1		1,2-DICHLOROETHANE	d_1,2-DICHLOROETHANE		BENZENE	d_BENZENE		CYCLOHEXANE	d_CYCLOHEXANE	
56		1.34	0		1.25	0		2.34	0	
57		1.25	0		5.43	1		2.31	0	
58		1.25	0		2.11	1		2.24	0	
59		1.3	0		1.31	0		2.38	0	
60		1.3	0		1.28	0		2.31	0	
61		1.25	0		1.28	0		2.31	0	
62		1.25	0		1.25	0		2.27	0	
63		1.25	0		1.25	0		2.27	0	
64		1.38	0		1.41	0		2.51	0	
65		1.3	0		1.37	0		2.48	0	
66		1.38	0		2.01	1		4.47	1	
67		1.42	0		1.5	1		2.58	0	
68		1.38	0		11.66	1		53.35	1	
69		1.38	0		9.58	1		251.28	1	
70		1.38	0		54.31	1		8.26	1	
71		1.3	0		1.28	0		2.48	0	
72		1.34	0		8.63	1		2.44	0	
73		1.3	0		4.15	1		2.34	0	
74		1.38	0		3.83	1		2.34	0	
75		1.34	0		7.67	1		2.44	0	
76		1.09	0		4.47	1		2.38	0	
77		1.3	0		4.15	1		2	0	
78		1.3	0		3.51	1		27.88	1	
79		1.3	0		1.88	1		26.85	1	
80		1.38	0		1.85	0		2.51	0	
81		1.17	0		1.28	0		3.37	0	
82		1.25	0		1.25	0		2.38	0	
83		1.86	0		6.07	1		2.34	0	
84		1.25	0		4.15	1		2.31	0	
85		1.3	0		1.92	1		2.27	0	
86		1.3	0		3.16	1		13.08	1	
87		1.66	0		1.63	0		2.41	0	
88		1.25	0		1.25	0		2.27	0	
89		1.25	0		1.25	0		2.27	0	
90		1.34	0		9.58	1		4.82	1	
91		1.21	0		1.25	0		2.27	0	
92		1.25	0		1.25	0		2.24	0	
93		1.3	0		1.28	0		2.34	0	
94		1.3	0		4.15	1		2.34	0	

	Р	Q	R	S	Т	U	V	W
1	ETHYLBENZENE	d_ETHYLBENZENE		M,P-XYLENE (SUM OF ISOMERS)	d_M,P-XYLENE (SUM OF ISOMERS)		NAPHTHALENE	d_NAPHTHALENE
2	1.39	0		3.82	1		1.52	0
3	1.3	0		9.12	1		3.25	1
4	2.08	1		6.08	1		2.04	1
5	62.96	1		607.87	1		5.71	1
6	4.26	1		20.41	1		5.24	1
7	3.39	1		16.07	1		5.24	1
0	3.95	1		20.41	1		4.93	1
0	6.50	1		17.8	1		5 77	1
9	3.95	1		28.22	1		14 15	1
10	4.78	1		20.22	1		5 77	1
11	4.78	1		42.12	1		12 11	1
12	10.42	1		42.12	1		5.04	1
13	4.78	1		12.10	1		5.24	1
14	3	1		21.71	1		3.2	1
15	243.17	1		521.03	1		94.30	1
16	/8.16	1		269.2	1		52.42	1
17	21.28	1		69.4/	1		36.17	1
18	18.67	1		56.44	1		22.54	1
19	1.39	0		2.56	0		1.52	0
20	1.35	0		2.52	0		/.08	1
21	1.35	0		15.85	1		6.29	1
22	3.28	1		6.51	1		2.62	1
23	14.76	1		3.99	1		1.94	1
24	1.61	1		60.79	1		19.92	1
25	1.43	1		6.95	1		1.68	1
26	1.43	0		12.59	1		1.6	0
27	1.35	0		7.38	1		1.52	0
28	1.35	0		6.08	1		6.29	1
29	2.78	1		6.08	1		5.24	1
30	1.65	1		6.08	1		5.24	1
31	1.56	1		5.21	1		7.86	1
32	1.43	1		6.08	1		4.19	1
33	1.3	0		14.33	1		1.47	0
34	1.26	0		7.38	1		1.42	0
35	3.19	1		5.21	1		4.14	1
36	1.95	1		3.08	1		1.99	1
37	1.61	1		6.51	1		2.57	1
38	1.78	1		6.95	1		3.72	1
39	24.1	1		223.61	1		3.8	1
40	1.26	0		11.29	1		1.42	0
41	2.87	1		4.78	1		1.42	0
42	1.3	1		3.86	1		3.09	1
43	5.97	1		23.66	1		1.47	0
44	6.51	1		27.35	1		5.22	1
45	8.25	1		33	1		7.34	1
46	10.42	1		43.42	1		13.63	1
47	3.78	1		17.37	1		5.24	1
48	52.11	1		212.75	1		52.42	1
40	9.12	1		38.64	1		18.87	1
4J 50	73.82	1		264.86	1		256.86	1
50	95.53	1		360.38	1		57.66	1
51	1 35	0		2 43	0		1 47	n
52	13	0		2.40	0		1 47	n 0
55	13	n 0		31.26	1		1 / 2	0
54	1.5	0		6.09	1		3.51	1
55	1.20	U U	1	0.00	1		5.51	

	Р	Q	R	S	Т	U	V	W
1	ETHYLBENZENE	d_ETHYLBENZENE		M,P-XYLENE (SUM OF ISOMERS)	d_M,P-XYLENE (SUM OF ISOMERS)		NAPHTHALENE	d_NAPHTHALENE
56	1.26	0		4.78	1		3.09	1
57	4.78	1		4.78	1		2.18	1
58	1.48	1		4.78	1		1.42	1
59	1.3	0		2.39	0		1.42	0
60	1.26	0		2.34	0		1.42	0
61	1.26	0		4.3	1		2.36	1
62	1.26	0		3.78	1		1.68	1
63	1.26	0		3.3	1		1.83	1
64	3.82	1		12.16	1		3.72	1
65	4.26	1		9.99	1		1.57	0
66	3.3	1		13.89	1		1.52	0
67	2.08	1		6.95	1		1.47	0
68	7.16	1		19.97	1		20.97	1
69	13.9	1		47.76	1		8.91	1
70	13.9	1		40.38	1		2.02	1
71	1.39	0		26.05	1		1.52	0
72	1.3	0		7.82	1		4.56	1
73	5.65	1		3.6	1		4.51	1
74	1.56	1		3.3	1		1.47	1
75	1.3	0		104.21	1		37.48	1
76	15.85	1		33	1		23.07	1
77	5.21	1		13.03	1		6.81	1
78	18.24	1		69.47	1		6.29	1
79	2.39	1		6.08	1		30.4	1
80	1.39	0		2.61	0		2.1	0
81	1.87	0		3.47	0		1.42	0
82	1.26	0		2.39	0		1.42	0
83	1.26	0		2.34	0		17.3	1
84	4.78	1		26.49	1		4.35	1
85	14.76	1		60.79	1		2.41	1
86	2.3	1		12.16	1		1.73	1
87	1.26	0		2.34	0		1.83	0
88	1.26	0		2.34	0		1.42	0
89	5.65	1		14.33	1		1.42	0
90	4.17	1		12.59	1		2.99	1
91	1.26	0		2.34	0		1.42	0
92	1.22	0		2.3	0		1.36	0
93	1.35	1		12.16	1		4.19	1
94	2.48	1		4.78	1		2.04	1

	Х	Y	Z	AA	AB	AC	AD	AE	AF
1		n-HEPTANE	d_n-HEPTANE		n-HEXANE	d_n-HEXANE		O-XYLENE (1,2-DIMETHYLBENZENE)	d_O-XYLENE (1,2-DIMETHYLBENZENE)
2		1.43	0		1.27	0		1.3	0
3		1.39	0		1.2	0		2.61	1
4		1.39	0		1.23	0		1.69	1
5		2.46	1		1.25	0		284.4	1
6		36.48	1		26.08	1		5.64	1
7		2.38	0		2.11	0		5.21	1
8		1.43	0		1.27	0		4.34	1
9		5.33	1		5.64	1		7.82	1
10		1.52	0		1.34	0		4.78	1
11		7.38	1		9.52	1		12.16	1
12		4.92	1		3.52	1		6.95	1
13		3.77	1		3.21	1		6.08	1
14		1.39	0		1.2	0		3.34	1
15		491.83	1		599.21	1		191.04	1
16		39.76	1		28.55	1		86.84	1
17		151.65	1		77.54	1		24.75	1
18		9.02	1		3.52	1		19.54	1
19		1.97	1		1.3	0		23.01	1
20		1.48	0		1.27	0		5.64	1
21		1.43	0		1.27	0		2.39	1
22		1.43	0		1.27	0		2.26	1
23		1.43	0		1.27	0		1.35	1
24		1.43	0		1.27	0		1.3	0
25		1.43	0		1.27	0		1.26	0
26		1.64	1		1.34	0		3.82	1
27		1.52	0		1.34	0		2.26	1
28		1.52	0		1.32	0		1.82	1
29		1.43	0		1.27	0		1.78	1
30		1.43	0		1.27	0		1.78	1
31		1.43	0		1.27	0		1.76	1
32		1.39	0		1.23	0		1.56	1
33		1.52	1		1.23	0		95.52	1
34		1.93	1		1.23	0		5.19	1
35		1.39	0		1.23	0		2.65	1
36		1.39	0		1.2	0		2.52	1
37		1.35	0		1.2	0		2.13	1
38		1.35	0		1.2	0		1.91	1
39		1.35	0		1.16	0		1.22	0
40		6.97	1		3.35	1		3.65	1
41		1.35	0		1.16	0		1.74	1
42		1.31	0		1.16	0		1.35	1
43		13.53	1		3.88	1		18.24	1
44		5.33	1		2.82	1		10.85	1
45		5.08	1		2.68	1		9.12	1
46		4.92	1		2.19	1		8.68	1
47		2.13	1		1.2	0		6.51	1
48		98.37	1		52.87	1		134.6	1
49		32.79	1		20.09	1		82.5	1
50		7.79	1		3.52	1		13.46	1
51		81.97	1		26.79	1		121.57	1
52		3.11	1		1.45	1		14.33	1
53		1.41	0		1.23	0		2.69	1
54		1.39	0		1.2	0		1.78	1
55		1.35	0		1.2	0		1.65	1

	Х	Y	Z	AA	AB	AC	AD	AE	AF
1		n-HEPTANE	d_n-HEPTANE		n-HEXANE	d_n-HEXANE		O-XYLENE (1,2-DIMETHYLBENZENE)	d_O-XYLENE (1,2-DIMETHYLBENZENE)
56		1.35	0		1.2	0		1.43	1
57		1.35	0		1.2	0		1.22	0
58		1.31	0		1.16	0		1.17	0
59		1.39	0		1.23	0		1.39	1
60		1.35	0		1.2	0		1.26	1
61		1.35	0		1.2	0		1.22	0
62		1.35	0		1.16	0		1.17	0
63		1.35	0		1.16	0		1.17	0
64		2.54	1		1.34	0		4.08	1
65		11.48	1		1.3	0		4.34	1
66		7.38	1		1.27	0		3.13	1
67		1.48	0		1.2	0		2.39	1
68		241.82	1		236.16	1		16.93	1
69		77.87	1		29.61	1		11.72	1
70		11.48	1		5.99	1		5.86	1
71		1.56	1		1.27	0		13.89	1
72		1.43	0		1.27	0		3.6	1
73		1.35	0		1.2	0		1.43	1
74		1.35	0		1.2	0		1.39	1
75		17.62	1		28.9	1		29.96	1
76		3.93	1		1.27	0		27.14	1
77		3.93	1		1.27	1		13.89	1
78		1.39	0		1.23	0		3.6	1
79		1.19	0		1.23	0		2.95	1
80		11.89	1		12.34	1		30.39	1
81		1.97	0		1.76	0		12.16	1
82		1.89	1		1.3	0		5.21	1
83		1.48	0		1.23	0		1.74	0
84		1.39	0		1.2	0		1.3	0
85		1.35	0		1.2	0		1.17	0
86		1.31	0		1.16	0		1.17	0
87		3.85	1		20.09	1		4.78	1
88		1.39	0		1.9	1		3.99	1
89		1.31	0		1.16	0		1.17	0
90		1.31	0		1.16	0		1.17	0
91		1.31	0		1.16	0		1.17	0
92		1.31	0		1.16	0		1.17	0
93		1.35	0		1.2	0		3.3	1
94		1.35	0		1.2	0		1.52	1

A	AG	AH	AI	AJ	AK	AL	AM	AN	AO
1		tert-BUTYL METHYL ETHER	d_tert-BUTYL METHYL ETHER		TOLUENE	d_TOLUENE		XYLENES, TOTAL	d_XYLENES, TOTAL
2		1.44	0		4.15	1		3.82	1
3		1.41	0		9.8	1		11.72	1
4		1.37	0		8.67	1		7.82	1
5		1.42	0		280.75	1		911.8	1
6		2.38	0		25.63	1		26.05	1
7		1.44	0		21.1	1		20.41	1
, o		1 41	0		33.92	1		25.62	1
0		1 51	0		25.63	1		22.58	1
9		1 48	0		41.45	1		36.04	1
10		1.48	0		33.54	1		26.92	1
10		1.40	0		71.6	1		56.44	1
12		1 41	0		21.49	1		15.63	1
13		1.41	0		21.40	1		29.66	1
14		1.37	0		004.44	1		20.00	1
15		1.44	0		904.44	1		736.13	1
16		1.44	0		301.48	1		350.04	1
17		1.55	0		109.29	1		95.52	1
18		1.48	0		102.05	1		/8.15	1
19		1.48	0		13.94			2.56	Ű
20		1.44	0		15.07	1		2.52	0
21		1.44	0		7.54	1		82.5	1
22		1.44	0		4.15	1		21.49	1
23		1.44	0		3.43	1		9.12	1
24		1.41	0		3.09	1		5.21	1
25		1.44	0		48.99	1		9.12	1
26		1.51	0		8.48	1		6.51	1
27		1.51	0		5.28	1		7.82	1
28		1.5	0		6.41	1		7.82	1
29		1.44	0		7.91	1		9.55	1
30		1.44	0		12.81	1		16.5	1
31		1.41	0		6.03	1		7.82	1
32		1.41	0		6.03	1		7.82	1
33		1.41	0		109.29	1		319.13	1
34		1.41	0		20.54	1		19.54	1
35		1.39	0		15.07	1		9.55	1
36		1.37	0		6.03	1		6.95	1
37		1.37	0		4.9	1		3.08	1
38		1.37	0		11.68	1		8.68	1
39		1.33	0		10.93	1		9.55	1
40		1.33	0		6.78	1		5.21	1
41		1.33	0		10.93	1		6.51	1
42		1.33	0		16.58	1		14.76	1
43		1.35	0		37.87	1		36.47	1
44		1.41	0		45.22	1		43.42	1
45		1.41	0		56.53	1		65.13	1
46		1.37	0		67.83	1		23.88	1
47		1.37	0		22.23	1		31.91	1
48		1.37	0		195.96	1		295.25	1
49		1.37	0		64.06	1		52.1	1
50		1.37	0		169.58	1		403.8	1
51		1.41	0		716.02	1		477.61	1
52		1.41	0		1.32	0		2.43	0
53		1.37	0		26.38	1		2.34	0
54		1.37	0		6.41	1		6.51	1
55		1.37	0		5.65	1		43.42	1

	AG	AH	AI	AJ	AK	AL	AM	AN	AO
1		tert-BUTYL METHYL ETHER	d_tert-BUTYL METHYL ETHER		TOLUENE	d_TOLUENE		XYLENES, TOTAL	d_XYLENES, TOTAL
56		1.37	0		4.62	1		6.51	1
57		1.33	0		1.92	1		6.08	1
58		1.37	0		9.04	1		8.68	1
59		1.37	0		4.52	1		2.39	0
60		1.37	0		4.15	1		2.34	0
61		1.33	0		2.83	1		5.64	1
62		1.33	0		2.79	1		5.21	1
63		1.33	0		3.58	1		3.3	1
64		1.51	0		17.34	1		16.5	1
65		1.48	0		16.2	1		13.03	1
66		1.44	0		25.25	1		18.67	1
67		1.37	0		7.91	1		9.55	1
68		1.48	0		69.72	1		25.83	1
69		1.48	0		79.14	1		65.13	1
70		1.44	0		165.81	1		52.1	1
71		1.44	0		1.36	0		11.29	1
72		1.44	0		9.04	1		39.95	1
73		1.37	0		22.61	1		4.78	1
74		1.37	0		4.15	1		4.78	1
75		1.44	0		92.33	1		47.76	1
76		1.37	0		27.13	1		16.93	1
77		1.37	0		24.12	1		9.12	1
78		1.37	0		6.03	1		99.86	1
79		1.19	0		37.69	1		132.43	1
80		1.98	0		28.26	1		2.61	0
81		1.37	0		31.28	1		2.39	0
82		1.37	0		12.81	1		3.47	0
83		1.35	0		3.43	1		2.34	0
84		1.33	0		2.3	1		38.64	1
85		1.26	0		2.15	1		91.18	1
86		1.48	0		5.65	1		17.37	1
87		1.73	0		1.32	0		2.34	0
88		1.41	0		1.32	0		2.34	0
89		1.33	0		52.76	1		18.67	1
90		1.33	0		23.36	1		16.5	1
91		1.33	0		7.16	1		2.3	0
92		1.3	0		5.28	1		2.34	0
93		1.37	0		6.78	1		6.51	1
94		1.37	0		33.92	1		15.63	1

Attachment 2 (Continued)

Soil Vapor Samples from Q1 through Q3 2016, On-Base (Output)

	А	В	С	D	E	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	Sets with N	on-Detects				
2												
3		User Sele	cted Options									
4	Dat	te/Time of C	omputation	ProUCL 5.16	6/26/2017 1::	28:45 PM						
5			From File	WorkSheet.	xls							
6		Fu	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap	Operations	2000								
9												
10	1,2,4-TRIM	ETHYLBEN	ZENE									
11												
12						General	Statistics					
13			Total	Number of O	bservations	93			Numbe	r of Distinct (Observations	63
14				Numbe	er of Detects	72				Number of	Non-Detects	21
15			N	umber of Dist	inct Detects	60			Numb	er of Distinct	Non-Detects	6
16				Mini	mum Detect	1.18				Minimum	1 Non-Detect	1.18
17				Maxi	mum Detect	639.1				Maximum	Non-Detect	1.77
18				Varia	nce Detects	7595				Percent	Non-Detects	22.58%
19				M	ean Detects	29.53					SD Detects	87.15
20				Med	dian Detects	4.89					CV Detects	2.951
21				Skewn	ess Detects	5.524				Kurt	osis Detects	35.17
22				Mean of Log	ged Detects	1.936				SD of Log	ged Detects	1.421
23												
24					Norm	al GOF Tes	t on Detects	Only				
25			S	hapiro Wilk T	est Statistic	0.363		Normal GOF	Test on De	etected Obse	rvations Only	/
26				5% Shapiro V	Vilk P Value	0	I	Detected Da	ta Not Norm	al at 5% Sign	ificance Leve	;l
27				Lilliefors T	est Statistic	0.372			Lilliefors	GOF Test		
28			5	% Lilliefors C	ritical Value	0.104	I	Detected Da	ta Not Norm	al at 5% Sign	ificance Leve	;I
29				D	etected Data	a Not Norma	l at 5% Sign	ificance Lev	/el			
30			<u> </u>									
31			Kaplan-	Meier (KM) S	Statistics usi	ng Normal C	ritical Value	s and other	Nonparame	tric UCLs		
32					KM Mean	23.13			KI	M Standard E	rror of Mean	8.047
33					KM SD	77.06				95% KN	1 (BCA) UCL	36.81
34				95%	KM (t) UCL	36.5			95% KM (F	Percentile Bo	otstrap) UCL	38.17
35				95%	KM (z) UCL	36.37				95% KM Boo	otstrap t UCL	51.8
36					bysnev UCL	4/.2/				95% KM Che	bysnev UCL	58.21
37			97	.5% KM Chei	bysnev UCL	/3.39					bysnev UCL	103.2
38						Tosta en Di	tooted Oha	nutions Or				
39				G					ndersen De			
40						7.942	Detect				25L	
41				5% A-D C		0.00	Deleci			Smirnov CC		
42				۲-۵۱ ۲۰۰۵ ۲۰۰۵		0.201	Dotoot	ad Data Nat	Gamma Dia	tributed at E	" % Significance	
43				Detecto	d Data Not (Jamma Diet	ributed at 50			and at 37		
44				Delecte			noutou al 07					
45					Gamma	Statistics or	Detected D	ata Only				
46					k hat (MLE)	0 446			Ŀ	star (hias co	rrected MLE)	0 437
47				The	ta hat (MLE)	66 21			N Theta	star (hias cor		67 63
48				n		64 23			incia	nu star (his	as corrected)	62.88
49				 Ма	an (detects)	29.53						02.00
50				IVIC		20.00						
51				C	amma ROS	Statistics	sina Imputer	l Non-Deter	ts			
52						Stationto U	ang inputer					

	A		В	С		D)	E		F	G		Н			J		К	\Box	L
53				GROS ma	ay r	not be	used	when da	ita se	et has > 50%	6 NDs with	ma	any tied obs	servatio	ons at	multiple	DLs			
54		(GROS may	y not be use	ed ۱	when	kstar o	of detects	s is s	mall such a	s <1.0, esp	ec	cially when t	he san	nple s	ze is sm	all (e.	.g., <15-20)	
55				F	or	such	situati	ons, GR	OS r	nethod may	yield incori	rec	ct values of	UCLs	and B	TVs				
56							Т	his is es	pecia	ally true whe	en the samp	ble	e size is sma	all.						
57			For gar	nma distrib	ute	d dete	ected	data, BT	Vs a	nd UCLs ma	ay be comp	ute	ed using ga	mma d	istribu	tion on K	(M es	stimates		
58								Minim	num	0.01								Mea	n	22.87
59								Maxim	num	639.1								Media	n	3
60									SD	77.56								С	V	3.392
61								k hat (M	LE)	0.264					k	star (bias	s corr	ected MLE	<u>:)</u>	0.262
62							Ihe	ta hat (M	LE)	86.73					l heta	star (bias	s corr	ected MLE	<u>:)</u>	8/.1/
63							n	iu hat (M	LE)	49.04						nu stai	r (bias	s corrected	1)	48.79
64			A	Adjuste) (b)	0.0474				A		. 0	Male.	- (40.70.4		22.50
65		0	App	proximate C	ni :	Squar	re valu	ie (48.79	θ, α)	33.76			05% 0	Adjust	ed Cr	II Square	valu	ie (48.79,	5)	33.56
66		95	% Gamma	a Approxima	ate	UCL	(use w	/nen n>=	-50)	33.05			95% G	amma	Aajus		(use	wnen n<50)	33.24
67										D										
68							ES	Mean				ng	KM EStima	ites					4)	77.06
69										23.13									1)	77.00 <u> </u>
70							Va	k hot (I		0.0001									1)	0.047
71										16 76									1) 1)	17 55
72							+b.	nu nat (i	NIVI)	256.9							the		1)	17.55
73				80	10/_	aamn			KM)	14.7					000	% aamm			1) 1)	60.01
74				00	50/2	gann				13/ 6					000	% gamm			1) 1)	378.2
75				5.) /0	yanni	na per		XIVI)	134.0					33	/o yammo	a per		"	576.2
76								6	mm	a Kanlan-M	ojor (KM) S	Sta	tietice							
77			Ann	vrovimate (hi 9	Sanar	ro Valı	Ga 17 55 ما	inni inni inni inni inni inni inni inn	9 066		210	105005	Δdiust	od Ch	i Sauare	Valu	<u>م (17 55 (</u>	3)	8 969
78	95	% (-	Anna Ani		(M.			$\frac{10}{hen n>=}$, u) 50)	44 78			95% Gamm	Aujusi	isted k			when n<5(<i>יי</i>	45.26
79		/// C					(use w		-50)	-+.70				ia Auju	Sicur		(use	when h so	"	40.20
80								anorma	IGO	F Test on D	etected Of	nse	ervations O	nlv						
81			SI	haniro Wilk	An	proxir	mate T	est Stati	istic	0.875				Shan	iro W	ilk GOF '	Test			
82			0.		5	% Sha	apiro V	Vilk P Va	alue	5.1047E-8	1	De	etected Data	Not L	oanor	mal at 5%	6 Sia	nificance l	eve	əl
83					-	Lillie	efors T	est Stati	istic	0.142				Lill	iefors	GOF Te	st			
04 05					5%	6 Lillie	efors C	ritical Va	alue	0.104	[De	etected Data	Not L	ognor	nal at 5%	6 Siqi	nificance L	eve	əl
60 96					-		Det	tected D	ata I	Not Lognorn	nal at 5% S	ig	nificance L	evel	5		5			-
00 07												-								
07							Lo	gnormal	ROS	S Statistics	Using Impu	ite	d Non-Dete	ects						
80						Mear	n in Oi	- riginal So	cale	22.94						М	ean i	n Log Sca	е	1.221
<u>0</u> 0						SE	D in O	riginal So	cale	77.54							SD i	n Log Sca	е	1.848
91			95% t l	JCL (assun	nes	norm	ality o	f ROS d	ata)	36.3					95%	Percentil	e Boo	otstrap UC	L	37.4
92					9	5% B0	CA Bo	otstrap l	JCL	43.63						95%	Boot	tstrap t UC	L	53.24
93						95% I	H-UCL	L (Log R	OS)	34.7									+	
94											1									
95	Statistics using KM estin									on Logged	Data and A	SS	uming Log	normal	Distr	bution				
96						ł	KM Me	ean (logg	ged)	1.536							KN	1 Geo Mea	n	4.648
97							KM	SD (logg	jed)	1.445					95%	Critical H	l Valu	ie (KM-Lo	J)	2.721
98				KM Stand	arc	l Erroi	r of Me	ean (logg	jed)	0.151						95% H	I-UC	L (KM -Lo	3)	19.89
99							KM	SD (logg	jed)	1.445					95%	Critical H	l Valu	ie (KM-Lo	J)	2.721
100				KM Stand	arc	l Erroi	r of Me	ean (logg	jed)	0.151									+	
101											ı									
102										DL/2 S	tatistics									
103				DL/2	2 N	ormal	I							DL/2	Log-	Fransforr	ned			
104						Mear	n in Oi	riginal So	cale	23						М	ean i	n Log Sca	е	1.39

	А	В	С	D	Е	F	G	Н		J	K	L			
105				SD in Ori	ginal Scale	77.52				SD) in Log Scale	1.61			
106			95% t l	JCL (Assumes	normality)	36.36				959	% H-Stat UCL	23.92			
107			DL/2	is not a recom	mended m	ethod, provid	led for com	parisons and	l historical r	easons					
108															
109					Nonparame	etric Distribu	tion Free U	CL Statistics							
110				Data do not	follow a D	iscernible Di	stribution a	t 5% Signific	ance Level						
111															
112	-					Suggested	UCL to Use								
113			95	5% KM (Cheby	shev) UCL	58.21									
114		Nata: Ourra		ling the colocti	an of a 05%										
115		Note: Sugge				o UCL are pro		dictribution	select the r	nost appropr					
116		Those reco	r mmondation							Noichla ar	ad Loo (2006)				
117		mese reco		s are based up			te: for additi			, Maichie, ar	iu Lee (2000).	'n			
118		wever, sinu										ai i.			
119			- (ETHYI EN		=)										
120	1,2 010110		- (=		-,										
121						General	Statistics								
122			Total	Number of Ob	servations	93			Numbe	er of Distinct	Observations	24			
123	Number of Detects 17 Number of Non-Detects 7														
124	Number of Distinct Detects 16 Number of Distinct Non-Detects														
125	Minimum Detect 1.31 Minimum Non-Detects														
120				Maxim	num Detect	23.82				Maximur	m Non-Detect	2.23			
127				Varian	ce Detects	27.73				Percent	t Non-Detects	81.72%			
120				Ме	an Detects	3.668					SD Detects	5.266			
130				Medi	an Detects	2.31					CV Detects	1.435			
131				Skewne	ess Detects	3.935				Ku	rtosis Detects	15.9			
132				Mean of Logg	ed Detects	0.954				SD of Lo	gged Detects	0.674			
133							I								
134					Norm	nal GOF Tes	t on Detects	s Only							
135			S	hapiro Wilk Te	est Statistic	0.408			Shapiro W	ilk GOF Tes	it				
136			5% S	hapiro Wilk Cr	itical Value	0.892		Detected Da	ta Not Norm	al at 5% Sig	nificance Level				
137				Lilliefors Te	est Statistic	0.405			Lilliefors	GOF Test					
138			5	% Lilliefors Cr	itical Value	0.207		Detected Da	ta Not Norm	al at 5% Sig	nificance Level				
139				De	tected Data	a Not Norma	l at 5% Sigi	nificance Lev	el						
140			Kaalaa			Nemelo									
141			Kapian-	Meler (KM) St			ritical value	es and other	Nonparame		Free of Maar	0.057			
142						1.000			ĸ		Error or wean	0.257			
143				05%		1 082			05% KM /	90 /0 Ki	otstran) UCL	2.220			
144				95% k		1.902			95 % KIVI (r	95% KM Bo		2.001			
145						2 326				95% KM Ch		2.525			
146			97	5% KM Cheb	vshev UCI	3 159				99% KM Ch	ebyshev UCI	4 11			
147					,	0.100					02)01101 0 0 2				
148				Ga	mma GOF	Tests on De	etected Obs	ervations Or	ly						
149				A-D Te	est Statistic	2.139		A	nderson-Da	rling GOF T	est				
151				5% A-D Cr	itical Value	0.755	Detec	ted Data Not	Gamma Dis	stributed at 5	% Significance	Level			
152				K-S Te	est Statistic	0.277		ŀ	Kolmogorov	-Smirnov G	OF				
153				5% K-S Cr	itical Value	0.213	Detec	ted Data Not	Gamma Dis	tributed at 5	% Significance	Level			
154				Detected	Data Not	Gamma Dist	ributed at 5°	% Significan	ce Level						
155															
156					Gamma	Statistics or	Detected [Data Only							

	А	E	3	С	D	E	F	G	Н		J	K	L
157						k hat (MLE)	1.591			ł	star (bias corre	ected MLE)	1.349
158					The	ta hat (MLE)	2.306			Theta	star (bias corre	ected MLE)	2.719
159					I	nu hat (MLE)	54.08				nu star (bias	corrected)	45.87
160					Me	ean (detects)	3.668						
161							Į	1					
162					(Gamma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
163				GROS may	not be used	when data s	et has > 50%	NDs with m	nany tied obs	ervations a	t multiple DLs		
164		GRO	S may	not be used	l when kstar	of detects is	small such a	s <1.0, espe	cially when t	he sample :	size is small (e.g	g., <15-20)	
165				Fc	or such situat	ions, GROS	method may	yield incorre	ect values of	UCLs and I	BTVs		
166						This is especi	ally true whe	en the sample	e size is sma	all.			
167		F	or gan	nma distribut	ted detected	data, BTVs a	ind UCLs ma	ly be comput	ted using gar	mma distrib	ution on KM est	timates	
169			-			Minimum	0.01					Mean	0.679
100						Maximum	23.82					Median	0.01
169						SD	2 616					CV	3.854
170						k hat (MLE)	0.226				star (bias corre	ected MLF)	0.225
1/1					The	ta hat (MLE)	3 009			Thet	star (bias corre	ected MLE)	3.011
172						(MLE)	/1 95			Thea	nu star (bias		/1 93
173				Adjustod			0.0474						41.35
174			^	Aujusieu			28.00			Adjusted C	hi Sayara Value	o (41.02, 0)	27.01
175		050/ 0	Арр			ue (41.95, 0)	20.09		050/ 01	Aujusteu C	ni Square value	3 (41.93, p)	27.91
176		95% G	amma	Approximat	e UCL (use)	when n>=50)	1.013		95% Ga	amma Adju	sted UCL (use v	vnen n<50)	1.02
177													
178					E	stimates of G	amma Para	meters using	g KM Estima	tes			
179						Mean (KM)	1.555					SD (KM)	2.402
180					Va	ariance (KM)	5.77				SE of	Mean (KM)	0.257
181						k hat (KM)	0.419					k star (KM)	0.413
182						nu hat (KM)	77.99				n	u star (KM)	76.81
183					th	eta hat (KM)	3.709				thet	a star (KM)	3.767
184				80%	% gamma pe	rcentile (KM)	2.519			90	% gamma perc	entile (KM)	4.368
185				95%	% gamma pe	rcentile (KM)	6.392			99	% gamma perc	entile (KM)	11.46
186												i	
187						Gamm	na Kaplan-M	eier (KM) St	atistics				
188			Арр	roximate Ch	i Square Val	ue (76.81, α)	57.62			Adjusted C	hi Square Value	e (76.81, β)	57.36
189	95	% Gamm	na App	proximate KN	M-UCL (use v	when n>=50)	2.073		95% Gamm	a Adjusted	KM-UCL (use v	vhen n<50)	2.083
190							<u> </u>					L	
191					Le	ognormal GC	F Test on D	etected Obs	servations O	nly			
192				S	hapiro Wilk	Test Statistic	0.767			Shapiro V	/ilk GOF Test		
193				5% S	hapiro Wilk (Critical Value	0.892	D	etected Data	Not Logno	mal at 5% Sign	ificance Lev	el
194					Lilliefors	Test Statistic	0.184			Lilliefor	s GOF Test		
195				5	% Lilliefors (Critical Value	0.207	Det	ected Data a	ppear Logr	ormal at 5% Sig	gnificance Le	evel
106					Detected D	ata appear A		Lognormal a	at 5% Signifi	cance Leve			
190								•					
197					La	anormal RO	S Statistics	Usina Imput	ed Non-Dete	ects			
198					Mean in O	riginal Scale	0.913				Mean in	l og Scale	-1 148
199					SD in O	riginal Scale	2 567				SD in		1 368
200		01	5% + 1	ICI (assume	s normality	of ROS data	1 355			05%	Percentile Roo	tstran LICI	1 407
201		3	. /0 L U	CE (assume			1 206			3370		stran t LICI	2 0/7
202							1.000				35 /0 DOUL		2.047
203					90 % H-UU	L (LUY RUS)	1.1/ð						
204				0		M	an			annal Di i			
205				Statis	sucs using K			Jata and As	suming Logr	iormai Dist		0	1.07
206					KM M	ean (logged)	0.239				KM	Geo Mean	1.2/
207					KM	SD (logged)	0.439			95%	Critical H Value	ə (KM-Log)	1.814
208				KM Standa	rd Error of M	ean (logged)	0.047				95% H-UCL	. (KM -Log)	1.52

	А	В	С	D	Е	F	G	Н		J K	L
209				KM	SD (logged)	0.439			95%	Critical H Value (KM-Log)	1.814
210			KM Standa	rd Error of Me	ean (logged)	0.047					
211											
212						DL/2 S	tatistics				
213			DL/2	Normal					DL/2 Log-	ransformed	
214				Mean in Or	iginal Scale	1.218				Mean in Log Scale	-0.157
215				SD in Or	iginal Scale	2.487				SD in Log Scale	0.604
216			95% t l	JCL (Assume	s normality)	1.646				95% H-Stat UCL	1.157
210			DL/2	is not a recor	nmended m	ethod, provid	ded for com	parisons and	historical re	asons	
217											
210					Nonparame	etric Distribu	tion Free UC	CL Statistics			
219			Dete	cted Data ap	Dear Approx	cimate Loand	ormal Distrib	outed at 5% \$	Sianificance	Level	
220					F · FF						
221						Suggested	UCL to Use				
222						1 52					
223						1.02					
224		Note: Sugge	stions regard	ling the selec	tion of a 95%		ovided to be	In the user to	solect the n	ost appropriate 95% LICI	
225		Note: Sugge		Doormondo	tions are be			distribution			
226		Those room	r mmondation							Maiable and Les (2006)	
227		These reco	mmendations	s are based u	pon the resu		iulation stud	ies summariz	ea in Singn		
228	H	owever, simu	liations result	s will not cov	er all Real W	orid data se	ts; for additio	onal insight tr	ie user may	want to consult a statistic	an.
229			_								
230	1,2-DICHL	OROETHAN	E								
231											
232						General	Statistics				
233			Total	Number of O	bservations	93			Numbe	r of Distinct Observations	14
234				Numbe	er of Detects	0				Number of Non-Detects	93
235			N	umber of Dist	inct Detects	0			Numb	er of Distinct Non-Detects	14
236											
237		Wari	ning: All obs	ervations are	Non-Detect	s (NDs), the	refore all sta	atistics and e	estimates sh	ould also be NDs!	
238		Specifi	ically, sample	e mean, UCL	s, UPLs, an	d other statis	stics are als	o NDs lying	below the la	rgest detection limit!	
239	•	The Project 7	Team may de	ecide to use a	alternative s	ite specific v	alues to est	imate enviro	nmental par	ameters (e.g., EPC, BTV).
240											
241				The data s	et for variab	le 1,2-DICHI	LOROETHA	NE was not	processed!		
242											
243											
244	BENZENE										
245											
246						General	Statistics				
247			Total	Number of O	bservations	93			Numbe	r of Distinct Observations	51
2/18				Numbe	er of Detects	58				Number of Non-Detects	35
2/0			N	umber of Dist	inct Detects	46			Numb	er of Distinct Non-Detects	9
249				Mini	mum Detect	1.34				Minimum Non-Detect	1.25
250				Maxi	mum Detect	479.2				Maximum Non-Detect	1.85
201				Varia	nce Detects	4081				Percent Non-Detects	37.63%
252				M	ean Detects	19.58				SD Detects	63.88
253				Mer	lian Detects	5.11				CV Detects	3 262
254				Skewn	ess Detects	6 802				Kurtosis Detects	49.13
255				Mean of Log	aed Detects	1 849				SD of Loaned Detects	1 208
256					900 2010013	1.0-10					1.200
257											
258				honire MULT	NOM				Test P	tested Observations C 1	
259			S	mapiro Wilk I	est Statistic	0.284		Normal GOF		tected Observations Only	/
260				5% Shapiro V	Vilk P Value	0		Detected Da	ta Not Norm	al at 5% Significance Leve	el

	А	В		С	D	E E Tost Statist	F	2	G	Н		ofore	J GOE Tes		К		L
261				F		Critical Value	0.388 0.116	, ,		Detected [Data Not N	Jorma	Lat 5% Si	. ianific	ancelev	ام	
262								' mal 4	ot 5% Sigr			NOTTIC	ii at 5 /0 5	ignine			
263						Delected Da		mai	at 5 % Sigi								
264				Kanlan.	.Meier (KM) Statistics u	sing Norma	l Cri	tical Value	s and othe	er Nonnar	amet	ric UCI s				
265				Rapian		KM Mea	n 12.68					KN	1 Standar	d Erro	or of Mean	1	5 3 1 3
266						KMS	50.79						95%	KM (F			23.42
267					9	5% KM (t) UC	21.51				95% k	KM (P	ercentile I	Boots	trap) UCI	-	23.11
268					95	% KM (z) UC	L 21.42					(.	95% KM E	Bootst	rap t UCL		45.61
209					90% KM C	nebvshev UC	L 28.62					ç	5% KM C	hebv	shev UCL	_	35.84
270				97	7.5% KM C	nebyshev UC	L 45.86					ç	9% KM C	heby	shev UCL	_	65.55
271														,			
272						Gamma GC	F Tests on	Dete	ected Obs	ervations (Only						
273					A-I	D Test Statist	c 5.359)			Anderso	n-Dar	ling GOF	Test			
275					5% A-E	Critical Valu	e 0.81		Detect	ted Data N	ot Gamma	a Dist	ributed at	5% S	Significand	ce L	evel
276					K-:	S Test Statist	c 0.239)			Kolmog	orov-	Smirnov (GOF			
277					5% K-8	Critical Valu	e 0.123	3	Detect	ted Data N	ot Gamma	a Dist	ributed at	5% S	Significand	ce L	evel
278					Dete	cted Data No	t Gamma D	Distrit	buted at 59	% Significa	ance Leve	əl					
279																	
280						Gamm	a Statistics	s on [Detected D	Data Only							
281						k hat (MLE	E) 0.555	5				k s	star (bias o	correc	cted MLE)	0.538
282					Т	heta hat (MLE	35.25				Т	heta s	star (bias o	correc	cted MLE)	36.38
283						nu hat (MLE	64.43						nu star (bias o	corrected)	62.43
284						Mean (detects	s) 19.58										
285																	
286						Gamma RC	S Statistics	s usi	ng Impute	d Non-Dete	ects						
287			GF	OS may	y not be us	ed when data	set has > 5	50% I	NDs with m	nany tied o	bservatio	ns at i	multiple D	Ls			
288		GROS ma	ay not	be used	d when ksta	ar of detects i	s small such	h as ·	<1.0, espe	cially wher	n the sam	ple siz	ze is smal	l (e.g.	., <15-20)		
289				Fo	or such situ	ations, GRO	6 method m	iay yi	ield incorre	ect values o	of UCLs a	nd B1	Vs				
290						This is espe	cially true w	vhen	the sample	e size is sr	nall.						
291		For ga	amma	distribu	ted detecte	d data, BTVs	and UCLs	may	be compu	ted using g	jamma dis	stribut		l estir	nates	_	10.00
292						Winimui	n 0.01								Median	1	12.22
293						Iviaximui	n 4/9.2									1 /	2.01
294						S	0 222	,					tor (bioc	oorroe		<u></u>	4.109
295					т	K Hat (MLE	() 0.233	>			т	K S				/ \	52.5
296						nu hat (MLE	$\frac{1}{2}$ $\frac{32.42}{12}$				1		nu star (bias (/ \	43.28
297				Adjuster	1 l evel of S	ignificance (3) 0.0474	4					na star (0100 (/	-10.20
298		Ar	oproxi	mate Ch	ni Square V	alue (43.28. ($\frac{1}{1}$ 29.2				Adjuste	ed Chi	Square \	/alue	(43.28 B)	29.01
299		95% Gamm	na Apr	proximat	te UCL (us	when $n \ge 5$)) 18.11			95%	Gamma A	diust	ed UCL (u	ise wi	hen $n < 50$)	18.22
300							,						(-			/	
202						Estimates of	Gamma Pa	aram	eters usine	a KM Estin	nates						
202						Mean (KN	1) 12.68								SD (KM))	50.79
303						Variance (KM) 2580						SI	E of N	lean (KM))	5.313
305						k hat (KN	1) 0.0624	4						k	star (KM))	0.0675
306						nu hat (KM	I) 11.6							nu	star (KM))	12.56
307						theta hat (KM	1) 203.4							theta	star (KM)) 1	187.9
308				809	% gamma p	ercentile (KM	l) 4.17					90%	gamma	perce	ntile (KM))	26.58
309				959	% gamma p	ercentile (KN	1) 72.61					99%	gamma	perce	ntile (KM)) 2	243
310								I									
311						Gam	ma Kaplan-	-Mei	er (KM) St	atistics							
312		Ap	oproxi	mate Ch	ni Square V	alue (12.56, d	ı) 5.596	6			Adjuste	ed Chi	Square \	/alue	(12.56, β))	5.523

	А	В	С	D	E	F	G	Н	I	J K		L
313	959	% Gamma Ap	proximate KN	/I-UCL (use v	when n>=50)	28.46		95% Gamma	a Adjusted K	M-UCL (use when n	<50)	28.84
314												
315				Lo	ognormal GC	F Test on D	etected Ob	servations Or	nly			
316		S	hapiro Wilk A	pproximate	Test Statistic	0.909			Shapiro Wil	k GOF Test		
317				5% Shapiro	Wilk P Value	1.8516E-4	[Detected Data	Not Lognorn	nal at 5% Significand	e Lev	el
318				Lilliefors	Test Statistic	0.103			Lilliefors	GOF Test		
310			5	% Lilliefors C	Critical Value	0.116	De	etected Data a	opear Logno	rmal at 5% Significa	nce Le	evel
220				Detected D	ata appear A	pproximate	Lognormal	l at 5% Signific	cance Level			
220							•	•				
321				Lo	anormal RO	S Statistics	Jsina Impu	uted Non-Dete	cts			
322				Mean in O	riginal Scale	12.37				Mean in Log S	cale	0.755
323				SD in O	riginal Scale	51 14				SD in Log S	cale	1 761
324		95% + 1	ICL (assume		of ROS data)	21 10			95% 5	Percentile Bootstran		22 /0
325		90 /8 L C				21.13			3J /0 F			22.49
326						29.01					UCL	44.25
327				95% H-UC	L (LOG RUS)	17.73						
328												
329			Statis	STICS USING K	M estimates	on Logged L	Jata and A	ssuming Logn	ormal Distri	pution	-	0.440
330				KM M	ean (logged)	1.238				KM Geo N	lean	3.449
331				KM	SD (logged)	1.23			95% C	Critical H Value (KM-	Log)	2.483
332			KM Standa	rd Error of M	ean (logged)	0.129				95% H-UCL (KM -	Log)	10.11
333				KM	SD (logged)	1.23			95% C	Critical H Value (KM-	Log)	2.483
334			KM Standa	rd Error of M	ean (logged)	0.129						
335												
336						DL/2 S	tatistics					
337			DL/2	Normal					DL/2 Log-T	ransformed		
338				Mean in O	riginal Scale	12.46				Mean in Log S	cale	0.999
339				SD in O	riginal Scale	51.12				SD in Log S	cale	1.456
340			95% t l	JCL (Assume	es normality)	21.27				95% H-Stat	UCL	11.86
341			DL/2	is not a reco	mmended m	ethod, provid	ded for con	nparisons and	historical re	asons		
342												
343					Nonparame	tric Distribu	tion Free U	JCL Statistics				
344			Dete	cted Data ap	pear Approx	imate Logno	ormal Distri	ibuted at 5% S	Significance	Level		
3/5												
345						Suggested	UCL to Us	e				
240					KM H-UCL	10.11						
347												
340		Note: Suaae	stions regard	lina the selec	tion of a 95%	UCL are pr	ovided to h	elp the user to	select the m	ost appropriate 95%	UCL.	
349			F	Recommenda	ations are bas	ed upon dat	a size, data	distribution. a	and skewnes	S.		
350		These reco	mmendations	s are based u	upon the resu	Its of the sim	ulation stu	dies summariz	ed in Sinah.	Maichle, and Lee (2)	006).	
351	H	lowever simu	lations result	s will not cov	ver all Real W	orld data se	ts: for addit	ional insight th	e user may v	vant to consult a sta	tisticia	an.
352	•							ione noight in				
353												
354												
355						Conorol	Statiation					
356			Total	Number of (haanvationa		Statistics		Number	of Distinct Observed	iono	27
357			rotal			33			number	Number of Nen Det		67
358			N			20			Ni	Number of Non-De	ecis	07
359			N	UTIDER OF DIS		22			NUMDE	Minimum N	ects	0
360				Min	Imum Detect	3.44				Minimum Non-De	etect	2
361				Max	Imum Detect	3/8.6				Maximum Non-De	etect	4.13
362				Varia	ance Detects	8038				Percent Non-De	ects	72.04%
363				N	lean Detects	50.64				SD De	ects	89.66
364				Me	dian Detects	8.435				CV De	ects	1.77

	А	В	С	D	E	F	G	Н	I	J	K	L
365				Skewn	ess Detects	2.647				Kur	tosis Detects	7.204
366				Mean of Log	ged Detects	2.791				SD of Log	gged Detects	1.467
367												
368					Norm	nal GOF Tes	t on Detects	Only				
369			S	hapiro Wilk T	est Statistic	0.591			Shapiro Wil	k GOF Tes	t	
370			5% SI	napiro Wilk C	ritical Value	0.92	[Detected Dat	ta Not Norma	l at 5% Sigr	nificance Leve	
370				Lilliefors T	est Statistic	0.299			Lilliefors	GOF Test		
371			5	% Lilliefors C	ritical Value	0.17	[Detected Dat	ta Not Norma	l at 5% Sigr	nificance Leve	
372				D	etected Data	a Not Norma	l at 5% Sign	ificance Lev	el	5		
3/3							3 .					
3/4			Kanlan-	Meier (KM) S	tatistics usi	ng Normal C	ritical Value	s and other	Nonnarameti	ric UCI s		
3/5			Kapian		KM Mean	15.6			KM	I Standard F	rror of Mean	5 4 3 1
376					KM SD	51 35						25.63
377				05%		24.62			05% KM (D	95 /0 Ki	ototron) UCL	25.05
378				95%		24.02			95% KIVI (P			20.40
379				95%		24.53				95% KIVI BO		32.74
380					bysnev UCL	31.89			9	5% KM Che	ebysnev UCL	39.27
381			97	5% KM Chel	byshev UCL	49.51			g	9% KM Che	ebyshev UCL	69.63
382												
383				G	amma GOF	Tests on De	etected Obse	ervations On	ly			
384				A-D T	est Statistic	1.932		A	nderson-Dar	ling GOF T	est	
385				5% A-D C	ritical Value	0.803	Detect	ed Data Not	Gamma Dist	ributed at 5°	% Significance	e Level
386				K-S T	est Statistic	0.244		ł	Colmogorov-	Smirnov GC)F	
387				5% K-S C	ritical Value	0.181	Detect	ed Data Not	Gamma Dist	ributed at 59	% Significance	e Level
388				Detecte	d Data Not	Gamma Dist	ributed at 5%	% Significan	ce Level			
389												
390					Gamma	Statistics or	Detected D	ata Only				
391					k hat (MLE)	0.552			k s	tar (bias co	rrected MLE)	0.514
302				Thet	a hat (MLE)	91.74			Theta s	tar (bias co	rrected MLE)	98.53
202				n	u hat (MLE)	28.7				nu star (bi	as corrected)	26.73
204				Ме	an (detects)	50.64					,	
205					,							
395				G	amma ROS	Statistics u	sina Imputea	l Non-Detec	ts			
396			GROS may	not be used	when data s	et has $> 50\%$	NDs with m	any tied obs	ervations at r	nultiple DLs	1	
397		GROS may	/ not be used	when kstar o	of detects is	small such a		cially when t	he sample siz	ze is small (
398			Fo	r such situati	one GROS	method may	vield incorre	et values of			o.g., 10 20)	
399			10		his is osposi	ally true who	n the sample			v3		
400		Forgor	nmo dictribut						nma diatribut	ion on KM c	etimatos	
401		FUI yai			Minimum			eu using gai			Maan	14.10
402					iviinimum	0.01					iviean	14.10
403					iviaximum	3/8.0					Median	0.01
404					SD	52.02					CV	3.673
405					k hat (MLE)	0.148			ks	star (bias co	rrected MLE)	0.151
406				Thet	a hat (MLE)	95.46			Theta s	star (bias co	rrected MLE)	93.95
407				n	u hat (MLE)	27.6				nu star (bi	as corrected)	28.04
408			Adjusted	Level of Sigr	hificance (β)	0.0474						
409		Арр	proximate Chi	Square Valu	ie (28.04, α)	16.96			Adjusted Chi	Square Va	ue (28.04, β)	16.82
410	!	95% Gamma	Approximate	e UCL (use w	/hen n>=50)	23.42		95% Ga	amma Adjuste	ed UCL (use	e when n<50)	23.61
411												
412				Es	timates of G	amma Para	meters using	g KM Estima	tes			
413					Mean (KM)	15.6					SD (KM)	51.35
<u>41</u> 4				Va	riance (KM)	2637				SEG	of Mean (KM)	5.431
414 115					k hat (KM)	0.0923					k star (KM)	0.0965
415					nu hat (KM)	17 16					nu star (KM)	17 94
416						17.10						17.54

	А	В	С	D	E	F	G	Н		J	K	L
417				th	eta hat (KM)	169.1					theta star (KM)	161.7
418			80%	6 gamma per	centile (KM)	10.26			90	% gamma	percentile (KM)	40.88
419			95%	6 gamma per	centile (KM)	90.71			99	% gamma	percentile (KM)	252.3
420												
421					Gamm	a Kaplan-M	eier (KM) St	atistics				
421		App	proximate Ch	i Square Valı	ue (17.94, α)	9.348			Adjusted C	hi Square	Value (17.94, β)	9.25
422	95%	Gamma Apr	proximate KN	/I-UCL (use v	vhen n>=50)	29.94		95% Gamm	a Adiusted	KM-UCL (use when n<50)	30.25
423				(/				· · , · · · ·	(,	
424				lo	onormal GO	F Test on D	etected Ohs	ervations O	nlv			
425			S	haniro Wilk 1	est Statistic	0.875			Shaniro W	/ilk GOF T	est	
426			5% S	haniro Wilk (ritical Value	0.92	Di	etected Data	Not Lognor	mal at 5%		رما
427			570 0		Ast Statistic	0.02			Lilliefor			
428			F		ritical Value	0.207		atastad Data			Significance Los	(ol
429			J				Di al at 5% Sid				Significance Lev	Vei
430				De	lected Data I	NOL LOGNOM		Junicance Lo	evei			
431							1.1					
432				LO	gnormal RO		Using imput	ed Non-Dete	ects			0.040
433				Mean in O	riginal Scale	14.36				Me	ean in Log Scale	-0.842
434				SD in O	riginal Scale	51.97					SD in Log Scale	2.767
435		95% t L	JCL (assume	s normality c	of ROS data)	23.31			95%	Percentile	e Bootstrap UCL	23.68
436				95% BCA Bo	otstrap UCL	28.16				95%	Bootstrap t UCL	34.1
437				95% H-UCI	(Log ROS)	70.86						
438												
439			Statis	stics using K	M estimates	on Logged [Data and As	suming Logr	normal Dist	ibution		
440				KM Me	ean (logged)	1.28					KM Geo Mean	3.597
441				KM	SD (logged)	1.21			95%	Critical H	Value (KM-Log)	2.461
442			KM Standa	rd Error of Me	ean (logged)	0.128				95% H	-UCL (KM -Log)	10.21
443				KM	SD (logged)	1.21			95%	Critical H	Value (KM-Log)	2.461
444			KM Standa	rd Error of Me	ean (logged)	0.128						
445												
446						DL/2 S	tatistics					
447			DL/2	Normal					DL/2 Log-	Transform	ned	
448				Mean in O	riginal Scale	15.03				Me	ean in Log Scale	0.916
440				SD in O	riginal Scale	51.78					SD in Log Scale	1.404
449			95% t l	JCL (Assume	es normality)	23.95				ç	95% H-Stat UCL	9.897
450			DL/2	is not a reco	mmended me	ethod, provid	ded for com	parisons and	l historical r	easons		
451												
452					Nonparame	tric Distribu	tion Free UC	CL Statistics				
455				Data do n	ot follow a Di	scernible Di	stribution at	5% Sianific	ance Level			
454								g				
455						Suggested	UCL to Use					
456			95	% KM (Cheh	vshev) UCL	39.27						
457					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00.27						
458		Note: Sugge	stions regard	ling the selec	tion of a 95%		ovided to he	In the user to	solect the	most appr	opriate 95% LICI	
459		Note. Sugge		Recommanda	tions are bee				and skowno	ee		
460		Those roca	mmondationa		non the recu					Noichle	and Loc (2006)	
461		These recor	mmendations	s are based u	pon the resu	its of the sim	lulation studi	es summanz	zea in Singn	, Maichie,	and Lee (2006).	
462	HC	wever, simu	liations result	S WIII NOT COV	er all Real W	orid data se	is; for additio	onal insight ti	ne user may	want to c	onsult a statistici	an.
463												
464	EIHYLBEN	IZENE										
465												
466						General	Statistics					
467			Total	Number of C	bservations	93			Numbe	er of Distin	ct Observations	51
468				Numbe	er of Detects	61				Number	r of Non-Detects	32

	А	В	С	D	E	F	G	Н		J	K	L
469			1	Number of Dis	stinct Detects	47			Numbe	er of Distinct	Non-Detects	7
470				Mir	nimum Detect	1.3				Minimum	Non-Detect	1.22
471				Max	kimum Detect	243.2				Maximum	Non-Detect	1.87
472				Vari	ance Detects	1262				Percent	Non-Detects	34.41%
473				Ν	Mean Detects	15.43					SD Detects	35.52
474				Me	edian Detects	4.26					CV Detects	2.302
475				Skew	ness Detects	4.939				Kurt	osis Detects	28.84
476				Mean of Lo	gged Detects	1.757				SD of Log	ged Detects	1.202
477												
478					Norn	nal GOF Tes	t on Detects	s Only				
170				Shapiro Wilk	Test Statistic	0.426		Normal GOF	F Test on De	tected Obse	rvations Only	y
473				5% Shapiro	Wilk P Value	0		Detected Da	ta Not Norma	al at 5% Sign	ificance Leve	el
400				Lilliefors	Test Statistic	0.345			Lilliefors	GOF Test		
401				5% Lilliefors	Critical Value	0.113		Detected Da	ta Not Norma	al at 5% Sign	ificance Leve	el
402					Detected Dat	a Not Norma	al at 5% Sign	nificance Lev	/el			
483												
484			Kanlar	-Meier (KM)	Statistics usi	ng Normal C	ritical Value	s and other	Nonnaramet	ric UCI s		
485			. capital		KM Mean	10 54			KN	A Standard F	rror of Mean	3 066
486					KM SD	29.32				95% KM		16.23
487				050		15.64				Joroontilo Por		15.04
488				050		15.04			93 /8 KIVI (F			21 17
489				90% KM Ch		10.00						21.17
490						19.74						23.91
491			9	7.5% KM Che	ebysnev UCL	29.69			,	99% KM Che	bysnev UCL	41.05
492												
493					Gamma GOF	Tests on De	etected Obs	ervations Or	nly			
494				A-D	Test Statistic	5.151		A	nderson-Da	rling GOF Te	est	
495				5% A-D	Critical Value	0.804	Detect	ted Data Not	Gamma Dis	tributed at 5%	% Significance	e Level
496				K-S	Test Statistic	0.233			Kolmogorov-	Smirnov GO	F	
497				5% K-S	Critical Value	0.119	Detect	ted Data Not	Gamma Dist	tributed at 5%	6 Significanc	e Level
498				Detect	ed Data Not	Gamma Dist	ributed at 59	% Significan	ce Level			
499												
500					Gamma	Statistics or	n Detected D	Data Only				
501					k hat (MLE)	0.627			k :	star (bias cor	rected MLE)	0.607
502				The	eta hat (MLE)	24.61			Theta	star (bias cor	rected MLE)	25.42
503					nu hat (MLE)	76.49				nu star (bia	as corrected)	74.06
504				М	ean (detects)	15.43						
505						I	1					1
506					Gamma ROS	Statistics u	sing Impute	d Non-Detec	ts			
507			GROS ma	y not be used	d when data s	et has > 50%	6 NDs with m	nany tied obs	servations at	multiple DLs		
508		GROS ma	ay not be use	d when kstar	of detects is	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e	e.g., <15-20)	
509			F	or such situa	tions, GROS	method may	yield incorre	ect values of	UCLs and B	ΓVs		
510					This is especi	ally true whe	en the sample	e size is sma	all.			
510		For da	amma distrib	uted detected	data. BTVs a	nd UCLs ma	v be compu	ted usina aai	mma distribu	tion on KM e	stimates	
511		- 3-			Minimum	0.01	, p.	33			Mean	10.12
512					Maximum	243.2					Median	2.3
513					SD	29.62					CV	2.926
514					k hat (MLF)	0 257			k	star (hias cor	rected MLE	0 256
515				Th	eta hat (MLE)	39.34			Thete	star (hias cor		39.51
516						47.97			i lieta :	nu etar (hic	as corrected	47.66
517			- + ـ:لم ۸	d lovel of C		47.07				nu stal (Dia	as conected)	47.00
518		•	Adjuste		$\frac{1}{1}$	0.0474			Adjusts - C	Causers Mr.1	up (47.60 .0)	20.60
519			proximate C	III Square Va	iue (47.66, α)	32.81		050/ 0	Adjusted Ch	square Vali	ue (47.00, β)	32.62
520		95% Gamm	a Approxima	ite UCL (use	when n>=50)	14./		95% Ga	amma Adjust	ed UCL (use	when n<50)	14./9

	А		В		С		D		E	F	G		Н		I		J		К	Τ	L
521																					
522							Es	stimat	tes of G	amma Para	meters u	Ising	KM Esti	imate	es						
523								Mea	an (KM)	10.54									SD (KM)	29.32
524							Va	arianc	e (KM)	859.7								SE of I	Mean (KM)	3.066
525								k ha	at (KM)	0.129									k star (KM)	0.132
526								nu ha	at (KM)	24.04								nı	u star (KM)	24.6
527							th	eta ha	at (KM)	81.55								theta	a star (KM)	79.7
528					80%	6 gan	nma pei	rcentil	le (KM)	10.25						90%	5 gamm	a perc	entile (KM)	30.58
529					95%	% gan	nma pei	rcentil	le (KM)	59.33						99%	gamm	a perc	entile (KM)	145
530									Gamm	na Kanlan-M	eier (KM) Sta	atistics								
531			Ap	proxim	nate Ch	i Sau	are Valı	ue (24	4.60. α)	14.31		, 04		Δ	diuste	d Chi	Square	- Value	e (24.60, ß)	14.18
532	95	5% C	amma An		mate KN	л-UС		vhen	$\frac{1000, 0.0}{n > = 50}$	18.13			95% Gar	mma	Adius	ted K	M-UCI	(use v	vhen n<50	$\frac{1}{1}$	18.29
533				, proxim			2 (000)			10.10					, lajao			(400 1		/	10.20
534							Lo	anor	mal GC	OF Test on D	etected	Obs	ervations	s On	lv						
535			S	Shapiro	o Wilk A	opro	kimate	Fest S	Statistic	0.899					., Shapir	o Wi	k GOF	Test			
530					-	5% S	hapiro	Wilk F	^o Value	2.9905E-5		De	etected D	ata N	Not Loc	norn	nal at 5%	% Sign	ificance L	eve	
537						Li	Iliefors⊺	Fest S	Statistic	0.137					Lillie	fors	GOF Te	est			
538					5	% Lil	liefors C	Critica	l Value	0.113		De	etected D	ata N	Not Loc	norn	nal at 5%	% Sign	ificance L	eve	
539					-	-	De	tecte	d Data	Not Loanorr	nal at 5%	6 Sia	inificance	e Lev	/el	, -					
540																					
541							Lo	gnorr	nal RO	S Statistics	Using Im	pute	ed Non-D	etec	ts						
542						Me	an in O	rigina	I Scale	10.26		•					Μ	lean in	Log Scale	Э	0.778
543							SD in O	rigina	I Scale	29.57								SD in	Log Scale	Э	1.72
544			95% t	UCL (;	assume	es noi	mality o	of RO	S data)	15.36					9	95% F	Percenti	le Boo	tstrap UCI	_	16
545						95%	BCA Bo	otstra	ap UCL	17.56							95%	Boots	strap t UCI	_	20.29
540						95%	6 H-UC	L (Log	ROS)	16.51										-	
547									,												
540					Statis	stics	using K	M est	timates	on Logged	Data and	Ass	suming L	ogno	ormal C	Distril	oution				
550							KM M	ean (l	ogged)	1.222			-					KM	Geo Mea	n	3.394
551							KM	SD (I	ogged)	1.216					9	5% C	Critical H	l Value	e (KM-Log)	2.468
552				KM	Standa	rd Eri	or of M	ean (l	ogged)	0.127							95% ł	H-UCL	. (KM -Log)	9.718
553							KM	SD (I	ogged)	1.216					9	5% (Critical H	- Value	e (KM-Log)	2.468
554				KM	Standa	rd Eri	or of M	ean (l	ogged)	0.127										-	
555																					
556										DL/2 S	tatistics										
557					DL/2	Norm	al								DL/2 L	.og-T	ransfor	med			
558						Me	an in O	rigina	I Scale	10.35							Μ	lean in	Log Scale	Э	1.009
559							SD in O	rigina	I Scale	29.54								SD in	Log Scale	Э	1.422
560					95% t L	JCL (Assume	es nor	rmality)	15.44								95% ŀ	I-Stat UCI	-	11.25
561					DL/2 i	is no	t a reco	mmei	nded m	ethod, provi	ded for c	omp	arisons a	and I	historic	al re	asons				
562																					
563								Non	parame	etric Distribu	tion Free	e UC	L Statist	ics							
564						Da	ita do n	ot foll	low a D	iscernible D	istributio	n at	5% Sign	ifica	nce Le	vel					
565																					
566										Suggested	UCL to I	Use									
567					95	5% KI	M (Chet	oyshe	v) UCL	23.91										Τ	
568										I	1										
569		No	ote: Sugge	estions	s regard	ling tl	ne selec	tion c	of a 95%	6 UCL are pr	ovided to	o hel	p the use	er to s	select t	he m	ost app	ropriat	e 95% UC	L.	
570					F	Recor	nmenda	ations	are ba	sed upon da	a size, d	ata c	distributio	on, ai	nd skev	wnes	S.				
571		Т	hese reco	ommer	ndations	s are	based ι	ipon t	he resu	Its of the sin	nulation s	studie	es summ	arize	ed in Si	ngh,	Maichle	, and I	Lee (2006)).	
572		How	ever, simu	ulation	ns result	s will	not cov	er all	Real V	/orld data se	ts; for ad	lditio	nal insigl	ht the	e user i	may	want to	consul	t a statisti	cian	l.

	А	В	С	D	E	F	G	Н	I	J	K	L
573												
574	M,P-XYLEN	NE (SUM OF	ISOMERS)									
575												
576						General	Statistics					
577			Total	Number of C	bservations	93			Number	of Distinct C	Observations	62
570				Numbe	er of Detects	79				Number of	Non-Detects	14
570			N	umber of Dist	inct Detects	54			Numbe	r of Distinct	Non-Detects	8
579				Mini	mum Detect	3.08				Minimum	Non-Detect	2.3
580				Maxi	mum Detect	607.9				Maximum	Non-Detect	3.47
581				Varia	nce Detects	11245				Percent	Non-Detects	15.05%
582				M	ean Detects	48.34					SD Detects	106
583				Mer	tian Detects	12 59					CV Detects	2 194
584				Skown		3 736				Kurt		1/ 82
585				Moon of Log	and Dotocts	2 802				SD of Loc	and Detects	1 2 2 1
586				Weall Of Log	geu Delecis	2.002						1.201
587					Nerre		D	te Orte				
588							t on Detec					
589			5			0.46		Normal GOP				/
590				5% Shapiro V	Vilk P Value	0		Detected Da	ta Not Norma	at 5% Sign	ificance Leve	3I
591				Lilliefors T	est Statistic	0.341			Lilliefors	GOF Test		
592			5	% Lilliefors C	ritical Value	0.0998		Detected Da	ta Not Norma	ll at 5% Sign	ificance Leve) I
593				D	etected Data	a Not Norma	l at 5% Sig	gnificance Lev	rel			
594												
595			Kaplan-	Meier (KM) S	Statistics usi	ng Normal C	ritical Valu	ues and other	Nonparamet	ric UCLs		
596					KM Mean	41.41			KN	I Standard E	rror of Mean	10.28
597					KM SD	98.5				95% KN	1 (BCA) UCL	58.1
598				95%	KM (t) UCL	58.49			95% KM (P	ercentile Bo	otstrap) UCL	59.27
599				95%	KM (z) UCL	58.32			!	95% KM Boo	otstrap t UCL	69.42
600			ę	0% KM Chel	byshev UCL	72.25			ç	5% KM Che	byshev UCL	86.22
601			97	.5% KM Chel	byshev UCL	105.6			ç	9% KM Che	byshev UCL	143.7
602												<u> </u>
603				G	amma GOF	Tests on De	etected Ob	servations Or	ly			
604				A-D T	est Statistic	6.63		A	nderson-Dai	ling GOF Te	est	
605				5% A-D C	ritical Value	0.811	Dete	ected Data Not	Gamma Dist	ributed at 5%	% Significanc	e Level
606				K-S T	est Statistic	0.202		ŀ	Kolmogorov-	Smirnov GO)F	
600				5% K-S C	ritical Value	0.106	Dete	cted Data Not	Gamma Dist	ributed at 5%	& Significanc	e Level
607				Detecte	d Data Not (Gamma Dist	ributed at {	5% Significan	ce Level			
608												
609					Gamma	Statistics or	Detected	Data Only				
610					k hat (MLE)	0 577			k	star (bias cor	rected MLE)	0 564
611				That		83 72			Theta	star (hias cor		85 72
612						01.72			i neta a	nu star (bia		80.00
613				Ma		10.24						89.09
614				ivie	an (uelects)	40.34						
615					amme DOO	Ototiati		ad Non Date	to			
616			0000	G	amma ROS	Statistics u	sing imput	ea Non-Detec				
617		0.000	GROS may	not be used	when data s	et has > 50%	NDs with	many tied obs	ervations at	multiple DLs		
618		GROS may	y not be used	when kstar o	or detects is a	small such a	s <1.0, esp	becially when t	ne sample si	ze is small (e	.g., <15-20)	
619			Fo	r such situati	ons, GROS	method may	yield incor	rect values of	UCLs and BT	Vs		
620				Т	his is especi	ally true whe	n the sam	ple size is sma	ll.			
621		For gar	mma distribut	ed detected	data, BTVs a	nd UCLs ma	y be comp	outed using gar	mma distribut	ion on KM e	stimates	
622					Minimum	0.01					Mean	41.06
623					Maximum	607.9					Median	9.99
624					SD	99.18					CV	2.415

	А		В	С	D	E	F	G	Н	I		J		K	L
625						k hat (MLE)	0.334				k s	tar (bias o	correc	cted MLE)	0.33
626					The	eta hat (MLE)	122.9			The	eta s	tar (bias o	correc	cted MLE)	124.3
627						nu hat (MLE)	62.14					nu star ((bias d	corrected)	61.47
628				Adjuste	Level of Sig	nificance (β)	0.0474								
620			App	proximate Ch	i Square Val	ue (61.47, α)	44.43			Adjusted	Chi	Square V	/alue	(61.47, β)	44.21
029		95	 i% Gamma	Approxima	te UCL (use v	when n>=50)	56.8		95% Ga	, amma Adi	iuste	· ed UCL (u	ise wł	nen n<50)	57.1
630										,	,				
631					F	stimates of G	amma Dara	meters using	n KM Fetima	itee					
632						Moon (KM)				1163				SD (KM)	09 5
633							41.41						- ()		90.0
634					V	ariance (KIVI)	9702					51		iean (Kivi)	10.28
635						K nat (KIVI)	0.177						К	star (KIVI)	0.178
636						nu hat (KM)	32.87						nu	star (KM)	33.15
637					th	ieta hat (KM)	234.3						theta	star (KM)	232.4
638				80	% gamma pe	rcentile (KM)	51.06				90%	gamma	perce	ntile (KM)	124.8
639				959	% gamma pe	rcentile (KM)	219.6				99%	gamma	perce	ntile (KM)	485.7
640															
641						Gamm	a Kaplan-M	eier (KM) St	atistics						
642			App	proximate Ch	ii Square Val	ue (33.15, α)	20.98			Adjusted	Chi	Square V	/alue	(33.15, β)	20.83
643	95	5% C	amma Ap	proximate K	M-UCL (use v	when n>=50)	65.41		95% Gamm	na Adjuste	ed Kl	M-UCL (u	ise wł	nen n<50)	65.89
644														L	
645					L	ognormal GC	F Test on D	etected Obs	ervations O	nly					
646			SI	hapiro Wilk A	Approximate	Test Statistic	0.898			Shapiro	Will	k GOF Te	est		
647					5% Shapiro	Wilk P Value	5.4933E-7	De	etected Data	Not Logr	norm	al at 5%	Signif	ficance Lev	rel
648					Lilliefors	Test Statistic	0.114			Lilliefo	ors (GOF Test	t		
640				Ę	5% Lilliefors (Critical Value	0.0998	De	etected Data	Not Logr	norm	al at 5%	Signif	ficance Lev	rel
649					De	tected Data	Not Loanorn	nal at 5% Sid	unificance Lo	evel			5		
050							J		-						
051					Lo	anormal RO	S Statistics	Usina Impute	ed Non-Dete	ects					
652					Mean in C	riginal Scale	41.22	 				Me	an in I	l og Scale	2 378
653						riginal Scale	00 11							Log Scale	1 56
654			95% t I			of ROS data)	58.3			95	% D	Percentile	Boote	etran LICI	50 73
655			357810				63.02				701		Bootet		67.91
656							57.02					90 % L	JUUISI	iapioce	07.01
657					95% H-UC	L (LOY ROS)	57.92								
658				.											
659				Stati	stics using K	M estimates	on Logged I	Jata and As	suming Logi	normal Di	strib	oution			
660					KM M	ean (logged)	2.506						KMC	Geo Mean	12.26
661					KM	SD (logged)	1.368			95	% C	ritical H \	Value	(KM-Log)	2.633
662				KM Standa	rd Error of M	ean (logged)	0.143					95% H-	UCL	(KM -Log)	45.46
663					KM	SD (logged)	1.368			95	% C	ritical H \	Value	(KM-Log)	2.633
664				KM Standa	rd Error of M	ean (logged)	0.143								
665															
666							DL/2 S	tatistics							
667				DL/2	Normal					DL/2 Lo	nT-go	ransform	ed		
668					Mean in C	riginal Scale	41.25					Меа	an in I	Log Scale	2.412
669					SD in C	riginal Scale	99.1					S	SD in I	Log Scale	1.504
670				95% t	JCL (Assum	es normality)	58.32					9	5% H	-Stat UCL	53.52
671				DL/2	is not a reco	mmended m	ethod, provi	ded for comp	parisons and	l historica	al rea	asons			
672															
672						Nonparame	etric Distribu	tion Free UC	CL Statistics						
674					Data do n	ot follow a D	iscernible Di	istribution at	5% Signific	ance Lev	el				
675									J						
0/5							Suggested	UCL to Use							
676							อนฐมูออเอน	552 10 056							

	A B C D E F G H I J K 95% KM (Chebvshev) UCL 86.22 </th <th>J</th> <th></th> <th>Τ</th> <th>L</th>													J		Τ	L	
677				95	5% KM (Cł	ebyshev)	UCL	86.22										
678																		
679		Note: Sugge	estions	regard	ling the se	ection of a	a 95%	UCL are pr	ovided to	help	the user t	o select	the m	iost appro	priate	e 95% UC	L.	
680				F	Recommer	dations a	re bas	sed upon dat	a size, d	ata dis	stribution,	and ske	wnes	S.				
681		These reco	ommen	dations	s are base	d upon the	e resu	Its of the sin	nulation s	tudies	summari	ized in S	ingh,	Maichle, a	and L	ee (2006)).	
682	F	lowever, simu	ulations	s result	s will not o	over all R	leal W	orld data se	ts; for ad	ditiona	al insight t	the user	may	want to co	nsult	a statistic	cian.	
683																		
684	NAPHTHA	LENE																
685																		
686								General	Statistic	S				-				-
687				Total	Number o	f Observa	tions	93				Nu	umbei	of Disting	t Ob	servations	\$ 	58
688					Nun	nber of De	etects	67						Number	of No	on-Detects	\$	26
689				N	umber of L	Distinct De	etects	53				N	umbe	er of Distin	ct No	on-Detects	\$	8
690					N	inimum D	etect	1.42						Minim	um N	Ion-Detec	t	1.36
691					M	aximum D	etect	256.9						Maxim		Ion-Detec	t	2.1
692					Va	riance De	tects	1166						Perce	nt No	on-Detects	·	27.96%
693						Mean De	etects	14.71							5		3	34.14
694						ledian De	etects	5.24								V Detects	; 	2.322
695					Ske	whess De	etects	5.827							unos		; 	39.44
696					Mean of L	ogged De	etects	1.839						SD of L	logge		5	1.107
697							Norm		t on Dot	ooto C	nhy							
698					honiro Wil	k Toot Sta						E Toot o		tootod Oh	0000	otiona On	hz	
699	Shapiro Wilk Test Statistic 0.397 Normal GOF Test on Detected Observations Only 5% Shapiro Wilk P Value 0 Detected Data Not Normal at 5% Significance Level													יא וא				
700	5% Shapiro Wilk P Value 0 Detected Data Not Normal at 5% Significance Level																	
701	Lilliefors Test Statistic 0.349 Lilliefors GOF Test 5% Lilliefors Critical Value 0.108 Detected Data Nat Name Lat 5%													ام				
702						Detecter	d Date	Not Norma	at 5% s	Signifi		vel			grinik			
703										g								
704			К	aplan-	Meier (KN) Statistic	s usi	ng Normal C	ritical Va	alues	and other	Nonpar	amet	ric UCLs				
705				•	•	, KM N	Mean	10.98				•	K١	I Standar	d Erro	or of Mear	ו ו	3.07
700						KI	M SD	29.38						95%	KM (I	BCA) UCL		17.18
708					9	5% KM (t)	UCL	16.08				95% ŀ	KM (P	ercentile l	Boots	strap) UCL	-	16.44
709					95	5% KM (z)	UCL	16.03						95% KM E	Boots	trap t UCL	-	22.03
710				ę	90% KM C	hebyshev	UCL	20.19					ę	95% KM C	heby	shev UCL	-	24.36
711				97	.5% KM C	hebyshev	UCL	30.15					ç	99% KM C	heby	shev UCL	-	41.52
712																		
713						Gamma	GOF	Tests on De	etected (Observ	ations O	nly						
714					A-I	D Test Sta	atistic	5.403			/	Anderso	n-Da	ling GOF	Test	:		
715					5% A-[Critical \	/alue	0.796	De	tectec	I Data No	t Gamma	a Dist	ributed at	5% \$	Significan	ce Le	evel
716					K-	S Test Sta	atistic	0.26				Kolmog	orov-	Smirnov (GOF			
717					5% K-9	Critical \	/alue	0.114	De	tectec	I Data No	t Gamma	a Dist	ributed at	5% \$	Significan	ce Le	evel
718					Dete	cted Data	Not 0	Gamma Dist	ributed a	nt 5% \$	Significar	nce Leve	el					
719																		
720						Ga	mma	Statistics or	n Detecte	ed Dat	a Only							
721						k hat (l	MLE)	0.71					k۶	star (bias	corre	cted MLE)	0.688
722					Т	heta hat (l	MLE)	20.71				Т	heta s	star (bias	corre	cted MLE)	21.37
723						nu hat (l	MLE)	95.14						nu star (bias	corrected)	92.21
724						Mean (det	tects)	14.71										
725																		
726				_	_	Gamma	ROS	Statistics u	sing Imp	uted N	Ion-Dete	cts						
727			GRC)S may	not be us	ed when c	data s	et has > 50%	6 NDs wi	th mar	ny tied ob	servatio	ns at	multiple D	Ls			
728		GROS ma	ay not b	e usec	when kst	ar of detec	cts is s	small such a	s <1.0, e	specia	ally when	the sam	ple si	ze is smal	l (e.g	., <15-20)	1	

	А		В	С	D	E		F	G	H	1			J	K	L
729				Fo	or such situ	ations, GR	OSI	method may	yield incorre	ect value	es of	UCLs a	and B	TVs		
730						This is es	peci	ally true whe	en the sampl	e size is	s sma	ll.				
731			For gar	nma distribu	ted detecte	d data, BT	Vs a	nd UCLs ma	y be compu	ted usin	ng gar	nma di	stribu	tion on KM e	estimates	
732						Minin	num	0.01							Mean	10.6
733						Maxim	num	256.9							Median	3.25
734							SD	29.67							CV	2.8
735						k hat (M	ILE)	0.297					k	star (bias co	rrected MLE)	0.295
736					TI	ieta hat (M	ILE)	35.65				Т	heta	star (bias co	prrected MLE)	35.95
737						nu hat (M	LE)	55.29						nu star (bi	as corrected)	54.84
738				Adjuste	d Level of S	ignificance	e (β)	0.0474						-		
739			Арр	proximate Ch	i Square V	alue (54.84	Ι, α)	38.82				Adjuste	ed Ch	i Square Va	lue (54.84, β)	38.61
740		ç	95% Gamma	a Approxima	te UCL (use	when n>=	=50)	14.97		95	5% Ga	amma A	Adjust	ed UCL (use	e when n<50)	15.05
741																
742						Estimates	of G	amma Para	meters usin	g KM E	stima	tes				
743						Mean (I	KM)	10.98							SD (KM)	29.38
744						Variance (I	KM)	863.2						SE	of Mean (KM)	3.07
745						k hat (l	KM)	0.14							k star (KM)	0.142
746						nu hat (l	KM)	25.97							nu star (KM)	26.47
747						theta hat (l	KM)	78.63						th	ieta star (KM)	77.16
748				80%	% gamma p	ercentile (l	KM)	11.42					90%	% gamma pe	ercentile (KM)	32.29
749				959	% gamma p	ercentile (l	KM)	61.02					99%	% gamma pe	ercentile (KM)	145.3
750																
751					·	Ga	amm	a Kaplan-M	eier (KM) S [.]	tatistics		A 12 .				45.04
752		0=0/	App	proximate Ch	Square V	alue (26.47	/, α)	15.74		050/ 0		Adjuste	ed Ch	Square Va	lue (26.47, β)	15.61
753	Į	95%	Gamma Ap	proximate Ki	M-UCL (use	when n>=	-50)	18.46		95% G	iamm	a Adjus	sted K	M-UCL (use	e when n<50)	18.62
754											0					
755							GU			servatio	ons O	niy Ohani	\\/			
756			51				ISUC	0.903		otootod	Data	Snapi			it	
757					5% Shapin		alue	1.0334E-5		etected	Data		gnorr			vei
758						Critical V	ISUC	0.172		otootod	Data		eiors		ignificance La	
759							ate	U. 100	Dal at 5% Si	anifican			gnon			
760					L		ลเล		181 81 570 51	gnincan		evei				
761						ognormal	PO	S Statistics	leing Imput		Doto	ote				
762					Moon in			10.76			-Dele	5013		Moor	in Log Scolo	1 1 2 7
763					SD in			29.61								1.137
764			95% t l	ICL (assume			ata)	15.86					95%	Percentile B		16.4
765			557010		95% BCA I	Bootstran I		21.7					50701	95% Bo		22.19
766					95% H_II		0.51	14.8						55 /0 DO	5.5up : 00L	22.13
/67					007011-0		50)									
768				Stati	stics using	KM estima	ates	on Lonned I	Data and As	sumina	Loar	ormal	Distri	bution		
769				0.01	KM	Mean (loor	ied)	1 413		Joanning	Logi		Diour	k	M Geo Mean	4 107
770					K		(bog	1.413					95% (Critical H Va		2 405
771				KM Standa		Mean (loor	,eu) jed)	0 121					5570 (95% H-II		10 72
//2					K		,ed)	1 157					95% (Critical H Va		2 405
//3				KM Standa		Mean (loor	,ed)	0.121					5570 (2.400
//4				clande			,,	5.121								
775								DI /2 S	tatistics							
//6				2/ וח	Normal			5520				DI /2	Lon-1	Transformer	<u> </u>	
///				562	Mean in	Original Se	cale	10.8					9-1	Mean	in Log Scale	1.243
//8					SD in	Original Sc	cale	29.6						SD) in Log Scale	1.344
//9				95% t		nes norma	litv)	15.9						959	H-Stat UCI	12.32
/80				5570 L				.0.0						557		.2.02

	А	В	С	D	Е	F	G	Н		J	К	L
781			DL/2	is not a recoi	mmended m	ethod, provi	ded for com	parisons and	l historical re	asons		
782												
783					Nonparame	etric Distribu	tion Free UC	CL Statistics				
784				Data do no	ot follow a D	iscernible D	istribution at	t 5% Signific	ance Level			
785												
786						Suggested	UCL to Use	I				
787			95	5% KM (Cheb	yshev) UCL	24.36						
788											L	
789		Note: Sugge	estions regard	ling the selec	tion of a 95%	6 UCL are pr	ovided to he	Ip the user to	select the m	iost appropri	iate 95% UCL.	
790			F	Recommenda	tions are bas	sed upon da	ta size, data	distribution,	and skewnes	s.		
791		These reco	ommendations	s are based u	pon the resu	Its of the sin	nulation stud	ies summariz	zed in Singh,	Maichle, and	d Lee (2006).	
792	ŀ	lowever, sim	ulations result	ts will not cov	er all Real W	/orld data se	ts; for addition	onal insight t	he user may	want to cons	ult a statisticia	ın.
793												
794	n-HEPTA	NE										
795												
796						General	Statistics					
797			Total	Number of C	bservations	93			Number	r of Distinct (Observations	41
798				Numbe	er of Detects	38				Number of	Non-Detects	55
799			N	umber of Dist	inct Detects	33			Numbe	er of Distinct	Non-Detects	10
800				Mini	mum Detect	1.52				Minimum	n Non-Detect	1.19
801				Maxi	mum Detect	491.8				Maximum	n Non-Detect	2.38
802				Varia	nce Detects	8061				Percent	Non-Detects	59.14%
803				М	ean Detects	37.34					SD Detects	89.79
804				Мес	dian Detects	6.15					CV Detects	2.405
805				Skewn	ess Detects	4.073				Kur	tosis Detects	18.58
806				Mean of Log	ged Detects	2.223				SD of Log	gged Detects	1.507
807												
808					Norn	nal GOF Tes	st on Detects	s Only				
809			S	Shapiro Wilk T	est Statistic	0.449			Shapiro Wi	lk GOF Test	t	
810			5% S	hapiro Wilk C	ritical Value	0.938		Detected Da	ta Not Norma	al at 5% Sign	nificance Level	
811				Lilliefors T	est Statistic	0.35			Lilliefors	GOF Test		
812			5	% Lilliefors C	ritical Value	0.142		Detected Da	ta Not Norma	al at 5% Sign	nificance Level	
813				D	etected Dat	a Not Norma	al at 5% Sigr	nificance Lev	vel			
81/												
815			Kaplan-	Meier (KM) S	Statistics usi	ng Normal C	Critical Value	s and other	Nonparamet	ric UCLs		
816					KM Mean	15.96			KN	/I Standard E	Fror of Mean	6.237
817					KM SD	59.35				95% KN	Л (BCA) UCL	28.8
818				95%	KM (t) UCL	26.33			95% KM (P	ercentile Bo	otstrap) UCL	27.71
819				95%	KM (z) UCL	26.22				95% KM Boo	otstrap t UCL	42.12
820			ļ	90% KM Che	byshev UCL	34.67			ç	95% KM Che	byshev UCL	43.15
821			97	.5% KM Che	byshev UCL	54.91			ę	99% KM Che	byshev UCL	78.02
822					-							
822				G	amma GOF	Tests on De	etected Obs	ervations Or	nly			
023 924				A-D 1	est Statistic	3.466		A	nderson-Da	rling GOF To	est	
024				5% A-D C	ritical Value	0.822	Detect	ted Data Not	Gamma Dist	tributed at 59	% Significance	Level
020				K-S T	est Statistic	0.267			Kolmoaorov-	Smirnov GC)F	
820				5% K-S C	ritical Value	0.152	Detect	ted Data Not	Gamma Dist	tributed at 5%	% Significance	Level
ŏ∠/				Detecte	d Data Not	Gamma Dist	tributed at 59	% Significan	ce Level			
020 000								3				
ŏ∠9					Gamma	Statistics of	n Detected	Data Only				
83U					k hat (MLE)	0.461		····· • ····,	k	star (bias co	rrected MLE)	0.442
031				The	ta hat (MLE)	81.08			Theta	star (bias co	rrected MLE)	84.53
032							1				· · · ··· · /	

	А	В	С	D	E	F	G		Н		I		J	K		L
833					nu hat (MLE)	35						nu s	tar (bia	s corrected)		33.57
834					viean (detects)	37.34										
835					Gamma BOS	Statistics u	eina Impi	utod	Non Dot	oct	•					
836			GROS may	not he us	ed when data s	ret has > 50%	NDs wit	h ma	any tied o	hse	rvations	at multin	e DI s			
837		GROS may	v not be used	when kst	ar of detects is	small such a	s < 10 es	sneci	ially whe	n th		size is s	mall (e	a <15-20)		
838			Fc	or such situ	ations, GROS	method may	vield inco	orrec	t values	of L	JCLs and	BTVs		.g., 10 20)		
839					This is espec	ially true whe	n the sar	nple	size is si	mal	I.					
840 9/1		For gar	mma distribu	ted detecte	ed data, BTVs a	and UCLs ma	ly be com	pute	d using g	gam	nma distri	bution or	KM es	stimates		
842					Minimum	0.01		-		-				Mean		15.26
843					Maximum	491.8								Median		0.01
844					SD	59.85								CV	r	3.922
845					k hat (MLE)	0.167						k star (b	ias cori	rected MLE)		0.168
846				Т	heta hat (MLE)	91.58					The	ta star (b	ias cori	rected MLE)		90.61
847					nu hat (MLE)	31						nu s	tar (bia	s corrected)		31.33
848			Adjusted	Level of S	Significance (β)	0.0474										
849		Арр	proximate Ch	i Square V	'alue (31.33, α)	19.54				A	Adjusted	Chi Squa	re Valu	ıe (31.33, β)		19.4
850		95% Gamma	a Approximat	e UCL (us	e when n>=50)	24.47			95%	Gai	mma Adji	usted UC	L (use	when n<50)		24.65
851																
852					Estimates of G	iamma Para	meters us	sing	KM Estir	nat	es			05 (10)	1	50.05
853					Mean (KM)	15.96							05 -4	SD (KM)		59.35
854					Variance (KIVI)	3523							SEO	r iviean (Kivi)		0.237
855					K hat (KM)	13.45								K Star (KIVI)		14.35
856					thota bat (KM)	220.7							tho	ta star (KM)		14.35
857			809	% damma r		7.067					c	0% dam	ma ner	centile (KM)		36.97
858			95%	% gamma r	percentile (KM)	92.63					ç	9% gam	ma per	centile (KM)		287.6
859				- <u>-</u>	,							J-	- 1			
861					Gamm	na Kaplan-M	eier (KM)) Sta	tistics							
862		App	proximate Ch	i Square V	alue (14.35, α)	6.812	. ,			A	Adjusted	Chi Squa	re Valu	ie (14.35, β)		6.73
863	959	% Gamma Ap	proximate KM	M-UCL (us	e when n>=50)	33.63		ę	95% Gan	nma	a Adjuste	d KM-UC	L (use	when n<50)		34.03
864																
865					Lognormal GC	OF Test on D	etected (Obse	ervations	On	ly					
866			S	Shapiro Wil	k Test Statistic	0.897					Shapiro	Wilk GO	F Test			
867			5% S	hapiro Will	k Critical Value	0.938		Det	tected Da	ata I	Not Logn	ormal at !	5% Sig	nificance Le	evel	
868				Lilliefor	s Test Statistic	0.15					Lilliefo	rs GOF	Fest			
869			5	% Lilliefor	s Critical Value	0.142		Det	tected Da	ata	Not Logn	ormal at !	5% Sig	nificance Le	evel	
870					Detected Data	Not Lognorn	nal at 5%	Sigr	nificance	Le	vel					
871						0.01.11.11.1										
872				Maanin	Lognormal RO		Using Im	pute	d Non-De	etec	cts		Maani		1	0.076
873				wean in	Original Scale	10.4							iviean i			-0.370
874		95% +1			Unginal Scale	25.7					950	% Dorcor	SD I	otetran LICI	*	2.012
875		337010		95% BCA	Bootstran LICI	31 54					30		% Roo	tstran t LICI		40.01
8/6				95% H-I	JCL (Log ROS)	65.34										
8//				00/01/0	(
0/0 070			Statis	stics usina	KM estimates	on Logaed I	Data and	Ass	uming La	ogne	ormal Dis	tribution				
079 800				KM	Mean (logged)	1.012							KN	/I Geo Mean		2.751
881				к	M SD (logged)	1.385					959	% Critical	H Valu	ue (KM-Log)		2.653
882			KM Standa	rd Error of	Mean (logged)	0.146						95%	H-UC	L (KM -Log)		10.52
883				к	M SD (logged)	1.385					959	% Critical	H Valu	ue (KM-Log)		2.653
884			KM Standa	rd Error of	Mean (logged)	0.146										
	А	В	С	D	Е	F	G	Н	I	J	K	L				
-----	----------	-------------	----------------	----------------	----------------	----------------	---------------	----------------	-----------------	------------------	------------------	---------				
885																
886						DL/2 S	tatistics									
997			DL/2	Normal					DL/2 Log-T	ransformed						
007				Mean in Or	riginal Scale	15.67			-	Mean i	in Log Scale	0.7				
000				SD in Or	iginal Scale	59.75				SD	in Log Scale	1,594				
889			95% t l		s normality)	25.97				95%	H-Stat UCI	11 59				
890					nmondod m	othod provid	lod for com	naricone and	l historical re	2000		11.00				
891										3030113						
892					Nonnoromo	trio Diotribu	tion Eroo I I	CL Statistics								
893				Doto do no	t follow o Di	issornible Di	stribution o	+ 5% Signific								
894																
895						Suggested										
896			05					,								
897			90		ysnev) UCL	43.15										
898		Noto: Suggo	ationa regard	ing the color	tion of a OE%		wided to be	In the uper to		aat approprie						
899		Note. Sugge						distribution			ale 95% UCL	•				
900		These reco	mmendations		non the resu	Its of the sim	ulation stud			Naichle and						
901	На	wever simu	lations result	s will not cov	er all Real W	orld data set	s: for additi	onal insight t	he user may	want to consi	ult a statistici	an				
902												un.				
903	n-HEXANE															
904																
905						General	Statistics									
906			Total	Number of O	bservations	93			Number	r of Distinct C) bservations	33				
907				Numbe	er of Detects	27				Number of I	Non-Detects	66				
908			Ni	umber of Dist	inct Detects	24			Numbe	er of Distinct I	Von-Detects	10				
909				Mini	mum Detect	1.27				Minimum	Non-Detect	1.16				
910				Maxi	mum Detect	599.2				Maximum	Non-Detect	2.11				
911				Varia	nce Detects	14396				Percent	Non-Detects	70.97%				
912				M	ean Detects	44.91					SD Detects	120				
913				Мес	lian Detects	5.99					CV Detects	2.671				
914				Skewn	ess Detects	4.237				Kurt	osis Detects	19.02				
915				Mean of Log	ged Detects	2.322				SD of Log	ged Detects	1.565				
910					-					-	-					
918					Norm	nal GOF Tes	t on Detect	s Only								
919			S	hapiro Wilk T	est Statistic	0.389			Shapiro Wi	lk GOF Test						
920			5% SI	hapiro Wilk C	ritical Value	0.923		Detected Da	ta Not Norma	al at 5% Signi	ificance Leve	l				
921				Lilliefors T	est Statistic	0.403			Lilliefors	GOF Test						
922			5	% Lilliefors C	ritical Value	0.167		Detected Da	ita Not Norma	al at 5% Signi	ificance Leve	I				
923				D	etected Data	a Not Norma	l at 5% Sig	nificance Lev	/el							
924																
925			Kaplan-	Meier (KM) S	statistics usi	ng Normal C	ritical Value	es and other	Nonparamet	ric UCLs						
926					KM Mean	13.86			KN	/I Standard E	rror of Mean	7.025				
927					KM SD	66.48				95% KM	(BCA) UCL	27.18				
928				95%	KM (t) UCL	25.54			95% KM (P	ercentile Boo	otstrap) UCL	26.42				
929				95%	KM (z) UCL	25.42				95% KM Boo	tstrap t UCL	74.71				
930			ę	0% KM Chel	oyshev UCL	34.94			ę	95% KM Che	byshev UCL	44.48				
931			97	.5% KM Chel	oyshev UCL	57.73			ę	99% KM Che	byshev UCL	83.76				
932																
933				G	amma GOF	Tests on De	etected Obs	ervations Or	nly							
934				A-D T	est Statistic	2.326		A	Anderson-Da	rling GOF Te	st					
935				5% A-D C	ritical Value	0.822	Detec	ted Data Not	Gamma Dis	tributed at 5%	6 Significance	e Level				
936				K-S T	est Statistic	0.25			Kolmogorov-	Smirnov GO	F					

	А	В		С		D		Е	F		G		Н		I			J		K		L
937						5% ł	<-S C	ritical Value	0.179		Det	tecte	ed Data	Not (Gamma	Dist	ribute	ed at	: 5%	Signifi	cance	e Level
938						De	tecte	d Data Not	Gamma D	istri	ibuted at	t 5%	Signific	canc	e Level							
030																						
040								Gamma	Statistics	on	Detecte	d Da	ata Only	/								
041								k hat (MLE)	0.437				-			k s	star (t	oias (corre	ected N	ЛLE)	0.413
941							The	ta hat (MLE)	102.7						Th	eta s	star (t	bias (corre	ected N	, ALE)	108.6
942							r	u hat (MLE)	23.62								nus	star ((hias	correc	cted)	22.33
943							Me	an (detects)	44 91													
944									11.01													
945							C	amma ROS	Statistics		ina Impi	uted	Non-De	atect	e							
946				GROS	may	not he	haau	when data s	et has > 50	0%	NDs wit	h m:	any tied	ohse	arvation	sati	multir	n la D) c			
947		GROS	may			when k	star	of detects is	small such	1 25	<10 0	snec	ially who					smal		a <15	-20)	
948		anoo	may		Eo	r such s	ituati		mothod m	- u3	viold inco	orroc						Sinai		j., •10	-20)	
949					10	i such s	т	bis is especi		ay y uhor						uЫ	v5					
950							ا ار مده					Tiple		Silla	I.	الم ال		- 1/1	4			
951		For	gan	nma dist	ridut	ea aete	cted	data, BTVS a		may	/ be com	ipute	ea using	gan	ima dist	ribut	lion o	nκι	/i est	Imates	;	10.05
952								Winimum	0.01											N	lean	13.05
953								Maximum	599.2												dian	0.01
954								SD	67												CV	5.135
955								k hat (MLE)	0.149							K S	star (t	Dias	corre	ected N	/ILE)	0.151
956							The	ta hat (MLE)	87.55						Th	eta s	star (t	oias (corre	ected N	/LE)	86.19
957							r	u hat (MLE)	27.72								nu s	star ((bias	correc	ted)	28.16
958				Adju	sted	Level o	of Sig	nificance (β)	0.0474	ŀ												
959			Арр	roximate	e Chi	Square	e Valu	ue (28.16, α)	17.05						Adjusted	d Chi	i Squ	are \	/alue	ə (28.1	6, β)	16.91
960		95% Gan	nma	Approxi	imate	e UCL (I	use v	/hen n>=50)	21.55				95%	6 Ga	mma Ad	ljuste	ed U(CL (u	ise v	vhen n	<50)	21.72
961																						
962							Es	timates of G	iamma Pa	ram	neters us	sing	KM Est	timat	es							
963								Mean (KM)	13.86											SD	(KM)	66.48
964							Va	riance (KM)	4419									S	E of	Mean	(KM)	7.025
965								k hat (KM)	0.0435	5										k star ((KM)	0.0493
966								nu hat (KM)	8.089										n	u star ((KM)	9.161
967							th	eta hat (KM)	318.8										thet	a star ((KM)	281.5
968					80%	6 gamm	a per	centile (KM)	1.782							90%	6 gan	nma	perc	entile ((KM)	20.75
969					95%	6 gamm	a per	centile (KM)	73.33							99%	6 gan	nma	perc	entile	(KM)	303.4
970																			-			
971								Gamm	na Kaplan-	Ме	ier (KM)) Sta	tistics									
972			Ap	proximat	te Cl	hi Squai	re Va	lue (9.16, α)	3.425						Adjuste	ed Cl	hi Sq	uare	Valu	Je (9.1	6, β)	3.37
973	95	% Gamma	App	proximate	e KN	1-UCL (I	use v	/hen n>=50)	37.09			1	95% Ga	mma	a Adjust	ed K	M-UC	CL (u	lse v	vhen n	<50)	37.69
974										1											1	
975							Lo	gnormal GC	F Test on	De	etected C	Obse	ervation	s Or	ly							
976					S	hapiro V	Vilk T	est Statistic	0.918						Shapiro	o Wil	lk GC	DF Te	est			
977				59	% Sł	napiro V	Vilk C	ritical Value	0.923			De	tected D	Data	Not Log	norn	nal at	5%	Sign	ificanc	:e Lev	/el
978						Lilliet	fors T	est Statistic	0.176						Lillief	fors	GOF	Tes	t			
979					5	% Lillief	ors C	ritical Value	0.167			De	tected D	Data	Not Log	norn	nal at	5%	Sign	ificanc	e Lev	/el
980							De	tected Data	Not Logno	orma	al at 5%	Sig	nificanc	e Le	vel							
981									-			-										
982							Lo	gnormal RO	S Statistic	s U	Ising Im	pute	d Non-D	Dete	cts							
002						Mean	in O	riginal Scale	13.16			-						Mea	an ir	Log S	cale	-1.469
001						SD	in O	riginal Scale	66.98									S	SD ir	Log S	cale	3.035
005		95%	6 t U	ICL (ass	ume	s norma	ality o	f ROS data)	24.7						9	5% F	Perce	ntile	Boc	tstrap	UCL	26.34
302		95% FOCE (assumes normality of R 95% BCA Boots							32.8	+							9	5% E	3oot:	strap t	UCL	73.62
986						95% H		_ (Loa ROS)	104.6								5					
987							201	(9.100)														
988																						

	А	В	С	D	E	F	G	Н		J	K	L
989			Statis	stics using K	M estimates	on Logged I	Data and Ase	suming Logr	ormal Distri	bution		
990				KM Me	ean (logged)	0.78				K	M Geo Mean	2.181
991				KM	SD (logged)	1.287			95% (Critical H Va	lue (KM-Log)	2.545
992			KM Standa	rd Error of Me	ean (logged)	0.136				95% H-U0	CL (KM -Log)	7.028
993				KM	SD (logged)	1.287			95% (Critical H Va	lue (KM-Log)	2.545
994			KM Standa	rd Error of Me	ean (logged)	0.136						
995												
996						DL/2 S	tatistics					
997			DL/2	Normal					DL/2 Log-T	ransformed		
998				Mean in O	riginal Scale	13.48				Mean	in Log Scale	0.338
999			050()	SD in O	riginal Scale	66.91				SD	in Log Scale	1.525
1000			95% t l	JCL (Assume	es normality)	25.01			h !	95%	6 H-Stat UCL	7.012
1001			DL/2	is not a recol	mmenaea m	etnoa, provi	aea for comp	barisons and	nistorical re	easons		
1002					Mannanana	tria Distribu	tion Free LIC					
1003				Data da n	Nonparame		tion Free UC					
1004				Data do no	ot follow a D	Iscemible D	istribution at	5% Signific	ance Levei			
1005						Suggosted						
1006			QF	% KM (Cheh								
1007					Jyshev) UCL	44.40						
1008		Note: Sugge	stions regard	ling the selec	tion of a 95%	UCL are pr	ovided to hel	n the user to	select the m	ost annronri	iate 95% LICI	
1009		Hoto: ouggo	F	Recommenda	ations are bas	sed upon dat	a size, data (distribution	and skewnes	is.		•
1010		These recor	mmendations	s are based u	pon the resu	Its of the sin	nulation studi	es summariz	zed in Sinah.	Maichle, an	d Lee (2006).	
1011	Н	owever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additic	onal insight th	ne user may	want to cons	sult a statisticia	an.
1012								0				
1013	O-XYLENE	E (1,2-DIMET	HYLBENZE	NE)								
1015												
1016						General	Statistics					
1017			Total	Number of C	Observations	93			Number	r of Distinct (Observations	65
1018				Numbe	er of Detects	76				Number of	Non-Detects	17
1019			N	umber of Dist	tinct Detects	62			Numbe	er of Distinct	Non-Detects	5
1020				Mini	mum Detect	1.26				Minimun	n Non-Detect	1.17
1021				Maxi	mum Detect	284.4				Maximun	n Non-Detect	1.74
1022				Varia	ince Detects	2028				Percent	Non-Detects	18.28%
1023				М	ean Detects	19.36					SD Detects	45.04
1024				Me	dian Detects	4.34					CV Detects	2.327
1025				Skewn	less Detects	4.055				Kur	tosis Detects	18.51
1026				Mean of Log	ged Detects	1.798				SD of Lo	gged Detects	1.319
1027												
1028					Norm	nal GOF Tes	t on Detects					
1029			S	hapiro Wilk I	est Statistic	0.447		Normal GOF	• Test on De	tected Obse	ervations Only	
1030				5% Shapiro \	VIIK P Value	0		Detected Da	ta Not Norma	ai at 5% Sigr	nificance Leve	1
1031			r	Lilliefors I	est Statistic	0.347			Lilletors	GOF Test	: (:	
1032			5		Intical value	0.102				ai at 5% Sigr	inicance Leve	1
1033				D	velected Data		n at 5% Sign		el			
1034			Kanlan	Major (KM) C	Statietice usi	na Normal C	ritical Volue	e and other	Nonnaramat			
1035			rapian-					s and other		A Standard E	Fror of Moon	1 285
1036						41.05			Γ.IV			73 82
1037				95%		23 15			95% KM (P	ercentile Ro	otstran) UCI	23.02
1038				95%		23.13			33 /0 TXIVI (F	95% KM Rov	otstran t UCI	27.66
1039			(00% KM Cha	hvshev LICI	28.80			(05% KM Cha	hvshev UCI	34 71
1040					by SHEV UCL	20.03					Loyanev UCL	J4.7 I

	А	В	С	D	E	F	G	Н		J	K	L
1041			9	7.5% KM Che	byshev UCL	42.79				99% KM Chebysh	ev UCL	58.67
1042											P	
1043				C	Gamma GOF	Tests on De	etected Obs	ervations O	nly			
1044				A-D	Test Statistic	7.005		ļ	Anderson-D	arling GOF Test		
1045				5% A-D (Critical Value	0.814	Detec	ted Data No	t Gamma Di	stributed at 5% Sig	nificance	Level
1046				K-S	Test Statistic	0.224			Kolmogorov	-Smirnov GOF		
1040				5% K-S (Critical Value	0.108	Detec	ted Data No	t Gamma Di	stributed at 5% Sig	nificance	Level
1047				Detecte	ed Data Not	Gamma Dist	ributed at 5	% Significan	ce Level			
1040								-				
1049					Gamma	Statistics or	Detected	Data Only				
1050					k hat (MLE)	0.539		•	k	star (bias correcte	d MLE)	0.526
1051				The	ta hat (MLE)	35.92			Theta	star (bias correcte	d MLE)	36.77
1052					nu hat (MLE)	81.91				nu star (bias co	rrected)	80.01
1053				Me	ean (detects)	19.36					,	
1054					()							
1055					Gamma ROS	Statistics u	sina Impute	d Non-Deter	cts			
1056			GROS ma	v not be used	when data s	et has $> 50\%$	6 NDs with n	nany tied ob:	servations a	t multiple DLs		
1057		GROS ma	v not be use	d when kstar	of detects is	small such a	s <10 espe	cially when	the sample s	size is small (e.g. <	<15-20)	
1058			F	or such situat	ions GROS	method may	vield incorre	ect values of	UCLs and F	STVs	10 20)	
1059					This is especi	ally true whe	n the sampl		all			
1060		For da	mma distrihi	ited detected	data BTVs a		av he compu	ted using ga	mma distrih	ution on KM estima	ates	
1061		i oi gu			Minimum			ited doining go			Mean	15.82
1062					Maximum	284.4					Median	3.3
1063						/1 35					CV	2.61/
1064					k bot (MLE)	41.55			L	star (bias correcto		0.217
1065				The		10.52			Thota	star (bias correcte		10.06
1066				The		49.40 50.48			THELE	nu star (bias con		49.90 58.0
1067			A divete	d Lovel of Cia		0.0474					necieu)	56.9
1068		٨٥				42.25			Adjusted C	hi Sauara Valua (F	8 00 <i>B</i>)	42.02
1069		AP			1000000000000000000000000000000000000	42.25		05% 0	Aujusieu C		0.90, p	42.03
1070		95% Gamm	а Арргохіпіа	le UCL (use l	when h>=50)	22.05		95% G	amma Aujus	aled UCL (use whe	n n<50)	22.17
1071				E	timatas of C	ommo Doro	motoro unin	a KM Eatim	-			
1072				E:					lies	<u> </u>		41 OF
1073						1695						41.05
1074				Va		0.150				SE OI Mea		4.200
1075					K nat (KIVI)	0.153				K St		0.155
1076					nu nat (KIVI)	28.37				nu st		28.79
1077				tr		105.1						103.6
1078			80	% gamma pe		17.9			90	% gamma percenti		47.74
1079			95	% gamma pe	rcentile (Kivi)	87.69			95	% gamma percenti		202.9
1080						14 1 14						
1081					Gamm	na Kaplan-M	eier (KM) Si	tatistics				
1082		Ap	proximate Cl	ni Square Val	ue (28.79, α)	17.54			Adjusted C	hi Square Value (2	8.79,β)	17.4
1083	g	5% Gamma Ap	proximate K	M-UCL (use \	when n>=50)	26.31		95% Gamn	na Adjusted	KM-UCL (use whe	n n<50)	26.52
1084												
1085			<u> </u>	L	ognormal GC	OF Test on D	etected Obs	servations C	only			
1086		S	hapiro Wilk /	Approximate	Test Statistic	0.883			Shapiro V	/ilk GOF Test		
1087				5% Shapiro	Wilk P Value	6.9125E-8	D	etected Data	a Not Logno	mal at 5% Significa	ance Lev	el
1088				Lilliefors	Test Statistic	0.129			Lilliefor	GOF Test		
1089			Į	5% Lilliefors (Critical Value	0.102	D	etected Data	a Not Logno	mal at 5% Significa	ance Lev	el
1090				De	tected Data	Not Lognorn	nal at 5% Si	gnificance L	evel			
1091												
1092				Lo	gnormal RO	S Statistics	Using Imput	ed Non-Det	ects			

	А	В	С	D	E	F	G	Н		J	K	L
1093				Mean in O	riginal Scale	15.88				Mean i	in Log Scale	1.266
1094				SD in O	riginal Scale	41.33				SD i	in Log Scale	1.657
1095		95% t l	JCL (assume	s normality c	f ROS data)	23.01			95%	Percentile Bo	otstrap UCL	23.24
1096			9	95% BCA Bo	otstrap UCL	25.05				95% Boo	tstrap t UCL	27.64
1097				95% H-UCI	(Log ROS)	23.38						
1098												
1099			Statis	tics using K	M estimates	on Logged [Data and Ass	suming Logi	normal Distri	bution		
1100				KM Me	ean (logged)	1.499				KN	/ Geo Mean	4.477
1101				KM	SD (logged)	1.343			95% (Critical H Valu	ue (KM-Log)	2.606
1102			KM Standa	d Error of Me	ean (logged)	0.14				95% H-UC	L (KM -Log)	15.88
1102				KM	SD (logged)	1.343			95% (Critical H Valu	ue (KM-Log)	2.606
1103			KM Standa	d Error of Me	ean (logged)	0.14					(0,	
1104					(00)							
1105						DL/2 S	tatistics					
1106			DI /2 I	Normal					DI /2 og-1	ransformed		
1107				Mean in O	riginal Scale	15 93				Mean i	in Log Scale	1 381
1108				SD in O	riginal Scale	41 31					in Log Scale	1.001
1109			95% + 1		e normality)	23.05				95%		18 30
1110					mondod m	zo.00	dod for comr	arisons and	l historical re	0700		10.55
1111			DUZ			sulou, piovid				30115		
1112					Nonnoroma	tria Diatribu	tion Free LIC					
1113				Data da n	Nonparame							
1114				Data do no	DI TOIIOW & DI	scemible Di	istribution at	5% Signific	ance Level			
1115						<u> </u>						
1116						Suggested	UCL to Use					
1117			95	% KM (Cheb	yshev) UCL	34.71						
1118												
1119		Note: Sugge	stions regard	ing the selec	tion of a 95%	UCL are pro	ovided to hel	p the user to	select the m	lost appropria	ate 95% UCL.	
1120		-	۲ :	ecommenda	itions are bas	ed upon dat	a size, data (distribution,	and skewnes	S.	(0000)	
1121		I nese reco	mmendations	are based u	pon the resu	its of the sim		es summariz	zed in Singn,	iviaichie, and	Lee (2006).	
1122	н	owever, simu	liations result	s will not cov	er all Real W	orid data se	ts; for additio	onal insight t	ne user may	want to consi	uit a statisticia	an.
1123												
1124	tert-BUI YI		INER									
1125						<u> </u>	o					
1126						General	Statistics			(5)		47
1127			lotal	Number of C	bservations	93			Numbe	r of Distinct C	bservations	1/
1128				Numbe	er of Detects	0				Number of I	Non-Detects	93
1129			N	umber of Dist	linct Detects	0			Numbe	er of Distinct I	Non-Detects	17
1130					<u></u>		· ··					
1131		War	ning: All obse	ervations are	Non-Detect	s (NDs), the	retore all sta	atistics and e	estimates sh	ouid also be		
1132		Specif	ically, sample	e mean, UCL	.s, UPLs, and	other statis	stics are also	o NDs lying	below the la	rgest detectio	on limit!	
1133		The Project	Team may de	cide to use	alternative si	te specific v	alues to esti	imate enviro	onmental par	ameters (e.g	., EPC, BTV)	•
1134												
1135				The data set	for variable	tert-BUTYL	METHYL ET	HER was n	ot processed	!!		
1136												
1137												
1138	Toluene											
1139												
1140						General	Statistics					
1141			Tota	al Number of (Observations	93			Numb	er of Distinct (Observations	72
1142				Numb	er of Detects	89				Number of	Non-Detects	4
1143			1	Number of Dis	tinct Detects	70			Num	per of Distinct	Non-Detects	2
1144				Min	imum Detect	1.92				Minimun	n Non-Detect	1.32
							1					

	А	В	С	D	E	F	G	Н			J	K	L
1145				Мах	imum Detect	904.4					Maximun	n Non-Detect	1.36
1146				Vari	ance Detects	16596					Percent	Non-Detects	4.301%
1147				Ν	lean Detects	52.96						SD Detects	128.8
1148				Me	edian Detects	15.07						CV Detects	2.432
1149				Skew	ness Detects	5.104					Kur	tosis Detects	28.99
1150				Mean of Log	gged Detects	2.864					SD of Lo	gged Detects	1.345
1151								-					
1152				-	Norr	nal GOF Tes	t on Detects	Only					
1153				Shapiro Wilk	Test Statistic	0.408		Normal GO	F Test or	n Det	ected Obser	vations Only	
1154				5% Shapiro	Wilk P Value	0		Detected Da	ata Not No	orma	l at 5% Signif	icance Level	
1155				Lilliefors		0.346		<u> </u>	Lilliet	tors (
1156				5% Lillefors	Detected Det	0.094 I	Lat EV Ciani			orma	l at 5% Signi	icance Level	
1157					Detected Da	a not norma	ii at 5% Signi	ficance Leve					
1158			Kapla	n Major (KM)	Statiatica un			and other N	onnorom	otrio			
1159			Каріа		KM Moon				onparam			Fror of Moon	12 11
1160						125.8							75./1
1161				920		72 53			95%	KM (I	Dercentile Bo	otstran) UCL	74.29
1162				95%		72.33			55701		95% KM Bor	otstran t UCL	98.32
1163				90% KM Che	hyshev UCL	90.08					95% KM Che	hyshev UCI	107.9
1164			C	7 5% KM Che	hyshev UCI	132.6					99% KM Che	abyshev UCI	181.2
1165						102.0							
1166					Gamma GOF	Tests on De	etected Obse	rvations Only	v				
1167				A-D	Test Statistic	5.156			, Anderson	n-Dar	lina GOF Tes	st	
1168				5% A-D	Critical Value	0.812	Dete	cted Data No	t Gamma	Dist	ributed at 5%	Significance	Level
1159				K-S	Test Statistic	0.183			Kolmogo	prov-S	Smirnov GOF	:	
1170				5% K-S	Critical Value	0.0998	Dete	cted Data No	t Gamma	Dist	ributed at 5%	Significance	Level
1170				Detec	ted Data Not	Gamma Dist	ributed at 5%	Significance	e Level				
1172								-					
1174					Gamma	Statistics or	Detected Da	ata Only					
1175					k hat (MLE)	0.564				k	star (bias co	rrected MLE)	0.553
1176				The	eta hat (MLE)	93.88			Т	Theta	star (bias co	rrected MLE)	95.84
1177					nu hat (MLE)	100.4					nu star (bia	as corrected)	98.37
1178				Μ	ean (detects)	52.96							
1179													
1180					Gamma ROS	S Statistics u	sing Imputed	Non-Detects	6				
1181			GROS m	ay not be use	d when data	set has > 50%	6 NDs with ma	any tied obse	ervations a	at mu	ltiple DLs		
1182		GROS	may not be us	ed when ksta	r of detects is	small such a	s <1.0, espec	cially when the	e sample	size	is small (e.g.,	, <15-20)	
1183				For such situa	ations, GROS	method may	yield incorrec	ct values of U	CLs and I	BTVs	6		
1184					This is espec	ially true whe	n the sample	size is small	•				
1185		For	gamma distrit	outed detected	d data, BTVs	and UCLs ma	y be compute	ed using gam	ma distrib	butior	n on KM estin	nates	
1186	6 Minimum 0.01 Mean								50.69				
1187		Maximum 904.4 Median							13.94				
1188					SD	126.5		CV	2.495				
1189					k hat (MLE)	0.465		rrected MLE)	0.457				
1190				The	eta hat (MLE)	109.1			Т	heta	star (bias co	rrected MLE)	110.9
1191			• ••		nu hat (MLE)	86.43					nu star (bia	as corrected)	84.98
1192			Adjuste	ea Level of Sig	gnificance (β)	0.0474			A 11			(04.00.0)	04.45
1193		A	uproximate C	n Square Va	ue (84.98, α)	04.73		0501	Aajuste			ue (84.98, β)	04.45
1194		95% Gam	ma Approxima	ale UCL (USE	wnen n>=50)	00.54		e wnen n<50)	68.00				
1195					otimatas of (Commo Doz-	motoro!						
1196				E	sumates of C	amma Para	meters using	NM ESTIMATE	əs				

	А	В	С	D	E	F	G	Н		J	K	L
1197					Mean (KM)	50.74					SD (KM)	125.8
1198				V	ariance (KM)	15814				SE	of Mean (KM)	13.11
1199					k hat (KM)	0.163					k star (KM)	0.165
1200					nu hat (KM)	30.29					nu star (KM)	30.64
1201				tl	neta hat (KM)	311.6				th	eta star (KM)	308
1202			80	% gamma pe	ercentile (KM)	59.35			90	9% gamma pe	ercentile (KM)	152.1
1203			95	% gamma pe	ercentile (KM)	273.9			99	% gamma pe	ercentile (KM)	621
1204												
1205					Gamr	na Kaplan-M	eier (KM) Sta	atistics				
1206		A	Approximate C	hi Square Va	lue (30.64, α)	19			Adjusted C	hi Square Va	lue (30.64, β)	18.85
1207	1	95% Gamma /	Approximate K	M-UCL (use	when n>=50)	81.84		95% Gan	nma Adjusted	KM-UCL (use	e when n<50)	82.47
1208											l	
1200					Lognormal GC	OF Test on D	etected Obs	ervations On	ly			
1210			Shapiro Wilk	Approximate	Test Statistic	0.948			Shapiro Wi	k GOF Test		
1210				5% Shapiro	Wilk P Value	0.00369		Detected Dat	a Not Lognorr	nal at 5% Sig	nificance Leve	
1212				Lilliefors	Test Statistic	0.0933			Lilliefors	GOF Test		
1212				5% Lilliefors	Critical Value	0.0941	D	etected Data	appear Logno	rmal at 5% S	ignificance Lev	/el
1210				Detected	Data appear	Approximate	Lognormal a	t 5% Signific	ance Level			
1215												
1216				L	ognormal RC	S Statistics	Using Impute	ed Non-Detec	ts			
1217				Mean in (Driginal Scale	50.72				Mear	i in Log Scale	2.726
1218				SD in (Driginal Scale	126.4				SD	in Log Scale	1.472
1219		95%	t UCL (assum	es normality	of ROS data)	72.5			95%	Percentile B	ootstrap UCL	75.34
1220				95% BCA B	ootstrap UCL	83.51				95% Bo	otstrap t UCL	98.88
1221				95% H-UC	CL (Log ROS)	68.78						
1222							1				ł	
1223			Sta	tistics using	KM estimates	on Logged I	Data and Ass	suming Logno	ormal Distribu	tion		
1224				KM M	lean (logged)	2.753				k	M Geo Mean	15.69
1225				KM	1 SD (logged)	1.41			95%	Critical H Va	lue (KM-Log)	2.681
1226			KM Standa	ard Error of N	lean (logged)	0.147				95% H-U	CL (KM -Log)	62.88
1227				KN	1 SD (logged)	1.41			95%	Critical H Va	lue (KM-Log)	2.681
1228			KM Standa	ard Error of M	lean (logged)	0.147						
1229												
1230						DL/2 S	tatistics					
1231			DL/2 N	Normal					DL/2 Log-T	ransformed		
1232				Mean in (Driginal Scale	50.71				Mear	in Log Scale	2.724
1233				SD in (Driginal Scale	126.4				SD	in Log Scale	1.475
1234			95% t	UCL (Assum	es normality)	72.5				95%	6 H-Stat UCL	69.13
1235			DL/:	2 is not a rec	ommended m	ethod, provid	ded for comp	arisons and	historical reas	sons		
1236												
1237					Nonparam	etric Distribu	tion Free UC	L Statistics				
1238			De	tected Data	appear Appro	ximate Logno	ormal Distrib	uted at 5% S	ignificance Le	evel		
1239												
1240						Suggested	UCL to Use					
1241					KM H-UCL	62.88						
1242												
1243		Note: Sug	gestions rega	raing the sele	ection of a 95%	% UCL are pr	ovided to help	p the user to	select the mos	appropriate	95% UCL.	
1244		These		Recomment	unon the rea	seu upon dat	a size, data (iu skewness.	aichlo, and L	00 (2006)	
1245		However	imulations res				te: for additio	nal insight the		attine, driu L	a statisticion	
1246		1100000001, 5	10000015165						, user may wa			
1247												
1248		, IUIAL										

	А	В	С	D	Е	F	G	Н	I	J	K	L
1249												
1250						General	Statistics					
1251			Total	Number of C	bservations	93			Numbe	r of Distinct C	Observations	63
1252				Numbe	er of Detects	79				Number of	Non-Detects	14
1252			N	umber of Dist	tinct Detects	55			Numbe	er of Distinct	Non-Detects	8
1255				Mini	mum Detect	3.08				Minimum	Non-Detect	2.3
1254				Махі	mum Detect	911.8				Maximum	Non-Detect	3.47
1255				Varia	nce Detects	23337				Percent	Non-Detects	15.05%
1256				M	ean Detects	67.63					SD Detects	152.8
1257				Mer	dian Detects	16.93					CV Detects	2 259
1258				Skown	less Detects	3 883				Kurt	osis Detects	16.33
1259				Mean of Log	and Detects	3.000				SD of Loc	and Detects	1 313
1260				Wear of Log	geu Delecto	0.00					geu Deleels	1.010
1261					Marrie			ta Only				
1262									D.			
1263			5		est Statistic	0.453		Normal GO				
1264				5% Shapiro V	VIIK P Value	0		Detected Da	ita Not Norma	al at 5% Sign	Ificance Leve	1
1265				Lilliefors T	est Statistic	0.342			Lilliefors	GOF Test	-	
1266			5	% Lilliefors C	critical Value	0.0998		Detected Da	ita Not Norma	al at 5% Sign	ificance Leve	
1267				D	etected Data	a Not Norma	l at 5% Sig	inificance Lev	vel			
1268												
1269			Kaplan-	Meier (KM) S	Statistics usi	ng Normal C	ritical Valu	es and other	Nonparamet	ric UCLs		
1270					KM Mean	57.8			KN	/I Standard E	rror of Mean	14.8
1271					KM SD	141.8				95% KN	1 (BCA) UCL	82.42
1272				95%	KM (t) UCL	82.39			95% KM (P	ercentile Boo	otstrap) UCL	84.67
1273				95%	KM (z) UCL	82.14				95% KM Boo	otstrap t UCL	95.39
1274			(90% KM Che	byshev UCL	102.2			(95% KM Che	byshev UCL	122.3
1275	90% KM Chebyshev UCL 102.2 95% KM Chebyshev UCL 97.5% KM Chebyshev UCL 150.2 99% KM Chebyshev UCL						205.1					
1276												
1270				G	amma GOF	Tests on De	etected Ob	servations O	nly			
1277				A-D 1	est Statistic	6.581		ŀ	Anderson-Da	rling GOF Te	est	
1270				5% A-D C	ritical Value	0.813	Dete	cted Data Not	t Gamma Dist	tributed at 5%	6 Significance	e Level
1279				K-S T	est Statistic	0.208			Kolmogorov-	Smirnov GO	F	
1280				5% K-S C	critical Value	0.106	Dete	cted Data Not	Gamma Dist	tributed at 5%	6 Significance	e l evel
1281				Detecte	d Data Not (Gamma Dist	ributed at 5	5% Significan	ce l evel		e eiginieario	
1282				2010010								
1283					Gamma	Statistics or	Detected	Data Only				
1284					k hat (MLE)	0 556	Detected		k	star (hias cor	rected MLE)	0.5/3
1285				The		121.6			Thoto	star (bias cor		124 5
1286				I NE		121.0 97.0E			ineta			124.0 QE OF
1287				r		07.00				nu stař (bla	as corrected)	00.00
1288				Me	an (detects)	07.03						
1289				-		<u>.</u>						
1290				G	amma ROS	Statistics u	sing Impute	ed Non-Detec	ts			
1291			GROS may	not be used	when data s	et has > 50%	NDs with	many tied obs	servations at	multiple DLs		
1292		GROS ma	y not be used	l when kstar o	of detects is s	small such a	s <1.0, esp	ecially when	the sample si	ze is small (e	e.g., <15-20)	
1293			Fc	or such situati	ons, GROS I	method may	yield incorr	rect values of	UCLs and B	ΓVs		
1294				T	his is especi	ally true whe	en the samp	ole size is sma	all.			
1295		For ga	mma distribut	ted detected	data, BTVs a	nd UCLs ma	y be comp	uted using ga	mma distribu	tion on KM e	stimates	
1296					Minimum	0.01					Mean	57.45
1297					Maximum	911.8					Median	13.03
1298					SD	142.7					CV	2.485
1299					k hat (MLE)	0.322			k	star (bias cor	rected MLE)	0.318
1300				The	ta hat (MLE)	178.6			Theta	star (bias cor	rected MLE)	180.4
					-		1					

	А	В	С	D	E	F	G	Н		J	K	L
1301				-	nu hat (MLE)	59.84				nu star (bia	s corrected)	59.24
1302			Adjusted	Level of Sig	nificance (β)	0.0474						
1303		Ар	proximate Ch	i Square Val	ue (59.24, α)	42.54			Adjusted Ch	i Square Valu	ie (59.24, β)	42.32
1304		95% Gamm	a Approximat	e UCL (use v	when n>=50)	80		95% Ga	amma Adjust	ed UCL (use	when n<50)	80.42
1305												
1306				E	stimates of G	iamma Para	meters using	g KM Estima	tes			
1207					Mean (KM)	57.8		-			SD (KM)	141.8
1200				Va	ariance (KM)	20119				SE of	Mean (KM)	14.8
1308					k hat (KM)	0.166					k star (KM)	0.168
1309					nu hat (KM)	30.88				r	nu star (KM)	31.22
1310				th	eta hat (KM)	348.1				the	ta star (KM)	344.3
1311			80%	6 gamma ne	rcentile (KM)	68.49			90%	6 gamma per	centile (KM)	173.5
1312			007		rcontilo (KM)	310.7					contilo (KM)	700.2
1313				o gamma pe		510.7			337			700.2
1314					Comm	o Koplon M	oior (KM) St	otictics				
1315		٨٣	nrovimoto Ch					ausucs	Adjusted Ch		· (21 22 0)	10.21
1316	050				$\frac{ue(31.22, u)}{ubcn(31.22, u)}$	19.45		050/ 00000			ie (31.22, p)	19.31
1317	955	% Gamma Ap		/I-UCL (use \	when n>=50)	92.75		95% Gamm	la Adjusted k	INI-UCL (use	wnen n<50)	93.45
1318												
1319				L	ognormal GC	DF lest on D		servations O	nly			
1320		5	hapiro Wilk A	pproximate	l est Statistic	0.911			Shapiro Wi	IK GOF Test		
1321				5% Shapiro	Wilk P Value	7.6540E-6	D	etected Data	Not Lognorr	nal at 5% Sig	nificance Lev	/el
1322				Lilliefors	Test Statistic	0.117			Lilliefors	GOF Test		
1323			5	% Lilliefors (Critical Value	0.0998	D	etected Data	Not Lognorr	nal at 5% Sig	nificance Lev	/el
1324				De	tected Data	Not Lognorn	nal at 5% Si	gnificance L	evel			
1325												
1326				Lo	gnormal RO	S Statistics	Using Imput	ed Non-Dete	ects			
1327				Mean in O	riginal Scale	57.64				Mean i	n Log Scale	2.655
1328				SD in O	riginal Scale	142.7				SD i	n Log Scale	1.6
1329		95% t	UCL (assume	s normality o	of ROS data)	82.22			95% I	Percentile Boo	otstrap UCL	83.55
1330				95% BCA Bo	ootstrap UCL	90.71				95% Boot	tstrap t UCL	95.85
1331				95% H-UC	L (Log ROS)	83.06						
1332												
1333			Statis	stics using K	M estimates	on Logged I	Data and As	suming Logi	normal Distri	bution		
1334				KM M	ean (logged)	2.751				KM	I Geo Mean	15.66
1335			·	KM	SD (logged)	1.447			95% (Critical H Valu	ie (KM-Log)	2.724
1336			KM Standa	rd Error of M	ean (logged)	0.151				95% H-UC	L (KM -Log)	67.32
1337				KM	SD (logged)	1.447			95% (Critical H Valu	ie (KM-Log)	2.724
1338			KM Standa	rd Error of M	ean (logged)	0.151						
1330												
1340						DL/2 S	tatistics					
1341			DL/2	Normal					DL/2 Log-T	ransformed		
1242				Mean in O	riginal Scale	57.64			•	Mean i	n Log Scale	2.656
1042				SD in O	vriginal Scale	142.7				SD i	n Log Scale	1.592
1343			95% t l	JCL (Assume	es normality)	82.22				95%	H-Stat UCL	81.82
1045			DL/2	is not a reco	mmended m	ethod. provid	ded for com	parisons and	historical re	asons		
1345								,				
1346					Nonnaram	etric Distribu	tion Free L	CL Statistics				
1347				Dete do n	ot follow a D	iscernihle D	istribution of	5% Signific	ance l aval			
1348												
1349						Suggastad						
1350				0/ KM /OL							T	
1351			95		bysnev) UCL	122.3						
1352												

	А	В	С	D	E	F	G	Н	I	J	K	L
1353		Note: Sugges	stions regard	ing the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	ost appropria	ate 95% UCL	
1354			F	Recommenda	tions are ba	sed upon dat	a size, data	distribution, a	and skewnes	S.		
1355		These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).										
1356	H	owever, simu	lations result	s will not cov	er all Real V	/orld data se	ts; for additic	onal insight th	ie user may v	want to cons	ult a statistici	an.
1357												

Attachment 2 (Continued)

Soil Vapor Samples from Q1 through Q3 2016, Off-Base (Input)

	A	В	С	D	E
1	1,2,4-TRIMETHYLBENZENE	d_1,2,4-TRIMETHYLBENZENE		1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE)	d_1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE)
2	1.23	0		1.31	0
3	3.93	1		1.31	0
4	1.43	1		1.31	0
5	9.34	1		1.31	0
6	3.22	1		1.23	0
7	2.48	1		1.27	0
8	2.11	1		1.31	0
9	4.28	1		1.31	0
10	3.54	1		1.38	0
11	2.11	1		1.38	0
12	1.28	0		1.31	0
13	1.28	1		1.31	0

	F	G	Н		J	K	L	М	N	0
1		1,2-DICHLOROETHANE	d_1,2-DICHLOROETHANE		BENZENE	d_BENZENE		CYCLOHEXANE	d_CYCLOHEXANE	
2		1.42	0		1.34	0		2.55	0	
3		1.38	0		1.31	0		2.48	0	
4		1.34	0		1.28	0		2.44	0	
5		1.34	0		1.28	0		2.41	0	
6		1.3	0		3.43	1		2.38	0	
7		1.3	0		1.47	1		2.34	0	
8		1.3	0		1.5	1		2.31	0	
9		1.27	0		2.04	1		2.31	0	
10		1.25	0		1.98	1		2.31	0	
11		1.25	0		2.14	1		2.27	0	
12		1.25	0		1.5	1		4.47	1	
13		1.25	0		6.07	1		6.54	1	

	Р	Q	R	S	Т	U	V	W
1	ETHYLBENZENE	d_ETHYLBENZENE		M,P-XYLENE (SUM OF ISOMERS)	d_M,P-XYLENE (SUM OF ISOMERS)		NAPHTHALENE	d_NAPHTHALENE
2	1.35	0		11.72	1		1.52	0
3	1.3	0		2.87	1		1.47	0
4	1.26	0		5.64	1		1.42	0
5	1.26	0		5.21	1		1.42	0
6	2.32	1		4.3	1		1.42	0
7	1.98	1		14.55	1		1.42	0
8	2.52	1		39.95	1		2.04	1
9	1.3	1		16.07	1		2.41	1
10	2.69	1		8.68	1		2.04	1
11	2.43	1		14.33	1		3.62	1
12	1.69	1		14.76	1		2.83	1
13	4.78	1		12.59	1		4.3	1

	Х	Y	Z	AA	AB	AC	AD	AE	AF
1		n-HEPTANE	d_n-HEPTANE		n-HEXANE	d_n-HEXANE		O-XYLENE (1,2-DIMETHYLBENZENE)	d_O-XYLENE (1,2-DIMETHYLBENZENE)
2		1.48	0		1.3	0		1.22	0
3		1.43	0		1.27	0		4.23	1
4		1.43	0		1.27	0		2.08	1
5		1.39	0		1.23	0		3.52	1
6		1.39	0		1.23	0		3.91	1
7		1.39	0		1.2	0		1.78	1
8		1.35	0		1.2	0		1.43	1
9		1.35	0		1.2	0		5.86	1
10		1.35	0		1.16	0		16.93	1
11		1.35	0		4.23	1		6.51	1
12		2.21	1		2.22	1		5.21	1
13		2.54	1		5.99	1		5.21	1

	AG	AH	AI	AJ	AK	AL	AM	AN	AO
1		tert-BUTYL METHYL ETHER	d_tert-BUTYL METHYL ETHER		TOLUENE	d_TOLUENE		XYLENES, TOTAL	d_XYLENES, TOTAL
2		1.48	0		2.94	1		2.87	1
3		1.44	0		14.89	1		7.82	1
4		1.44	0		11.12	1		6.95	1
5		1.41	0		15.45	1		5.64	1
6		1.37	0		10.55	1		20.19	1
7		1.37	0		4.9	1		15.85	1
8		1.37	0		9.04	1		56.44	1
9		1.37	0		16.2	1		22.58	1
10		1.37	0		13.19	1		12.16	1
11		1.37	0		4.9	1		19.54	1
12		1.35	0		4.9	1		19.97	1
13		1.33	0		8.67	1		16.5	1

Attachment 2 (Continued)

Soil Vapor Samples from Q1 through Q3 2016, Off-Base (Output)

	А	В	С	D	E	F	G	Н	I	J	K		L
1					UCL Statis	tics for Data	Sets with N	on-Detects					
2													
3		User Sele	cted Options										
4	Dat	te/Time of C	omputation	ProUCL 5.	16/26/2017 1:	56:54 PM							
5			From File	WorkSheet	.xls								
6		Fu	II Precision	OFF									
7		Confidence	Coefficient	95%									
8	Number of	of Bootstrap	Operations	2000									
9													
10	1,2,4-TRIM	ETHYLBEN	ZENE										
11													
12						General	Statistics						
13			Total	Number of	Observations	12			Numb	per of Distinc	t Observations	10	C
14				Numb	er of Detects	10				Number of	of Non-Detects	2	
15			Ν	umber of Dis	stinct Detects	9			Num	ber of Disting	t Non-Detects	2	
16				Mir	imum Detect	1.28				Minimu	Im Non-Detect	1	.23
17				Мах	timum Detect	9.34				Maximu	Im Non-Detect	1	.28
18				Vari	ance Detects	5.437				Percer	nt Non-Detects	16	6.67%
19				Ν	lean Detects	3.372					SD Detects	2	.332
20				Me	edian Detects	2.85					CV Detects	0	.691
21				Skew	ness Detects	2.106				Κι	urtosis Detects	5	.321
22				Mean of Lo	gged Detects	1.05				SD of L	ogged Detects	0	.583
23													
24					Norn	nal GOF Tes	t on Detects	Only					
25			S	Shapiro Wilk	Test Statistic	0.775			Shapiro \	Wilk GOF Te	st		
26			5% S	hapiro Wilk	Critical Value	0.842		Detected Da	ita Not Nori	mal at 5% Sig	gnificance Leve	el	
27				Lilliefors	Test Statistic	0.248			Lilliefo	rs GOF Test			
28			5	% Lilliefors	Critical Value	0.262	De	etected Data	appear No	ormal at 5% S	Significance Le	vel	
29				Detected	Data appear	Approximat	te Normal at	5% Signific	ance Level				
30													
31			Kaplan-	Meier (KM)	Statistics usi	ng Normal C	ritical Value	s and other	Nonparam	etric UCLs			
32					KM Mean	3.015				KM Standard	Error of Mean	0	.661
33					KM SD	2.171				95% k	(M (BCA) UCL	4	.234
34				959	% KM (t) UCL	4.202			95% KM	(Percentile E	ootstrap) UCL	4	.123
35				95%	5 KM (z) UCL	4.102				95% KM B	ootstrap t UCL	5	.135
36			(90% KM Che	ebyshev UCL	4.997				95% KM CI	nebyshev UCL	5	.895
37			97	7.5% KM Che	ebyshev UCL	7.141				99% KM CI	nebyshev UCL	9	.589
38													
39					Gamma GOF	lests on De		ervations Oi			. .		
40				A-D	Test Statistic	0.363	.	F	Anderson-L				
41				5% A-D		0.732	Detecte	d data appe	ar Gamma	Distributed a	t 5% Significan	ce Le	evel
42				K-S		0.165	Datasta		Kolmogoro	v-Smirnov G			
43				5% K-S		0.268	Detecte	d data appe	ar Gamma	Distributed a	t 5% Significan	ce Le	evel
44				Detecte	u data appea	Gamma Di	stributed at a	o% significa	INCE LEVE				
45					0	Ototioti	Doto at	ata Orti					
46						Statistics Of	I Detected D	ata Only		k ato:: /b'		~	707
47				τι.		3.1/2			T6 / 1	K Star (DIAS C		2	.20/
48				Ihe		1.003			Inet			1	.4/5
49						03.43				nu star (t	bias corrected)	45	5.74
50				IVI	ean (uetects)	3.372							
51					Commo DOO	Statistics		Non Date	**				
52				1	Gamma ROS	Statistics u	sing imputed	I NON-Detec	лS				

	А	В	С	D	E	F	G	Н	I	J	K	L
53			GROS may	not be used	when data s	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DLs		
54		GROS mag	y not be used	when kstar of	of detects is	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e	∍.g., <15-20)	
55			Fo	r such situati	ons, GROS	method may	yield incorre	ect values of	UCLs and B	ΓVs		
56				Т	his is especi	ally true whe	en the sample	e size is sma	III.			
57		For gar	mma distribut	ed detected	data, BTVs a	ind UCLs ma	ay be comput	ted using gar	mma distribu	tion on KM e	stimates	
58					Minimum	0.01					Mean	2.812
59					Maximum	9.34					Median	2.295
60					SD	2.482					CV	0.883
61					k hat (MLE)	0.658			k	star (bias cor	rrected MLE)	0.549
62				The	ta hat (MLE)	4.273			Theta	star (bias cor	rected MLE)	5.121
63				r	u hat (MLE)	15.79				nu star (bia	as corrected)	13.18
64			Adjusted	Level of Sig	nificance (β)	0.029						
65		App	proximate Chi	Square Valu	ıe (13.18, α)	6.012			Adjusted Ch	i Square Val	ue (13.18, β)	5.291
66		95% Gamma	a Approximate	e UCL (use w	/hen n>=50)	6.163		95% Ga	amma Adjust	ed UCL (use	when n<50)	7.002
67					,				,	,	/	
67				Es	timates of G	amma Para	meters using	1 KM Estima	tes			
68					Mean (KM)	3.015		,			SD (KM)	2.171
69				Va	riance (KM)	4 715				SE o	of Mean (KM)	0.661
70					k hat (KM)	1 928				020	k star (KM)	1 502
/1					nu hat (KM)	16.27					nu star (KM)	36.04
72				th	ota hat (KM)	1 56/				th	ota star (KM)	2 008
73			000		eta fiat (KN)	1.504			0.00		rooptilo (KM)	6 291
74			00%			4.004			907			0.201
75			95%	a gamma per	centile (Kivi)	7.851			99%	o gamma pe	rcentile (Kivi)	11.4
76												
77					Gamm	na Kaplan-M	eier (KM) St	atistics				
78		Арр	proximate Chi	Square Valu	ie (36.04, α)	23.3			Adjusted Ch	i Square Val	ue (36.04, β)	21.75
79	95%	6 Gamma Ap	proximate KM	1-UCL (use w	/hen n>=50)	4.663		95% Gamm	a Adjusted K	M-UCL (use	when n<50)	4.996
80												
81				Lo	gnormal GC	F Test on D	etected Obs	ervations O	nly			
82			S	hapiro Wilk T	est Statistic	0.955			Shapiro Wi	lk GOF Test	•	
83			5% SI	napiro Wilk C	ritical Value	0.842	Dete	ected Data a	ppear Logno	rmal at 5% S	Significance Le	evel
84				Lilliefors T	est Statistic	0.144			Lilliefors	GOF Test		
85			5	% Lilliefors C	ritical Value	0.262	Dete	ected Data a	ppear Logno	rmal at 5% S	Significance Le	evel
86				Dete	cted Data ap	pear Logno	rmal at 5% S	Significance	Level			
87												
88				Lo	gnormal RO	S Statistics	Using Impute	ed Non-Dete	ects			
89				Mean in O	riginal Scale	2.93				Mean	in Log Scale	0.82
90				SD in O	riginal Scale	2.349				SD	in Log Scale	0.753
91		95% t l	JCL (assume	s normality o	f ROS data)	4.147			95% I	Percentile Bo	ootstrap UCL	4.072
92			(95% BCA Bo	otstrap UCL	4.465				95% Boo	otstrap t UCL	4.97
93				95% H-UCI	(Log ROS)	5.307						
94						<u> </u>	ļ					
05 05			Statis	tics using K	V estimates	on Logged I	Data and As	suming Logr	normal Distri	bution		
90				KM Me	ean (logged)	0.909				K	M Geo Mean	2.482
90				KM	SD (logaed)	0.594			95% (Critical H Val	ue (KM-Loa)	2.263
9/			KM Standar	d Error of Me	ean (logaed)	0.181				95% H-UC	CL (KM -Loa)	4.444
90				KM	SD (loaded)	0.594			95% (Critical H Val	ue (KM-Loa)	2.263
99			KM Standar	d Error of Me	ean (logged)	0.181			20,0			
100												
101						<u>פ <i>גו</i>ו</u> ח	tatistics					
102			י כי וח	lormal		0020				raneformed		
103				Moon in O	riginal Casta	2.015				Maar	in Log Sools	0 707
104				wear in O	iyinal scale	2.915				iviean	III LUY SCAIE	0.797

	А	В	С	D	E	F	G	Н		J K	L				
105				SD in Or	iginal Scale	2.364				SD in Log Scale	0.791				
106			95% t L	ICL (Assume	s normality)	4.14				95% H-Stat UCL	5.583				
107			DL/2 i	s not a recor	nmended m	ethod, provi	ded for co	mparisons an	d historical re	asons					
108															
109					Nonparame	etric Distribu	tion Free	UCL Statistic	S						
110			Det	ected Data a	ippear Appr	oximate Nor	mal Distri	buted at 5% S	Significance Le	evel					
111						<u> </u>									
112				050/		Suggested		se							
113				95%		4.202									
114				ata aat fallau		imate (a.e.									
115		When one	when a d	ata set follow	/s an approx	and upop o	normal) di	stribution pass	sing one of the	GOF test					
116		when app	Dicable, it is s	uggested to t	use a UCL b	ased upon a	distributio	n (e.g., gamm	ia) passing boi	IN GOF tests in Prouch					
117		Noto: Suggo	ctions regard	ing the color	tion of a OE%		ovidad ta	halp the upor t	a calaat tha m	act appropriate 05% LICL					
118		Note. Sugge						to distribution			•				
119		Those reco	mmondations		non the res	lts of the sin	ulation st		izod in Singh	s. Maichle, and Lee (2006)					
120	L		lations result	s will not cover	er all Roal M	lorid data so	te: for add	itional incidet	the user move	want to consult a statistici	an				
121		Sinna Sinna							une user may v		ан.				
122)F)										
123	1,2-DIDRV				-)										
124						General	Statistics								
125			Total	Number of O	bservations	12			Number	of Distinct Observations	4				
126	Total Number of Observations 12 Number of Distinct Observations 4 Number of Detects 0 Number of Non-Detects 12														
127	Number of Detects 0 Number of Non-Detects 12 Number of Distinct Detects 0 Number of Distinct Non-Detects 4														
128	Number of Distinct Detects 0 Number of Distinct Non-Detects 4														
129	Warning: All observations are Non-Detects (NDs) therefore all statistics and estimates should also be NDs!														
130	Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lving below the largest detection limit!														
122	Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).														
132		•	•			•			·	,					
133			The data se	t for variable	1,2-DIBRC	MOETHAN	E (ETHYL		/IDE) was not	processed!					
135										-					
136															
137	1,2-DICHI	OROETHAN	IE												
138															
139						General	Statistics								
140			Total	Number of O	bservations	12			Number	of Distinct Observations	6				
141				Numbe	r of Detects	0				Number of Non-Detects	12				
142			Nu	umber of Dist	inct Detects	0			Numbe	r of Distinct Non-Detects	6				
143															
144		War	ning: All obse	ervations are	Non-Detect	ts (NDs), the	erefore all	statistics and	estimates sho	ould also be NDs!					
145		Specifi	ically, sample	e mean, UCL	s, UPLs, an	d other stati	stics are a	also NDs lying	below the lar	gest detection limit!					
146		The Project	Team may de	cide to use a	alternative s	ite specific v	alues to e	estimate envir	onmental para	meters (e.g., EPC, BTV)	•				
147															
148				The data s	et for variab	le 1,2-DICH	LOROETI	HANE was no	t processed!						
149															
150															
151	BENZENE														
152															
153						General	Statistics								
154			Total	Number of O	bservations	12			Number	of Distinct Observations	10				
155				Numbe	er of Detects	8				Number of Non-Detects	4				
			Nu	umber of Dist	inct Detects	7			Numbe	r of Distinct Non-Detects	3				

	А	В	С	D	E	F	G	Н		J	K	L
157				Mini	mum Detect	1.47				Minimum	Non-Detect	1.28
158				Maxi	mum Detect	6.07				Maximum	Non-Detect	1.34
159				Varia	nce Detects	2.469				Percent	Non-Detects	33.33%
160				M	ean Detects	2.516					SD Detects	1.5/1
161				IVIE	alan Detects	2.01					CV Detects	0.624
162				Skewn	and Detects	2.067				SD of Log	usis Detects	4.309
163					geu Delecis	0.799				SD 01 L0g	yeu Delecis	0.495
164					Norm	al GOF Tes	t on Detects					
165			S	hapiro Wilk T	est Statistic	0.713			Shapiro V	Vilk GOF Test		
167			5% S	napiro Wilk C	ritical Value	0.818		Detected Da	ita Not Norr	nal at 5% Sign	ificance Leve	9
168				Lilliefors T	est Statistic	0.345			Lilliefor	s GOF Test		
169			5	% Lilliefors C	ritical Value	0.283		Detected Da	ta Not Norr	nal at 5% Sign	ificance Leve	9
170				D	etected Data	a Not Norma	l at 5% Sign	ificance Lev	/el			
171												
172			Kaplan-	Meier (KM) S	Statistics usi	ng Normal C	ritical Value	s and other	Nonparam	etric UCLs		
173					KM Mean	2.104			ł	KM Standard E	rror of Mean	0.412
174					KM SD	1.334				95% KN	I (BCA) UCL	2.763
175				95%	KM (t) UCL	2.844			95% KM	(Percentile Boo	otstrap) UCL	2.813
176				95%	KM (z) UCL	2.781				95% KM Boo	otstrap t UCL	4.396
177			<u>)</u>	00% KM Che	byshev UCL	3.339				95% KM Che	byshev UCL	3.899
178			97	.5% KM Che	byshev UCL	4.675				99% KM Che	byshev UCL	6.2
179						Taata an Da		an cation of O	- h -			
180				G	amma GOF			ervations Or				
181				A-D I	est Statistic	0.787	Dotoct	F od Data Not	Gommo Di	istributed at 5%	Significance	
182				5% A-D C		0.719	Delect			v-Smirnov GO		e Level
183				5% K-S C	citical Value	0.295	Detect	ed Data Not	Gamma Di	istributed at 5%	Significance	e l evel
184				Detecte	d Data Not (Gamma Dist	ributed at 59	% Significan	ce Level			
100								0				
187					Gamma	Statistics or	Detected D	ata Only				
188					k hat (MLE)	4.187			I	k star (bias cor	rected MLE)	2.7
189				The	ta hat (MLE)	0.601			Theta	a star (bias cor	rected MLE)	0.932
190				r	u hat (MLE)	66.99				nu star (bia	as corrected)	43.2
191				Me	an (detects)	2.516						
192												
193				G	amma ROS	Statistics u	sing Imputed	d Non-Detec	cts			
194			GROS may	not be used	when data s	et has > 50%	6 NDs with m	nany tied obs	servations a	at multiple DLs		
195		GROS ma	y not be used	when kstar	of detects is a	small such a	s <1.0, espe	cially when t	the sample	size is small (e	e.g., <15-20)	
196			Fo	r such situati	ons, GROS	nethod may	yield incorre	ect values of	UCLs and I	BIVs		
197						ally true whe	en the sample	e size is sma	311.			
198		For gai	mma distribui	ea aetectea (Minimum		iy be comput	ted using ga	mma distrib	oution on KIVI e	stimates	1 601
199					Maximum	6.07					Median	1.001
200						1 759					CV	1.046
201					k hat (MLE)	0.428			I	k star (bias cor	rected MLE)	0.376
202				The	ta hat (MLE)	3.93			Theta	a star (bias cor	rected MLE)	4.466
203				r	u hat (MLE)	10.27				nu star (bia	is corrected)	9.033
204			Adjusted	Level of Sig	nificance (β)	0.029					,	
206		Aŗ	oproximate C	hi Square Va	lue (9.03, α)	3.347			Adjusted	Chi Square Va	lue (9.03, β)	2.84
207		95% Gamma	a Approximat	e UCL (use w	/hen n>=50)	4.537		95% G	amma Adju	sted UCL (use	when n<50)	5.346
208							·					

	А	В	С	D	E	F	G	Н		J	K	L
209				E	Estimates of G	amma Para	meters using	g KM Estima	tes			
210					Mean (KM)	2.104					SD (KM)	1.334
211				١	Variance (KM)	1.78				SE o	of Mean (KM)	0.412
212					k hat (KM)	2.488					k star (KM)	1.921
213					nu hat (KM)	59.71					nu star (KM)	46.12
214				t	theta hat (KM)	0.846				the	eta star (KM)	1.095
215			80%	% gamma p	ercentile (KM)	3.165			90%	% gamma pe	rcentile (KM)	4.131
216			95%	% gamma p	ercentile (KM)	5.055			99%	6 gamma pe	rcentile (KM)	7.109
210												
217					Gamm	a Kaplan-M	eier (KM) St	atistics				
210		Apr	oroximate Ch	i Square Va	alue (46.12, α)	31.53			Adjusted Ch	i Square Val	ue (46.12, β)	29.7
219	95%	6 Gamma Ap	proximate K	· M-UCL (use	when n>=50)	3.077		95% Gamm	a Adiusted k	(M-UCL (use	when n<50)	3.267
220												
221				I	ognormal GC)F Test on D	etected Obs	ervations O	nlv			
222			c	haniro Wilk	Test Statistic	0.824			Shaniro Wi	Ik GOF Test		
223			5% S	hapiro Wilk	Critical Value	0.024	Det	ected Data a		rmal at 5% S	Significance	
224					Tost Statistic	0.010	Deu					ever
225						0.201	Det	acted Data a			Significance	
226					Cilical value	0.203	rmal at 5% S				significance L	evei
227						pear Logno	rmai at 5% c	Significance	Levei			
228				<u> </u>	100							
229				L	ognormal RO	S Statistics		ed Non-Dete	ects			0.005
230				Mean in (Original Scale	1.9				Mean	in Log Scale	0.395
231				SD in (Original Scale	1.55				SD	in Log Scale	0.719
232		95% t l	JCL (assume	s normality	of ROS data)	2.703			95%	Percentile Bo	otstrap UCL	2.654
233				95% BCA B	Bootstrap UCL	2.852				95% Boo	otstrap t UCL	3.419
234				95% H-U	CL (Log ROS)	3.264						
235												
236			Statis	stics using	KM estimates	on Logged I	Data and Ase	suming Logr	normal Distri	bution		
237				KM N	Vean (logged)	0.615				K	M Geo Mean	1.849
238				KN	VI SD (logged)	0.458			95% (Critical H Val	ue (KM-Log)	2.09
239			KM Standa	rd Error of N	Mean (logged)	0.141				95% H-UC	CL (KM -Log)	2.739
240				KN	M SD (logged)	0.458			95% (Critical H Val	ue (KM-Log)	2.09
241			KM Standa	rd Error of N	Mean (logged)	0.141						
242						I	1				I	
243		<u> </u>				DL/2 S	tatistics				·	
244			DL/2	Normal					DL/2 Log-1	ransformed		
245				Mean in (Original Scale	1.895				Mean	in Log Scale	0.389
246				SD in (Original Scale	1.554				SD	in Log Scale	0.721
247			95% t l	JCL (Assun	nes normality)	2.7				95%	H-Stat UCL	3.258
248			DL/2	is not a rec	ommended m	ethod, provi	ded for comp	parisons and	l historical re	asons		
249												
250					Nonparame	etric Distribu	tion Free UC	L Statistics				
250				Detected	Data appear	Lognormal [Distributed at	t 5% Signific	ance Level			
257												
252						Suggested	UCL to Use					
200				ŀ	KM Student's t	2.626	_				KM H-UCL	2.739
204												
200		Note: Suaae	stions reaard	ling the sele	ection of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropri	ate 95% UCL	
250				Recommend	dations are bas	sed upon dat	a size. data	distribution	and skewnes	S.		
257		These reco	mmendation	s are based	upon the resu	Its of the sim	ulation studi	es summariz	zed in Singh	Maichle an	d Lee (2006)	
258	н	Owever simi	lations result	ts will not or	over all Real M	/orld data se	ts: for addition	nal insight th	ne user may	want to cons	ult a statistici	an
259												
260												

	A	В		С		D	E	F	G	Н	I	J	K	L
261	CYCLO	IEXANE												
262														
263								General	Statistics					
264				Total	Num	ber of C	bservations	12			Numbe	r of Distinct (Observations	10
265						Numbe	er of Detects	2				Number of	Non-Detects	10
266				Ν	umbe	r of Dist	tinct Detects	2			Numbe	er of Distinct	Non-Detects	8
267						Mini	mum Detect	4.47				Minimum	Non-Detect	2.27
268						Maxi	mum Detect	6.54				Maximum	Non-Detect	2.55
269						Varia	nce Detects	2.142				Percent	Non-Detects	83.33%
270						Μ	ean Detects	5.505					SD Detects	1.464
271						Med	dian Detects	5.505					CV Detects	0.266
272						Skewn	ess Detects	N/A				Kur	osis Detects	N/A
273					Mear	n of Log	ged Detects	1.688				SD of Log	ged Detects	0.269
274														
275							Warning: D	ata set has	only 2 Dete	ected Values.				
276				Т	his is	not enc	ough to com	pute meanir	ngful or relia	ble statistics	and estimate	es.		
277														
278														
279							Norn	nal GOF Te	st on Detec					
280							Not En	ough Data t	o Perform (iOF lest				
281				Kaalaa							N			
282				Kapian-	Meler	r (KM) S				es and other	Nonparamet			0.500
283								2.809			NI.			0.522
284						050/		1.278				95% KN		N/A
285						95%		3.746			95% KIVI (F	ercentile Bo		N/A
286					000/ 1/	95%		3.007						N/A
287					90% r			4.374						5.065
288				97	.5% r	Vivi Chei	bysnev UCL	0.000					bysnev UCL	7.998
289								Tooto on D	atastad Ob	onvotione O	nh.			
290						G	Not En	ough Data t	o Porform (iny			
291														
292							Gamma	Statistics o	n Detected	Data Only				
293							k hat (MLE)	27.95			k	star (bias co	rrected MLE)	N/A
294						The	ta hat (MLE)	0.197			Theta	star (bias co	rected MLE)	N/A
295						n	u hat (MLE)	111.8				nu star (bia	as corrected)	N/A
290						Ме	an (detects)	5.505				,		
297														
290						Es	timates of G	amma Para	meters usi	ng KM Estima	ates			
300							Mean (KM)	2.809		-			SD (KM)	1.278
301						Va	ariance (KM)	1.632				SE c	of Mean (KM)	0.522
302	k ha							4.835					k star (KM)	3.682
303	nu ha						nu hat (KM)	116					nu star (KM)	88.37
304	theta ha						eta hat (KM)	0.581				the	eta star (KM)	0.763
305	80% gamma percentile					centile (KM)	3.911			909	% gamma pe	rcentile (KM)	4.772	
306	95% gamma percentile						centile (KM)	5.568			999	% gamma pe	rcentile (KM)	7.274
307								I	1					
308							Gamn	na Kaplan-M	leier (KM) S	Statistics				
309											Adjusted	Level of Sig	nificance (β)	0.029
310		A	Appro	oximate Ch	ii Squa	are Valu	Je (88.37, α)	67.7			Adjusted Ch	i Square Val	ue (88.37, β)	64.94
311	9	5% Gamma /	Appr	oximate KN	N-UCL	L (use w	vhen n>=50)	3.667		95% Gamm	na Adjusted k	(M-UCL (use	when n<50)	3.823
312														

	А	В	С	D	E	F	G	Н		I	J	K	L
313				Lo	ognormal GO	Test on D	etected Obs	ervations	s Only				
314					Not En	ough Data to	o Perform G	OF Test					
315													
316				LO	gnormal RO	S Statistics	Using Imput	ed Non-D	etects				0.005
317				Mean in O	riginal Scale	1.803					Mean	In Log Scale	0.305
318		050/ +1		SD in O	riginal Scale	1.804				050/	SD Demoentile De	In Log Scale	0.696
319		95% [[2.739				95%			2.098
320			:			2.900					90% DUU		0.075
321				95 % H-UCI		2.805							
322			Statis	tice using K	M estimates	on Logged I	Data and As	sumina L	oanorm	nal Dietri	bution		
323			Otatio		ean (logged)	0 964		sunning L	ognorn		KI	M Geo Mean	2 623
324				KM	SD (logged)	0.333				95%	Critical H Val		1 958
325			KM Standar	d Error of M	ean (logged)	0.136				0070	95% H-UC		3.374
320				KM	SD (logged)	0.333				95%	Critical H Val	ue (KM-Log)	1.958
327			KM Standar	d Error of M	ean (logged)	0.136						(3)	
320					(00)								
329						DL/2 S	tatistics						
330			DL/2	Normal					DL	/2 Log-1	Fransformed		
332				Mean in O	riginal Scale	1.909					Mean	in Log Scale	0.426
333				SD in O	riginal Scale	1.737					SD	in Log Scale	0.596
334			95% t L	JCL (Assume	es normality)	2.81					95%	H-Stat UCL	2.747
335			DL/2 i	s not a reco	mmended m	ethod, provi	ded for com	parisons a	and his	torical re	easons		
336													
337					Nonparame	etric Distribu	tion Free UC	CL Statist	ics				
338				Data do n	ot follow a Di	iscernible D	istribution at	5% Sign	ificance	e Level			
339													
340						Suggested	UCL to Use						-
341				95%	5 KM (t) UCL	3.746						KM H-UCL	3.374
342				95% KN	I (BCA) UCL	N/A							
343				Warn	ing: One or r	nore Recorr	mended UC	L(s) not a	availab	le!			
344													
345		Note: Sugge	stions regard	ing the selec	tion of a 95%	OCL are pr	ovided to he	p the use	er to sel	ect the n	nost appropri	ate 95% UCL	
346			H 	ecommenda	ations are bas	sed upon dat	a size, data		on, and	Skewnes	SS.		
347			Inmendations	s are based u	ipon the resu		te: for addition	es summ	arized i	n Singn,	want to cons	ult a statistic	on
348		Jwever, sinu		S WIII HOL COV				nai msiyi		sei may			dII.
349													
350													
351						General	Statistics						
352			Total	Number of C	Observations	12				Numbe	r of Distinct C	Observations	10
353				Numbe	er of Detects	8					Number of	Non-Detects	4
355			Nu	umber of Dis	tinct Detects	8				Numbe	er of Distinct	Non-Detects	3
356				Mini	imum Detect	1.3					Minimum	Non-Detect	1.26
357				Maxi	imum Detect	4.78					Maximum	Non-Detect	1.35
358				Varia	ance Detects	1.09					Percent	Non-Detects	33.33%
359				Μ	lean Detects	2.464						SD Detects	1.044
360				Me	dian Detects	2.375						CV Detects	0.424
361				Skewr	ness Detects	1.722					Kurt	osis Detects	4.06
362				Mean of Log	ged Detects	0.835					SD of Log	ged Detects	0.381
363													
364					Norm	al GOF Tes	t on Detects	Only					

	А	В	С	D	E	F	G	Н		J	K	L
365			S	hapiro Wilk	Test Statistic	0.834			Shapiro Wi	lk GOF Test	1	
366			5% S	hapiro Wilk (Critical Value	0.818	D	etected Data	appear Norn	nal at 5% Sig	gnificance Lev	el
367				Lilliefors	Test Statistic	0.289			Lilliefors	GOF Test		
368			5	% Lilliefors C	Critical Value	0.283		Detected Dat	ta Not Norma	al at 5% Sign	ificance Level	
369				Detected	Data appear	Approximat	e Normal at	5% Significa	ance Level			
370												
371			Kaplan-	Meier (KM) \$	Statistics usi	ng Normal C	ritical Value	s and other	Nonparamet	ric UCLs		
372					KM Mean	2.063			KN	I Standard E	rror of Mean	0.302
272					KM SD	0.978				95% KN	/ (BCA) UCL	2.593
274				95%	6 KM (t) UCL	2.605			95% KM (P	ercentile Bo	otstrap) UCL	2.515
374				95%	KM (z) UCL	2.56				95% KM Boo	otstrap t UCL	2.872
375				90% KM Che	byshev UCI	2,969			ç	95% KM Che	byshev UCI	3.379
376			97	5% KM Che	hyshev UCI	3 948				9% KM Che	hyshev UCI	5.066
3//						0.040					byonev doe	0.000
378					amma GOF	Tests on De	atected Obs	envetions On	lv.			
379				ر ۸ ۵	Tost Statistic	0.385			nderson-Dai		oct	
380					Pritical Value	0.303	Dotooto				501 Significant	
381				5% A-D (0.717	Delecie					
382				K-5		0.232	Detecto	r	Corridgorov-	Smirnov GC	/ F	
383				5% K-S (0.295	Detecte	d data appea	ar Gamma Di	stributed at a	5% Significant	ce Level
384				Detected	i data appear	Gamma Di	stributed at	5% Significa	nce Level			
385												
386					Gamma	Statistics or	n Detected D	Data Only			T	
387					k hat (MLE)	7.631			k s	star (bias cor	rrected MLE)	4.853
388				The	ta hat (MLE)	0.323			Theta s	star (bias cor	rrected MLE)	0.508
389				1	nu hat (MLE)	122.1				nu star (bia	as corrected)	77.65
390				Me	ean (detects)	2.464						
391												
392				C	Gamma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
393			GROS may	not be used	when data s	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DLs	i	
394		GROS may	y not be used	l when kstar	of detects is s	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e	ə.g., <15-20)	
395			Fo	or such situat	ions, GROS ı	method may	yield incorre	ect values of	UCLs and B1	-Vs		
396				٦	This is especi	ally true whe	en the sample	e size is sma	II.			
397		For gar	mma distribu	ted detected	data, BTVs a	nd UCLs ma	y be compu	ted using gar	nma distribut	tion on KM e	stimates	
398					Minimum	0.116					Mean	1.784
399					Maximum	4.78					Median	1.835
400					SD	1.31					CV	0.734
401					k hat (MLE)	1.505			ks	star (bias cor	rrected MLE)	1.184
402				The	ta hat (MLE)	1.186			Theta s	star (bias cor	rrected MLE)	1.507
403					nu hat (MLE)	36.11				nu star (bia	as corrected)	28.42
404			Adjusted	Level of Sig	nificance (β)	0.029						
404		Apr	oroximate Ch	i Square Val	ue (28.42, α)	17.25			Adjusted Ch	i Square Val	ue (28.42, β)	15.94
405		95% Gamma	a Approximat	e UCL (use v	when n>=50)	2.938		95% Ga	- amma Adjust	ed UCL (use	when n<50)	3.181
400				(- (/	
407				F	stimates of G	amma Para	meters using	u KM Estima	tes			
408					Mean (KM)	2 063		_ 3u			SD (KM)	0.978
409				1/4	ariance (KM)	0.956				SE o	of Mean (KM)	0.302
410				V		1 152				02.0	k star (KM)	3 20/
411						106.8						Q1 /6
412						0.464				. حاله		01.40
413			000			0.404			000			
414			80%	% gamma pei	ICENTILE (KM)	2.9			90%	o gamma pe	rcentile (KM)	3.565
415			959	% gamma pe	rcentile (KM)	4.182			99%	o gamma pe	rcentile (KM)	5.51
416												

	А	В	С	D	E	F	G	H	I	J	K	L
417		۸	rovimote Ot-	Square Val		a Kapian-Me	eier (KM) St	alistics	Adjusted OF		0 (01 46 0)	50.04
418	0.50	App	proximate Chi	Square Valu	με (81.46, α)	61.66		0504 0	Adjusted Ch	Square Valu	ue (81.46, β)	59.04
419	95%	Gamma Ap	proximate KN	1-UCL (use w	/hen n>=50)	2.726		95% Gamm	a Adjusted K	M-UCL (use	when n<50)	2.847
420												
421					gnormal GC	PF Test on D	etected Obs	servations O	nly			
422			S	hapiro Wilk I	est Statistic	0.947			Shapiro Wi			
423			5% Sr	hapiro Wilk C	ritical Value	0.818	Det	ected Data a	ippear Logno	ormal at 5% S	Significance Le	evel
424				Lilliefors I	est Statistic	0.217			Lilliefors	GOF Test		
425			5	% Lilliefors C	ritical Value	0.283	Det	ected Data a	ippear Logno	ormal at 5% S	Significance Le	evel
426				Dete	cted Data ap	opear Logno	rmal at 5% S	Significance	Level			
427					150							
428					gnormal RO	S Statistics	Using Imput	ed Non-Dete	ects			0.501
429				Mean in Oi	riginal Scale	1.953				Mean	in Log Scale	0.531
430				SD in Oi	riginal Scale	1.125				SD	in Log Scale	0.546
431		95% t l	JCL (assume	s normality o	f ROS data)	2.537			95% F	Percentile Bo	otstrap UCL	2.505
432			Q	95% BCA Bo	otstrap UCL	2.607				95% Boo	otstrap t UCL	2.729
433				95% H-UCI	_ (Log ROS)	2.835						
434												
435			Statis	tics using KI	M estimates	on Logged [Data and As	suming Logr	normal Distri	bution		
436				KM Me	ean (logged)	0.634				KN	M Geo Mean	1.885
437				KM	SD (logged)	0.406			95% (Critical H Valu	ue (KM-Log)	2.033
438			KM Standar	d Error of Me	ean (logged)	0.125				95% H-UC	CL (KM -Log)	2.626
439				KM	SD (logged)	0.406			95% (Critical H Valu	ue (KM-Log)	2.033
440			KM Standar	d Error of Me	ean (logged)	0.125						
441												
442						DL/2 S	tatistics					
443			DL/2	Normal					DL/2 Log-T	ransformed		
444				Mean in Oi	riginal Scale	1.858				Mean	in Log Scale	0.411
445				SD in Oi	riginal Scale	1.222				SD	in Log Scale	0.696
446			95% t L	JCL (Assume	es normality)	2.492				95%	H-Stat UCL	3.185
447			DL/2 i	s not a recor	mmended m	ethod, provid	led for com	parisons and	i historical re	easons		
448												
449					Nonparame	etric Distribu	tion Free UC	CL Statistics				
450			Det	ected Data a	appear Appro	oximate Nori	mal Distribu	ted at 5% Si	gnificance Lo	evel		
451						<u> </u>						
452				050/		Suggested	UCL to Use	1				
453				95%	KM (t) UCL	2.605						
454			14/1			/	N 11 1		C .1	0051		
455		14/1	vvnen a d	ata set follow	vs an approx	imate (e.g., r	normal) distr	bution passi	ng one of the			
456		when app	licable, it is s	uggested to	use a UCL b	ased upon a	distribution	(e.g., gamma	a) passing bo	th GOF tests	IN ProUCL	
457												
458		Note: Sugge	stions regard	ing the selec	tion of a 95%	5 UCL are pro	ovided to he	Ip the user to	select the m	lost appropria	ate 95% UCL.	
459		T I	H	lecommenda	tions are bas	sed upon dat	a size, data	distribution,	and skewnes	S.	(0000)	
460		I nese reco	mmendations	are based u	pon the resu	its of the sim	iulation studi	ies summariz	zed in Singh,	waichle, and	1 Lee (2006).	
461	H	owever, simu	liations result	s will not cov	er all Real W	orid data se	ts; tor additio	onal insight t	ne user may	want to consi	uit a statisticia	n.
462												
463												
464	64 M,P-XYLENE (SUM OF ISOMERS)											
465							0					
466				NI 1 7-		General	Statistics			(N	10
467			Fotal	Number of C	observations	12			Number	r of Distinct C	observations	12
468									Number	of Missing C	Observations	0

	А	В	С	D	E	F	G	Н		J	K	L
469					Minimum	2.87					Mean	12.56
470					Maximum	39.95					Median	12.16
471					SD	9.79				Std. E	rror of Mean	2.826
472				Coefficient	of Variation	0.78					Skewness	2.136
473						Į	I					
474						Normal (GOF Test					
475			S	hapiro Wilk T	est Statistic	0.766			Shapiro Wi	lk GOF Test	t .	
476			5% S	hapiro Wilk C	critical Value	0.859		Data No	ot Normal at §	5% Significar	nce Level	
477				Lilliefors 7	est Statistic	0.276			Lilliefors	GOF Test		
478			5	% Lilliefors C	critical Value	0.243		Data No	ot Normal at 5	5% Significar	nce Level	
479					Data Not	Normal at 5	5% Significar	nce Level				
480												
481					As	suming Nori	mal Distribut	ion				
482			95% No	ormal UCL				95%	UCLs (Adju	sted for Ske	wness)	
483				95% Stu	dent's-t UCL	17.63			95% Adjuste	d-CLT UCL	(Chen-1995)	19.07
484									95% Modifie	ed-t UCL (Jo	hnson-1978)	17.92
485												
486						Gamma	GOF Test					
487				A-D 1	est Statistic	0.43		Ander	rson-Darling	Gamma GC	F Test	
488				5% A-D C	ritical Value	0.741	Detecte	d data appea	ar Gamma Di	stributed at {	5% Significan	ce Level
489				K-S 1	est Statistic	0.189		Kolmog	orov-Smirno	v Gamma G	OF Test	
490				5% K-S C	ritical Value	0.248	Detecte	d data appea	ar Gamma Di	stributed at §	5% Significan	ce Level
491				Detected	data appea	r Gamma Di	stributed at {	5% Significa	nce Level			
492												
103						Gamma	Statistics					
494					k hat (MLE)	2.283			ks	star (bias cor	rrected MLE)	1.767
495				The	ta hat (MLE)	5.501			Thetas	star (bias coi	rrected MLE)	7.104
496				r	u hat (MLE)	54.78				nu star (bia	as corrected)	42.42
497			M	LE Mean (bia	s corrected)	12.56				MLE Sd (bia	as corrected)	9.444
498									Approximate	Chi Square	Value (0.05)	28.49
499			Adjus	sted Level of	Significance	0.029			Ac	ljusted Chi S	Square Value	26.76
500												
501					As	suming Garr	nma Distribu	tion				
502		95% Approx	imate Gamm	a UCL (use v	vhen n>=50)	18.7		95% Ad	ljusted Gamr	na UCL (use	when n<50)	19.91
503												
504						Lognorma	I GOF Test					
505			S	hapiro Wilk T	est Statistic	0.949		Sha	oiro Wilk Log	normal GOF	- Test	
506			5% S	hapiro Wilk C	critical Value	0.859		Data appea	r Lognormal	at 5% Signif	icance Level	
507				Lilliefors 7	est Statistic	0.175		Lil	liefors Logno	ormal GOF 1	lest	
508			5	% Lilliefors C	critical Value	0.243		Data appea	r Lognormal	at 5% Signif	icance Level	
509					Data appear	· Lognormal	at 5% Signif	icance Leve	1			
510												
511						Lognorma	I Statistics					
512				Minimum of L	ogged Data	1.054				Mean of	logged Data	2.295
513			Ν	Maximum of L	ogged Data	3.688				SD of	logged Data	0.719
514						1	1					
515					Ass	uming Logno	ormal Distrib	ution				
516					95% H-UCL	21.83			90%	Chebyshev ((MVUE) UCL	20.67
517			95%	Chebyshev (MVUE) UCL	24.36			97.5%	Chebyshev ((MVUE) UCL	29.48
518			99%	Chebyshev (MVUE) UCL	39.54						
519						1	1					
520					Nonparame	etric Distribu	tion Free UC	L Statistics				
520												

	А	В	С	D	E	F	G	Н	I	J	K		L
521				Data appea	r to follow a	Discernible	Distribution at	5% Signif	icance Level				
522													
523					Nonpa	rametric Dis	tribution Free	UCLs					
523				95	% CLT UCL	17.2				95% J	ackknife U	CL	17.63
524			95%	Standard Bo	otstrap UCL	16.96				95% Bo	otstrap-t U	CL	20.65
525			00.0	5% Hall's Bo	otstran UCI	38.51			95% F	Percentile B	ootstran U		17.46
526				95% BCA Bo	otetran LICI	10.07			00701				17.40
527			90% Ch		an Sd) UCI	21.03			95% Ch	obyshov/M	oon Sd) II		2/ 87
528			97.5% Ch		an, Sd) UCL	21.00			00% Ch		$\frac{1}{2}$		40.68
529			37.370 CI		an, 50) 00L	50.2			3370 CH	ebysnev(ivi			40.00
530						Suggested							
531			05	0/ Adjusted C	Commo LICI							<u> </u>	
532			90	% Aujusteu C		19.91							
533													
534		Note: Sugge	stions regard	ing the selec	tion of a 95%	o UCL are pr	ovided to help	the user to	select the m	iost appropi	riate 95% (JCL.	
535				Recommenda	tions are bas	sed upon dat	a size, data dis	stribution, a	and skewnes	S.			
536		These reco	mmendations	s are based u	pon the resu	Its of the sim	ulation studies	s summariz	zed in Singh,	Maichle, ar	nd Lee (200)6).	
537	Ho	wever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additiona	al insight th	ne user may	want to con	sult a statis	sticia	n.
538													
539	NAPHTHA	LENE											
540													
541						General	Statistics						
542			Total	Number of C	bservations)	12			Number	of Distinct	Observatio	ns	8
543				Numbe	er of Detects	6				Number of	f Non-Dete	cts	6
544			Ν	umber of Dist	tinct Detects	5			Numbe	er of Distinct	t Non-Dete	cts	3
545				Mini	mum Detect	2.04				Minimu	m Non-Det	ect	1.42
546				Maxi	mum Detect	4.3				Maximu	m Non-Det	ect	1.52
547				Varia	nce Detects	0.84				Percent	t Non-Dete	cts	50%
548				М	ean Detects	2.873					SD Dete	cts	0.916
549				Мес	dian Detects	2.62					CV Dete	cts	0.319
550				Skewn	ess Detects	0.804				Ku	rtosis Dete	cts	-0.825
551				Mean of Log	ged Detects	1.015				SD of Lo	gged Dete	cts	0.307
552													
553					Norm	al GOF Tes	t on Detects C	Only					
554			S	hapiro Wilk T	est Statistic	0.89			Shapiro Wi	lk GOF Tes	st		
555			5% S	hapiro Wilk C	ritical Value	0.788	Dete	ected Data	appear Norn	nal at 5% S	ignificance	Lev	el
556				Lilliefors T	est Statistic	0.193			Lilliefors	GOF Test			
557			5	% Lilliefors C	ritical Value	0.325	Dete	ected Data	appear Norn	nal at 5% S	ignificance	Lev	el
558				Det	tected Data	appear Norn	nal at 5% Sign	ificance Lo	evel		-		
550						-							
559			Kaplan-	Meier (KM) S	Statistics usi	ng Normal C	ritical Values	and other	Nonparamet	ric UCLs			
500	1			、 <i>i</i> -	KM Mean	2.147				I Standard	Error of Me	an	0.296
501					KM SD	0.937				95% K	M (BCA) II	CL	2.638
502				95%		2 679			95% KM (P	ercentile Br	otstran) II	CI	2 614
563				95%	KM (7) UCI	2 634				95% KM Bo	otstran t II		2 707
564			(hvshev UCI	3 036			C	5% KM Ch	ehvshev II		3 4 3 8
565			70	5% KM Cha	hyshev UCL	3.000				9% KM Ch	ehvehev II		5 005
566			97		Gyanev UCL	5.537					CDysnev U		5.095
567				~	amma COF	Toete on Dr	stanted Obser	vations Or	alv				
568				G							oct		
569						0.352	Data -t- '	A			ESL Cimil		
570				5% A-D C	Titical Value	0.698	Detected	uata appea	ar Gamma Di	stributed at	5% Signifi	canc	e Level
571				K-S T	est Statistic	0.195			Kolmogorov-	Smirnov G			
572				5% K-S C	ritical Value	0.332	Detected	data appea	ar Gamma Di	stributed at	5% Signifi	canc	e Level

	А	В	С	D	E	F	G	Н	I	J	K	L
573				Detected	l data appea	r Gamma Di	stributed at {	5% Significa	nce Level			
574												
575					Gamma	Statistics or	Detected D	ata Only				
576					k hat (MLE)	12.56			k	star (bias corr	rected MLE)	6.393
577				The	ta hat (MLE)	0.229			Theta	star (bias corr	ected MLE)	0.449
578				1	nu hat (MLE)	150.8				nu star (bia	s corrected)	76.72
579				Me	ean (detects)	2.873						
580												
581				(Gamma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
582			GROS may	not be used	when data s	et has > 50%	6 NDs with m	nany tied obs	ervations at	multiple DLs		
502		GROS may	, not be used	l when kstar	of detects is	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e	.g., <15-20)	
505			Fo	or such situat	ions, GROS I	method may	vield incorre	ct values of	UCLs and B	TVs		
504				7	his is especi	ally true whe	n the sample	e size is sma	all.			
585		For dar	nma distribut	ted detected	data. BTVs a	nd UCI s ma	av be comput	ted using ga	mma distribu	tion on KM es	timates	
586					Minimum	0.01		iou uoing gu			Mean	1 697
587					Maximum	43					Median	1.586
588						1.0					CV	0.825
589					k hat (MLE)	0.9			k	etar (hiae corr	rected MLE)	0.020
590				Tho		1 886			Thota	star (bias corr		0.75
591						21 50			Ineta	nu stor (bio		17 52
592			A diveted	l Lovel of Sig		21.59				nu star (bia	s corrected)	17.55
593		A	Aujusteu			0.029			A diverse d Ch		- (17 52 0)	0 107
594		App	proximate Cn	I Square val	ue (17.53, α)	9.051			Adjusted Ch	Square valu	le (17.53, β)	8.137
595		95% Gamma	a Approximat	e UCL (use v	when n>=50)	3.285		95% G	amma Adjust	ed UCL (use	when n<50)	3.655
596												
597				Es	stimates of G	amma Para	meters using	g KM Estima	ites			
598					Mean (KM)	2.147					SD (KM)	0.937
599				Va	ariance (KM)	0.878				SE of	Mean (KM)	0.296
600					k hat (KM)	5.249					k star (KM)	3.992
601					nu hat (KM)	126				r	nu star (KM)	95.82
602				th	eta hat (KM)	0.409				the	ta star (KM)	0.538
603			80%	% gamma pe	rcentile (KM)	2.96			909	% gamma per	centile (KM)	3.587
604			95%	% gamma pe	rcentile (KM)	4.163			999	% gamma per	centile (KM)	5.395
605												
606					Gamm	a Kaplan-M	eier (KM) St	atistics				
607		App	proximate Ch	i Square Val	ue (95.82, α)	74.24			Adjusted Ch	i Square Valu	ie (95.82, β)	71.35
608	95%	Gamma Ap	proximate KN	/I-UCL (use v	when n>=50)	2.771		95% Gamm	a Adjusted k	M-UCL (use	when n<50)	2.883
609												
610				Lo	ognormal GC	F Test on D	etected Obs	ervations O	nly			
611			S	hapiro Wilk	Fest Statistic	0.908			Shapiro Wi	lk GOF Test		
612			5% S	hapiro Wilk C	Critical Value	0.788	Dete	ected Data a	ppear Logno	ormal at 5% Si	ignificance L	evel
613				Lilliefors	Test Statistic	0.171			Lilliefors	GOF Test		
614			5	% Lilliefors (Critical Value	0.325	Dete	ected Data a	ppear Logno	ormal at 5% Si	ignificance L	evel
615				Dete	cted Data ap	pear Logno	rmal at 5% S	Significance	Level			
616					•	-		-				
617				Lo	gnormal RO	S Statistics	Using Impute	ed Non-Dete	ects			
610				Mean in O	riginal Scale	1.993				Mean i	n Log Scale	0.551
610				SD in O	riginal Scale	1.119				SD i	n Log Scale	0.547
619		95% † l	JCL (assume	es normality of	of ROS data)	2.573			95%	Percentile Boo	otstrap UCI	2.534
620				95% BCA Bc	otstran LICI	2.589			50,0	95% Boot	tstrap t UCI	2.752
621				95% H-IIC		2 800				20,0 000		, JL
622				00/011-00	- (2.000						
623			Static	tice using V	Mastimataa	on Loggod	Data and Acc		ormal Diatri	bution		
624			Statis	sucs using K	IVI ESTIMATES	on Logged I	Jala and AS	suming LOGI	ionnai Distri	ναιιοΠ		

	А	В	С	D	E	F	G	Н		J K	L
625				KM Me	an (logged)	0.683				KM Geo Mean	1.98
626				KMS	SD (logged)	0.387			95%	Critical H Value (KM-Log)	2.012
627			KM Standar	d Error of Me	an (logged)	0.122			050/	95% H-UCL (KM -Log)	2.698
628			KM Ctorday			0.387			95%	Critical H Value (KM-Log)	2.012
629			Kivi Standar	d Error of Me	an (logged)	0.122					
630						DI /2 S	tatistics				
631			DL/2	lormal					DL/2 Log-	Transformed	
632				Mean in Ori	ginal Scale	1.798			0 - 1 - 10g	Mean in Log Scale	0.345
634				SD in Ori	ginal Scale	1.282				SD in Log Scale	0.73
635			95% t U	CL (Assumes	s normality)	2.463				95% H-Stat UCL	3.168
636			DL/2 i	s not a recom	nmended m	ethod, provi	ded for comp	parisons and	l historical r	easons	
637											
638					Nonparame	etric Distribu	tion Free UC	CL Statistics			
639				Detected	Data appea	r Normal Di	stributed at §	5% Significa	nce Level		
640											
641						Suggested	UCL to Use				
642				95%	KM (t) UCL	2.679					
643											
644	1	Note: Sugge	stions regard	ng the select	ion of a 95%	6 UCL are pr	ovided to he	lp the user to	select the	nost appropriate 95% UCL	
645		Those reco	R	ecommendat	ions are bas	sed upon dat	a size, data	distribution,	and skewne	SS.	
646	Ца	These recor	Intrine recult	are based up		lits of the sin	te: for addition	es summanz	zed in Singn	, Maichle, and Lee (2006).	<u></u>
647	ПО	wever, sinu						inal insight u	ne user may		di i.
648	n-HFPTAN	=									
649		-									
651						General	Statistics				
652			Total	Number of Ol	oservations	12			Numbe	er of Distinct Observations	6
653				Numbe	r of Detects	2				Number of Non-Detects	10
654			Nu	mber of Disti	nct Detects	2			Numb	er of Distinct Non-Detects	4
655				Minin	num Detect	2.21				Minimum Non-Detect	1.35
656				Maxin	num Detect	2.54				Maximum Non-Detect	1.48
657				Variar	nce Detects	0.0545				Percent Non-Detects	83.33%
658				Me	an Detects	2.375				SD Detects	0.233
659				Med	ian Detects	2.375				CV Detects	0.0983
660				Skewne	ess Detects	N/A				Kurtosis Detects	N/A
661				iviean of Logg	jed Detects	0.863				SD of Logged Detects	0.0984
662					Warning: D	ata sat has	only 2 Deter	ted Values			
663			Т	is is not eno	ugh to com	oute meanin	oful or reliab	leu values.	and estima	tae	
664					agii to com						
665											
667					Norn	nal GOF Tes	t on Detects	Only			
668					Not En	ough Data to	Perform G	- OF Test			
669						-					
670			Kaplan-I	Meier (KM) S	tatistics usi	ng Normal C	ritical Value	s and other	Nonparame	etric UCLs	
671					KM Mean	1.521			К	M Standard Error of Mean	0.158
672					KM SD	0.388				95% KM (BCA) UCL	N/A
673				95%	KM (t) UCL	1.805			95 <mark>%</mark> KM (Percentile Bootstrap) UCL	N/A
674				95% I	KM (z) UCL	1.781				95% KM Bootstrap t UCL	N/A
675			9	0% KM Cheb	yshev UCL	1.996				95% KM Chebyshev UCL	2.211
676			97.	5% KM Cheb	yshev UCL	2.51				99% KM Chebyshev UCL	3.096

	А	В		С		D	E		F	C	à	Н				J			K		L
677													_								
678						Ģ	iamma G		lests on De	etected	Obse	rvation	s On	ly							
679							Not	Eno	ugh Data to	Perto	rm GC	JF Test									
680							0.000			Datas		ata Onl									
681							Gam					ata Uni	У			ator (hio	r	raata		N	NI/A
682						Tho	K Hat (IVIL		0.0115						K : Chota i	star (bia		roctor		1	N/A
683						rite	u hat (MI) 	827.4						ineta .		r (hia			1	
684						Me	an (detec	ts)	2 375							nu sta		5 001	recieu)	•	1//7
685)	2.070												
680						Es	timates o	f Ga	amma Para	meters	using	KM Es	timat	tes							
688							Mean (K	M)	1.521									S	D (KM)		0.388
689						Va	ariance (K	M)	0.15								SE of	f Mea	n (KM)		0.158
690							k hat (K	M)	15.37									k sta	ar (KM)		11.59
691							nu hat (K	M)	368.9								r	nu sta	ar (KM)	2	78
692						th	eta hat (K	M)	0.0989								the	eta sta	ar (KM)		0.131
693				809	% gam	ma per	centile (K	M)	1.879						90%	6 gamm	a per	centil	e (KM)		2.114
694				959	% gam	ma per	centile (K	M)	2.323						99%	6 gamm	a per	centil	e (KM)		2.748
695																					
696							Ga	mma	a Kaplan-M	eier (K	M) Sta	atistics					(0)		(0)		0.000
697			nnrov	vimata Chi	Sauce		1070 04	~)	240.4				Δ	Ad		Level o	of Sigr			2	0.029
698	059			amate Chi			$\frac{2}{2}(278.04)$	α) 50)	240.4			05% 0	A				value	+ (278	$\frac{5.04}{5.04}$	2	1 700
699	90.	o Gamma	Аррі		VI-UCL	. (use v)))	1.759			90 % Ga	amm	a Auju	sieu r		(use	when	11\50)		1.799
700							anormal	GOF	F Test on D	etecte	d Obs	ervatior	ns Or	nlv							
701							Not	Eno	ugh Data to	Perfo	rm GC	OF Test		,							
702													-								
703						Lo	gnormal l	ROS	Statistics	Using I	mpute	ed Non-	Dete	cts							
705					Mea	an in O	riginal Sc	ale	1.481							Μ	lean i	in Log	g Scale		0.352
706					S	D in O	riginal Sc	ale	0.47								SD i	in Log	g Scale		0.288
707		95%	t UC	CL (assume	es norr	nality c	of ROS da	ta)	1.724						95% I	Percenti	le Bo	otstra	p UCL		1.707
708					95% B	BCA Bo	otstrap U	CL	1.743							95%	Boo	tstrap	t UCL		1.88
709					95%	H-UC	_ (Log RC	S)	1.75												
710																					
711				Stati	stics u	sing K	M estimat	ies o	on Logged [Data ar	nd Ass	suming	Logn	ormal	Distri	bution				1	
712						KM M	ean (logge	ed)	0.394						050/ /	Durite) 1 - 1	KN	/ Geo	o Mean		1.483
713			L	(M Standa	rd Fre		SD (logge	ea)	0.212						95% (VI-LOG)		1.852
714			r					eu)	0.0004						95% (95% I					1.700
715			k	(M Standa	rd Frre	or of M	ean (logge	od)	0.212						5070 (Sinicari	i vait		wi-Log)		1.002
/16							(1099(0.0004												
710									DL/2 S	tatistic	s										
710				DL/2	Norma	al								DL/2	Log-T	ransfor	med				
720					Меа	an in O	riginal Sc	ale	0.975						-	Μ	lean i	in Log	g Scale	-	0.159
721					S	D in O	riginal Sc	ale	0.658								SD i	in Log	g Scale		0.479
722				95% t l	JCL (A	Assume	es normali	ty)	1.316								95%	H-Sta	at UCL		1.298
723				DL/2	is not	a reco	mmendec	me	thod, provid	ded for	comp	arisons	and	histor	ical re	asons					
724																					
725							Nonpara	met	tric Distribu	tion Fr	ee UC	L Statis	stics								
726					Dat	a do n	ot follow a	a Dis	scernible Di	istribut	ion at	5% Sig	nifica	ance L	.evel						
727									<u> </u>												
728								;	Suggested	UCL to	o Use										

	А		В	С	D	E	F	G	Н			J	К	L
729					95%	KM (t) UCL	1.805						KM H-UCL	1.706
730					95% KM	(BCA) UCL	N/A							
731					Warni	ing: One or r	more Recom	mended U	CL(s) not a	vailable!				
732														
733		No	ote: Sugge	estions regard	ling the selec	tion of a 95%	UCL are pro	ovided to he	elp the user	to selec	t the m	ost approp	riate 95% UCL.	
734				I	Recommenda	tions are bas	sed upon dat	a size, data	a distributior	n, and sk	ewnes	S.		
735		Т	hese reco	mmendation	s are based u	pon the resu	Its of the sim	ulation stud	dies summa	rized in	Singh,	Maichle, a	nd Lee (2006).	
736	I	How	ever, simu	lations resul	ts will not cov	er all Real W	/orld data set	ts; for addit	ional insight	t the use	r may v	want to cor	sult a statisticia	an.
737														
738	n-HEXAN	IE												
739														
740							General	Statistics						
741				Tota	Number of O	bservations	12			N	lumber	of Distinct	Observations	8
742					Numbe	er of Detects	3					Number o	f Non-Detects	9
743				N	umber of Dist	inct Detects	3			1	Numbe	r of Distinc	t Non-Detects	5
744					Mini	mum Detect	2.22					Minimu	m Non-Detect	1.16
745					Maxi	mum Detect	5.99					Maximu	m Non-Detect	1.3
746					Varia	nce Detects	3.558					Percen	t Non-Detects	75%
747					M	ean Detects	4.147						SD Detects	1.886
748					Med	dian Detects	4.23						CV Detects	0.455
749					Skewn	ess Detects	-0.198					Κι	irtosis Detects	N/A
750					Mean of Log	ged Detects	1.343					SD of Lo	ogged Detects	0.504
751														
752						Warning: D	ata set has	only 3 Dete	cted Value	S.				
753				Т	his is not end	ough to comp	oute meaning	gful or relia	ble statistic	s and e	stimate	es.		
754														
755														
756						Norm	nal GOF Tes	t on Detect	ts Only					
757				5	Shapiro Wilk T	est Statistic	0.999			Shap	iro Wil	k GOF Te	st	
758				5% S	hapiro Wilk C	ritical Value	0.767		Detected Da	ta appea	ar Norn	nal at 5% S	Significance Lev	el
759					Lilliefors T	est Statistic	0.184			Lill	iefors	GOF Test		
760				Ę	% Lillietors C	ritical Value	0.425	L	Detected Da	ta appea	ar Norn	nal at 5% S	Significance Lev	el
761					Det	ected Data	appear Norm	nal at 5% S	ignificance	Level				
762				Kanlan			N							
763				Kapian	Meler (KM) S			ritical valu	es and othe	er Nonpa	Iramet			0.500
764						KIM Mean	1.907				KIV		Error of Mean	0.532
765					050/		1.505			050/		95% N		
766					95%		2.002			95%				
767					90 %		2.702							N/A
768				07			5.505				8			4.220
769				97		bysnev UCL	5.25				3		IEDYSINEV UCL	7.202
770					6	amma GOF	Tests on De	stacted Obs	envetione (July				
771					9	Not En	ouch Data to	Perform G		Jilly				
772						NULEI								
773						Gamma	Statistics or		Data Only					
774						k hat (MLE)	6 488				kr	star (hias o	orrected MLE)	N/A
775					The	ta hat (MLE)	0.400			-	Theta a	star (hias o		N/A
/76	nu hat (MLE) 38.93 nu star (bias corrected) N/A													
//7					M_	an (detects)	4 147							
/78					IVIC		-7.1-77							
//9					C	amma ROS	Statistics	sina Impute	d Non-Det	ects				
780					6		ວເລແອແປອ ຟະ	ang mpute						

	А		В	С		D		E	F		G		Н				J		К	\Box	L	
781				GROS m	ayı	not b	e used	when	data s	et has > 50)% I	NDs with m	nan	ny tied ob	serva	ations	atr	nultiple D	Ls			
782			GROS mag	y not be us	ed	wher	n kstar (of dete	ects is	small such	as	<1.0, espe	ecia	lly when	the s	sample	e siz	e is smal	l (e.g.	., <15-20)	
783					For	such	n situati	ions, C	GROS	method ma	ау у	ield incorre	ect	values of	UCI	_s and	d BT	Vs				
784							Т	his is	especi	ally true w	hen	the sample	e si	ize is sma	all.							
785			For gai	mma distrib	oute	ed de	tected	data, E	BTVs a	and UCLs n	nay	be comput	ted	l using ga	mma	a distr	ributi	ion on KN	1 estir	nates		
786								Mir	nimum	0.01										Mear	<u>ו</u>	1.044
787								Max	kimum	5.99										Media	1	0.01
788									SD	2.036										C/	/	1.95
789								k hat	(MLE)	0.228							k s	tar (bias o	correc	ted MLE)	0.227
790							The	ta hat	(MLE)	4.579						The	eta s	tar (bias o	correc	ted MLE)	4.609
791							r	hu hat	(MLE)	5.4/3								nu star (bias d	corrected)	5.438
792				Adjust		Leve	l of Sig	nificar	$\frac{1}{1}$	0.029											_	
793			Ap	oproximate	Ch	ii Squ	uare Va	ilue (5	.44, α)	1.36				050/ 0	Ac	djuste	d Cr	i Square	Value	e (5.44, β)	1.076
794		9	5% Gamma	a Approxim	ate	UCL	_ (use v	vhen n	i>=50)	4.176				95% G	amn	na Adj	juste	ed UCL (u	ise wł	nen n<50)	N/A
795							_															
796							Es	stimate	es of G	iamma Par	ram	eters using	gК	M Estima	ates					00 // //		4 505
797								Mear	1 (KM)	1.907										SD (KM)	1.505
798							Va	ariance	e (KM)	2.266								SE	= of N	lean (KM)	0.532
799								k ha	t (KM)	1.605									k	star (KM)	1.259
800								nu ha	t (KM)	38.51									nu	star (KM)	30.22
801		theta hat 80% gamma percentile								1.188							000/		theta	star (KM)	1.514
802		80% gamma percentile								3.005							90%	gamma j	perce	ntile (KM)	4.148
803		95% gamma percentile								5.271							99%	gamma j	perce	ntile (KM)	7.837
804																						
805						_	<u> </u>		Gamm	na Kaplan-	Mei	ier (KM) St	tatis	stics								
806			Арр	proximate C	Chi	Squa	are Valu	ue (30.	.22, α)	18.66					Adj	usted	Chi	Square V	/alue	(30.22, β)	17.29
807	ç	95%	Gamma Ap	proximate I	ΚM·	-UCL	. (use v	vhen n	i>=50)	3.087			95	5% Gamn	na A	djuste	ed Kl	M-UCL (u	ise wł	nen n<50)	3.332
808											_											
809							Lo	ognorn	nal GC	OF Test on	De	tected Obs	ser	vations C	only							
810					Sh	napiro	o Wilk T	Fest St	tatistic	0.971					Sh	napiro	Will	k GOF Te	est			
811				5%	Sh	apiro	Wilk C	Critical	Value	0.767		Det	tect	ted Data a	appe	ear Lo	gnor	mal at 5%	% Sigr	nificance	Lev	/el
812						Lill	ietors I	l est Si	tatistic	0.245						Lillief	ors (GOF Test			<u> </u>	
813					5%	% Lilli	iefors C	Critical	Value	0.425		Det	tect	ted Data a	appe	ear Lo	gnor	mal at 5%	% Sigr	nificance	Lev	/el
814							Dete	cted L	Data ap	opear Logr	orn	nal at 5% S	Sigi	nificance	Lev	'el						
815																						
816							Lo	gnorm		S Statistic	s U	sing Imput	ed	Non-Det	ects							
817						Mea	an in O	riginal	Scale	1.369								Mea	an in I	Log Scale	3	-0.362
818			050/			S	o in O וו עפ	riginal	Scale	1.867						~-	0/ -	S	ו חו ה	Log Scale	э —	1.143
819			95% t l	JCL (assun	nes	s norr	mality c	of ROS	aata)	2.338						95	0% P	ercentile	BOOts	strap UCI	-	2.28/
820					9	15% E	SCA Bo	otstra	p UCL	2.534								95% B	sootst	rap t UCI	-	3.929
821						95%	H-UC	L (Log	ROS)	4											\perp	
822																						
823				Sta	tist	tics u	Ising K	M esti	mates	on Logged	d Da	ata and As	sur	ming Log	norn	nal Di	strib	oution	1/1-1-1			4 = 0 :
824		KM Mean (I								0.447									KMC	Jeo Mea	<u>ו</u>	1.564
825							KM	SD (lo	ogged)	0.557						95	9% C	ritical H V	/alue	(KM-Log)	2.213
826				KM Stand	arc	d Erro	or of Me	ean (lo	ogged)	0.197								95% H-	UCL	(KM -Log)	2.647
827							KM	SD (lo	ogged)	0.557						95	9% C	ritical H V	/alue	(KM-Log)	2.213
828				KM Stand	laro	d Erro	or of Me	ean (lo	ogged)	0.197												
829											_											
830						-				DL/2	Sta	tístics			_							
831				DL/:	2 N	lorma	al			[DI	L/2 Lo	og-Ti	ransforme	ed			
832						Меа	an in O	riginal	Scale	1.498								Mea	an in I	Log Scale	Э	-0.0299

	А	В	С	D	E	F	G	Н	I		J		K		L
833			050/ +1	SD In Or		1.789									0.856
834			95% [[s normality)	2.420			d blatavia	<u></u>		95% H-	-Stat UCL		2.783
835			DL/2	is not a recon	nmended m	etnoa, provid	led for com	ipansons and	a historic		asons				
836					Nonnarama	trio Dictribu	tion Eroo II	CL Statistics							
837				Detected	Data annea	r Normal Die	stributed at	5% Significa	, ance Leve	<u>اد</u>					
838				Delected				0 /0 Olgrinica		51					
839						Suggested	UCL to Use	<u> </u>							
840				95%	KM (t) UCI	2 862	002 10 031	•							
841				0070	1411 (1) 002	2.002									
842		Note: Suaae	stions regard	ling the select	ion of a 95%	UCL are pr	ovided to he	elp the user to	o select th	ne mo	ost app	ropriate	95% UCI		
843			F	Recommendat	ions are bas	sed upon dat	a size. data	distribution.	and skew	vness	6. 6.				
844 945		These reco	mmendations	are based up	oon the resu	Its of the sim	ulation stud	lies summari	zed in Sir	ngh, l	Maichle	e, and Le	ee (2006).		
045 046	He	owever, simu	lations result	s will not cove	er all Real W	/orld data set	s; for additi	onal insight t	he user n	nay w	vant to	consult	a statistici	an.	
840										-					
848	O-XYLENE	E (1,2-DIMET	HYLBENZE	NE)											
849															
850						General	Statistics								
851			Total	Number of O	bservations	12			Nur	nber	of Disti	nct Obs	ervations	1	1
852				Numbe	r of Detects	11					Numbe	er of No	n-Detects		1
853			N	umber of Disti	nct Detects	10			Nu	mbei	r of Dist	tinct No	n-Detects		1
854				Minir	num Detect	1.43					Mini	mum No	on-Detect		1.22
855				Maxir	num Detect	16.93					Maxi	mum No	on-Detect		1.22
856				Varia	nce Detects	18.08					Per	cent No	n-Detects	1	8.333%
857				Me	ean Detects	5.152						SI	D Detects	4	4.252
858				Med	ian Detects	4.23						C	V Detects	(0.825
859				Skewne	ess Detects	2.402						Kurtosi	s Detects	(6.866
860				Mean of Log	ged Detects	1.409					SD o	f Logge	d Detects	(0.69
861															
862					Norm	al GOF Tes	t on Detect	s Only				_ .			
863			5	hapiro Wilk T	est Statistic	0.723		Data at a d Da	Shapiro			lest			
864			5% 5			0.85		Detected Da		orma		Signific	ance Leve	4	
865			5	Lilliefors C	ritical Value	0.284		Datastad Da				Signifio			
866						0.201	l at 5% Sig	nificance Lev		Jilla	1 at 5 %	Signine		1	
867							i at 5 % Sig		VEI						
868			Kaplan-	Meier (KM) S	tatistics usi	ng Normal C	ritical Valu	es and other	Nonnara	metr	ic UCL	s			
869					KM Mean	4.824				KM	Standa	ard Erro	r of Mean		1.22
870 971					KM SD	4.031					959	% KM (E	BCA) UCL		7.144
071				95%	KM (t) UCL	7.016			95% KI	M (Pe	ercentil	e Bootst	trap) UCL	1	6.76
072 973				95%	KM (z) UCL	6.831				<u> </u>	5% KN	1 Bootst	rap t UCL	;	8.821
874			(0% KM Cheb	yshev UCL	8.485				9	5% KM	Chebys	shev UCL	1	0.14
875			97	.5% KM Cheb	yshev UCL	12.45				9	9% KM	Chebys	shev UCL	1	6.97
876						l	l								
877				G	amma GOF	Tests on De	etected Obs	servations O	nly						
878				A-D T	est Statistic	0.439		ŀ	Anderson	-Darl	ling GC	OF Test			
879				5% A-D C	ritical Value	0.737	Detecte	ed data appe	ar Gamm	a Dis	stribute	d at 5%	Significan	ce L	.evel
880				K-S T	est Statistic	0.188			Kolmogo	rov-S	Smirnov	v GOF			
881				5% K-S C	ritical Value	0.258	Detecte	ed data appe	ar Gamm	a Dis	stribute	d at 5%	Significan	ce L	.evel
882				Detected	data appea	r Gamma Dis	stributed at	5% Significa	ance Leve	əl					
883															
884					Gamma	Statistics or	Detected	Data Only							

	А	В	С	D	E	F	G	Н		J	K	L
885					k hat (MLE)	2.327			k	star (bias corre	ected MLE)	1.753
886				The	ta hat (MLE)	2.214			Theta	star (bias corre	ected MLE)	2.939
887				1	nu hat (MLE)	51.19				nu star (bias	s corrected)	38.56
888				Me	ean (detects)	5.152						
889							1				4	
890				(amma ROS	Statistics u	sing Imputed	d Non-Detec	ts			
891			GROS may	not be used	when data s	et has > 50%	5 NDs with m	nany tied obs	ervations at	multiple DLs		
892		GROS may	/ not be used	when kstar	of detects is	small such a	s <1.0, espe	cially when t	he sample si	ze is small (e.	g., <15-20)	
893			Fo	r such situat	ions, GROS	method may	yield incorre	ect values of	UCLs and B	TVs		
894				٦	his is especi	ally true whe	n the sample	e size is sma	all.			
895		For gar	nma distribut	ed detected	data, BTVs a	nd UCLs ma	y be comput	ted using gar	mma distribu	tion on KM est	timates	
896					Minimum	0.01					Mean	4.723
907					Maximum	16.93					Median	4.07
097					SD	4.317					CV	0.914
090					k hat (MLE)	0.906			k	star (bias corre	ected MLE)	0.735
099				The	ta hat (MLE)	5.211			Theta	star (bias corre	ected MLE)	6.423
900				-	nu hat (MLE)	21.75				nu star (bias	s corrected)	17.65
901			Adjusted	Level of Sig	nificance (B)	0.029				(,	
902		Apr	proximate Ch	Square Val	ue (17.65, α)	9.138			Adjusted Ch	i Square Valu	е (17.65. В)	8 2 1 8
903		95% Gamma			$\frac{10}{(17.00, 4)}$	9 123		95% Ga	amma Δdiust		when n<50)	10.14
904			i Approximat	002 (000)		0.120						10.14
905				F	timates of G	amma Para	meters using	n KM Estima	tos			
906					Moon (KM)				163		SD (KM)	4 031
907				1/-		16.25				SE of	Moon (KM)	1 22
908				Va		1 422				3E 01		1.22
909					K nat (KIVI)	1.432					K Star (KIVI)	1.13
910					nu nat (KIVI)	34.38				n	u star (KIVI)	27.12
911				tn	eta nat (KM)	3.368				thet	a star (KM)	4.27
912			80%	b gamma per	centile (KM)	7.682			909	6 gamma perc	centile (KM)	10.78
913			95%	amma pe	centile (KM)	13.85			999	6 gamma perc	centile (KM)	20.9
914												
915					Gamm	a Kaplan-M	eier (KM) St	atistics		-		
916		Арр	proximate Ch	Square Val	ue (27.12, α)	16.24			Adjusted Ch	i Square Value	e (27.12, β)	14.97
917	95%	6 Gamma Ap	proximate KN	1-UCL (use v	vhen n>=50)	8.054		95% Gamm	a Adjusted k	(M-UCL (use v	when n<50)	8.739
918												
919				Lo	ognormal GC	F Test on D	etected Obs	servations O	nly			
920			S	hapiro Wilk	Fest Statistic	0.948			Shapiro W	lk GOF Test		
921			5% SI	napiro Wilk (Critical Value	0.85	Det	ected Data a	ppear Logno	ormal at 5% Sig	gnificance L	evel
922				Lilliefors	Fest Statistic	0.16			Lilliefors	GOF Test		
923			5	% Lilliefors C	Critical Value	0.251	Det	ected Data a	ppear Logno	ormal at 5% Sig	gnificance L	evel
924				Dete	cted Data ap	pear Logno	rmal at 5% S	Significance	Level			
925												
926				Lo	gnormal RO	S Statistics	Using Imput	ed Non-Dete	ects			
927				Mean in O	riginal Scale	4.787				Mean ir	n Log Scale	1.271
928				SD in O	riginal Scale	4.246				SD ir	n Log Scale	0.814
929		95% t l	JCL (assume	s normality of	of ROS data)	6.989			95%	Percentile Boo	otstrap UCL	6.829
930			!	95% BCA Bo	otstrap UCL	7.58				95% Boot	strap t UCL	8.592
931				95% H-UC	L (Log ROS)	9.382						
932						I	1					
932			Statis	tics using K	M estimates	on Logged [Data and As	suming Logr	normal Distri	bution		
031				KM M	ean (logged)	1.308				KM	Geo Mean	3.7
035				KM	SD (logged)	0.713			95%	Critical H Valu	e (KM-Log)	2.434
300			KM Standa	d Error of M	ean (logged)	0.216				95% H-UCI	_ (KM -Loa)	8.053
930					(-33-3)						3/	

	А	В	С	D	F	F	G	Н		JK					
937			. <u> </u>	KM	SD (logged)	0.713	~		95% (Critical H Value (KM-	Log)	2.434			
938			KM Standa	rd Error of M	ean (logged)	0.216									
020															
939						DL/2 S	tatistics								
940			DL/2	Normal					DL/2 Loa-T	ransformed					
941				Mean in O	riginal Scale	4,773				Mean in Log S	cale	1.251			
942				SD in O	riginal Scale	4.261				SD in Log S	cale	0.857			
943			95% t l		s normality)	6 982				95% H-Stat		10.04			
944						ethod provid	led for com	narisons and	l historical re		OOL	10.04			
945															
946					Nonparam	tric Dietribu	tion Free LI	CL Statistics							
947				Detected	Data annoa	r Gommo Di	stributed at	5% Significa							
948				Delected	Data appea										
949						Suggested									
950			050/ 1/	M A diverse d C				•				10.14			
951			95% K	M Adjusted C	iamma UCL	8.739			95% GRO	S Adjusted Gamma	UCL	10.14			
952															
953		Note: Sugge	stions regard	ing the selec	tion of a 95%	5 UCL are pr	ovided to he	Ip the user to	select the m	lost appropriate 95%	UCL	•			
954			H	Recommenda	itions are bas	sed upon dat	a size, data	distribution,	and skewnes	S.					
955		These reco	mmendations	s are based u	pon the resu	Its of the sim	ulation stud	ies summariz	zed in Singh,	Maichle, and Lee (2	006).				
956	Ho	owever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for addition	onal insight th	ne user may	want to consult a sta	istici	an.			
957															
958	tert-BUTYL	. METHYL E	THER												
959															
960						General	Statistics								
961			Total	Number of C	bservations)	12			Numbe	of Distinct Observa	ions	6			
962				Numbe	er of Detects	0				Number of Non-De	ects	12			
963			N	umber of Dis	tinct Detects	0			Numbe	er of Distinct Non-De	ects	6			
964															
965		War	ning: All obse	ervations are	Non-Detect	s (NDs), the	refore all st	atistics and e	estimates sh	ould also be NDs!					
966		Specifi	ically, sample	e mean, UCL	.s, UPLs, an	d other statis	stics are als	o NDs lying	below the la	gest detection limit!					
967	-	The Project	Team may de	ecide to use	alternative s	ite specific v	alues to est	imate enviro	nmental para	ameters (e.g., EPC,	BTV)				
968															
969			•	The data set	for variable	tert-BUTYL	METHYL E	THER was n	ot processed	1					
970															
971															
972															
973	TOLUENE														
974															
975						General	Statistics								
976			Total	Number of C	bservations)	12			Numbe	of Distinct Observa	ions	10			
977									Number	of Missing Observa	ions	0			
978					Minimum	2.94				Ν	lean	9.729			
979					Maximum	16.2				Me	dian	9.795			
980					SD	4.607				Std. Error of N	lean	1.33			
981				Coefficient	of Variation	0.474				Skew	ness	-0.0134			
982						I	I								
083						Normal (GOF Test								
084			S	hapiro Wilk 1	est Statistic	0.925			Shapiro Wi	lk GOF Test					
025			5% SI	hapiro Wilk C	critical Value	0.859		Data appe	ear Normal a	t 5% Significance Le	vel				
900				Lilliefors	est Statistic	0.186			Lilliefors	GOF Test					
000 700			5	% Lilliefors C	critical Value	0.243		Data app	ear Normal a	t 5% Significance Le	vel				
987					Data anne	ar Normal at	5% Signific	ance Level							
988															
	А		В	С	D	E	F	G	Н	I	J	K	L		
------	------------------------	-------	----------	------------	---------------	----------------	---------------	---	--------------	------------------	-----------------	---------------	----------	--	--
989															
990						As	suming Norr	nal Distribut	tion						
991				95% No	ormal UCL				95%	6 UCLs (Adju	sted for Ske	wness)			
992					95% Stu	dent's-t UCL	12.12			95% Adjuste	ed-CLT UCL ((Chen-1995)	11.91		
993										95% Modifi	ed-t UCL (Jol	nnson-1978)	12.12		
994															
995							Gamma	GOF Test							
996					A-D 1	Fest Statistic	0.465		Ande	erson-Darling	Gamma GO	F Test			
007					5% A-D C	Critical Value	0.735	Detecte	d data appe	ar Gamma Di	istributed at 5	5% Significan	ce Level		
008					K-S 1	Fest Statistic	0.191		Kolmo	gorov-Smirno	ov Gamma G	OF Test			
000					5% K-S C	Critical Value	0.246	Detected data appear Gamma Distributed at 5% Significance Level							
1000					Detected	data appear	Gamma Dis	stributed at §	5% Significa	ance Level					
1000															
1001							Gamma	Statistics							
1002						k hat (MLE)	4 09			k	star (bias cor	rected MLE)	3 123		
1003					The	ta hat (MLE)	2,379			Theta	star (bias cor	rected MLE)	3.115		
1004					r	nu hat (MLE)	98.17				nu star (bia	s corrected)	74.96		
1005				М	I E Mean (bia	s corrected)	9 729				MLE Sd (bia	is corrected)	5 505		
1006							0.720			Approximate	Chi Square	Value (0.05)	56.02		
1007				Adius	sted Level of	Significance	0.029			Δ	diusted Chi S	nuare Value	53 53		
1008				7.636		olgrinicarice	0.020			7.0		quare value	00.00		
1009						Δο	suming Gam	ma Distribut	tion						
1010		05%	Approvir	nato Cammo		hon n>-50))	13.02			diustod Com	ma LICL (uso	when $n < 50$	13.62		
1011		90 /0	Appioxii			nen n>-50))	13.02		33 % A			when h<50)	13.02		
1012							Lognormo								
1013	Shapiro Wilk Test Sta							GOFTES	Sha	niro Wilk Loc		Tost			
1014	Shapiro Wilk Test Stat					Pritical Value	0.902		Doto oppo		at 5% Signifi				
1015				5%3			0.009								
1016				5			0.173		Doto onno						
1017					% Lilleiois C			ot 5% Signif							
1018						Data appear	Lognorma	at 5 /6 Olymin		J I					
1019							Lognormo	l Statistics							
1020					Minimum of I	agged Data	1 079				Moon of	logged Data	2 1/0		
1021							2 795					logged Data	0.550		
1022				1			2.705				30 01	loggeu Dala	0.559		
1023						A		rmal Diatrib	ution						
1024							14 56		uuon	90%	Chebyshey (1/ 70		
1025				05%	Chobyshov (17.00			07.5%	Chobyshov (20.11		
1026				95%	Chebyshev (26.10			97.570	Chebyshev (20.11		
1027				99%	Chebyshev (20.19								
1028						Nonnonon	tuia Diatuiku	Han Free LIC							
1029					Data annas			tion Free UC		; Gaanaa Lawa					
1030					Data appea	r to follow a	Discernible		at 5% Signi	ricance Level					
1031						Nerrer		ulle alle a Fra	- 1101 -						
1032					0.5				e UCLS		050/ 1		10.10		
1033				050	95		11.92	1.92 95% Jackknife UCL					12.12		
1034				95%	Standard Bo	otstrap UCL	11.79				95% Boo	istrap-t UCL	12.07		
1035				ç	5% Hall's Bo	otstrap UCL	11.84			95%	Percentile Bo	otstrap UCL	11.76		
1036					95% BCA Bo	otstrap UCL	11.82						4		
1037				90% Cł	ebyshev(Me	an, Sd) UCL	13.72			95% Ch	ebyshev(Me	an, Sd) UCL	15.53		
1038				97.5% Ch	ebyshev(Me	an, Sd) UCL	18.03			99% Ch	ebyshev(Me	an, Sd) UCL	22.96		
1039															
1040							Suggested	UCL to Use							

	А	В	С	D	E	F	G	Н		I	J	K	L
1041				95% Stud	dent's-t UCL	12.12							
1042													
1043		Note: Sugge	stions regard	ling the selec	tion of a 95%	UCL are pro	ovided to h	nelp the us	ser to	select the n	nost approp	riate 95% UCL	•
1044			F	Recommenda	tions are bas	sed upon dat	a size, dat	a distribut	ion, a	and skewnes	S.		
1045		These reco	mmendations	s are based u	pon the resu	Its of the sim	ulation stu	udies sumr	mariz	zed in Singh,	Maichle, ar	nd Lee (2006).	
1046	Н	owever, simu	lations result	s will not cov	er all Real W	/orld data set	s; for add	itional insig	ght tł	ne user may	want to con	sult a statisticia	an.
1047													
1048		Note: For	highly negat	ively-skewed	l data, confi	dence limits	(e.g., Che	n, Johnso	on, Lo	ognormal, ar	nd Gamma)	may not be	
1040			reliable.	Chen's and J	ohnson's me	ethods provi	de adjustr	nents for p	posit	vely skewed	data sets.		
1050										-			
1050													
1051	XYLENES,	TOTAL											
1052													
1053						General	Statistics						
1054			Total	Number of C	bservations	12				Numbe	r of Distinct	Observations	12
1055										Numbe	r of Missina	Observations	0
1050					Minimum	2.87						Mean	17.21
1057					Maximum	56.44						Median	16.18
1058					SD	13.98					Std	Error of Mean	4.036
1059				Coefficient	of Variation	0.812						Skewness	2 157
1060						0.012						Chonness	2.107
1061						Normal (OF Test						
1062				haniro Wilk T	est Statistic	0.77				Shaniro Wi		et .	
1063			5% S	haniro Wilk C	ritical Value	0.77		Dat	ta No	t Normal at	5% Significa	nce l evel	
1064			5/00			0.000		Dat					
1065			5			0.207		Dat	to No		Significa		
1066			5	70 LINEIOIS C	Dete Not	Normal at 5	% Signific						
1067							o Olgrinit						
1068					Δε	suming Norr	nal Dietrik	ution					
1069			95% N/			Suming Non			95%	LICI e (Adiu	eted for Sk	owness)	
1070			0070110	95% Stur	lent's_t Cl	24.46			0070			(Chen_1995)	26 53
1071				3570 5100		24.40				95% Modifi		$hnson_1978$	20.00
1072										3376 WOUT		5111301-1370)	24.00
1073						Commo							
1074					oct Statistic			Δ	ndo	eon-Darling	Gamma G	OE Test	
1075				5% A D C	ritical Value	0.373	Dotoc	n tod data a	nnoc		istributed at	5% Significan	
1076				5% A-D C		0.741	Delec	Kol	Imoo		W Gamma		
1077				5% K S C	ritical Value	0.173	Dotoc		nnog	r Commo D	istributed at	5% Significan	
1078				Detected		Commo Die	Delec		ifica		isti ibuteu at	5 % Significan	
1079				Delected	uata appea				inica				
1080						Commo	Statiation						
1081							Sidustics			k	otor (biog or	reated MLE)	1 50/
1082				The		2.030				Thoto	star (bias co		10.96
1083				Ine		8.44Z				Ineta			10.80
1084				n I E Maria		48.92					nu star (b	ias corrected)	38.02
1085	MLE Mean (bias corrected)				17.21				A		as corrected)	13.67	
1086				4-41 - 1 - 1	0:	0.000				Approximate	e Uni Square	e value (0.05)	24.9
1087			Adjus	sted Level of	Significance	0.029				A	ajusted Chi	Square Value	23.29
1088					-								
1089		0.5%			As	suming Gam	ma Distril	oution					00.05
1090		95% Approx	imate Gamm	a UCL (use w	/hen n>=50)	26.28		959	% Ad	justed Gami	na UCL (us	e when n<50)	28.09
1091													
1092						Lognorma	GOF Tes	st					

	А	В	С	D		Е	F	G	Н		J	K	L	
1093				Shapiro W	Vilk Te	est Statistic	0.955		Shap	oiro Wilk Lo	gnormal GOF	- Test		
1094			5%	Shapiro W	/ilk Cri	itical Value	0.859		Data appea	r Lognorma	ll at 5% Signif	icance Level		
1095				Lilliefo	ors Te	est Statistic	0.176		Lill	liefors Logr	ormal GOF 1	ſest		
1096				5% Lilliefo	ors Cri	itical Value	0.243		Data appea	r Lognorma	ll at 5% Signif	icance Level		
1097					D	ata appear	Lognormal	at 5% Signif	icance Leve					
1098														
1099							Lognorma	I Statistics						
1100				Minimum	n of Lo	ogged Data	1.054				Mean of	logged Data	2.581	
1101				Maximum	n of Lo	ogged Data	4.033				SD of	logged Data	0.782	
1102														
1103						Assu	uming Logno	ormal Distrib	ution					
1104					9	5% H-UCL	32.66	90% Chebyshev (MVUE) UCL 29.						
1105			95%	% Chebysh	nev (M	IVUE) UCL	35.34			97.5%	Chebyshev ((MVUE) UCL	43.11	
1106			999	% Chebysh	nev (M	IVUE) UCL	58.37							
1107														
1108					l	Nonparame	etric Distribu	tion Free UC	CL Statistics					
1109	109 Data appear to follow a Discernible Distribution at 5% Significance Level													
1110														
1111						Nonpa	rametric Dis	tribution Fre	e UCLs					
1112					95%	6 CLT UCL	23.85				95% Ja	ackknife UCL	24.46	
1113			95	% Standard	d Boo	tstrap UCL	23.55				95% Boo	otstrap-t UCL	28.9	
1114				95% Hall's	s Boo	tstrap UCL	54.14			95%	Percentile Bo	ootstrap UCL	24.49	
1115				95% BCA	A Boo	tstrap UCL	26.54							
1116			90% (Chebyshev	/(Mear	n, Sd) UCL	29.32			95% C	hebyshev(Me	an, Sd) UCL	34.8	
1117			97.5% (Chebyshev	/(Mear	n, Sd) UCL	42.42			99% C	hebyshev(Me	an, Sd) UCL	57.37	
1118														
1119							Suggested	UCL to Use						
1120			ç	95% Adjust	ted Ga	amma UCL	28.09							
1121	21													
1122		Note: Sugge	stions rega	rding the s	selecti	on of a 95%	UCL are pr	ovided to he	lp the user to	select the I	most appropri	ate 95% UCL	•	
1123				Recomme	endati	ons are bas	sed upon dat	a size, data	distribution, a	and skewne	SS.			
1124		These reco	mmendatio	ns are bas	sed up	on the resu	Its of the sim	ulation studi	es summariz	ed in Singh	, Maichle, and	d Lee (2006).		
1125	He	owever, simu	lations res	ults will not	t cove	r all Real W	/orld data se	ts; for additic	onal insight th	ie user may	want to cons	ult a statisticia	an.	
1126	26													

Attachment 2 (Continued)

Groundwater Samples from Q3 and Q4 2015, On-Base (Input)

	A	В	С	D	E	F
1	1,2,4-Trimethylbenzene	d_1,2,4-Trimethylbenzene		1,2-Dichloroethane	d_1,2-Dibromoethane	
2	493	1		93	1	
3	410	1		70.2	1	
4	400	1		18	1	
5	361	1		15.1	1	
6	250	1		9.12	1	
7	212	1		6.58	1	
8	109	1		6.17	1	
9	109	1		5.22	1	
10	83.2	1		5.18	1	
11	71.2	1		3.76	1	
12	69.5	1		3.31	1	
13	42.5	1		2.27	1	
14	23.5	1		0.997	1	
15	13.2	1		0.686	1	
16	9.77	1		0.255	1	
17	5.99	1		0.241	1	
18	4.86	1		0.216	1	
19	2.13	1		0.0953	1	
20	1.59	1		0.0759	1	
21	1	1		0.0664	1	
22	0.5	0		0.0368	1	
23	0.5	0		0.00966	0	
24	0.25	0		0.00964	0	
25	0.25	0		0.00957	0	
26	0.25	0		0.00953	0	
27	0.25	0		0.00952	0	
28	0.25	0		0.00949	0	
29	0.25	0		0.00947	0	
30	0.25	0		0.00946	0	
31	0.25	0		0.00946	0	
32	0.25	0		0.00945	0	
33	0.25	0		0.00945	0	
34	0.25	0		0.009445	0	
35	0.25	0		0.00943	0	
36	0.25	0		0.00942	0	
37	0.25	0		0.00942	0	
38	0.25	0		0.009415	0	
39	0.25	0		0.0094	0	
40	0.25	0		0.0094	0	
41	0.25	0		0.00939	0	
42	0.25	0		0.00939	0	
43	0.25	0		0.00939	0	
44	0.25	0		0.009385	0	
45	0.25	0		0.00938	0	
46	0.25	0		0.00938	0	
47	0.25	0		0.00938	0	
48	0.25	0		0.009375	0	
49	0.25	0		0.00937	0	
50	0.25	0		0.00937	0	

	А	В	С	D	E	F
1	1,2,4-Trimethylbenzene	d_1,2,4-Trimethylbenzene		1,2-Dichloroethane	d_1,2-Dibromoethane	
51	0.25	0		0.00937	0	
52	0.25	0		0.00936	0	
53	0.25	0		0.00935	0	
54	0.25	0		0.00935	0	
55	0.25	0		0.00934	0	
56	0.25	0		0.00934	0	
57	0.25	0		0.00934	0	
58	0.25	0		0.00933	0	
59	0.25	0		0.00933	0	
60	0.25	0		0.00933	0	
61	0.25	0		0.00933	0	
62	0.25	0		0.00931	0	
63	0.25	0		0.0093	0	
64	0.25	0		0.00929	0	
65	0.25	0		0.00928	0	
66	0.25	0		0.00926	0	
67	0.25	0		0.00923	0	
68	0.25	0		0.00919	0	
69	0.25	0		0.00917	0	

	G	Н		J	K	L
1	1,2-Dichloroethane	d_1,2-Dichloroethane		1-Methylnaphthalene	d_1-Methylnaphthalene	
2	50	0		98.8	1	
3	25	0		79.2	1	
4	25	0		66.8	1	
5	12.5	0		65.8	0	
6	5.52	1		62.5	0	
7	5.22	1		61.5	1	
8	5	0		60.7	0	
9	5	0		39.7	1	
10	5	0		38.6	1	
11	5	0		31.9	1	
12	4.84	1		22.7	1	
13	4.3	1		14.7	1	
14	4.04	1		14.7	0	
15	2.5	0		13.3	1	
16	2.5	0		12.4	1	
17	2.5	0		10.3	1	
18	2.5	0		2.55	1	
19	2.12	1		1.84	1	
20	1.13	1		1.47	0	
21	0.5	0		1.275	0	
22	0.5	0		1.25	0	
23	0.5	0		1.25	0	
24	0.25	0		1.25	0	
25	0.25	0		1.25	0	
26	0.25	0		1.25	0	
27	0.25	0		1.24	0	
28	0.25	0		1.24	0	
29	0.25	0		1.24	0	
30	0.25	0		1.23	0	
31	0.25	0		1.23	0	
32	0.25	0		1.23	0	
33	0.25	0		1.21	0	
34	0.25	0		1.21	0	
35	0.25	0		12	0	
36	0.25	0		12	0	
37	0.25	0		1.2	0	
38	0.25	0		12	0	
39	0.25	0		12	0	
40	0.25	0		12	0	
<u>4</u> 1	0.25	0		1 19	0	
42	0.25	0		1 19	0	
43	0.25	0		1 19	n 0	
44	0.25	0		1 19	0	
45	0.25	0		1 19	0	
46	0.25	0		1 19	0	
47	0.25	0		1 12	n 0	
47	0.25	0		1 18	0	
40	0.25	0		1 18	0	
50	0.25	0		1 18	0	

	G	Н	I	J	К	L
1	1,2-Dichloroethane	d_1,2-Dichloroethane		1-Methylnaphthalene	d_1-Methylnaphthalene	
51	0.25	0		1.18	0	
52	0.25	0		1.18	0	
53	0.25	0		1.18	0	
54	0.25	0		1.18	0	
55	0.25	0		1.18	0	
56	0.25	0		1.17	0	
57	0.25	0		1.17	0	
58	0.25	0		1.16	0	
59	0.25	0		1.16	0	
60	0.25	0		1.16	0	
61	0.25	0		1.16	0	
62	0.25	0		1.16	0	
63	0.25	0		1.16	0	
64	0.25	0		1.16	0	
65	0.25	0		1.16	0	
66	0.25	0		1.16	0	
67	0.25	0		1.16	0	
68	0.25	0		1.16	0	
69	0.25	0		1.16	0	

	Μ	Ν	0	Р	Q	R	S
1	2-Methylnaphthalene	d_2-Methylnaphthalene		Acetophenone	d_Acetophenone		Benzene
2	105	1		4520	1		16000
3	75.5	1		2830	1		8940
4	73.8	1		2550	1		6540
5	73.6	1		2400	1		5580
6	65.8	0		2150	1		5290
7	62.5	0		1980	1		2710
8	60.7	0		1660	1		1960
9	41.1	1		1260	1		1920
10	25.4	1		968	1		1890
11	22.7	1		796	1		1770
12	22.1	1		640	1		1400
13	14.7	0		220	1		1010
14	12.3	0		152	1		697
15	12.1	0		139	1		453
16	8.44	1		84.6	1		385
17	6.25	0		77.1	1		320
18	1.47	0		12.3	0		259
19	1.275	0		6.25	0		108
20	1.25	0		1.47	0		53.7
21	1.25	0		1.275	0		19.1
22	1.25	0		1.25	0		2.31
23	1.25	0		1.25	0		0.5
24	1.25	0		1.25	0		0.275
25	1.24	0		1.25	0		0.25
26	1.24	0		1.25	0		0.25
27	1.24	0		1.24	0		0.25
28	1.23	0		1.24	0		0.25
29	1.23	0		1.24	0		0.25
30	1.23	0		1.23	0		0.25
31	1.21	0		1.23	0		0.25
32	1.21	0		1.23	0		0.25
33	1.2	0		1.21	0		0.25
34	1.2	0		1.21	0		0.25
35	1.2	0		1.2	0		0.25
36	1.2	0		1.2	0		0.25
37	1.2	0		1.2	0		0.25
38	1.2	0		1.2	0		0.25
39	1.2	0		1.2	0		0.25
40	1.19	0		1.2	0		0.25
41	1.19	0		1.19	0		0.25
42	1.19	0		1.19	0		0.25
43	1.19	0		1.19	0		0.25
44	1.19	0		1.19	0		0.25
45	1.19	0		1.19	0		0.25
46	1.18	0		1.18	0		0.25
47	1.18	0		1.18	0		0.25
48	1.18	0		1.18	0		0.25
49	1.18	0		1.18	0		0.25
50	1.18	0		1.18	0		0.25

	Μ	Ν	0	Р	Q	R	S
1	2-Methylnaphthalene	d_2-Methylnaphthalene		Acetophenone	d_Acetophenone		Benzene
51	1.18	0		1.18	0		0.25
52	1.18	0		1.18	0		0.25
53	1.18	0		1.18	0		0.25
54	1.18	0		1.18	0		0.25
55	1.17	0		1.17	0		0.25
56	1.17	0		1.17	0		0.25
57	1.17	0		1.17	0		0.25
58	1.16	0		1.16	0		0.25
59	1.16	0		1.16	0		0.25
60	1.16	0		1.16	0		0.25
61	1.16	0		1.16	0		0.25
62	1.16	0		1.16	0		0.25
63	1.16	0		1.16	0		0.25
64	1.16	0		1.16	0		0.25
65	1.16	0		1.16	0		0.25
66	1.16	0		1.16	0		0.25
67	1.16	0		1.16	0		0.25
68	1.16	0		1.16	0		0.25
69	1.16	0		1.16	0		0.25

	Т	U	V	W	Х	Y	Z	AA	AB
1	d_Benzene		Ethylbenzene	d_Ethylbenzene		Lead	d_Lead		Naphthalene
2	1		1550	1		7.5	0		227
3	1		1370	1		7.5	0		190
4	1		1160	1		3.44	1		178
5	1		1060	1		3.17	1		143
6	1		818	1		3	0		60.4
7	1		802	1		3	0		54.8
8	1		423	1		3	0		53.5
9	1		360	1		2.38	1		52.7
10	1		303	1		2.06	1		51.2
11	1		231	1		2	0		44.9
12	1		188	1		1.57	1		40.4
13	1		184	1		1.5	0		35.2
14	1		79	1		1.5	0		22.5
15	1		57.9	1		1.5	0		18.3
16	1		54	1		1.5	0		11.2
17	1		51	1		1.5	0		7.88
18	1		39.8	1		1.5	0		6.94
19	1		14.3	1		1.5	0		4.1
20	1		6.49	1		1.5	0		1.66
21	1		0.582	1		1.5	0		0.635
22	1		0.5	0		1.5	0		0.5
23	0		0.5	0		1.5	0		0.5
24	1		0.25	0		1.5	0		0.25
25	0		0.25	0		1.5	0		0.25
26	0		0.25	0		1.5	0		0.25
27	0		0.25	0		1.5	0		0.25
28	0		0.25	0		1.5	0		0.25
29	0		0.25	0		1.5	0		0.25
30	0		0.25	0		1.5	0		0.25
31	0		0.25	0		1.5	0		0.25
32	0		0.25	0		1.5	0		0.25
33	0		0.25	0		1.5	0		0.25
34	0		0.25	0		1.5	0		0.25
35	0		0.25	0		1.5	0		0.25
36	0		0.25	0		1.5	0		0.25
37	0		0.25	0		1.5	0		0.25
38	0		0.25	0		1.5	0		0.25
39	0		0.25	0		1.5	0		0.25
40	0		0.25	0		1.5	0		0.25
41	0		0.25	0		1.5	0		0.25
42	0		0.25	0		1.5	0		0.25
43	0		0.25	0		1.5	0		0.25
44	0		0.25	0		1.5	0		0.25
45	0		0.25	0		1.5	0		0.25
46	0		0.25	0		1.5	0		0.25
47	0		0.25	0		1.5	0		0.25
48	0		0.25	0		1.5	0		0.25
49	0		0.25	0		1.5	0		0.25
50	0		0.25	0		1.5	0		0.25

	Т	U	V	W	Х	Y	Z	AA	AB
1	d_Benzene		Ethylbenzene	d_Ethylbenzene		Lead	d_Lead		Naphthalene
51	0		0.25	0		1.5	0		0.25
52	0		0.25	0		1.5	0		0.25
53	0		0.25	0		1.5	0		0.25
54	0		0.25	0		1.5	0		0.25
55	0		0.25	0		1.5	0		0.25
56	0		0.25	0		1.5	0		0.25
57	0		0.25	0		1.5	0		0.25
58	0		0.25	0		1.5	0		0.25
59	0		0.25	0		1.5	0		0.25
60	0		0.25	0		1.5	0		0.25
61	0		0.25	0		1.5	0		0.25
62	0		0.25	0		1.5	0		0.25
63	0		0.25	0		1.5	0		0.25
64	0		0.25	0		1.5	0		0.25
65	0		0.25	0		1.5	0		0.25
66	0		0.25	0		1.5	0		0.25
67	0		0.25	0		1.5	0		0.25
68	0		0.25	0		1.5	0		0.25
69	0		0.25	0		1.5	0		0.25

	AC	AD	AE	AF	AG	AH	AI
1	d_Naphthalene		Toluene	d_Toluene		Xylenes (total)	d_Xylenes (total)
2	1		21400	1		5120	1
3	1		15600	1		4230	1
4	1		14300	1		3290	1
5	1		13100	1		2920	1
6	1		3250	1		1520	1
7	1		2810	1		1290	1
8	1		1890	1		895	1
9	1		1760	1		614	1
10	1		1500	1		582	1
11	1		955	1		571	1
12	1		910	1		558	1
13	1		831	1		377	1
14	1		632	1		307	1
15	1		485	1		189	1
16	1		248	1		108	1
17	1		146	1		25.7	1
18	1		3.42	1		5.26	1
19	1		1.44	1		2.51	1
20	1		1.38	1		2.17	1
21	1		0.5	0		1.92	1
22	0		0.5	0		1.5	0
23	0		0.5	0		1.5	0
24	0		0.5	0		0.75	0
25	0		0.25	0		0.75	0
26	0		0.25	0		0.75	0
27	0		0.25	0		0.75	0
28	0		0.25	0		0.75	0
29	0		0.25	0		0.75	0
30	0		0.25	0		0.75	0
31	0		0.25	0		0.75	0
32	0		0.25	0		0.75	0
33	0		0.25	0		0.75	0
34	0		0.25	0		0.75	0
35	0		0.25	0		0.75	0
36	0		0.25	0		0.75	0
37	0		0.25	0		0.75	0
38	0		0.25	0		0.75	0
39	0		0.25	0		0.75	0
40	0		0.25	0		0.75	0
41	0		0.25	0		0.75	0
42	0		0.25	0		0.75	0
43	0		0.25	0		0.75	0
44	0		0.25	0		0.75	0
45	0		0.25	0		0.75	0
46	0		0.25	0		0.75	0
47	0		0.25	0		0.75	0
48	0		0.25	0		0.75	0
49	0		0.25	0		0.75	0
50	0		0.25	0		0.75	0

	AC	AD	AE	AF	AG	AH	AI
1	d_Naphthalene		Toluene	d_Toluene		Xylenes (total)	d_Xylenes (total)
51	0		0.25	0		0.75	0
52	0		0.25	0		0.75	0
53	0		0.25	0		0.75	0
54	0		0.25	0		0.75	0
55	0		0.25	0		0.75	0
56	0		0.25	0		0.75	0
57	0		0.25	0		0.75	0
58	0		0.25	0		0.75	0
59	0		0.25	0		0.75	0
60	0		0.25	0		0.75	0
61	0		0.25	0		0.75	0
62	0		0.25	0		0.75	0
63	0		0.25	0		0.75	0
64	0		0.25	0		0.75	0
65	0		0.25	0		0.75	0
66	0		0.25	0		0.75	0
67	0		0.25	0		0.75	0
68	0		0.25	0		0.75	0
69	0		0.25	0		0.75	0

Attachment 2 (Continued)

Groundwater Samples from Q3 and Q4 2015, On-Base (Output)

	А		В	T	С	D		F	F	G		Н	1	1	L.	i T	К		1
1					<u> </u>	<u> </u>	ICI	Statistics	for Data Sets	with Non.	Deter	rte		· ·		-	··	<u> </u>	
-								. 010100100		with Hon	2010	010					-		
2						1													
3					User Selected Options														
4				D	ate/Time of Computation	ProUCL	L 5.	16/20/2017	9:44:13 AM										
5					From File	WorkSh	hee	t.xls											
6					Full Precision	OFF													
					Confidence Coofficient	050/													
/			Niccost			90 /0													
8			Num	ber	of Bootstrap Operations	2000													
9																			
10	1,2,4-Tr	ime	thylber	nze	ene														
11																	-		
12									General Statis	tics									
12					Total N	umbor o	fO	hearvations	69				Num	oor of	Dicting		convot	tions	21
13					Total N				08				Num		Distille			.10115	21
14						Num	ibe	r of Detects	20					NU	imber	of No	on-Det	ects	48
15					Num	nber of D	Disti	nct Detects	19				Num	ber of	Distin	ict N	on-Det	ects	2
16						M	linin	num Detect	1						Minim	um N	√on-De	etect	0.25
17						Ma	axin	num Detect	493					1	Maxim	um M	Von-De	etect	0.5
18						Va	riar	nce Detects	26058						Perce	nt N	on-Det	tects	70.59%
10							Me	an Detects	133.6								SD Det	tects	161.4
19							A a d	ian Data ata	70.25							-		COLO	1 200
20						11	lea	ian Detects	70.35								JV Det	ects	1.208
21						Ske	wne	ess Detects	1.15						K	urtos	sis Det	ects	-0.0712
22					M	lean of L	.ogg	ged Detects	3.682					5	SD of L	_ogg	ed Det	ects	1.991
23																			
24								Normal G	OF Test on D	etects Or	nly								
25					Sha	apiro Wil	k To	est Statistic	0.792				S	Shapiro	o Wilk	GO	F Test		
20					5% Sha	niro Will	k Ci	ritical Value	0.905		Dete	octod	Data	Not N	ormal	at 5º	% Sign	ificar	
20					0,0010	Lilliofor	<u>а т</u>	act Statiatic	0.000		Doit	00100	Dulu	Lillio	foro O		Teet	moun	
27					50/	Lineion	5 10		0.201		<u> </u>		<u> </u>	Line			rest		
28					5%	Lilliefors	s Ci	ritical Value	0.192		Dete	ected	Data	Not N	ormal	at 5%	% Sign	ifican	ice Level
29						Dete	ecte	ed Data No	t Normal at 5	% Signific	ance	Leve							
30																			
31					Kaplan-Meier (l	KM) Sta	tist	ics using N	ormal Critical	Values a	nd oth	her N	onpa	ramet	ric UC	Ls			
32					· · · ·	,		KM Mear	39.48				•	KM St	andard	d Frr	or of M	lean	13.03
32								KM SD	104.8						05%	KM ((BCA)		63.82
33						01	E0/		61.00			050		(Dere		Deet			61.50
34						95	5%		61.22			95%	% KIVI	(Perc		3000	strap)	UCL	61.59
35						95	9% I	KM (z) UCL	60.92					95%	5 KM E	Boots	strap t	UCL	70.36
36					90'	% KM C	heb	yshev UCL	78.58					95%	KM C	heb	yshev I	UCL	96.29
37					97.5	% KM C	heb	yshev UCL	120.9					99%	KM C	heb	yshev I	UCL	169.2
38																			
39						Gan	nma	a GOF Tes	ts on Detecte	d Observa	ations	; Only	/						
40						Α-Γ		est Statistic	0.37				And	ierson	-Darli	na C	OF Te	et	
40						5% A C		ritical Value	0.801	Dotoo	tod do	to on	noor	Comm	Dict			50/ Ci	ignificance Lovel
41						370 A-L			0.001	Delec	leu ua	ita ap	vpear ·			Induc		570 01	gillicance Level
42						N-0	5 10		0.114				NU	imogo	100-31	mm	ov GO		
43						5% K-5	S CI	ritical Value	0.205	Detec	ted da	ita ap	pear	Gamm	na Dist	ribut	ed at 5	<u>اک %د</u>	gnificance Level
44					Dete	ected da	ata	appear Ga	mma Distribu	ted at 5%	Signi	fican	ce Le	vel					
45																			
46							G	amma Stat	istics on Dete	cted Data	a Only	/							
47							I	k hat (MLE)	0.52					k star	(bias d	corre	ected N	ЛLE)	0.476
48						TI	het	a hat (MI F)	256.7				The	a star	(bias d	corre	ected M	ALE)	280.9
40							n	u hat (MLE)	20.82					n	star (hias	COTTAC	ted)	19.03
49							Mar		122.6					nu	(5.03	551166		
50						ľ	NIES		133.0										
51																			
52						Gan	nm	a ROS Sta	tistics using li	nputed N	on-De	etects	3						
53					GROS may not be	used wh	nen	data set ha	is > 50% NDs	with many	y tied	obsei	rvatio	ns at r	nultiple	e DL	s		
54			G	GRC	OS may not be used when I	kstar of o	dete	ects is smal	l such as <1.0	, especial	ly whe	en the	e sam	ple siz	e is sr	nall ((e.g., <	:15-2	0)
55					For such :	situation	is, (GROS meth	od may vield	incorrect v	alues	of U	CLs a	nd BT	Vs				
56						This	s is	especially	rue when the	sample si	ze is s	small							
55					or gamma distributed data	nted dat	ta "	BTVe and I	ICI s may be	omnuted	lising	nam	ma di	stributi	ion on	KM	estimo	ites	
57				- 1			.u, I	Minimum			aaniy	guill	na ul	Janual			N	1000	30.21
58								wiininnum Maari	0.01								11	iean	0.01
59								Maximum	493								Me	dian	0.01
60								SD	105.6									CV	2.686
61								k hat (MLE)	0.134					k star	(bias d	corre	cted N	/LE)	0.138
62						TI	heta	a hat (MLE)	293.8				Thet	a star	(bias d	corre	ected N	/LE)	285.5
63							nı	u hat (MLE)	18.2					nı	ı star (bias	correc	cted)	18.73
64					Adjusted L	evel of S	Sian	ificance (R)	0.0465						- (
65					Annrovimate Chi S		alu.	a (18 73 ~)	9 019			۵diu	sted (hi Sa	uare \	/alur	/12 7 [,]	3 8)	9 779
CO							aiu	bon	74.00	-	E0/ 0	Auju		Jun Oq			, (10.7.	-FO	75.00
66				9	5% Gamma Approximate l	UCL (USE	e w	nen n>=50)	/4.22	9	o% Gi	amma	a Adji	usted l	JUL (U	ise w	men n	~5U)	/5.28

	A B	С	D	E	F	G	Н		J	K	L
67											
68			Estimate	es of Gamm	a Parameter	s using KM	I Estimate	s			
69				Mean (KM)	39.48					SD (KM)	104.8
70			Var	riance (KM)	10974				SE of	Mean (KM)	13.03
71			-	k hat (KM)	0 142					k star (KM)	0 146
72			r	nu hat (KM)	19.31				n	ustar (KM)	19.8
72			the	ta hat (KM)	278				thet	a etar (KM)	271.2
73		2 0% c			278 41.0			0.0%		a star (KNI)	116.5
/4		00% (yannia perc		41.9			90%	yannna perc		F10.0
75		95% (gamma perc	entile (KIVI)	218.5			99% (gamma perc	entile (KIVI)	516.3
76											
77				Gamma Ka	plan-Meier (F	(M) Statis	ICS				
78		Approximate Chi S	Square Value	e (19.80, α)	10.7		Adjus	sted Chi S	Square Value	e (19.80, β)	10.56
79	95%	Gamma Approximate KM-I	UCL (use wł	hen n>=50)	73.03	95% 0	amma Adj	usted KN	1-UCL (use v	/hen n<50)	74.04
80											
81			Lognorm	nal GOF Te	st on Detecte	d Observ	ations Only	/			
82		Sha	apiro Wilk Te	est Statistic	0.925			Shap	iro Wilk GO	F Test	
83		5% Sha	apiro Wilk Cr	ritical Value	0.905	De	tected Data	a appear	Lognormal a	it 5% Signif	cance Level
84			Lilliefors Te	est Statistic	0.161			Lill	iefors GOF	Test	
85		5%	Lilliefors Cr	ritical Value	0.192	De	tected Data	a appear	Lognormal a	it 5% Signif	cance Level
86			Detected D)ata appear	Lognormal a	t 5% Sign	ificance Le	vel			
87				••							
88			Loanorm	al ROS Sta	atistics Usina	Imputed N	lon-Detect	s			
80			Mean in Ori	iginal Scale	39.6				Mean ir	Log Scale	-0.893
0.0			SD in Ori	ininal Scale	105.5				SD ir	Log Scale	3 855
01		95% tUCL (accumacy	normality of	ROS data)	60.0/			95% Dr	arcentile Roo	tstran LICI	61 91
91			5% BCA Roo		66.24			55 /0 FE	95% Root	stran t LICI	69.35
92		95			6062				33 /0 DUU	map i UCL	03.30
93			50 /0 Π-UUL	(LUY RUS)	0303						
94		04 -11-11	ing 1/14/'	materia	aged D-t-	nd Anarr	ing ! = ==		ulbu ti a m		
95		Statistics us	ING KM ESTI	mates on L	ogged Data a	na Assum	ing Lognoi	rmai Dist	ribution	<u> </u>	
96			KM Mea	an (logged)	0.104				KM	Geo Mean	1.11
97			KM S	SD (logged)	2.538			95% Cr	itical H Valu	e (KM-Log)	3.068
98		KM Standard	Error of Mea	an (logged)	0.316				95% H-UCL	(KM -Log)	71.98
99			KM S	SD (logged)	2.538			95% Cr	itical H Valu	e (KM-Log)	3.068
100		KM Standard	Error of Mea	an (logged)	0.316						
101											
102					DL/2 Statistic	xs					
103		DL/2 Norma	al					DL/2	Log-Transf	ormed	
104			Mean in Ori	iginal Scale	39.39				Mean ir	Log Scale	-0.364
105			SD in Ori	iginal Scale	105.6				SD ir	Log Scale	2.84
		95% t UC	CL (Assumes	s normality)	60.74				95% I	I-Stat UCL	128.5
106											
106 107		DL/2 is not a	recommen	ded method	d, provided fo	r comparis	sons and h	istorical	reasons		
106 107 108		DL/2 is not a	recommen	ded method	l, provided fo	r compari	sons and h	istorical	reasons		
106 107 108 109		DL/2 is not a	recomment	ded methoo parametric I	l, provided fo	r comparis	sons and h	istorical	reasons		
106 107 108 109 110		DL/2 is not a	Nonp	ded methoo parametric I appear Gar	l, provided fo Distribution F mma Distribu	r comparis ree UCL S ed at 5%	tatistics	e Level	reasons		
106 107 108 109 110 111		DL/2 is not a Dete	Nonp ected Data	ded methoo parametric I appear Gar	l, provided fo Distribution F mma Distribu	r comparis ree UCL S red at 5%	sons and h tatistics Significanc	istorical ce Level	reasons		
106 107 108 109 110 111		DL/2 is not a Dete	Nonp Rected Data	ded method parametric I appear Gar Sug	d, provided fo Distribution F mma Distribu	r comparis ree UCL S ted at 5% o Use	sons and h tatistics Significanc	istorical	reasons		
106 107 108 109 110 111 112 113		DL/2 is not a Dete 95% KM App	Nonp ected Data a	ded methoo parametric I appear Gar Sug amma UCL	d, provided for Distribution F nma Distribut gested UCL t	r comparis ree UCL S red at 5% o Use	sons and h tatistics Significanc	istorical	reasons		
106 107 108 109 110 111 112 113 114		DL/2 is not a Dete 95% KM App	Nonp ected Data a	ded method parametric I appear Gar Sug amma UCL	d, provided for Distribution F nma Distribu gested UCL t 73.03	r comparis ree UCL S ted at 5% o Use	sons and h tatistics Significanc	istorical	reasons		
106 107 108 109 110 111 112 113 114	Note	DL/2 is not a Detu 95% KM App Suggestions regarding the	recommend Nonp ected Data a proximate Ga selection of	ded method parametric I appear Gar Sug amma UCL	d, provided for Distribution F mma Distribut gested UCL t 73.03	r comparis ree UCL S red at 5% o Use	tatistics Significance	ce Level	most approp	riate 95% I	
106 107 108 109 110 111 112 113 114 115 116	Note:	DL/2 is not a Detu 95% KM App Suggestions regarding the Becomp	Nonp ected Data a proximate Ga selection of	ded method parametric (appear Gar Sug amma UCL i a 95% UCl are based u	d, provided for Distribution F mma Distribut gested UCL t 73.03 _ are provideo poor data size	r comparis ree UCL S red at 5% o Use	tatistics Significance e user to se	elect the	most approp	riate 95% U	CL.
106 107 108 109 110 111 112 113 114 115 116	Note:	DL/2 is not a Detu 95% KM App Suggestions regarding the Recomm	Nonp ected Data a proximate Ga selection of nendations a seed upon th	ded method parametric I appear Gar Sug amma UCL f a 95% UCI are based u are based u	I, provided for Distribution F nma Distribut gested UCL t 73.03 - are provided pon data size the simulatio	r comparis ree UCL S ed at 5% o Use I to help th , data distr	e user to so	elect the lossewne	most approp	riate 95% L	CL.
106 107 108 109 110 111 112 113 114 115 116 117	Note:	DL/2 is not a Detu 95% KM App Suggestions regarding the Recomm se recommendations are ba ar simulations results will p	recomment Nonp ected Data a proximate Ga selection of nendations a assed upon th of cover all P	ded method parametric I appear Gar Sug amma UCL f a 95% UCI are based u he results of Beal World	d, provided for Distribution F nma Distribut gested UCL t 73.03 - are provideo pon data size the simulatio data sets: for	r comparis ree UCL S and at 5% o Use	tatistics Significance e user to se ibution, and ummarized	elect the d skewned in Singh	most approp ss. n, Maichle, a	riate 95% L nd Lee (200	CL. 6).
106 107 108 109 110 111 112 113 114 115 116 117 118	Note: Thes Howeve	DL/2 is not a Detu 95% KM App Suggestions regarding the Recomm se recommendations are ba ar, simulations results will no	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F	ded method parametric I appear Gar Sug amma UCL f a 95% UCL are based u ne results of Real World	d, provided for Distribution F nma Distribut gested UCL t 73.03 - are provideo pon data size the simulatio data sets; for	r comparis ree UCL S teed at 5% o Use i to help th , data distri n studies s additional	e user to se ibution, and ummarized insight the	elect the d skewne d in Singh user may	most approp ess. n, Maichle, a v want to cor	riate 95% L nd Lee (200 sult a statis	CL. 6). tician.
106 107 108 109 110 111 112 113 114 115 116 117 118 119	Note: Thes Howeve	DL/2 is not a Detu 95% KM App Suggestions regarding the Recomm se recommendations are ba er, simulations results will no	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F	ded method parametric I appear Gar Sug amma UCL i a 95% UCI are based u he results of Real World	d, provided for Distribution F nma Distribut gested UCL t 73.03 - are provided pon data size the simulatio data sets; for	r comparis ree UCL S ted at 5% o Use I to help th data distr n studies s additional	e user to se ibution, and ummarized insight the	elect the d skewne d in Singh user may	most approp ess. n, Maichle, a v want to cor	riate 95% L nd Lee (200 sult a statis	CL. 6). tician.
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	Note: Thes Howeve	DL/2 is not a Detu 95% KM App Suggestions regarding the Recomm se recommendations are ba er, simulations results will no	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F	ded method parametric I appear Gar Sug amma UCL i a 95% UCI are based u he results of Real World	d, provided for Distribution F nma Distribut gested UCL t 73.03 - are provided pon data size the simulatio data sets; for	r comparis ree UCL S ted at 5% o Use l to help th , data distr n studies s additional	e user to se ibution, an ummarized insight the	elect the d d skewne d in Singh user may	most approp ess. n, Maichle, a / want to cor	riate 95% L nd Lee (200 sult a statis	CL. 6). tician.
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	Note: The: Howeve	DL/2 is not a Detu 95% KM App Suggestions regarding the Recomm se recommendations are ba ar, simulations results will no	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F	ded method parametric I appear Gar Sug amma UCL f a 95% UCI are based u he results of Real World	d, provided for Distribution F nma Distribut gested UCL t 73.03 - are provided pon data size the simulatio data sets; for	r comparis ree UCL S ted at 5% o Use l to help th , data distr n studies s additional	e user to se ibution, an ummarized	elect the d skewned in Singhuser may	most approp ess. n, Maichle, a v want to cor	riate 95% U nd Lee (200 sult a statis	CL. 6). tician.
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	Note: The: Howeve	DL/2 is not a Detu 95% KM App Suggestions regarding the Recomm se recommendations are ba er, simulations results will no Total N	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F	ded method parametric I appear Gar Sug amma UCL i a 95% UCI are based u ne results of Real World G Beservations	d, provided for Distribution F mma Distribut gested UCL t 73.03 - are provided pon data size the simulatio data sets; for ieneral Statis	r comparis ree UCL S ted at 5% o Use i to help th , data distr n studies s additional tics	e user to se ibution, and ummarized	elect the d d skewne d in Singh user may	most approp ess. n, Maichle, a v want to cor	riate 95% L nd Lee (200 sult a statis	CL. 6). tician.
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	Note: The: Howeve	DL/2 is not a Det 95% KM App Suggestions regarding the Recomm se recommendations are ba er, simulations results will no Total N	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F	ded method parametric I appear Gar Sug amma UCL i a 95% UCI are based u the results of Real World G bservations	d, provided for Distribution F mma Distribur gested UCL to 73.03 - are provided pon data size the simulatio data sets; for data sets; for eneral Statis 68 21	r comparis ree UCL S ted at 5% o Use i to help th , data distr n studies s additional tics	e user to se ibution, and ummarized	elect the d skewned d in Singhuser may	most approp ess. n, Maichle, a v want to cor	riate 95% L nd Lee (200 sult a statis	CL. 6). tician. 52
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 122 123	Note: The: Howeve 1,2-Dibromoethane	DL/2 is not a Dete 95% KM App Suggestions regarding the Recomm se recommendations are ba er, simulations results will no Total N	Nonp ected Data a proximate Ga selection of nendations a ased upon th ot cover all F	ded method parametric I appear Gar Sug amma UCL are based u the results of Real World of Real World of G bservations r of Detects	d, provided for Distribution F nma Distribur gested UCL 1 73.03 - are provided pon data size the simulatio data sets; for eneral Statis 68 21	r comparis ree UCL S ed at 5% o Use l to help th , data distri n studies s additional tics	e user to se ibution, an- ummarized insight the	elect the d skewned d in Singh user may	most approp ess. n, Maichle, a v want to cor of Distinct Ol Number of N	riate 95% L nd Lee (200 sult a statis	ICL. 6). tician. 52 47 21
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 124	Note: The: Howeve	DL/2 is not a Det 95% KM App Suggestions regarding the Recomm se recommendations are ba er, simulations results will no Total N	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F lumber of Ot Number mber of Distin	ded method parametric I appear Gar Sug amma UCL a 95% UCI are based u he results of Real World Beresults of Real World G bservations r of Detects nct Detects	d, provided for Distribution F nma Distribur gested UCL 1 73.03 - are provided pon data size the simulatio data sets; for ieneral Statis 68 21 21 21	r comparis ree UCL S ted at 5% o Use i to help th , data distri n studies s additional tics	e user to se ibution, an- ummarized insight the	elect the elect the d skewned in Singhuser may	most approp ess. h, Maichle, a v want to cor of Distinct Of Number of N of Distinct N	riate 95% L nd Lee (200 sult a statis pservations on-Detects on-Detects	CL. 6). tician. 52 47 31
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126	Note: Thes Howeve	DL/2 is not a Detr 95% KM App Suggestions regarding the Recomm se recommendations are ba er, simulations results will no Total N Num	Nonp ected Data a proximate Ga selection of nendations a ased upon th ot cover all F iumber of Ot Number nber of Distii Minim	ded method parametric I appear Gar Sug amma UCL a 95% UCI are based u he results of Real World Bereal World G bservations r of Detects nct Detects num Detect	d, provided for Distribution F mma Distribution F mma Distribution gested UCL 1 73.03 are provided pon data size the simulatio data sets; for ieneral Statis 68 21 21 21 0.0368	r comparis ree UCL S ted at 5% o Use i to help th , data distri n studies s additional tics	e user to se ibution, an- ummarized insight the	elect the elect the d skewned in Singhuser may	most approp ess. h, Maichle, a v want to cor of Distinct Of Number of N of Distinct N Minimum I	riate 95% L nd Lee (200 sult a statis pservations on-Detects on-Detects Non-Detect	CL. 6). tician. 52 47 31 0.00917 0.00917
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127	Note: The: Howeve	DL/2 is not a Dete 95% KM App 95% KM App Suggestions regarding the Recomn se recommendations are ba er, simulations results will no Total N Nun	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F lumber of Ot Number mber of Distin Minim Maxim	ded method parametric I appear Gar Sug amma UCL f a 95% UCI are based u he results of Real World Beresults of Real World G bservations r of Detects num Detect num Detect	d, provided for Distribution F mma Distribution F mma Distribution gested UCL 1 73.03 are provided pon data size the simulatio data sets; for ieneral Statis 68 21 21 0.0368 93	r comparis ree UCL S ted at 5% o Use i to help th , data distr n studies s additional tics	e user to se ibution, an- ummarized insight the	elect the elect the d skewned in Singhuser may	most approp ess. , Maichle, a / want to cor of Distinct Ot Number of N of Distinct N Minimum I Maximum I	riate 95% L nd Lee (200 sult a statis oservations on-Detects on-Detects Non-Detect	CL. 6). tician. 52 47 31 0.00917 0.00966 20.002
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 123 124 125 126 127 128	Note: The Howeve	DL/2 is not a Dete 95% KM App 95% KM App Suggestions regarding the Recomn se recommendations are ba er, simulations results will no Total N Num	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F iumber of Ot Number mber of Distin Minim Maxim Varian	ded method parametric I appear Gar Sug amma UCL i a 95% UCI are based u he results of Real World Beervations r of Detects num Detect num Detect num Detects	d, provided for Distribution F mma Distribution F mma Distribution gested UCL 1 73.03 are provided pon data size the simulatio data sets; for eneral Statis 68 21 21 0.0368 93 581.2	r comparis ree UCL S ted at 5% o Use i to help th , data distu n studies s additional tics	e user to so ibution, and ummarized insight the	elect the elect the d skewned in Singhuser may	most approp ess. , Maichle, a , want to cor of Distinct Ot Number of N of Distinct N Minimum I Maximum I Percent N	riate 95% L nd Lee (200 sult a statis on-Detects on-Detects Non-Detect Non-Detect on-Detects	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12%
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 123 124 125 126 127 128 129	Note: The Howeve	DL/2 is not a Dete 95% KM App 95% KM App Suggestions regarding the Recomn se recommendations are ba er, simulations results will no Total N Num	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F Number nber of Distin Minim Maxim Varian Me	ded method parametric I appear Gar Sug amma UCL i a 95% UCI are based u he results of Real World G bservations r of Detects num Detect num Detect num Detects num Detects num Detects num Detects num Detects num Detects	d, provided for Distribution F mma Distribution F mma Distribution F mma Distribution gested UCL 1 73.03 are provided pon data size the simulatio data sets; for ieneral Statis 68 21 21 0.0368 93 581.2 11.46	r comparis ree UCL S ted at 5% o Use I to help th , data distu n studies s additional tics	e user to se ibution, and ummarized insight the	elect the elect the d skewned in Singh user may	most approp ess. h, Maichle, a v want to cor of Distinct Ot Number of N of Distinct N Minimum I Maximum I Percent N	riate 95% L nd Lee (200 sult a statis on-Detects on-Detects Non-Detect Non-Detects SD Detects	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12% 24.11
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 123 124 125 126 127 128 129 130	Note: Thes Howeve	DL/2 is not a Dete 95% KM App Suggestions regarding the Recomn se recommendations are ba er, simulations results will no Total N Num	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F lumber of Ot Number mber of Distii Minim Maxim Varian Med	ded method parametric I appear Gar Sug amma UCL i a 95% UCI are based u he results of Real World bservations r of Detects num Detect num Detect num Detects num Detects nan Detects an Detects	I, provided for Distribution F nma Distribution F mma Distribution F gested UCL 1 73.03 - are provided pon data size the simulatio data sets; for data sets; for seneral Statis 68 21 21 0.0368 93 581.2 11.46 3.31	r comparis ree UCL S ted at 5% o Use I to help th , data distr n studies s additional tics	e user to se ibution, and ummarized insight the	elect the d skewned d in Singh user may Number c	most approp ess. h, Maichle, a v want to cor of Distinct Ol Number of N of Distinct N Minimum I Maximum I Percent N	riate 95% L nd Lee (200 sult a statis on-Detects on-Detects Non-Detect Non-Detects SD Detects SD Detects CV Detects	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12% 24.11 2.104
106 107 108 109 110 111 112 113 114 115 116 117 118 119 121 122 123 124 125 126 127 128 129 130 131	Note: The Howeve	DL/2 is not a Dete 95% KM App Suggestions regarding the Recomn se recommendations are ba er, simulations results will no Total N Num	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F Number nber of Distii Minim Maxim Varian Medi Skewne	ded method parametric I appear Gar Sug amma UCL i a 95% UCI are based u he results of Real World bservations r of Detects num Detect num Detect num Detects an Detects an Detects an Detects an Detects	I, provided for Distribution F nma Distribution F mma Distribution F gested UCL 1 73.03 - are providec pon data size the simulatio data sets; for 	r comparis ree UCL S ed at 5% o Use l to help th data distr n studies s additional	e user to se ibution, and ummarized insight the	elect the d skewned d in Singh user may Number c	most approp ess. , Maichle, a / want to cor of Distinct Of Number of N of Distinct N Minimum I Maximum I Percent N	riate 95% L nd Lee (200 sult a statis on-Detects on-Detects Non-Detect Non-Detect SD Detects SD Detects CV Detects sis Detects	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12% 24.11 2.104 7.747
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131	Note: The Howeve	DL/2 is not a Dete 95% KM App Suggestions regarding the Recomn se recommendations are ba er, simulations results will no Total N Num	International Content of Content	ded method parametric I appear Gar Sug amma UCL if a 95% UCI are based u he results of Real World Beservations r of Detects num Detect num Detects num Detects an Detects an Detects an Detects ged Detects ged Detects	I, provided for Distribution F mma Distribution F mma Distribution F are provided pon data size the simulatio data sets; for ieneral Statis 68 21 21 0.0368 93 581.2 11.46 3.31 2.88 0.538	r comparis ree UCL S ted at 5% o Use it to help th data distr additional tics	e user to se ibution, and ummarized insight the	elect the d skewned d in Singh user may Number of Number	most approp ess. , Maichle, a / want to cor of Distinct Of Number of N of Distinct N Minimum I Maximum I Percent N SD of Logg	riate 95% L nd Lee (200 sult a statis on-Detects on-Detects Non-Detect Non-Detect SD Detects SD Detects SC Detects sis Detects ed Detects	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12% 24.11 2.104 7.747 2.304
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133	Note: The Howeve	DL/2 is not a Dete 95% KM App Suggestions regarding the Recomn se recommendations are ba er, simulations results will no Total N Nun Mun	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F iumber of Ot Number mber of Distii Minin Maxim Varian Medi Skewne Iean of Logg	ded method parametric I appear Gar Sug amma UCL if a 95% UCI are based u the results of Real World Beservations r of Detects num Detect num Detects num Detects an Detects an Detects ian Detects ges Detects ged Detects	I, provided for Distribution F mma Distribution F mma Distribution F mma Distribution F are provided pon data size the simulatio data sets; for ieneral Statis 68 21 21 0.0368 93 581.2 11.46 3.31 2.88 0.538	r comparis ree UCL S ted at 5% o Use l to help th data distr n studies s additional tics	e user to se ibution, and ummarized insight the	elect the d skewned d in Singh user may Number of Number	most approp ess. , Maichle, a / want to cor of Distinct Ot Number of N of Distinct N Minimum I Maximum I Percent N SD of Logg	riate 95% L nd Lee (200 sult a statis on-Detects on-Detects Non-Detect Non-Detect SD Detects SD Detects SC Detects sis Detects ed Detects	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12% 24.11 2.104 7.747 2.304
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134	Note: Thes Howeve	DL/2 is not a Dete 95% KM App 95% KM App Suggestions regarding the Recomn se recommendations are ba er, simulations results will no Total N Num Num Num Num Num Num Num Num Num Nu	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F Number of Ot Number of Distii Maxim Maxim Varian Medi Skewne Iean of Logg	ded method parametric I appear Gar Sug amma UCL f a 95% UCI are based u the results of Real World Beservations r of Detects num Detects num Detects the Detects an Detects an Detects an Detects ged Detects ged Detects Sess Detects Sess Detects Sess Detects Sess Detects Sess Detects	d, provided for Distribution F mma Distribution F mma Distribution F mma Distribution F are provided pon data size the simulation data sets; for eneral Statis 68 21 21 0.0368 93 581.2 11.46 3.31 2.88 0.538 OF Test on D	r comparis ree UCL S ted at 5% o Use i to help th data distr n studies s additional tics	tatistics Significance e user to se ibution, and ummarized insight the I	elect the d skewned d in Singh user may Number c	most approp ess. , Maichle, a / want to cor of Distinct Of Number of N of Distinct N Minimum I Maximum I Percent N SD of Logg	riate 95% L nd Lee (200 sult a statis on-Detects on-Detects Non-Detect Non-Detect SD Detects SD Detects SC Detects sis Detects ed Detects	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12% 24.11 2.104 7.747 2.304
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135	Note: Thes Howeve 1,2-Dibromoethane	DL/2 is not a Dete 95% KM App 95% KM App Suggestions regarding the Recomn se recommendations are ba ar, simulations results will no Total N Num Num Sha	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F lumber of Ot Number mber of Distii Minim Maxim Varian Medi Skewne lean of Logg	ded method parametric I appear Gar Sug amma UCL f a 95% UCI are based u re results of Real World Beservations r of Detects num Detect num Detects num Detects num Detects an Detects an Detects ged Detects ged Detects tas Detects fan Detects	d, provided for Distribution F mma Distribution F mma Distribution F mma Distribution F are provided pon data size the simulation data sets; for eneral Statis 68 21 0.0368 93 581.2 11.46 3.31 2.88 0.538 OF Test on D 0.51	r comparis ree UCL S ed at 5% o Use l to help th , data distr n studies s additional tics	tatistics Significance e user to se ibution, and ummarized insight the	elect the d skewned d skewned d in Singh user may Number of Number Shap	most approp ess. a, Maichle, a vant to cor of Distinct Of Number of N of Distinct N Minimum I Maximum I Percent N SD of Logg iro Wilk GO	riate 95% L nd Lee (200 sult a statis on-Detects on-Detects Non-Detect SD Detects SD Detects SCV Detects sis Detects ed Detects F Test	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12% 24.11 2.104 7.747 2.304
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136	Note: Thes Howeve 1,2-Dibromoethane	DL/2 is not a Dete Dete 95% KM App Suggestions regarding the Recomn se recommendations are ba ar, simulations results will no Total N Num Num Sha Sha 5% Sha	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all f lumber of Ot Number nber of Distii Maxim Varian Medi Skewne lean of Logg apiro Wilk Te apiro Wilk Cr	ded method parametric I appear Gar Sug amma UCL f a 95% UCI are based u he results of Real World Beservations r of Detects num Detect num Detects num Detects an Detects an Detects an Detects ged Detects ged Detects tas Detects feast Statistic ritical Value	d, provided for Distribution F mma Distribution F mma Distribution F are provided pon data size the simulation data sets; for eneral Statis 68 21 21 0.0368 93 581.2 11.46 3.31 2.88 0.538 OF Test on C 0.51 0.908	r comparis ree UCL S ed at 5% o Use i to help th , data distr n studies s additional tics	tatistics Significance e user to se ibution, and ummarized insight the insight the ly Detected I	elect the I elect the I d skewne d in Singh user may Number c I Number Shap Data Not	reasons most approp ess. a, Maichle, a / want to cor of Distinct Of Number of N of Distinct N Minimum I Maximum I Percent N SD of Logg SD of Logg iro Wilk GO Normal at 5 ^r	riate 95% L nd Lee (200 sult a statis on-Detects on-Detects Non-Detects SD Detects SD Detects SCV Detects sis Detects ed Detects F Test % Significar	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12% 24.11 2.104 7.747 2.304 ice Level
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	Note: The: Howeve 1,2-Dibromoethane	DL/2 is not a Determined Determin	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all f lumber of Ot Number nber of Distin Maxim Varian Medi Skewne lean of Logg apiro Wilk Te apiro Wilk Cr Lilliefors Te	ded method parametric I appear Gar Sug amma UCL f a 95% UCI are based u he results of Real World Beservations r of Detects num Detect num Detects num Detects ian Detects ian Detects ged Detects ged Detects ged Detects tas Detects ian Detects ian Detects ian Detects ian Detects ged Detects ged Detects ged Detects ian Detects ian Detects ian Detects ian Detects ged Detects ged Detects ian Detects ian Detects ian Detects ian Detects ian Detects ged Detects ged Detects ian	d, provided for Distribution F mma Distribution F mma Distribution F gested UCL t 73.03 are provided pon data size the simulation data sets; for ieneral Statis 68 21 0.0368 93 581.2 11.46 3.31 2.88 0.538 OF Test on C 0.51 0.908 0.348	r comparis ree UCL S ed at 5% o Use i to help th , data distr n studies s additional tics	tatistics Significance e user to se ibution, and ummarized insight the insight the ly Detected I	Elect the I d skewne d in Singh user may Number Number Number Shap Data Not	reasons most approp ess. n, Maichle, a / want to cor of Distinct Of Number of N of Distinct N Minimum I Maximum I Percent N Percent N SD of Logg iro Wilk GO Normal at 5 ^r iefors GOF	riate 95% L nd Lee (200 sult a statis on-Detects on-Detects Non-Detect SD Detects SD Detects SCV Detects sis Detects ed Detects F Test % Significar	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12% 24.11 2.104 7.747 2.304 cc Level
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 130 131 132 133 134 135 136 137 138	Note: The: Howeve 1,2-Dibromoethane	DL/2 is not a Determination Determination Determination Determination Determination Determination Determination Determination Serecommendation Recommendation Recommendation Recommendation Recommendation Recommendation Recommendation Recommendation Recommendation Serecommendation Total Num Num Num Num Serecommendation Method Serecommendation Ser	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all f umber of Ot Number nber of Distin Maxim Varian Medi Skewne lean of Logg apiro Wilk Te apiro Wilk Cr Lilliefors Te	ded method parametric I appear Gar Sug amma UCL f a 95% UCI are based u he results of Real World f a 95% UCI are based u he results of ro f Detects an Detects an Detects an Detects an Detects an Detects f a Detects	d, provided for Distribution F mma Distribution F mma Distribution F gested UCL 1 73.03 are provided pon data size the simulation data sets; for ieneral Statis 68 21 0.0368 93 581.2 11.46 3.31 2.88 0.538 OF Test on C 0.51 0.908 0.348 0.188	r comparis ree UCL S ed at 5% o Use i to help th , data distr n studies s additional tics	tatistics Significance e user to se ibution, and ummarized insight the insight the ly Detected I	Elect the I d skewne d in Singh user may Number of Number Number Data Not Lill Data Not	reasons most approp ess. n, Maichle, a / want to cor of Distinct Of Number of N of Distinct N Minimum I Maximum I Percent N Percent N SD of Logg iro Wilk GO Normal at 5 ^r iefors GOF	riate 95% L nd Lee (200 sult a statis on-Detects on-Detects Non-Detects SD Detects SD Detects SCV Detects sis Detects ed Detects F Test % Significar Test	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12% 24.11 2.104 7.747 2.304 ace Level ace Level
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	Note: Thes Howeve 1,2-Dibromoethane	DL/2 is not a Deter Dete	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F lumber of Ot Number nber of Distin Minim Maxim Varian Medi Skewne lean of Logg apiro Wilk Te apiro Wilk Te Lilliefors Te Lilliefors Cr	ded method parametric I appear Gar Sug amma UCL f a 95% UCI are based u he results of Real World of Real World of Real World of the results of Real World of the results of Real World of the results of Real World of the results of the Detects an Detects an Detects an Detects an Detects an Detects an Detects an Detects an Detects the Detects an Detects	d, provided for Distribution F mma Distribution F mma Distribution F gested UCL 1 73.03 - are provided pon data size the simulation data sets; for - are provided pon data size the simulation data sets; for - are provided pon data size the simulation data sets; for - are provided pon data size the simulation - are provided pon data size the simulation - are provided - are	r comparis ree UCL S ed at 5% o Use i to help th , data distr n studies s additional tics	tatistics Significance e user to se ibution, and ummarized insight the lipution lipu	Elect the I d skewne d in Singh user may Number of Number Number Data Not Lill Data Not	reasons most approp ess. n, Maichle, a / want to cor of Distinct Ot Number of N of Distinct N Minimum I Maximum I Percent N SD of Logg iro Wilk GO Normal at 5' iefors GOF	riate 95% U nd Lee (200 sult a statis on-Detects on-Detects Non-Detects SD Detects CV Detects SD Detects SID Detects Sis Detects ed Detects F Test % Significar Test	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12% 24.11 2.104 7.747 2.304 icc Level icc Level
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140	Note: Thes Howeve 1,2-Dibromoethane	DL/2 is not a Deter Dete	Nonp ected Data a proximate Ga selection of nendations a ased upon th ot cover all f umber of Ot Number nber of Distin Minim Maxim Varian Medi Skewne lean of Logg apiro Wilk Te apiro Wilk Te Lilliefors Te Lilliefors Te	ded method parametric I appear Gar Sug amma UCL a 95% UCI are based u the results of Real World of Real World of Real World of Real World of the results of Real World of the results of Real World of the results of the Detects an Detects an Detects an Detects ped Detects Detects Detects Detects an Detects Sess Detects Detects Detects Detects Sess Detects Normal G est Statistic ritical Value est Statistic ritical Value	d, provided for Distribution F mma Distribution F mma Distribution gested UCL 1 73.03 - are provided pon data size the simulation data sets; for 	r comparis ree UCL S ed at 5% o Use i to help th , data distr n studies s additional tics etects On etects On	e user to se ibution, and ummarized insight the insight the insight the insight the insight the insight the insight the insight the insight the insigh	elect the elect the d skewned in Singhuser may see the set of the skewned in Singhuser may see the set of the skewned in Singhuser may see the skewned in Singhuser m	most approp ess. , Maichle, a / want to cor of Distinct Ot Number of N of Distinct N Minimum I Maximum I Percent N Percent N SD of Logg iro Wilk GO Normal at 5' iefors GOF	riate 95% U nd Lee (200 sult a statis on-Detects on-Detects Son-Detects SD Detects SD Detects SD Detects sis Detects ed Detects ed Detects F Test % Significar Test	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12% 24.11 2.104 7.747 2.304 ice Level ice Level
106 107 108 109 110 111 112 113 114 115 116 117 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	Note: The Howeve 1,2-Dibromoethane	DL/2 is not a Deter Dete	Nonp ected Data a proximate Ga selection of mendations a ased upon th ot cover all F lumber of Ot Number nber of Distii Minim Maxim Varian Medi Skewne Iean of Logg apiro Wilk Te apiro Wilk Te apiro Wilk Te Lilliefors Te Lilliefors Te	ded method parametric I appear Gar Sug amma UCL i a 95% UCI are based u he results of Real World of Real World of Real World of Beservations of Detects num Detects in Detects ian Detects ian Detects ged Detects beservations con Detects ian Detects ian Detects ian Detects ian Detects beservations ged Detects Normal G est Statistic itical Value est Statistic itical Value est Statistic itical Value	d, provided for Distribution F mma Distribution F mma Distribution gested UCL 1 73.03 - are provided pon data size the simulation data sets; for - are provided pon data size the simulation data sets; for - are provided pon data size the simulation - are provided pon data size the simulation - are provided - are	r comparis ree UCL S red at 5% o Use ito help th , data distri n studies s additional tics etects On % Significa Values ar	e user to se ibution, and ummarized insight the ibution, and ummarized insight the lipution, and ummarized insight the lipution insight the lipu	elect the in Singhuser may shap Data Not Lill Data Not Sonparame	most approp iss. , Maichle, a / want to cor of Distinct Ot Number of N of Distinct N Minimum I Maximum I Percent N SD of Logg iro Wilk GO Normal at 5' iefors GOF Normal at 5' ietric UCLs	riate 95% L nd Lee (200 sult a statis on-Detects on-Detects on-Detects SD Detects SD Detects SD Detects sis Detects ed Detects ed Detects F Test % Significar Test	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12% 24.11 2.104 7.747 2.304 ice Level ice Level
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	Note: The Howeve 1,2-Dibromoethane	DL/2 is not a Dete Dete 95% KM App Suggestions regarding the Recomn se recommendations are ba er, simulations results will no Total N Nun Nun Sha Sha S% Sha S% Kaplan-Meier (Nonp ected Data a proximate Ga selection of nendations a ased upon th ot cover all F lumber of Disti Minim Maxim Varian Medi Skewne Iean of Logg apiro Wilk Te Lilliefors Te Lilliefors Te Lilliefors Cr	ded method parametric I appear Gar Sug amma UCL i a 95% UCI are based u he results of Real World of Real World of Real World of Best vations r of Detects num Detects num Detects ian Detects an Detects ian Detects ged Detects is Detects it cal Value est Statistic it cal Value is statistic it cal Value	d, provided for Distribution F mma Distribution F mma Distribution F gested UCL 1 73.03 are providect pon data size the simulation data sets; for ieneral Statis 68 21 21 0.0368 93 581.2 11.46 3.31 2.88 0.538 OF Test on C 0.51 0.908 0.348 0.188 Normal at 57 ormal Critical 3.544	r comparis ree UCL S ad at 5% o Use i to help th data distr n studies s additional tics c etects On etects On % Significa Values ar	e user to se ibution, and ummarized insight the ibution, and ummarized insight the ly Detected I Detected I ance Level ad other No	elect the diskewned din Singh user may Number of Number of Number Number of Number of Number Number of Number of Number of Number Number of Number of Number of Number of Number Number of Number of Nu	most approp ess. Maichle, a want to cor of Distinct Ot Number of N of Distinct N Minimum I Maximum I Percent N Mormal at 5° iefors GOF Normal at 5° etric UCLs Standard Err	riate 95% L nd Lee (200 sult a statis on-Detects on-Detects on-Detects SD Detects SD Detects SD Detects cV Detects sis Detects ed Detects F Test % Significar Fest % Significar	CL. 6). tician. 52 47 31 0.00917 0.00966 69.12% 24.11 2.104 7.747 2.304 ice Level ice Level ice Level 1.753

	۸	D			-	D	Е	Г	<u> </u>		T 1		1	V	1
1/2	A	D		,		D	 KM SD	г 14 1	G		1	95	5% KM	(BCA) UCI	Z 069
143						95%	KW (t) LICI	6.467		95	% KM (Pe	arcent	ile Boot	(BON) UCL	6 761
144	-					95%		6.427		50	0 1) MIN 0/	5% K	M Boot	stran t LICI	14.82
145					90% K	M Cheł	ovshev UCI	8 802			9.5	5% KI	M Cheh	vshev UCI	11.02
140				97	7.5% K	M Chel	ovshev UCL	14.49			99	9% KI	M Cheb	vshev UCL	20.98
148							.,							,	
149						Gamm	a GOF Test	s on Detecte	d Observa	tions Onl	v				
150						A-D T	est Statistic	0.696			Anders	on-D	arling C	OF Test	
151					5%	A-D C	ritical Value	0.835	Detect	ed data ap	pear Gan	nma [Distribu	ted at 5% S	ignificance Level
152						K-S T	est Statistic	0.155			Kolmo	goro	v-Smirn	ov GOF	<u> </u>
153					5%	K-S C	ritical Value	0.204	Detect	ed data ap	pear Gan	nma [Distribu	ted at 5% S	ignificance Level
154				D	Detecte	d data	appear Gar	nma Distribu	ted at 5%	Significan	ce Level				
155															
156						G	amma Stati	stics on Dete	ected Data	Only					
157							k hat (MLE)	0.353			k st	tar (bi	as corre	ected MLE)	0.335
158						Thet	a hat (MLE)	32.43			Theta st	tar (bi	as corre	ected MLE)	34.24
159						n	u hat (MLE)	14.84				nu st	ar (bias	corrected)	14.05
160						Me	an (detects)	11.46							
161															
162						Gamm	a ROS Stat	istics using I	mputed No	on-Detects	S				
163			GROS	s may not	be use	d when	data set ha	s > 50% NDs	with many	tied obse	rvations a	at mul	tiple DL	.s	0
164		GR	OS may not be	used whe	en kstar	r of det	ects is small	such as <1.0	, especiall	y when the	e sample s	SIZE IS	s small	(e.g., <15-2	0)
165				For suc	ch situa	This is	aRUS meth	od may yield	incorrect v	alues of U	ICLS and E	BIVS			
165			For gamma die	stributed d	latactor	t lis is	BTVs and U				ma distrib	ution	on KM	ectimates	
169			i oi gainna ui	sinbuleu u	letectet	uala,	Minimum			using gam		Julion		Mean	3 545
169							Maximum	93						Median	0.01
170							SD	14.21						CV	4.008
171							k hat (MLE)	0.175			k st	tar (bi	as corre	ected MLE)	0.177
172						Thet	a hat (MLE)	20.21			Theta st	tar (bi	as corre	ected MLE)	19.98
173						n	u hat (MLE)	23.85				nu st	ar (bias	corrected)	24.13
174				Adjusted	d Level	of Sigr	nificance (β)	0.0465							
175			Appro	ximate Ch	ni Squa	re Valu	e (24.13, α)	13.95		Adju	usted Chi S	Squa	re Value	e (24.13, β)	13.78
176			95% Gamma A	pproximat	te UCL	(use w	hen n>=50)	6.133	95	5% Gamm	a Adjuste	d UC	L (use v	vhen n<50)	6.208
177															
178					E	stimat	es of Gamm	a Parameter	s using KN	V Estimat	es			00 // 0 0	
179							Mean (KM)	3.544					05 (SD (KM)	14.1
180						va	riance (KIVI)	198.9					SE OT	Mean (KM)	1.753
181							K fiat (KIVI)	0.0032					n	K Star (KIVI)	0.0702
102						the	ta hat (KM)	56 12					11 thet	a star (KM)	50.51
103				809	% damr	ma nero	centile (KM)	1 277			90%	namr	na nero	entile (KM)	7 663
185				959	% gamr	ma per	centile (KM)	20.39			99%	gamr	na perc	entile (KM)	66.71
186												J			
187							Gamma Ka	plan-Meier (l	KM) Statis	tics					
188			Appr	oximate C	Chi Squ	are Val	ue (9.54, α)	3.659	Ĺ	Ad	justed Chi	i Squ	are Valu	ue (9.54, β)	3.58
189		95%	Gamma Appro	oximate Kl	M-UCL	(use w	hen n>=50)	9.245	95% C	Gamma Ad	djusted KM	N-UCI	L (use v	vhen n<50)	9.449
190									•						
191					L	ognori	nal GOF Te	st on Detect	ed Observ	ations On	ly				
192				5	Shapiro	Wilk T	est Statistic	0.954			Shap	piro V	Vilk GO	F Test	
193				5% S	Shapiro	Wilk C	ritical Value	0.908	De	etected Da	ta appear	r Logr	normal a	at 5% Signif	icance Level
194					Lilli	efors T	est Statistic	0.136			Lill	liefor	s GOF	Test	
195				5	5% Lillie	efors C	ritical Value	0.188	De De	etected Da	ta appear	r Logr	normal a	at 5% Signif	cance Level
196					Det	ected [Jata appear	Lognormal a	at 5% Sign	lificance L	.evel				
197															

	A	В	С	D	E	F	G	Н	I	J	K	L
198				Lognorm	al ROS Sta	tistics Using	Imputed I	Non-Detect	s			
199			M	lean in Ori	iginal Scale	3.54				Mean in	n Log Scale	-4.502
200				SD in Ori	iginal Scale	14.21				SD in	1 Log Scale	3.795
201			95% t UCL (assumes no	ormality of	ROS data)	6.414			95% Perc	centile Boo	tstrap UCL	6.537
202			. 95%	BCA Boo	, tstrap UCL	8.097				95% Boots	strap t UCL	14.79
202			95	% H-UCI	(Log ROS)	138.8						
203					(Log 100)	100.0						
204			Statistica usin	a KM aati	motoo on L	aged Data a			rmal Diatril	hution		
205			Statistics usin				inu Assun	ning Logno			Cas Maan	0.0461
206					an (logged)	-3.077			050/ 0 :::		Geo Mean	0.0461
207				KMS	SD (logged)	2.72			95% Criti	cal H Value	e (KM-Log)	3.26
208			KM Standard E	rror of Me	an (logged)	0.338			9	5% H-UCL	. (KM -Log)	5.506
209				KMS	SD (logged)	2.72			95% Criti	cal H Value	e (KM-Log)	3.26
210			KM Standard E	rror of Me	an (logged)	0.338						
211												
212						DL/2 Statisti	cs					
213			DL/2 Normal						DL/2 L	.og-Transf	ormed	
214			Μ	lean in Ori	iginal Scale	3.541				Mean in	I Log Scale	-3.54
215				SD in Ori	iginal Scale	14.21				SD in	Log Scale	3.021
216			95% t UCL	(Assumes	s normality)	6.415				95% I	H-Stat UCL	11.02
217			DL/2 is not a re	commen	ded method	brovided fo	r compari	isons and h	istorical re	asons		
218												
210				Nonr	parametric [Distribution F	ree UCL S	Statistics				
213			Deter	ted Data	annear Gar	nma Distribu	ted at 5%	Significan	ne i evel			
220	-		Detter					olginnoan				
221					Sug	anatad UCL i						
222				vimata C			0 030					
223			95% Kivi Appit	DXIIIIale G		9.245						
224		Neter		- 1 +						4		0
225		Note	Suggestions regarding the s	election of	a 95% UCL	_ are provided	to neip tr	ne user to s	elect the m	ost approp	riate 95% U	UL.
226			Recomme	endations	are based u	pon data size	, data dist	ribution, an	d skewnes	S.		
227		The	se recommendations are base	ed upon th	ne results of	the simulatio	n studies s	summarize	d in Singh,	Maichle, a	nd Lee (200	6).
228		Howeve	er, simulations results will not	cover all l	Real World	data sets; for	additional	insight the	user may v	want to con	sult a statis	tician.
229												
230	1,2-Dichl	oroethane										
231												
232					G	eneral Statis	tics					
233			Total Nur	mber of Ol	bservations	68			Number of	Distinct Ob	oservations	14
234				Number	r of Detects	7			Nu	umber of N	on-Detects	61
235			Numb	er of Disti	nct Detects	7			Number of	f Distinct N	on-Detects	7
236				Minin	num Detect	1.13				Minimum I	Non-Detect	0.25
237				Maxin	num Detect	5.52			I	Maximum I	Non-Detect	50
238				Variar	nce Detects	2.711				Percent N	on-Detects	89.71%
239				Me	ean Detects	3.881				ę	SD Detects	1.647
240				Med	ian Detects	4.3				(CV Detects	0.424
241				Skewne	ess Detects	-0.969				Kurto	sis Detects	-0.434
242			Me	an of Logo	ed Detects	1.238			S	SD of Loga	ed Detects	0.586
243			-	30						33		
243					Normal G	OF Test on D	etects Or	nlv				
244			Shan	iro Wilk Te	est Statistic	0.882		,	Shanin	o Wilk GO	F Test	
240			5% Shan		itical Value	0.802		Detected D	ata annear	Normal at	5% Significa	ance l evel
240					act Statistic	0.000						
247			E0/ 1	illiofora C	itical Value	0.203	 	Detected D		Normal at	5% Cianifia	
248			5% L	Detected	Dete and	0.304	E0/ 0:'6			nomai at		ance Level
249				Detected	Data appe	ai inormai at	o no signif	icance Lév	CI			
250			Vanlan Male (17	A) 04-41-11			Values	nd at **				
251			Kapian-Meier (K	w) statisti	ICS USING NO	ormal Critical	values a	na otner N	unparamet			0.171
252					KM Mean	0.667			KM St	andard Err	or of Mean	0.1/4
253					KM SD	1.26				95% KM	(BCA) UCL	0.931
254				95%	KM (t) UCL	0.957		95%	6 KM (Perc	entile Boot	strap) UCL	0.932
255				95% I	KM (z) UCL	0.953			95%	6 KM Boots	strap t UCL	0.925
256			90%	KM Cheb	yshev UCL	1.188			95%	6 KM Cheb	yshev UCL	1.424
257			97.5%	KM Cheb	yshev UCL	1.752			99%	KM Cheb	yshev UCL	2.395
258												
259				Gamma	a GOF Test	s on Detecte	d Observa	ations Only				
260				A-D Te	est Statistic	0.638			Andersor	n-Darling G	OF Test	
261	1		Ę	5% A-D Cr	ritical Value	0.71	Detect	ted data ap	pear Gamm	na Distribut	ted at 5% Si	gnificance Level
262				K-S Te	est Statistic	0.311			Kolmogo	prov-Smirn	ov GOF	
263			ł	5% K-S Cr	ritical Value	0.313	Detect	ted data ap	pear Gamm	na Distribut	ted at 5% Si	gnificance Level
264			Detec	ted data	appear Gan	nma Distribu	ted at 5%	Significand	e Level			-
						· · · ·						

	A	В	С	D	E	F	G	Н		J	K	L
265												
266				G	amma Stati	stics on Dete	cted Data	Only				0.005
267				T L - 4	k hat (MLE)	4.391			k star	r (bias corre	ected MLE)	2.605
268				Ine	ta nat (MLE)	0.884			Theta star	(Dias corre	ected MLE)	1.49
269				Me		3 881			11	u stai (bias	conecteu)	30.40
270						0.001						
272				Gamm	na ROS Stat	istics using li	mputed No	on-Detects				
273			GROS may not be	used wher	n data set ha	s > 50% NDs	with many	tied obser	vations at	multiple DL	.s	
274		GF	ROS may not be used when I	kstar of det	ects is small	such as <1.0	, especially	y when the	e sample siz	ze is small	(e.g., <15-2	0)
275			For such :	situations,	GROS meth	od may yield	incorrect v	alues of U	CLs and B1	۲Vs		
276				This is	s especially to	rue when the	sample siz	e is small.				
277			For gamma distributed dete	ected data,	BIVs and U Minimum	CLs may be c	computed i	using gamr	na distribut	tion on KM	estimates	0.594
278					Maximum	5.52					Median	0.004
279					SD	1.3					CV	2.225
281					k hat (MLE)	0.271			k star	r (bias corre	ected MLE)	0.269
282				The	ta hat (MLE)	2.156			Theta star	r (bias corre	ected MLE)	2.174
283				n	u hat (MLE)	36.84			n	u star (bias	corrected)	36.55
284			Adjusted Lo	evel of Sig	nificance (β)	0.0465						
285			Approximate Chi S	quare Valu	ue (36.55, α)	23.71		Adju	sted Chi So	quare Value	e (36.55, β)	23.49
286			95% Gamma Approximate l	JCL (use w	vnen n>=50)	0.9	95	o% Gamma	a Adjusted	UCL (use v	vnen n<50)	0.909
28/				Fetimet	es of Gamm	a Parameter	s usina KA	/ Fetimete	20			
208 280				Lound	Mean (KM)	0.667			~		SD (KM)	1.26
209				Va	ariance (KM)	1.589				SE of	Mean (KM)	0.174
291					k hat (KM)	0.28					k star (KM)	0.278
292					nu hat (KM)	38.1				n	u star (KM)	37.76
293				the	eta hat (KM)	2.381				thet	a star (KM)	2.403
294			80% g	gamma per	centile (KM)	1.002			90% ga	amma perc	entile (KM)	1.985
295			95% g	jamma per	centile (KM)	3.128			99% ga	amma perc	entile (KM)	6.128
296					Commo Ko	nion Moior /k						
297			Approximate Chi S	auare Valu		24 69		ucs Adiu	sted Chi Sc	uare Value	a (37 76 R)	24.46
290		95%	Gamma Approximate KM-U	JCL (use w	vhen n>=50)	1.02	95% G	Samma Ad	iusted KM-	UCL (use v	vhen n<50)	1.03
300					,						/	
301				Lognor	mal GOF Te	st on Detecte	ed Observa	ations Onl	у			
302			Sha	apiro Wilk T	est Statistic	0.803			Shapir	ro Wilk GO	F Test	
303			5% Sha	piro Wilk C	critical Value	0.803	C	Detected D	ata Not Log	gnormal at	5% Significa	ance Level
304			50/	Lilliefors T	Test Statistic	0.321			Lillie	fors GOF	Test	<u> </u>
305			5%	Lilliefors C	ritical Value	0.304	L 5% Signifi	Detected D	ata Not Log	gnormal at	5% Significa	ance Level
306				Delecter		ognorniai at	5% Signin					
307				Lognorr	nal ROS Sta	tistics Usina	Imputed N	on-Detec	ts			
309				Mean in O	riginal Scale	0.871				Mean in	n Log Scale	-0.74
310				SD in O	riginal Scale	1.202				SD in	n Log Scale	1.08
311			95% t UCL (assumes i	normality o	f ROS data)	1.115			95% Per	centile Boo	otstrap UCL	1.116
312			95	% BCA Bo	otstrap UCL	1.15				95% Boots	strap t UCL	1.205
313			ç	95% H-UCI	L (Log ROS)	1.151						
314			Statiation uni	ina KM eet	imates on L	naned Data a	nd Accum		rmal Dietri	hution		
315			Sidusuce US	KM M4	ean (logned)	-1.081				KM	Geo Mean	0.339
317				KM	SD (logged)	0.858			95% Criti	ical H Value	e (KM-Loa)	2.153
318			KM Standard	Error of Me	ean (logged)	0.119			ç	95% H-UCL	(KM -Log)	0.614
319				KM	SD (logged)	0.858			95% Criti	ical H Value	e (KM-Log)	2.153
320			KM Standard	Error of Me	ean (logged)	0.119						
321						DI /0 C: -						
322			DI /0 N			DL/2 Statistic	cs			00 Tre	amed	
323			DL/2 Norma	Mean in O	riginal Soola	1 5/2				Log- I ranste		_1 125
324				SD in O	riginal Scale	3 802				SD in	Log Scale	1.552
326			95% t UC	L (Assume	s normality)	2.312				95%	H-Stat UCL	1.714
327			DL/2 is not a	recommen	nded method	l, provided fo	r comparis	sons and h	nistorical re	easons		
328												
329				Non	parametric [Distribution F	ree UCL S	Statistics				
330			Det	ected Data	a appear Nor	mal Distribut	ed at 5% s	Significand	ce Level			
331												
332				050	Sug	gested UCL 1	to Use					
333				95%	KM (t) UCL	0.957						

	۸	B	1	C		D	T	-	Ē	-	G	T 1	_			1		ĸ		
224	A	D		C		D		_	Г		u		1	1		J		N		<u> </u>
334																				
335		Note	e: Suggestion	s regarding	the sel	ection	of a 95	% UC	L are provid	ded	to help th	ne user	r to sel	lect the	most	appro	priate 9	35% U	CL.	
336				Rec	ommen	dations	s are ba	ased u	ipon data s	ize,	data dist	ributio	n, and	skewne	ess.					
337		The	ese recomme	ndations ar	e based	l upon	the res	ults of	the simula	ation	studies s	summa	arized	in Singl	h, Ma	ichle, a	and Lee	э (200	6).	
338		Howev	ver, simulatio	ns results w	/ill not c	over al	ll Real V	Norld	data sets;	for a	additional	insigh	t the u	iser mag	y war	nt to co	nsult a	statis	tician.	-
339																			-	
340	1-Methv	Inaphthale	ne																	
2/1																				
242								6	Conoral Sta	atieti	ice									
342				Tet		hor of (Ohaan	- tiono		Juou	6.0		N	umbor		tingt (boonio	tiona	20	
343				101	ai numi		Observa		00				IN	uniber			Dserva		20	
344						Numb	er of De	etects	14						Num	ber of r	Ion-De	tects	54	
345					Number	r of Dis	stinct De	etects	14				١	Number	r of Di	stinct N	√on-De	tects	15	
346						Min	nimum E	Detect	1.84						Mi	nimum	Non-D	etect	1.16	
347						Max	kimum E	Detect	98.8						Ma	ximum	Non-D	etect	65.8	
348						Varia	ance De	etects	929.9						Pe	ercent N	lon-De	etects	79.41	%
349						Ν	Aean De	etects	35.31								SD De	etects	30.49	,
350						Me	edian De	etects	27.3								CV De	etects	0.864	1
351						Skew	ness De	etects	0.849							Kurte	osis De	tects	-0.312	
252					Mean			atects	3.063						SD	of Log		tects	1 212	,
352					Wical		ggcu Di	510013	0.000						00	OI LOG	Jea De	10013	1.2.12	
353							N		0F T											
354							NOR	mai G	OF Test o	n De	etects Or	ııy								
355					Shapiro	o Wilk	Test St	atistic	0.9					Shap	piro V	Vilk GC)F Tes	<u>.t</u>		
356				5%	Shapiro	o Wilk (Critical	Value	0.874		[Detecte	ed Dat	ta appe	ar No	rmal at	: 5% Si	gnifica	ance Leve	əl
357					Lill	liefors	Test St	atistic	0.179					Lil	liefor	s GOF	Test			
358					5% Lilli	iefors (Critical	Value	0.226		[Detecte	ed Dat	ta appe	ar No	rmal at	t 5% Si	gnifica	ance Leve	el
359					D)etecte	ed Data	appe	ar Normal	at 5	5% Signif	icance	e Leve	1						
360											-							-		
361				Kaplan-Me	ier (KM)) Statis	stics us	ina N	ormal Criti	cal \	Values a	nd oth	er Nor	nparam	etric	UCLs	-			
262						,	KM	Mean	8 354					KM	Stan	dard Fr	ror of l	Mean	2 44	1
302									10.001					1.00	oluni ol				12.11	
303						050			19.27				050/						12.0	
364						95%	% KIVI (1		12.43				95%	KIVI (Pe	Freen	пе вос	istrap)	UCL	12.43	
365						95%	6 KM (z) UCL	12.37					9	5% K	M Boo	istrap t	UCL	14.3	
366					90% k	KM Che	ebyshev	/ UCL	15.68					95	5% K	M Chel	oyshev	UCL	18.99	
367				9	97.5% K	KM Che	ebyshev	/ UCL	23.6					99	9% K	M Chel	oyshev	UCL	32.64	
368																				
369						Gamr	ma GOI	F Test	ts on Dete	cted	Observa	ations	Only							
370						A-D	Test St	atistic	0.233					Anders	ion-D	arling	GOF T	est		
371					5%	6 A-D (Critical	Value	0.757		Detect	ed dat	a appe	ear Gan	nma	Distribu	uted at	5% Si	ianificanc	e Level
372					-	K-S	Test St	atistic	0 116					Kolmo	aoro	v-Smir	nov GC	OF	3	
272					59	6 K-S (Critical	Value	0.234		Detect	tch ha	a ann	ar Gan	nma	Distribu	ited at	5% Si	ignificanc	
373					Dotocto	on dote		value v Gar	nma Dietri	bute	od at 5%	Signifi	ioanos		mia	Diotribe		0 /0 01	grinicario	
374					Delecie	su uaio	a appea			Dute	su al 570	Signin	icance	Level						
375							_	<u> </u>				<u>.</u>								
376							Gamma	a Stat	Istics on D	etec	ted Data	Only								
377							k hat (MLE)	1.135					k st	tar (bi	as corr	ected I	MLË)	0.939	1
378						The	eta hat ((MLE)	31.11				٦	Theta st	tar (bi	as corr	ected I	MLE)	37.59	
379							nu hat ((MLE)	31.77						nu st	ar (bia	s corre	cted)	26.3	
380						M	ean (de	tects)	35.31	_[1		
381																				
382						Gamr	ma ROS	S Stat	istics using	g Im	puted No	on-Det	tects						-	-
383			GF	OS may no	t be use	ed whe	n data	set ha	s > 50% N	- Ds v	vith many	v tied o	bserv	ations a	at mu	tiple D	Ls			
384		GF	ROS may not	be used wh	nen ksta	ar of de	etects is	smal	such as <	1.0.	especial	Iv whei	n the s	ample	size i	s small	(e.a., ·	<15-2	0)	
205				For s	uch situ	ations	GROS	meth	od may vie	Id in	correct v	alues		s and l	BTVs	o onnan	(e.g.,			
200				1015	aon anu	Thie i				her	amplo ci-		mall		2143					
380			For game: -	diotrikta -!	dote at -					ne s		20 15 5	niall.	o dictail		00 1/11	004	otor		
387			roi yamma	uistributed	uelecte	u uata	, DIVS	and U			proputed i	using (yarnma	a uistrib	JULION	ON KIV	estima	ates		
388							Min	imum	0.01								N	viean	1.277	/
389							Max	imum	98.8								Me	edian	0.01	
390								SD	19.68									CV	2.704	1
391							k hat ((MLE)	0.153					k st	tar (bi	as corr	ected I	MLE)	0.156	3
392						The	eta hat ((MLE)	47.58				٦	Theta st	tar (bi	as corr	ected l	MLE)	46.65	
393							nu hat ((MLE)	20.8	1					nu st	ar (bia	s corre	cted)	21.22	
394				Adiust	ed Leve	l of Sic	qnifican	ce (B)	0.0465	; †								- /		
305			Δn	proximate (Chi Sour	are Val	ue (21	22 m	11 75	+			Adjust	ed Chi	Saue	re Valu	e (21 3	22 B)	11.6	
200			95% Gamm	a Annrovim		(1160 1	when n'	>=50	13.1/		01	، ~0% 5%	mma		duc	(uee	whon r	, P/ 1<501	12 21	
390						- (use	wiidli (l		13.14		95	0 /0 Gd	in in ind i	nujusie	u 00	r (neg	wiidii li	, 50)	13.31	
397																				

	A	В	С	D	E	F	G	Н		J	K	L
398				Estimat	es of Gamm	a Parameter	s using KN	I Estimates	3			
399					Mean (KM)	8.354					SD (KM)	19.27
400				Va	riance (KM)	371.3				SE of	f Mean (KM)	2.441
401					k hat (KM)	0.188					k star (KM)	0.189
402					nu hat (KM)	25.56				I	nu star (KM)	25.77
403				the	eta hat (KM)	44.45				the	eta star (KM)	44.09
404			80% g	amma per	centile (KM)	10.69			90% g	amma per	centile (KM)	25.24
405			95% g	amma per	centile (KM)	43.64			99% g	amma per	centile (KM)	94.76
406												
407					Gamma Ka	plan-Meier (H	(M) Statist	tics				
408			Approximate Chi S	quare Valu	ie (25.77, α)	15.2		Adjus	ted Chi So	quare Valu	ue (25.77, β)	15.02
409		95%	Gamma Approximate KM-L	JCL (use w	rhen n>=50)	14.16	95% 0	Gamma Adji	usted KM-	UCL (use	when n<50)	14.33
410												
411				Lognori	mal GOF Te	st on Detecte	d Observation	ations Only	,			
412			Sha	piro Wilk T	est Statistic	0.921			Shapi	ro Wilk GO	OF Test	
413			5% Sha	oiro Wilk C	ritical Value	0.874	De	etected Data	a appear L	.ognormal	at 5% Signif	icance Level
414				Lilliefors T	est Statistic	0.131			Lillie	ofors GOF	Test	
415			5%	Lilliefors C	ritical Value	0.226	De	tected Data	a appear L	.ognormal	at 5% Signif	icance Level
416				Detected I	Data appear	Lognormal a	t 5% Sign	ificance Le	vel			
417												
418				Lognorn	nal ROS Sta	tistics Using	Imputed N	on-Detects	S			
419			1	Mean in Or	iginal Scale	7.887				Mean	in Log Scale	-0.0724
420				SD in Or	iginal Scale	19.46				SD	in Log Scale	2.037
421			95% t UCL (assumes r	normality o	f ROS data)	11.82			95% Per	centile Bo	otstrap UCL	12
422			95	% BCA Bo	otstrap UCL	12.65				95% Boo	tstrap t UCL	13.45
423			9	5% H-UCL	(Log ROS)	15.54						
424												
425			Statistics usi	na KM est	imates on Lo	ogged Data a	nd Assum	ina Loanor	mal Distri	bution		
426				KM Me	an (logged)	0.77		0.0		K	/ Geo Mean	2.159
427				KM	SD (logged)	1.305			95% Crit	ical H Valı	Je (KM-Loa)	2.134
428			KM Standard	Error of Me	an (logged)	0.167			9070 011	95% H-UC	L (KM -Log)	7.116
420				KM	SD (logged)	1 305			95% Crit	ical H Valı	le (KM-Log)	2 134
429			KM Standard I	Frror of Me	an (logged)	0 167			0070 011			2.101
430					un (loggou)	0.107						
431						DI /2 Statistic	3					
432			DI /2 Normal	1					DI /2	on-Trans	formed	
433			DD2 Holma	Mean in Or	ininal Scale	9 208			0021	Mean i	in Log Scale	0.436
434				SD in Or	iginal Scale	20.01				SD	in Log Scale	1 685
435			95% t LIC			13.26				05%	H_Stat LICI	10.86
430			DI /2 is not a		ded methor		r comparie	eone and hi	ietorical n	3070		10.00
437				recommen		i, provided io			Istorical in	5030113		
438				Non	noromotrio (Vietribution E		totiotico				
439			Dot		appear Nor	mal Distribut	ad at 5%	Significano				
440			Dett					Significance	e Level			
441					Sug	nonted LICL +						
442				059/			0 050					
443				90%		12.43						
444		Note	Suggestions regarding the	coloction o	f a 05% LICI	are provides	to holp th	e user to co	lact tha ~	oet annra	priate 05%	
445		note		endations	are based	non data ciza	data dietr	ibution and	d skowner	iosi appio	pilate 90% U	0L.
446		The								Naiahla	and Las (200	(C)
447		I ne	se recommendations are bas	sed upon t	Deel World	the simulation	n studies s	innight the	i in Singh,	want to on	and Lee (200	tioion
448		noweve	er, simulations results WIII no	n cover all		uata sets; ior	auuuuonal	msignt the t	изет шаў	want to CO	mount a statis	
449	O Mathe	م م الم الم م	•									
450	2-Methylr	napntnaien	e									
451						en enel Ot of						
452					G	eneral Statis	tics					
453			I otal Nu	umber of O	oservations	68		Ν	Number of	Distinct C	observations	27
454				Numbe	r of Detects	9			N	umber of I	Non-Detects	59
455			Num	ber of Dist	Inct Detects	9			Number o	t Distinct I	Non-Detects	18
456				Minii	mum Detect	8.44				Minimum	Non-Detect	1.16
457				Maxii	mum Detect	105				Maximum	Non-Detect	65.8
458				Varia	nce Detects	1092				Percent	Non-Detects	86.76%
459				M	ean Detects	49.74					SD Detects	33.04
460				Мес	lian Detects	41.1					CV Detects	0.664
461				Skewn	ess Detects	0.388				Kurt	osis Detects	-1.243
462			M	ean of Log	ged Detects	3.653				SD of Log	ged Detects	0.819
463												

	А		В	С	D	E	F	G	Н		J	K	L
464						Normal G	OF Test on D	etects On	ly				
465				Sha	apiro Wilk T	est Statistic	0.904			Shapir	o Wilk GO	F Test	
466				5% Sha	apiro Wilk C	ritical Value	0.829	D	Detected Da	ata appear	Normal at	5% Significa	ance Level
467					Lilliefors T	est Statistic	0.214			Lillie	fors GOF	Test	
468				5%	Lilliefors C	ritical Value	0.274	D	Detected Da	ata appear	Normal at	5% Significa	ance Level
469					Detected	d Data appea	ar Normal at	5% Signifi	cance Lev	el			
470													
471				Kaplan-Meier (KM) Statist	tics using No	ormal Critical	Values an	d other No	onparamet	ric UCLs		
472				-		KM Mean	7.678			KM St	andard Err	or of Mean	2.582
473						KM SD	20.01				95% KM	(BCA) UCL	11.84
474					95%	KM (t) UCL	11.98		95%	6 KM (Perc	entile Boot	strap) UCL	11.96
475					95%	KM (z) UCL	11.92			95%	6 KM Boots	strap t UCL	12.93
476				90	% KM Chel	byshev UCL	15.42			95%	KM Cheb	yshev UCL	18.93
477				97.5	% KM Chel	byshev UCL	23.8			99%	KM Cheb	yshev UCL	33.37
478													
479					Gamm	a GOF Test	s on Detecte	d Observa	tions Only	,			
480					A-D T	est Statistic	0.424		-	Andersor	-Darling C	OF Test	
481					5% A-D C	ritical Value	0.729	Detecte	ed data ap	pear Gamn	na Distribut	ted at 5% Si	gnificance Level
482					K-S T	est Statistic	0.242			Kolmogo	prov-Smirn	ov GOF	•
483					5% K-S C	ritical Value	0.282	Detecte	ed data ap	pear Gamn	na Distribut	ted at 5% Si	gnificance Level
484				Det	ected data	appear Gan	nma Distribut	ed at 5% \$	Significand	e Level			•
485									•				
486					G	amma Stati	stics on Dete	cted Data	Only				
487						k hat (MLE)	2.124			k star	(bias corre	ected MLE)	1.49
488					Thet	a hat (MLE)	23.41			Theta star	(bias corre	ected MLE)	33.37
489					n	u hat (MLE)	38.24			n	, u star (bias	corrected)	26.83
490					Ме	an (detects)	49.74					,	
491						. ,							
492					Gamm	a ROS Stati	istics using Ir	nputed No	n-Detects				
493				GROS may not be	used when	data set ha	s > 50% NDs	with many	tied obser	vations at r	nultiple DL	.s	
494			GF	ROS may not be used when	kstar of det	ects is small	such as <1.0	, especially	when the	sample siz	e is small	(e.g., <15-2	0)
495				For such	situations,	GROS metho	od may yield i	ncorrect va	alues of U(CLs and BT	Vs		
496					This is	especially tr	ue when the	sample siz	e is small.				
497				For gamma distributed dete	ected data,	BTVs and U	CLs may be c	omputed u	ising gamn	na distribut	ion on KM	estimates	
498						Minimum	0.01					Mean	6.592
499						Maximum	105					Median	0.01
500						SD	20.46					CV	3.104
501						k hat (MLE)	0.143			k star	(bias corre	ected MLE)	0.147
502					Thet	a hat (MLE)	45.99			Theta star	(bias corre	ected MLE)	44.9
503					n	u hat (MLE)	19.49			n	u star (bias	corrected)	19.97
504				Adjusted L	evel of Sigr	hificance (β)	0.0465						
505				Approximate Chi S	Square Valu	ie (19.97, α)	10.83		Adjus	sted Chi Sc	uare Value	e (19.97, β)	10.68
506				95% Gamma Approximate	UCL (use w	/hen n>=50)	12.16	95	% Gamma	Adjusted	UCL (use v	vhen n<50)	12.32
507													
508					Estimat	es of Gamm	a Parameters	s using KM	I Estimate	s			
509						Mean (KM)	7.678	-				SD (KM)	20.01
510					Va	riance (KM)	400.6				SE of	Mean (KM)	2.582
511						k hat (KM)	0.147					k star (KM)	0.15
512						nu hat (KM)	20.01				n	u star (KM)	20.46
513					the	eta hat (KM)	52.17				thet	a star (KM)	51.02
514				80% (gamma per	centile (KM)	8.38			90% ga	amma perc	entile (KM)	22.78
515				95% (gamma per	centile (KM)	42.23			99% ga	amma perc	entile (KM)	98.65
516													
517						Gamma Ka	plan-Meier (H	(M) Statist	ics				
518				Approximate Chi S	Square Valu	ie (20.46, α)	11.19		Adjus	sted Chi Sc	uare Value	e (20.46, β)	11.05
519			95%	6 Gamma Approximate KM-	UCL (use w	/hen n>=50)	14.04	95% G	amma Adj	usted KM-	UCL (use v	vhen n<50)	14.23
520													
521					Lognori	mal GOF Te	st on Detecte	ed Observa	ations Only	y			
522				Sha	apiro Wilk T	est Statistic	0.915			Shapir	o Wilk GO	F Test	
523				5% Sha	apiro Wilk C	ritical Value	0.829	De	tected Dat	a appear L	ognormal a	at 5% Signifi	cance Level
524					Lilliefors T	est Statistic	0.229			Lillie	fors GOF	Test	
525				5%	Lilliefors C	ritical Value	0.274	De	tected Dat	a appear L	ognormal a	at 5% Signifi	cance Level
526					Detected	Data appear	Lognormal a	t 5% Signi	ificance Le	evel			
527													
528					Lognorn	nal ROS Sta	tistics Using	Imputed N	ion-Detect	s			
529					Mean in Or	riginal Scale	8.238				Mean in	Log Scale	0.588
530					SD in Or	riginal Scale	20.01				SD in	Log Scale	1.615
531				95% t UCL (assumes	normality o	f ROS data)	12.29			95% Per	centile Boo	tstrap UCL	12.41
532				95	5% BCA Bo	otstrap UCL	13.67				95% Boots	strap t UCL	14.62
533					95% H-UCL	(Log ROS)	10.84						
		-											

	А	В	С	D E	F	G	Н		J	K	L
534											
535			Statistics usir	ng KM estimates on L	ogged Data a	nd Assum	ing Logno	rmal Distri	ibution		
536				KM Mean (logged)	0.625				KM	Geo Mean	1.867
537				KM SD (logged)	1.23			95% Crit	ical H Value	∍ (KM-Log)	2.139
538			KM Standard E	Error of Mean (logged)	0.16			ç	95% H-UCL	(KM -Log)	5.488
539				KM SD (logged)	1.23			95% Crit	ical H Value	∍ (KM-Log)	2.139
540			KM Standard E	Error of Mean (logged)	0.16						
541											
542					DL/2 Statistic	cs					
543			DL/2 Normal					DL/2 I	Log-Transfo	ormed	
544			Ν	lean in Original Scale	8.765				Mean in	Log Scale	0.344
545				SD in Original Scale	20.77				SD in	Log Scale	1.633
546			95% t UCL	(Assumes normality)	12.97				95% H	I-Stat UCL	8.824
547			DL/2 is not a r	ecommended metho	d, provided fo	r comparis	sons and h	istorical re	easons		
548											
549				Nonparametric	Distribution F	ree UCL S	itatistics				
550			Dete	cted Data appear No	rmal Distribut	ed at 5% S	Significanc	e Level			
551											
552				Sug	gested UCL t	o Use					
553				95% KM (t) UCL	11.98						
554			0								
555		Note	: Suggestions regarding the s	selection of a 95% UC	L are provided	to help the	e user to s	elect the m	nost approp	riate 95% U	CL.
556		The	Recomm	endations are based t	ipon data size	, data distr	ibution, an	d skewnes	S.		<u>()</u>
557		Ine	ese recommendations are bas	teo upon the results of	dete ester for	n studies s	incidet the	un Singn,	Walchie, ar	Id Lee (200	0). tioion
558		nowev				auullionai	insignt the	user may	want to con	suit a statis	
559	Acetophe	none									
560	Acelophe										
562					eneral Statis	tics				-	
563			Total Nu	mber of Observations	68			Number of	Distinct Ob	servations	29
564			10101110	Number of Detects	16			N	umber of No	on-Detects	52
565			Numl	ber of Distinct Detects	16			Number o	f Distinct No	on-Detects	13
566				Minimum Detect	77.1				Minimum N	Von-Detect	1.16
567				Maximum Detect	4520				Maximum N	Von-Detect	12.3
568				Variance Detects	1615817				Percent No	on-Detects	76.47%
569				Mean Detects	1402				5	SD Detects	1271
570				Median Detects	1114				(CV Detects	0.907
571				Skewness Detects	0.942				Kurtos	sis Detects	0.695
572			Me	an of Logged Detects	6.623				SD of Logg	ed Detects	1.359
573					•						
574				Normal G	OF Test on D	etects On	ly				
575			Shap	piro Wilk Test Statistic	0.898			Shapii	ro Wilk GO	FTest	
576			5% Shap	iro Wilk Critical Value	0.887	C	Detected Da	ata appear	Normal at	5% Significa	ance Level
577				Lilliefors Test Statistic	0.149			Lillie	ofors GOF	rest	
578			5% [Illiefors Critical Value	0.213		Detected Da	ata appear	Normal at	5% Significa	ance Level
579				Detected Data appe	ar Normal at	5% Signifi	cance Lev	el			
580			Konlon Mojor /K	M) Statiatics using N	ormal Critical	Velues or	nd othor N	nnoromo			
581				KM Mean		values al		N S KM S	tandard Err	or of Mean	105 5
582				KM SD	842.2						510.1
584				95% KM (t) LICI	506.6		95%	6 KM (Per	centile Boot	strap) UCI	513.2
585				95% KM (7) UCI	504.2		007	959	% KM Boots	strap t UCI	575.6
586			90%	6 KM Chebyshey UCL	647.1			95%	6 KM Cheby	vshev UCL	790.5
587			97.5%	6 KM Chebyshev UCL	989.4			99%	% KM Cheby	vshev UCL	1380
588				· · · · · · · · · · · · · · · · · · ·							
589				Gamma GOF Tes	ts on Detecte	d Observa	tions Only				
590				A-D Test Statistic	0.472			Anderso	n-Darling G	OF Test	
591				5% A-D Critical Value	0.766	Detecte	ed data ap	pear Gamr	na Distribut	ed at 5% Si	gnificance Level
592				K-S Test Statistic	0.153			Kolmog	orov-Smirn	ov GOF	
593				5% K-S Critical Value	0.222	Detecte	ed data ap	pear Gamr	na Distribut	ed at 5% Si	gnificance Level
594			Dete	cted data appear Gai	nma Distribut	ed at 5% \$	Significand	e Level			
595											
596				Gamma Stat	istics on Dete	cted Data	Only				
597				k hat (MLE)	0.934			k sta	r (bias corre	ected MLE)	0.801
598				Theta hat (MLE)	1500			Theta sta	r (bias corre	cted MLE)	1751
599				nu hat (MLE)	29.9			n	u star (bias	corrected)	25.62
600				Mean (detects)	1402						
601											

-	A	В	C	D	E	F	G	Н		J	K	L
602				Gamm	a ROS Stat	istics using li	mputed No	on-Detects				
603			GROS may not be	used when	data set ha	s > 50% NDs	with many	tied obser	vations at r	multiple DL	.S	
604		GR	OS may not be used when k	star of dete	ects is small	such as <1.0	, especiall	y when the	sample siz	ze is small	(e.g., <15-2	0)
605			For such s	situations, (GROS meth	od may yield	incorrect v	alues of UC	CLs and BT	Vs		
606				This is	especially to	rue when the	sample siz	ze is small.				
607			For gamma distributed dete	cted data,	BTVs and U	CLs may be o	computed u	using gamn	na distribut	ion on KM	estimates	
608					Minimum	0.01					Mean	329.8
609					Maximum	4520					Median	0.01
610					SD	848.8					CV	2.574
611					k hat (MLE)	0.104			k star	(bias corre	ected MLE)	0.109
612				Thet	a hat (MLE)	3168			Theta star	(bias corre	ected MLE)	3017
613				n	u hat (MLE)	14.16			nı	u star (bias	corrected)	14.87
614			Adjusted Le	evel of Sigr	nificance (β)	0.0465						
615			Approximate Chi S	quare Valu	e (14.87, α)	7.168		Adjus	sted Chi So	quare Value	e (14.87, β)	7.052
616			95% Gamma Approximate l	JCL (use w	hen n>=50)	684	95	5% Gamma	Adjusted	UCL (use v	vhen n<50)	695.2
617												
618				Estimate	es of Gamm	a Parameter	s using KN	A Estimate	S			
619					Mean (KM)	330.7				0= (SD (KM)	842.2
620				Va	riance (KM)	/09351				SE of	Mean (KM)	105.5
621					k hat (KM)	0.154					k star (KM)	0.157
622					nu hat (KM)	20.97				n	u star (KM)	21.37
623			000/	the	eta hat (KM)	2145				thet	a star (KM)	2104
624			80% g	amma pero	centile (KM)	3/3.5			90% ga	amma perc	entile (KM)	986.4
625			95% g	amma pero	centile (KM)	1803			99% ga	amma perc	entile (KM)	4151
626					0	nlan Malar /I						
627			Approvimato Chi S	quare Valu		11 97	(M) Statis	ucs Adius	tod Chi Sa	waro Voluc	(21 27 8)	11 72
628		95%	Approximate CIII 3		$\frac{e(21.37, u)}{hen n>=50}$	595.5	95% (Auju: Samma Adi	usted KM-I		$\frac{(21.37, p)}{(21.37, p)}$	603.3
620		007		1000 (000 11		000.0	00700	aannina 7 (aj		002 (000)		000.0
631				Lognorr	nal GOF Te	st on Detecte	od Observ	ations Only	,			
632			Sha	piro Wilk T	est Statistic	0.893			Shapir	o Wilk GO	F Test	
633			5% Sha	piro Wilk C	ritical Value	0.887	De	etected Data	a appear L	ognormal a	at 5% Signif	icance Level
634				Lilliefors T	est Statistic	0.157			Lillie	fors GOF	Test	
635			5%	Lilliefors C	ritical Value	0.213	De	etected Data	a appear L	ognormal a	at 5% Signif	icance Level
636				Detected [Data appear	Lognormal a	t 5% Sign	ificance Le	vel			
637												
638				Lognorm	nal ROS Sta	tistics Using	Imputed N	Non-Detect	s			
638 639				Lognorm Mean in Or	n al ROS Sta iginal Scale	tistics Using 342.5	Imputed N	Non-Detect	S	Mean in	Log Scale	3.031
638 639 640				Lognorn Mean in Or SD in Or	nal ROS Sta iginal Scale iginal Scale	tistics Using 342.5 844	Imputed N	Non-Detect	s	Mean in SD in	Log Scale	3.031 2.493
638 639 640 641			95% t UCL (assumes r	Lognorm Mean in Or SD in Or normality of	nal ROS Sta iginal Scale iginal Scale f ROS data)	tistics Using 342.5 844 513.2	Imputed N	Non-Detect	s 95% Perc	Mean in SD in centile Boo	Log Scale Log Scale tstrap UCL	3.031 2.493 523.2
638 639 640 641 642			95% t UCL (assumes i 95	Lognorm Mean in Or SD in Or normality of % BCA Boo	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL	tistics Using 342.5 844 513.2 553.4	Imputed N	Non-Detect	s 95% Perc	Mean in SD in centile Boo 95% Boots	Log Scale Log Scale tstrap UCL strap t UCL	3.031 2.493 523.2 588.8
638 639 640 641 642 643			95% t UCL (assumes r 95 5	Lognorm Mean in Or SD in Or normality of % BCA Boo 95% H-UCL	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS)	tistics Using 342.5 844 513.2 553.4 1171	Imputed N	Non-Detect	s 95% Pero	Mean in SD in centile Boo 95% Boots	Log Scale Log Scale tstrap UCL strap t UCL	3.031 2.493 523.2 588.8
638 639 640 641 642 643 644			95% t UCL (assumes i 95 5 5	Lognorm Mean in Or SD in Or normality of % BCA Boo 95% H-UCL	hal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS)	stistics Using 342.5 844 513.2 553.4 1171 1171		Non-Detect	s 95% Pero	Mean in SD in centile Boo 95% Boots	Log Scale Log Scale tstrap UCL strap t UCL	3.031 2.493 523.2 588.8
638 639 640 641 642 643 644 645			95% t UCL (assumes r 95 S Statistics usi	Lognorm Mean in Or SD in Or normality of % BCA Boo 5% H-UCL ng KM esti	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL (Log ROS) imates on Lu	tistics Using 342.5 844 513.2 553.4 1171	Imputed N	Non-Detect	95% Pero	Mean in SD in centile Boo 95% Boots bution	Log Scale Log Scale tstrap UCL strap t UCL	3.031 2.493 523.2 588.8
638 639 640 641 642 643 644 645 646			95% t UCL (assumes r 95 s Statistics usi	Lognorm Mean in Or SD in Or normality of % BCA Boo 95% H-UCL ng KM esti KM Me	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on Lu can (logged)	tistics Using 342.5 844 513.2 553.4 1171 00gged Data a 1.672 2.840	Imputed N	Non-Detect	95% Pero	Mean in SD in centile Boo 95% Boots bution KM	Log Scale Log Scale tstrap UCL strap t UCL Geo Mean	3.031 2.493 523.2 588.8 5.321 2.207
638 639 640 641 642 643 644 645 646 647			95% t UCL (assumes r 95 5 Statistics usi	Lognorm Mean in Or SD in Or normality of % BCA Boo 55% H-UCL ng KM esti KM Me KM S	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on Lu can (logged) SD (logged)	tistics Using 342.5 844 513.2 553.4 1171 00gged Data a 1.672 2.819 0.222	Imputed N	Non-Detect	95% Pero mal Distril 95% Criti	Mean in SD in centile Boo 95% Boots bution KM ical H Value	Log Scale Log Scale tstrap UCL strap t UCL Geo Mean e (KM-Log)	3.031 2.493 523.2 588.8 5.321 5.321 3.397
638 639 640 641 642 643 644 645 646 647 648			95% t UCL (assumes r 95 5 Statistics usi KM Standard	Lognorm Mean in Or SD in Or normality of % BCA Boo 5% H-UCL Mg KM esti KM Me KM S Error of Me	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL (Log ROS) imates on Lu an (logged) SD (logged) an (logged)	tistics Using 342.5 844 513.2 553.4 1171 00gged Data a 1.672 2.819 0.353 2.819	Imputed N	Non-Detect	95% Pero mal Distril 95% Criti 9	Mean in SD in centile Boo 95% Boots bution KM ical H Value 55% H-UCL	Log Scale Log Scale tstrap UCL strap t UCL Geo Mean e (KM-Log) c (KM-Log)	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397
638 639 640 641 642 643 644 645 644 645 646 647 648 649 650			95% t UCL (assumes r 95 Statistics usi KM Standard	Lognorm Mean in Or SD in Or normality of % BCA Boo 55% H-UCL mg KM esti KM Me KM S Error of Me Error of Me	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL (Log ROS) imates on Lo an (logged) SD (logged) an (logged) an (logged)	tistics Using 342.5 844 513.2 553.4 1171 00gged Data a 1.672 2.819 0.353 2.819 0.353	Imputed N	Non-Detect	95% Pero mal Distril 95% Criti 9 95% Criti	Mean in SD in centile Boo 95% Boots 95% Boots bution KM ical H Value 5% H-UCL ical H Value	Geo Mean (KM-Log) (KM-Log) (KM-Log) (KM-Log)	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397
638 639 640 641 642 643 644 645 646 647 648 649 650			95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard	Lognorm Mean in Or SD in Or normality of % BCA Boo 55% H-UCL mg KM esti KM Me KM S Error of Me Error of Me	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL (Log ROS) imates on Lo an (logged) SD (logged) an (logged) an (logged)	tistics Using 342.5 844 513.2 553.4 1171 00gged Data a 1.672 2.819 0.353 2.819 0.353	Imputed N	Non-Detect	95% Pero mal Distril 95% Criti 9 95% Criti	Mean in SD in centile Boo 95% Boots 95% Boots bution KM ical H Value 5% H-UCL ical H Value	Geo Mean (KM-Log) (KM-Log) (KM-Log)	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397
638 639 640 641 642 643 644 645 646 645 646 647 648 649 650 651 652			95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard	Lognorm Mean in Or SD in Or normality of % BCA Boo 55% H-UCL of KM esti KM Me KM S Error of Me Error of Me	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL (Log ROS) imates on Lo an (logged) SD (logged) an (logged) an (logged)	tistics Using 342.5 844 513.2 553.4 1171 00gged Data a 1.672 2.819 0.353 2.819 0.353 2.819 0.353	Imputed N	Non-Detect	95% Perc mal Distril 95% Criti 95% Criti	Mean in SD in centile Boo 95% Boots 95% Boots bution KM ical H Value 5% H-UCL ical H Value	Geo Mean (KM-Log) (KM-Log) (KM-Log)	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653			95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard	Lognorm Mean in Or SD in Or normality of % BCA Boo 55% H-UCL ong KM esti KM Me KM S Error of Me Error of Me	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL (Log ROS) imates on Lo an (logged) SD (logged) SD (logged) an (logged)	tistics Using 342.5 844 513.2 553.4 1171 00gged Data a 1.672 2.819 0.353 2.819 0.353 2.819 0.353	Imputed N	Non-Detect	s 95% Perc mal Distril 95% Criti 95% Criti	Mean in SD in centile Boo 95% Boots bution KM cal H Value 5% H-UCL cal H Value	Geo Mean e (KM-Log) (KM-Log) e (KM-Log)	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654			95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard DL/2 Norma	Lognorm Mean in Or SD in Or normality of % BCA Boo 55% H-UCL MI KM Me KM SE Error of Me KM SE Error of Me KM SE Error of Me	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on L can (logged) SD (logged) SD (logged) SD (logged) an (logged) ian (logged) ian (logged)	tistics Using 342.5 844 513.2 553.4 1171 00gged Data a 1.672 2.819 0.353 2.819 0.353 DL/2 Statistic 330.4	Imputed N	Non-Detect	s 95% Perc mal Distril 95% Criti 9 95% Criti	Mean in SD in centile Boo 95% Boots bution KM ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value	Geo Mean e (KM-Log) (KM-Log) e (KM-Log) e (KM-Log)	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655			95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard DL/2 Norma	Lognorm Mean in Or SD in Or normality of % BCA Boo 05% H-UCL Mg KM esti KM Me KM S Error of Me Error of Me Error of Me Error of Me SD in Or	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on L can (logged) SD (logged) SD (logged) SD (logged) an (logged) iginal Scale iginal Scale	tistics Using 342.5 844 513.2 553.4 1171 00gged Data a 1.672 2.819 0.353 2.819 0.353 2.819 0.353 DL/2 Statistic 330.4 848.6	Imputed N	Non-Detect	s 95% Perc mal Distril 95% Criti 9 95% Criti	Mean in SD in centile Boo 95% Boots bution KM ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value	Geo Mean (KM-Log) (KM-Log) (KM-Log) (KM-Log) (Log Scale Log Scale	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397 912.7 3.397
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656			95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard DL/2 Norma 95% t UC	Lognorm Mean in Or SD in Or normality of % BCA Boo 05% H-UCL Mg KM esti KM Me KM S Error of Me KM S Error of Me Error of Me SD in Or L (Assume	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on L can (logged) SD (logged) SD (logged) SD (logged) san (logged) iginal Scale iginal Scale iginal Scale s normality)	tistics Using 342.5 844 513.2 553.4 1171 00gged Data a 1.672 2.819 0.353 2.819 0.354 2.819 0.354 2.819 0.354 2.819 0.354 2.819 0.354 2.819 0.354 2.819 0.354 2.819 0.354 2.819 0.354 2.819 0.354 2.819 0.354 2.819 0.354 2.819 0.354 2.819 0.354 2.819 0.354 2.819 0.354 2.819 0.354 1.818 1.8	Imputed N	Non-Detect	s 95% Perc rmal Distri l 95% Criti 95% Criti	Mean in SD in centile Boo 95% Boots bution KM cal H Value 5% H-UCL cal H Value 5% H-UCL cal H Value 5% H-UCL cal H Value 5% H-UCL cal H Value	Geo Mean (KM-Log) (KM-Log) (KM-Log) (KM-Log) (KM-Log) (Log Scale Log Scale Log Scale -Stat UCL	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397 3.397 912.7 3.397 912.7 3.397
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 654 655 656 657 657			95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard DL/2 Norma 95% t UC	Lognorm Mean in Or SD in Or normality of % BCA Boo 05% H-UCL Mg KM esti KM Me KM S Error of Me KM S Error of Me KM S Error of Me SD in Or L (Assume recommen	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL (Log ROS) imates on Lu an (logged) SD (logged) SD (logged) an (logged) an (logged) iginal Scale iginal Scale s normality) uded method	tistics Using 342.5 844 513.2 553.4 1171 bogged Data a 1.672 2.819 0.353 2.819 0.353 2.819 0.353 DL/2 Statistic 330.4 848.6 502 4, provided for	Imputed N	Non-Detect	s 95% Perc mal Distril 95% Criti 95% Criti 95% Criti bL/2 L	Mean in SD in centile Boo 95% Boots bution KM ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value	Geo Mean (KM-Log) (KM-Log) (KM-Log) (KM-Log) (Log Scale Log Scale Log Scale Log Scale	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397 912.7 3.397 912.7 3.397 912.7 3.397 912.7 3.397
638 639 640 641 642 643 644 645 646 647 648 649 650 6551 6553 6565 6566 6567 6558 6568			95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard DL/2 Norma 95% t UC DL/2 is not a	Lognorm Mean in Or SD in Or normality of % BCA Boo 55% H-UCL Mg KM esti KM Me KM S Error of Me	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on L can (logged) SD (logged) SD (logged) SD (logged) SD (logged) iginal Scale iginal Scale s normality) ided method	tistics Using 342.5 844 513.2 553.4 1171 bgged Data a 1.672 2.819 0.353 2.819 0.353 DL/2 Statistic 330.4 848.6 502 J, provided for	Imputed N	Non-Detect	s 95% Pero mal Distril 95% Criti 9 95% Criti 9 95% Criti 9 95% Criti	Mean in SD in centile Boo 95% Boots bution KM ical H Value 95% H-UCL ical H Value 05% H-UCL ical H Value 05% H-UCL ical H Value 95% H SD in 95% H	Geo Mean (KM-Log) (KM-Log) (KM-Log) (KM-Log) (KM-Log) (Log Scale Log Scale Log Scale	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397 912.7 3.397 912.7 3.397 912.7 3.397 912.7 3.397
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 655 656 657 658 659			95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard DL/2 Norma 95% t UC DL/2 is not a	Lognorm Mean in Or SD in Or normality of % BCA Boo 05% H-UCL Mage of the KM Me KM 3 Error of Me	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on L can (logged) SD (logged) SD (logged) SD (logged) SD (logged) san (logged) iginal Scale iginal Scale iginal Scale s normality) ided methoc	tistics Using 342.5 844 513.2 553.4 1171 bygged Data a 1.672 2.819 0.353 2.819 0.353 2.819 0.353 DL/2 Statistic 330.4 848.6 502 d, provided for Distribution F	Imputed N	Non-Detect	s 95% Perd mal Distril 95% Criti 9 95% Criti 9 95% Criti 9 95% Criti	Mean in SD in centile Boo 95% Boots bution KM ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value	Geo Mean (KM-Log) (KM-Log) (KM-Log) (KM-Log) (KM-Log) (CM	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397 912.7 3.397 1.226 3.103 1803
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 656 657 658 659 660			95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard DL/2 Norma 95% t UC DL/2 is not a	Lognorm Mean in Or SD in Or normality of % BCA Boo 05% H-UCL Mage State KM Me KM 3 Error of Me	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on L can (logged) SD (logged) SD (logged) SD (logged) SD (logged) an (logged) iginal Scale iginal Scale iginal Scale s normality) ded methoc parametric I appear Nor	tistics Using 342.5 844 513.2 553.4 1171 bgged Data a 1.672 2.819 0.353 2.819 0.353 DL/2 Statistic 330.4 848.6 502 J. provided for Distribution F mal Distribution	Imputed N Impute	Non-Detect	s 95% Perd 95% Criti 95% Criti 95% Criti 95% Criti 95% Criti e Level	Mean in SD in centile Boo 95% Boots bution KM ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value	Geo Mean (KM-Log) (KM-Log) (KM-Log) (KM-Log) (KM-Log) (CM	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397 912.7 3.397 1.226 3.103 1803
638 639 640 641 642 643 644 645 646 647 648 649 650 651 656 655 656 657 658 659 660 661			95% t UCL (assumes i 95 Statistics usi KM Standard KM Standard DL/2 Norma 95% t UC DL/2 is not a Dt/2 bet	Lognorm Mean in Or SD in Or normality of % BCA Boo 55% H-UCL Mg KM esti KM Me KM S Error of Me	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on L can (logged) SD (logged) SD (logged) SD (logged) SD (logged) iginal Scale iginal Scale s normality) ided methoc parametric I appear Nor	tistics Using 342.5 844 513.2 553.4 1171 bgged Data a 1.672 2.819 0.353 2.819 0.353 DL/2 Statistic 330.4 848.6 502 J, provided for Distribution F mal Distribut	Imputed N Impute	Non-Detect	s 95% Pero mal Distril 95% Criti 9 95% Criti 9 95% Criti 9 95% Criti e Level	Mean in SD in centile Boo 95% Boots bution KM ical H Value 95% H-UCL ical H Value 05% H-UCL ical H Value .og-Transfe Mean in SD in 95% H 95% H	Geo Mean (KM-Log) (KM-Log) (KM-Log) (KM-Log) (KM-Log) CM Log Scale Log Scale Log Scale	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397 912.7 3.397 1.226 3.103 1803
638 639 640 641 642 643 644 645 646 647 648 649 650 651 655 656 657 658 659 660 661 662			95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard DL/2 Norma 95% t UC DL/2 is not a Det	Lognorm Mean in Or SD in Or normality of % BCA Boo 55% H-UCL Mg KM esti KM Me KM S Error of Me C KM S Error of Me	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on L can (logged) SD (logged) SD (logged) SD (logged) SD (logged) iginal Scale iginal Scale s normality) ided methoc parametric I appear Nor	tistics Using 342.5 844 513.2 553.4 1171 Digged Data a 1.672 2.819 0.353 2.819 0.353 DL/2 Statistic 330.4 848.6 502 J. provided for Distribution F mal Distribut	Imputed N Impute	Non-Detect	s 95% Pero mal Distril 95% Criti 9 95% Criti 0 DL/2 L istorical re e Level	Mean in SD in centile Boo 95% Boots bution KM ical H Value 95% H-UCL ical H Value 05% H-UCL ical H Value 95% H-UCL ical H Value 95% H-UCL ical H Value	Geo Mean (KM-Log) (KM-Log) (KM-Log) (KM-Log) (KM-Log) CM Log Scale Log Scale Log Scale	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397 912.7 3.397 1.226 3.103 1803
638 639 640 641 642 643 644 645 646 647 648 649 650 651 656 657 658 659 660 661 662 663			95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard DL/2 Norma 95% t UC DL/2 is not a Det	Lognorm Mean in Or SD in Or normality of % BCA Boo 5% H-UCL Mg KM esti KM Me KM S Error of Me	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on L can (logged) SD (logged) SD (logged) SD (logged) SD (logged) iginal Scale iginal Scale is normality) ided methoc parametric I appear Nor SU KM (t) UCL	tistics Using 342.5 844 513.2 553.4 1171 00gged Data a 1.672 2.819 0.353 2.819 0.353 DL/2 Statistic 330.4 848.6 502 J. provided for Distribution F mal Distribut 506.6	Imputed N Impute	Non-Detect	s 95% Pero mal Distril 95% Criti 9 95% Criti 9 95% Criti e Level	Mean in SD in centile Boo 95% Boots bution KM ical H Value 95% H-UCL ical H Value 05% H-UCL ical H Value 95% H SD in 95% H 95% H	Geo Mean (KM-Log) (KM-Log) (KM-Log) (KM-Log) (KM-Log) (CM	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397 912.7 3.397 1.226 3.103 1803
638 639 640 641 642 643 644 645 646 647 648 649 650 6551 6556 6557 6568 6559 6600 6611 662 6633 664 644			95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard DL/2 Norma 95% t UC DL/2 is not a Det	Lognorm Mean in Or SD in Or normality of % BCA Boo 5% H-UCL Mg KM esti KM Me KM S Error of Me	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on L can (logged) SD (logged) SD (logged) SD (logged) SD (logged) SD (logged) iginal Scale iginal Scale is normality) ded method parametric I appear Nor Sug KM (t) UCL	tistics Using 342.5 844 513.2 553.4 1171 pgged Data a 1.672 2.819 0.353 2.819 0.353 DL/2 Statistic 330.4 848.6 502 J, provided for Distribution F mal Distribut	Imputed N Impute	Non-Detect	s 95% Perd 95% Criti 95% Criti 95% Criti DL/2 L istorical re e Level	Mean in SD in centile Boo 95% Boots bution KM ical H Value 95% H-UCL ical H Value 05% H-UCL ical H Value .og-Transfe Mean in SD in 95% H 95% H	Geo Mean (KM-Log) (KM-Log) (KM-Log) (KM-Log) (KM-Log) CM Log Scale Log Scale Log Scale	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397 912.7 3.397 1.226 3.103 1803
638 639 640 641 642 643 644 645 646 647 648 649 650 655 655 656 655 656 655 656 655 656 656 657 668 659 660 661 662 663 664 665		Note	95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard DL/2 Norma 95% t UC DL/2 is not a DEt DEt	Lognorm Mean in Or SD in Or normality of % BCA Boo 5% H-UCL Mg KM esti KM Me KM S Error of Me S D in Or L (Assume recommen S S S S S S S S S S S S S S S S S S S	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on L an (logged) SD (logged) an (logged) SD (logged) an (logged) SD (logged) an (logged) iginal Scale iginal Scale s normality) ded method parametric I appear Nor Sug KM (t) UCL f a 95% UCI	tistics Using 342.5 844 513.2 553.4 1171 pgged Data a 1.672 2.819 0.353 2.819 0.353 DL/2 Statistic 330.4 848.6 502 J, provided for Distribution F mal Distribut 506.6 . are provided	Imputed N Impute	Non-Detect	s 95% Perd 95% Criti 9 95% Criti 9 95% Criti 9 95% Criti 9 9 5% Criti 9 9 5% Criti 9 9 5% Criti 9 9 5% Criti 9 9 5% Criti	Mean in SD in centile Boo 95% Boots bution KM ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value 95% H SD in 95% H 95% H 95% H 95% H	Log Scale Log Scale tstrap UCL strap t UCL Geo Mean a (KM-Log) (KM -Log) c (KM -Log) a (KM-Log) a (KM-Log) ormed Log Scale Log Scale I-Stat UCL	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397 912.7 3.397 1.226 3.103 1803
638 639 640 641 642 643 644 645 646 647 648 649 650 6551 6556 6557 6568 6559 6600 6611 662 6633 6644 6655 6655 6656 6559 6660 6654 6655 6655 6656 6657 6588 6599 6600 661 6652 6656 6657 6663 6664 6655 6665		Note	95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard DL/2 Norma 95% t UC DL/2 is not a DEt DEt Suggestions regarding the Recomm	Lognorm Mean in Or SD in Or normality of % BCA Boo 5% H-UCL Mg KM esti KM Me KM S Error of Me SD in Or L (Assume recommen SD in Or L (Assume SD in Or SD in Or L (Assume SD in Or SD i	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on L an (logged) SD (logged) an (logged) SD (logged) an (logged) SD (logged) an (logged) iginal Scale iginal Scale is normality) ded method parametric I appear Nor Sug KM (t) UCL f a 95% UCI are based u	tistics Using 342.5 844 513.2 553.4 1171 pgged Data a 1.672 2.819 0.353 2.819 0.353 DL/2 Statistic 330.4 848.6 502 J, provided for Distribution F mal Distribut 506.6 . are provided pon data size	Imputed N Impute	Non-Detect	s 95% Perd 95% Criti 9 95% Criti 9 95% Criti 9 95% Criti 9 95% Criti 9 9 5% Criti 9 9 5% Criti 9 9 5% Criti 9 9 5% Criti 9 9 5% Criti	Mean in SD in centile Boo 95% Boots bution KM ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value 95% H 95% H	Log Scale Log Scale tstrap UCL strap t UCL Geo Mean e (KM-Log) (KM -Log) e (KM-Log) e (KM-Log) e (KM-Log) ormed Log Scale Log Scale I-Stat UCL	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397 912.7 3.397 1.226 3.103 1803
638 639 640 641 642 643 644 645 646 647 648 649 650 651 655 656 657 658 659 660 661 662 665 666 667 666 667 666 667 666 667 666		Note	95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard DL/2 Norma 95% t UC DL/2 is not a DL/2 is not a Det Suggestions regarding the Recomm se recommendations are ba	Lognorm Mean in Or SD in Or normality of % BCA Boo 5% H-UCL Mg KM esti KM Me KM S Error of Me SD in Or L (Assume recommen SD in Or L (Assume SD in Or SD in Or L (Assume SD in Or SD in Or SD i	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on L an (logged) SD (logged) an (logged) SD (logged) an (logged) SD (logged) an (logged) iginal Scale iginal Scale is normality) ded method parametric I appear Nor SUG KM (t) UCL f a 95% UCI are based u ne results of	tistics Using 342.5 844 513.2 553.4 1171 pgged Data a 1.672 2.819 0.353 2.819 0.353 DL/2 Statistic 330.4 848.6 502 J, provided for Distribution F mal Distribut 506.6 are provided pon data size the simulatio	Imputed N Impute	sons and h Statistics Significance e user to se ibution, an summarized	s 95% Perd 95% Criti 9 95% Criti 9 95% Criti 9 95% Criti 9 95% Criti 9 9 5% Criti 9 9 9 5% Criti 9 9 5% Criti 9 9 5% Criti 9 9 5% Criti 9 9 5% Criti 9 9 5% Criti 9 9 9 5% Criti 9 9 9 5% Criti 9 9 9 5% Criti 9 9 9 5% Criti 9 9 9 5% Criti 9 9 9 5% Criti 9 9 9 5% Criti 9 9 9 9 5% Criti 9 9 9 5% Criti 9 9 9 9 5% Criti 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Mean in SD in centile Boo 95% Boots bution KM ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value 5% H-UCL ical H Value 95% H SD in 95% H 95% H 9	Log Scale Log Scale tstrap UCL strap t UCL Geo Mean e (KM-Log) (KM -Log) (KM -Log) e (KM-Log) e (KM-Log) e (KM-Log) e (KM-Log) riate 95% L	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397 912.7 3.397 1.226 3.103 1803
638 639 640 641 642 643 644 645 646 647 648 649 650 6551 6552 6565 6552 6566 6557 6568 6569 6661 662 6663 6664 6667 6668 6667		Note The Howev	95% t UCL (assumes r 95 Statistics usi KM Standard KM Standard DL/2 Norma 95% t UC DL/2 is not a 0 DL/2 is not a 0 Det Suggestions regarding the Recomm se recommendations are ba er, simulations results will no	Lognorm Mean in Or SD in Or normality of % BCA Boo 5% H-UCL Mg KM esti KM Me KM S Error of Me SD in Or L (Assume recommen SD in Or L (Assume recommen S S S S S S S S S S S S S S S S S S S	nal ROS Sta iginal Scale iginal Scale f ROS data) otstrap UCL . (Log ROS) imates on L an (logged) SD (logged) an (logged) SD (logged) an (logged) SD (logged) an (logged) iginal Scale iginal Scale s normality) ided method parametric I appear Nor SUG KM (t) UCL f a 95% UCI are based u ne results of Real World of	tistics Using 342.5 844 513.2 553.4 1171 pgged Data a 1.672 2.819 0.353 2.819 0.353 DL/2 Statistic 330.4 848.6 502 J, provided for Distribution F mal Distribut 506.6 are provided pon data size the simulatio data sets; for	Imputed N Impute	sons and h Statistics Significance isource to se ibution, an summarized insight the	s 95% Perc 95% Criti 95% Criti 95% Criti 95% Criti 925%	Mean in SD in centile Boo 95% Boots bution KM ical H Value 5% H-UCL ical H Value 5% H-UCL 5%	Log Scale Log Scale tstrap UCL strap t UCL Geo Mean a (KM-Log) (KM -Log) a (KM-Log) a (K	3.031 2.493 523.2 588.8 5.321 3.397 912.7 3.397 912.7 3.397 912.7 3.397 912.7 3.397 912.7 3.397 912.7 3.397 912.7 3.397 912.7 3.397 912.7 3.397 912.7 3.397 912.7 3.397 912.7 3.397 912.7 6.

	Α	В		С	D	E	F	G		Н			J	K	L	
670	Benzene															
671																
672						G	eneral Statis	tics								
673				Total N	umber of O	bservations)	68			1	Number c	of Distin	ct Ob	servations	24	
674					Numbe	er of Detects	22				1	Number	of N	on-Detects	46	
675				Num	nber of Dist	inct Detects	22				Number	of Distir	nct N	on-Detects	2	
676					Minii	mum Detect	0.275					Minim	num N	Non-Detect	0.25	
677					Maxii	mum Detect	16000					Maxim	num N	Non-Detect	0.5	
678					Varia	nce Detects	14957982					Perce	ent N	on-Detects	67.65%	
679					M	ean Detects	2605						5	SD Detects	3868	
680					Med	dian Detects	1205						(CV Detects	1.485	
681					Skewn	ess Detects	2.372					ł	Kurtos	sis Detects	6.301	
682				М	ean of Log	ged Detects	6.277					SD of	Logg	ed Detects	2.706	
683																
684						Normal G	OF Test on D	Detects Or	nly	/						_
685				Sha	apiro Wilk T	est Statistic	0.692				Shap	biro Will	(GO	F Test		
686				5% Sha	piro Wilk C	ritical Value	0.911			Detected [Data Not	Normal	at 5%	% Significar	nce Level	
687					Lilliefors T	est Statistic	0.293				Lill	liefors C	GOF	Test		
688				5%	Lilliefors C	ritical Value	0.184		L	Jetected L	Jata Not	Normal	at 5%	% Significar	nce Level	
689					Detect	ed Data No	Normal at 5	% Signific	an	nce Level						
690				12 1 14 1 1												
691				Kapian-Meier (I	KM) Statist			values a	ina	I OTHER NO	onparame		LS		200 7	
692						KM Mean	842.9				KMS	Standar	dErr	or of Mean	306.7	
693					059/		2471			050/		95%			1300	
694					95%		1354			95%		rcentile	Boot	strap) UCL	1400	
695				000	95%		1347				95	5% KIVI	BOOts	strap t UCL	1695	
696				90	% KM Chel	bysnev UCL	1/63				95	0% KIVI (Cheb	ysnev UCL	2180	
697				97.5	% KIVI Chei	bysnev UCL	2/58				99		Cheb	ysnev UCL	3894	
698							n an Dataata	d Obeen	- 41	ana Onki						
699					Gainin	a GOF Tes			au	ons only	Andoro	on Dorl	ing G			
700					A-D I	ritical Value	0.140	Detect	tor	data ann	Anuers	on-Dan	ing G		ignificance Loval	
701					5% A-D C	oct Statistic	0.023	Delect	lec	u uata app			mirn		ignificance Level	
702					5% K S C	ritical Value	0.0009	Dotoct	tor	data anr		yorov-a	tribut	od at 5% S	ignificanco Lovol	_
703				Detr	o C-N % C	annear Gar	nma Dietribut	Delect	S	a uata app			unbut	eu al 5 /6 5	Igninicance Lever	
704				Dell		appear Gar				ignineane	0 20101					
705						amma Stati	stics on Dete	cted Data	a (Only						_
700						k hat (MLE)	0.412			,,	k sta	ar (hias	corre	acted MLE)	0 386	
707					Thet	a hat (MLE)	6317				Theta sta	ar (bias	corre	cted MLE)	6741	_
700					n	u hat (MLE)	18 14				Theta St	nu star	(hias	corrected)	17	
709					Me	an (detects)	2605					na otai	(blub	conceted)	.,	
710					1110		2000									
712					Gamm	a ROS Stat	istics usina li	mputed No	on	-Detects						
713				GROS may not be	used when	n data set ha	s > 50% NDs	with many	v ti	ied observ	vations at	t multip	le DL	s		-
714		GR	ROS	5 may not be used when k	kstar of det	ects is smal	such as <1.0	, especial	j Ily '	when the	sample s	size is s	mall ((e.g., <15-2	20)	
715				For such s	situations,	GROS meth	od may yield	incorrect v	val	lues of UC	Ls and E	BTVs				
716					This is	especially t	rue when the	sample siz	ze	is small.						
717			Fo	or gamma distributed dete	ected data,	BTVs and U	CLs may be o	computed	us	ing gamm	na distribi	ution or	n KM	estimates		
718						Minimum	0.01							Mean	842.8	
719						Maximum	16000							Median	0.01	
720						SD	2489							CV	2.953	
721						k hat (MLE)	0.103				k sta	ar (bias	corre	ected MLE)	0.109	
722		 			Thet	ta hat (MLE)	8151				Theta sta	ar (bias	corre	ected MLE)	7757	
723					n	u hat (MLE)	14.06					nu star	(bias	corrected)	14.78	
724				Adjusted Le	evel of Sigr	nificance (β)	0.0465									
725				Approximate Chi S	Square Valu	ue (14.78, α)	7.105			Adjus	ted Chi S	Square	Value	e (14.78, β)	6.99	
726			95	% Gamma Approximate l	UCL (use w	/hen n>=50)	1752	9	5%	6 Gamma	Adjusted	d UCL (I	use w	/hen n<50)	1781	
727																
728					Estimat	es of Gamm	a Parameter	s using Kl	М	Estimates	S					_
729						Mean (KM)	842.9							SD (KM)	2471	
730					Va	Iriance (KM)	6104133					S	E of I	Mean (KM)	306.7	
731						k hat (KM)	0.116							k star (KM)	0.121	
732						nu hat (KM)	15.83						n	u star (KM)	16.47	
733				0001	the	eta nat (KM)	7242				0001		tneta	a star (KM)	2204	
/34				80% g	jamma per	cenule (KM)	/40./				90% (yamma	perce	enuie (KM)	2394	
735	I			95% g	jamma per	centile (KM)	4805				99% (yamma	perco	entile (KM)	12140	
/36						Gamme V	nion Meine /	(11) 6+-+'-		~						
/37				Approvimete Ok: 0			PIALI-IVIEIEF (I	wij Statis	รแต	دخت :ابر∧	tod Chi C	Sauces	Val	(16 47 0)	0 166	
/38		 0=0/	6	Approximate Chi S	ICL (uco	$\frac{10.47}{0}$	0.291	0E0/ /	6	Adjus	usted KM		value	$(10.47, \beta)$	0.100	
739		50%	υ C		COL (USE W	men 11/-00)	10/4	55%	Jad	anna Auji	usieu riv		นอช ฟ	men 11>00)	1700	_
740					Lognor	mal COF To	st on Detect	ad Obeen	u a t	tione Only	,					_
741				Cha		est Statistic	0.88		r a l		Shan	niro Will	60	F Teet		
742				5% Sha	piro Wilk C	ritical Value	0.911	1	De	etected De	ata Not L	ognorm	al at l	5% Signific	ance Level	_
743				070 0114	Lilliefors T	est Statistic	0.168		20			liefore G	GOF T	Test	2	
744				5%	Lilliefors C	ritical Value	0 184		ete	ected Data	appear	Loanor	mal a	t 5% Signif	icance l evel	-
. 45				570								9.101				

	۸	Р	T		<u> </u>		D		Гг		1		1	-	1	1			
746	A	В			U	Detect	ed Data a	nnear Annr	vimate Logr	ormal at F	5% S	⊓ Signific	ance			J	ĸ		L
740						001001			Annato Logi		//0 (Jiginin	Juno						
747							Lognor	mal ROS St	atistics lein	1 Imputed	Nor	-Deter	rte						
740							Mean in O	riginal Scale	844 7	Jimputou						Mean ir	n Log Se	cale	1 096
750							SD in O	riginal Scale	2488							SD ir	1 Log Se	cale	4.66
751				95% t l	UCL (ass	umes r	normality c	of ROS data	1348				9	5% Pe	ercen	itile Boo	otstran l		1396
752	_				002 (000	95	% BCA Bo	ootstran UCI	1539						95	% Boot	stran t l		1751
753							5% H-UC	L (Log ROS)	4960943						00	Nº DOOL	onupre	OOL	
754						-		- (4
755					Statist	tics usi	na KM est	timates on L	ogged Data	and Assur	ninc	ı Loan	orma	al Distr	ributi	ion			
756							KM M	ean (logged)	1.093							KM	Geo M	lean	2.983
757							KM	SD (logged)	3.888				95	5% Cri	itical	H Valu	e (KM-L	_og)	4.957
758					KM Sta	ndard	Error of Me	ean (logged)	0.483						95%	H-UCL	_ (KM -L	Log)	60140
759							KM	SD (logged)	3.888				95	5% Cri	itical	H Valu	e (KM-L	_og)	4.957
760					KM Sta	ndard	Error of Me	ean (logged)	0.483										
761																			
762									DL/2 Statist	ics									
763					DL/2	Norma								DL/2	Log	-Transf	ormed		
764							Mean in O	riginal Scale	842.8							Mean ir	n Log So	cale	0.634
765							SD in O	riginal Scale	2489							SD ir	n Log So	cale	4.214
766					959	% t UC	L (Assume	es normality)	1346							95%	H-Stat l	UCL	221526
767					DL/2 is	s not a	recomme	nded metho	d, provided f	or compar	isor	ns and	histo	orical r	rease	ons			
768																			
769							Non	nparametric	Distribution I	Free UCL :	Stat	istics							
770						Dete	ected Data	a appear Ga	mma Distrib	uted at 5%	Sig	Inificar	nce L	_evel					
771																			
772								Sug	gested UCL	to Use									
773					95% K	М Арр	roximate (Gamma UCL	1674										
774								6 050/ 110										-0/ 1	
775		Note	: S	uggestion	s regardi	ng the	selection of	of a 95% UC	L are provide	d to help the	he u	iser to	selec	ct the r	most	approp	priate 95	5% L	JCL.
776		The		raaamma	ndotiono	ore he		the regulte of	the simulati	e, uata uis		moria		Singh	55. Mo	ichlo o	ndlaa	(200	
777		Howey	or	simulation			seu upon i	I Real World	data sets: fo	r additiona	Sun	intanze		or may		nt to cor			tician
770		11000000	, cr,	Simulation	is results				uutu 30t3, 10	additiona	1113	igni in	0 430	Ji may	war		isuit a s	Julia	
780	Ethvibenz	zene																	
781	,																		
782								(General Stati	stics									
783					Т	otal Nu	umber of C	Observations	68				Nur	nber o	of Dis	stinct O	bservati	ions	22
784							Numbe	er of Detects	20					Ν	Numb	ber of N	Ion-Dete	ects	48
785						Num	ber of Dis	tinct Detects	20				Nu	mber o	of Di	stinct N	Ion-Dete	ects	2
786							Mini	imum Detect	0.582						Mir	nimum	Non-De	etect	0.25
787							Maxi	imum Detect	1550						Ma	ximum	Non-De	etect	0.5
788							Varia	ance Detects	251096						Pe	ercent N	Ion-Dete	ects	70.59%
789							Μ	lean Detects	437.6								SD Dete	ects	501.1
790							Me	dian Detects	209.5								CV Dete	ects	1.145
791							Skewr	ness Detects	1.091							Kurto	sis Dete	ects	-0.139
792						M	ean of Log	gged Detects	4.977						SD	of Logo	ged Dete	ects	2.028
793									-										
794						<u> </u>		Normal G	OF Test on	Detects O	niy								
795						Sha	piro Wilk	I est Statistic	0.813		-			Shapi	Iro V	vilk GO	F Test		
796					5	% Sha	piro Wilk C	Jritical Value	0.905	-	De	etectec	1 Dat	a Not I	Norn	nal at 5	% Signi	ificar	ice Level
797						F0/	Lillietors	est Statistic	0.212		_			Lilli	ietor	s GOF	I est	<i>c</i> .	
798						5%	Lilliefors C	ritical Value	0.192	W 0110	De		u Dat	a Not I	Norn	nai at 5	% Signi	iticar	ICE LEVEI
799							Detect	ted Data No	t inormal at t	o% Signific	anc	e Leve	ei						
800					Kanlon N	loier /	(M) Statia	tice using N	ormal Critica		nd	othor •	Jonn	aroma	atric				
801					∿аріа⊓-№	nelet (I	wij Statis			a values a	niù (ouier l	aoub		Store		ror of M	loon	A1 24
802								KW CL	331 5					INIVI C		5% KM			195.5
003							92%		197 7	-		95	% KI	M (Por	JC Cent	ile Root	tstran) I		203.3
004 805							95%		196.7	1		90	70 NI		5% K	M Root	stran t I		223.9
200						909	% KM Che	byshev LICI	252.6	+				95	% KI	M Cheh	yshev I		308.6
000						97.59	% KM Che	hyshev LICI	386.4					90	% KI	M Cheh	vshev l		539.2
802						57.5		Joyanav UOL	000.4	1				33	70 11	in onet	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JUL	000.2

	۸	D	<u> </u>		Е	Б	<u> </u>	Ц	1	1	V	
000	A	В	U	Comm		⊢ a an Dataata	G d Observe	H Hana Only		J	ĸ	L
809				Gainin	a GOF Test	S OII Delecte		uons only	A	D	0F T	
810				A-D I	est Statistic	0.257			Andersor	-Darling G	OF Test	
811				5% A-D C	ritical Value	0.797	Detect	ed data app	ear Gamn	na Distribut	ed at 5% Si	ignificance Level
812				K-S T	est Statistic	0.125			Kolmogo	orov-Smirn	ov GOF	
813				5% K-S C	ritical Value	0.204	Detect	ed data app	ear Gamm	na Distribut	ed at 5% Si	ignificance Level
814			Det	ected data	appear Gan	nma Distribut	ed at 5%	Significanc	e Level			
815												
916				6	amma Stati	stics on Dete	cted Data	Only				
010					k hot (MLE)	0.565		Unity	k etar	(hine corre	otod MLE)	0.512
017				That		0.000			Thoto otor		oted MLE)	952.4
818				met		774.0			Theta Star			002.4
819				n	u nat (IVILE)	22.59			nı	i star (blas	corrected)	20.54
820				Me	an (detects)	437.6						
821												
822				Gamm	a ROS Stat	istics using li	mputed No	on-Detects				
823			GROS may not be	used when	data set ha	s > 50% NDs	with many	tied observ	ations at r	nultiple DL	5	
824		GF	ROS may not be used when	kstar of det	ects is small	such as <1.0	, especiall	y when the	sample siz	e is small (e.g., <15-2	0)
825			For such	situations, (GROS meth	od may yield	incorrect v	alues of UC	Ls and BT	Vs		
826				This is	especially ti	rue when the	sample siz	ze is small.				
827			For gamma distributed dete	ected data.	BTVs and U	CLs may be o	computed u	usina aamm	na distribut	ion on KM	estimates	
828			5	,	Minimum	0.01		00			Mean	128 7
920					Maximum	1550					Median	0.01
029						334					CV	2 505
030						0.110			- مذه با	(higo com		0.124
831						0.119			K Star	UIAS COTTE		0.124
832				Inet	a nat (IVILE)	10/8			i neta star	(Dias corre	cieu MLE)	10.55
833				n	u nat (MLE)	16.24			nı	ı star (bias	corrected)	16.86
834			Adjusted L	evel of Sigr	nificance (β)	0.0465						
835			Approximate Chi S	Square Valu	e (16.86, α)	8.572		Adjus	ted Chi So	uare Value	(16.86, β)	8.443
836			95% Gamma Approximate	UCL (use w	hen n>=50)	253.2	95	5% Gamma	Adjusted	JCL (use w	hen n<50)	257
837												
838				Estimate	es of Gamm	a Parameter	s using KM	A Estimates	5			
839					Mean (KM)	128.9	_				SD (KM)	331.5
840				Va	riance (KM)	109871				SE of I	Mean (KM)	41.24
841					k hat (KM)	0.151					star (KM)	0.154
041					nu hat (KM)	20.56				ni	ustar (KM)	20.99
042				the	ta hat (KM)	852.5				thets	etar (KM)	835.2
843			000/			142 5			000/			200.2
844			80% (yamma per		143.5			90% ga	imma perce		383.0
845			95% (gamma per	centile (KM)	705.4			99% ga	imma perce	entile (KM)	1634
846												
847					Gamma Ka	plan-Meier (H	(M) Statis	tics				r
848			Approximate Chi S	Square Valu	e (20.99, α)	11.58		Adjus	ted Chi So	uare Value	(20.99, β)	11.43
849		95%	6 Gamma Approximate KM-	UCL (use w	hen n>=50)	233.5	95% 0	Gamma Adj	usted KM-I	JCL (use w	hen n<50)	236.6
850												
851				Lognor	nal GOF Te	st on Detecte	ed Observ	ations Only	'			
852			Sha	apiro Wilk T	est Statistic	0.909			Shapir	o Wilk GO	- Test	
853			5% Sha	apiro Wilk C	ritical Value	0.905	De	etected Data	a appear L	ognormal a	t 5% Signifi	icance Level
854				Lilliefors T	est Statistic	0.147			Lillie	fors GOF	Test	
855			5%	Lilliefors C	ritical Value	0.192	De	etected Data	appear L	ognormal a	t 5% Sianif	icance Level
856				Detected I	Data appear	Lognormal a	t 5% Sian	ificance Le	vel	- J		
957				20100100								
057				Lognorn	al POS Sta	tietice Lleina	Imputed N	lon-Detect	•			
000	l			Mean in Or	ininal Soolo	130	pateu r		-	Maanin	Log Scole	0 580
859						100 222 E					Log Scale	2 715
860				SU IN Ur		333.5			050/ 5	SU IN	LUY SCAIE	3.715
861			95% t UCL (assumes	normality of	I RUS data)	197.4			95% Pero	centile Boot	strap UCL	199.0
862			95	5% BCA BO	USTRAP UCL	217.9				ษอ% Boots	uap t UCL	220.8
863				95% H-UCL	. (Log ROS)	15185						
864												
865			Statistics us	ing KM esti	imates on Lo	ogged Data a	nd Assum	ning Lognor	mal Distri	oution		
866				KM Me	an (logged)	0.485				KM	Geo Mean	1.625
867				KM	SD (logged)	3.091			95% Criti	cal H Value	(KM-Log)	3.83
868			KM Standard	Error of Me	an (logged)	0.385			9	5% H-UCL	(KM -Log)	820.7
869				KM	SD (logged)	3.091			95% Criti	cal H Value	(KM-Log)	3.83
870			KM Standard	Error of Me	an (logged)	0.385						
871						-	1					
870						DL/2 Statisti	cs					
872			DI /2 Norma	1					י כי וח	on-Tranef	ormed	
073				Mean in Or	ininal Soola	128.8				Maan in		0.0165
0/4					iginal Scale	334						3 404
ŏ/5			050/ 1110			106.0						3.404
876			95% t UC	∠ (Assume	s normality)	190.3			-	95% F	I-Stat UCL	1901
877			DL/2 is not a	recommen	iaea methoa	i, provided fo	r comparis	sons and h	istorical re	asons		
878												
879				Non	parametric [Distribution F	ree UCL S	Statistics				
880			Det	ected Data	appear Gar	nma Distribu	ted at 5%	Significanc	e Level			
881												
882					Sug	gested UCL t	o Use					
883			95% KM Apr	proximate G	amma UCL	233.5						
004												

	Α	В			<u>.</u>		D)	E		F	0	i	H		1	<u> </u>	J		K		L
885		Note	e: Sugge	stions r	egardu	ng the	select	ion of a	a 95%	UCL	are provid	ed to he	Ip the	user to	select	the m	nost a	pprop	oriates	95% L	CL.	
886		T 1			R	ecomm	nendat	ions a	re bas	ed u	pon data siz	e, data	distri	bution, a	and ske	ewnes	SS.			- (000	<u>()</u>	
887	-	Ine	ese recor	mmend	ations	are bas	sed up	bon the	e resul	ts of	the simulat	on stud	es su	immariz	ed in S	singh,	Maici	nie, a	nd Le	e (200	6).	
888	-	Howev	ver, simu	lations	results	s will no	ot cove	er all R	teal w	orid	data sets; fo	r additio	nal II	nsight th	le user	may	want t	to cor	nsult a	statis	tician.	
889	1																					
890	Lead																					
891											onoral Stat	lation										
892					т	Cotol Nu	umbor	of Oh	convot	ione		เธแตร			Num	hor of	f Dictir		bean	ations	0	
893						Utar Nu	Ni	umber		ente	5	_			INUITI		lumbe	or of N	lon-De		63	
094 00E						Num	her of	Distin	of Det	ects	5	-			Num	her o	of Disti	inct N			4	
806						TNUTT		Minim		etect	1.57				Null		Minir	mum	Non-D)etect	15	
807								Maxim	um De	etect	3 44	_					Maxir	mum	Non-D)etect	7.5	
898								/ariano	ce Det	ects	0.601	-					Perc	ent N	lon-De	etects	92 F	5%
899								Mea	an Det	ects	2.524								SD De	etects	0.7	75
900								Media	an Det	ects	2.38								CV De	etects	0.3	07
901							Sk	ewne	ss Det	ects	0.06							Kurto	sis De	etects	-1.92	25
902						Me	ean of	Logge	ed Det	ects	0.886						SD of	f Logo	ged De	etects	0.3	2
903												_!							-			
904									Norm	al G	OF Test on	Detects	onl	y								
905						Sha	piro W	/ilk Te	st Stat	istic	0.95				S	Shapiı	ro Wil	lk GO	F Tes	st		
906					5	% Shap	piro W	ilk Cri	tical V	alue	0.762		D	etected	Data a	ppear	r Norm	nal at	5% S	ignific	ance Le	vel
907							Lillief	ors Te	st Stat	tistic	0.198					Lillie	efors (GOF	Test			
908						5%	Lilliefo	ors Crit	tical V	alue	0.343		D	etected	Data a	ppear	r Norm	nal at	5% S	ignific	ance Le	vel
909							Dete	ected	Data a	appe	ar Normal a	t 5% Si	gnific	ance Le	evel							
910																						
911				Ka	plan-M	<i>leier (F</i>	(M) S	tatistic	cs usir	ng No	ormal Critic	al Value	s an	d other	Nonpa	rame	tric U	CLs				
912									KM N	lean	1.579					KM S	standa	rd Er	ror of	Mean	0.04	59
913									KN	1 SD	0.332	_					95%	6 KM	(BCA)) UCL	1.6	52
914								95% K	KM (t)	UCL	1.655			95	5% KM	(Perc	centile	Boo	tstrap)	UCL	1.6	56
915								95% K	.M (z)		1.654	_				955	% KM	Boot	strap		1.6	36
916						90%	% KM	Cheby	/shev		1./16	_				95%	% KM	Cheb	yshev		1.7	79 20
917						97.5%	% KIVI	Cneby	/snev	UCL	1.865					99%	% KIVI	Cneb	ysnev	UCL	2.0.	30
918									COF	Toot	a on Dotod	od Obo	oniot		h.							
919							Ga		et Stat	istic	0 2/18		eival		Δη	doreo	n-Dor	dina (oet		
920							5% Δ		tical V	alue	0.240	De	torto	d data a	nnear	Gamr	ma Die	stribu	ted at	5% S	ignificar	
921							570 A	-S Te	st Stat	tistic	0.075			u uutu u	Ko	olmoa	orov-S	Smirr	nov G	OF	grinical	
923							5% K	-S Crit	tical V	alue	0.357	De	tecte	d data a	ppear	Gamr	ma Dis	stribu	ted at	5% S	ianificar	nce Level
924						Dete	ected	data a	ppear	Gan	nma Distrib	uted at	5% S	ianifica	nce Le	vel		011101	tou ut	0.00	gimea	
925														<u> </u>								
926								Ga	mma	Stati	stics on De	tected [)ata (Only								
927								k	hat (N	1LE)	12.72					k sta	r (bias	s corr	ected	MLE)	5.2	21
928								Theta	hat (N	1LE)	0.198				The	ta sta	r (bias	s corr	ected	MLE)	0.4	83
929								nu	hat (N	1LE)	127.2					n	nu star	r (bias	s corre	ected)	52.2	21
930								Mear	n (dete	ects)	2.524											
931																						
932							G	amma	ROS	Stat	istics using	Impute	d Nor	n-Detect	ts							
933				GRO	S may	not be	used v	when c	data se	et ha	s > 50% NC	s with n	nany	tied obs	ervatio	ons at	multip	ole DL	_S			
934		GF	ROS may	y not be	e used	when k	star o	f deteo	cts is s	mall	such as <1	0, espe	cially	when th	ne sam	ple si	ze is s	small	(e.g.,	<15-2	0)	
935					For	such s	situatio	ons, G	ROS r	neth	od may yiel	d incorre	ect va	lues of l	JCLs a	and B	TVs					
936			_				Tł	nis is e	specia	ally ti	rue when th	e sampl	e size	e is sma	II. 			10				
937			⊦or gar	nma di	stribute	ed dete	cted d	iata, B	IVsa	nd U	CLS may be	compu	ted us	sing gan	nma di	stribu	tion o	n KM	estim	ates		07
938									Mari	num	0.01	-								iviean	0.3	J/
939									waxir	num	3.44								M	eaian	0.01	E2
940								1.	hot /	5D	0.721					k etc	r /h:	0.00			2.3	04
941								K Thete	hat (N		0.297	+			The	K Sidi	r (bias		ected		0.2	<u>54</u> 11
942								nield	hat (N		40.30	-			ine	ia sidi	i (Dias				1.04	4
943					Δdiu	Isted I /	عروا مر	Signif	ficance	- (R)	0.039	+					iu stal	(Dids	JUITE	,cieu)	39.8	
944 Q/F				Annre	 	- Chi S	duare	Value	(39 0	- (P) (n 1	26 46	+		ihΔ	usted (Chi Sr	quare	Valu	e (39 0	94 R)	26 3	3
940 Q/A			95% Ge	amma /	Approvi	imate I	JCI (II	ise wh	en n>:	=50)	0.463		950	% Gam	na Adii	usted		(USP)	when	n<50)	0.2	. . 67
940			5570 QC		-44.01					55)	0.100		00	Juan			2011	,			0.4	

	Α	В	С	D	E	F	G	Н		J	K	L
948				Estimate	es of Gamm	na Parameter	s using KN	M Estimates				
949					Mean (KM)	1.579					SD (KM)	0.332
950				Va	riance (KM)	0.11				SE of I	Mean (KM)	0.0459
951					k hat (KM)	22.56					k star (KM)	21.58
952					nu hat (KM)	3069				n	u star (KM)	2935
953				the	eta hat (KM)	0.07				theta	a star (KM)	0.0732
954			80% g	amma pero	centile (KM)	1.855			90% ga	amma perc	entile (KM)	2.027
955			95% g	amma pero	centile (KM)	2.176			99% ga	amma perc	entile (KM)	2.475
956												
957					Gamma Ka	plan-Meier (l	(M) Statis	tics				
958			Approximate Chi	Square Va	lue (N/A, α)	2810		Adju	sted Chi S	Square Val	ue (N/A, β)	2807
959		95%	Gamma Approximate KM-L	JCL (use w	hen n>=50)	1.649	95% 0	Gamma Adju	sted KM-l	UCL (use w	/hen n<50)	1.65
960												
961			0	Lognor	mal GOF Te	est on Detecte	ed Observa	ations Only	<u> </u>			
962			Sha	piro Wilk I	est Statistic	0.954	D	te etc d Dete	Snapir	o Wilk GO		· · · · · · · · · · · · · · · · · · ·
963			5% Sha		ritical Value	0.762	De	etected Data	appear Lo	ognormal a	it 5% Signif	icance Level
964			E0/	Lilliefora C	ritical Value	0.190	De	tested Data			t E% Signif	iconco Lovol
965			576	Detected			t 5% Sign			ognormara	it 5 % Signi	
966				Delected	Jara ahheai	Lognormal a						
907				Lognorn	nal ROS Sta	atistics lsing	Imputed N	Von-Detects				
900				Mean in Or	iginal Scale	0.66				Mean in	Log Scale	-0 775
970				SD in Or	iginal Scale	0.652				SD in	Log Scale	0.847
971			95% t UCL (assumes r	normality of	f ROS data)	0.792			95% Perc	centile Boo	tstrap UCL	0.798
972			95	% BCA Bo	otstrap UCL	0.813				95% Boots	trap t UCL	0.825
973			ç	5% H-UCL	(Log ROS)	0.824						
974						1						<u></u>
975			Statistics usi	ng KM esti	imates on L	ogged Data a	and Assum	ning Lognorn	nal Distril	bution		
976				KM Me	an (logged)	0.442				KM	Geo Mean	1.557
977				KMS	SD (logged)	0.15			95% Criti	cal H Value	e (KM-Log)	1.697
978			KM Standard	Error of Me	ean (logged)	0.0208			9	5% H-UCL	(KM -Log)	1.624
979				KMS	SD (logged)	0.15			95% Criti	cal H Value	e (KM-Log)	1.697
980			KM Standard	Error of Me	ean (logged)	0.0208						
981												
982				-		DL/2 Statisti	cs					
983			DL/2 Norma			4 005			DL/2 L	.og-Transfe	ormed	0.110
984				Mean in Or	iginal Scale	1.005				Mean in	Log Scale	-0.119
985				SD in Or	Iginal Scale	0.707				SD In	Log Scale	0.424
986			95% t UC	L (Assume	s normality)	1.140	r compori	oono ond hir	toriool ro	95% F	1-51at UCL	1.068
987				recommen		a, provideu ic			SUNCALIE	30115		
988				Non	narametric I	Distribution F	ree UCL S	Statistics				
903			Det	ected Data	appear No	rmal Distribut	ed at 5% 3	Significance	Level			
991												
992					Sug	gested UCL	to Use					
993				95%	KM (t) UCL	1.655						
994												
995		Note	: Suggestions regarding the	selection o	f a 95% UCI	are provided	d to help th	ne user to sel	ect the m	ost approp	riate 95% L	JCL.
996			Recomm	nendations	are based u	pon data size	, data distr	ribution, and	skewnes	S.		
997		The	se recommendations are ba	sed upon tl	he results of	the simulatio	n studies s	summarized	in Singh,	Maichle, ai	nd Lee (200	16).
998		Howeve	er, simulations results will no	ot cover all	Real World	data sets; for	additional	insight the u	ser may v	want to con	sult a statis	tician.
999												
1000	Naphthal	ene										
1001												
1002				unch an of O		ieneral Statis	TICS	N		Diatia at Ok		22
1003			Total N		Detecto	00		IN		Distinct OL	servations	22
1004			Num	her of Dist	inct Detects	20		N	Int Jumber of	Inder of N	on-Detects	40
1005			Null	Minir	mum Detecta	0.635				Minimum	Jon-Detect	0.25
1000				Maxir	mum Detect	227				Maximum N	Von-Detect	0.5
1007				Varia	nce Detects	4639				Percent N	on-Detects	70.59%
1000				M	ean Detects	60.22					SD Detects	68.11
1010				Mec	lian Detects	42.65				(CV Detects	1.131
1011				Skewn	ess Detects	1.457				Kurto	sis Detects	1.02
1012			М	ean of Log	ged Detects	3.288			5	SD of Logg	ed Detects	1.579
1013						1	1					L
1014					Normal G	OF Test on D	etects On	nly				
1015			Sha	piro Wilk T	est Statistic	0.777			Shapir	o Wilk GO	F Test	
1016			5% Sha	piro Wilk C	ritical Value	0.905		Detected D	ata Not N	ormal at 59	% Significar	nce Level
1017				Lilliefors T	est Statistic	0.299			Lillie	fors GOF	Test	
1018			5%	Lilliefors C	ritical Value	0.192		Detected D	ata Not N	ormal at 59	% Significar	nce Level
1019				Detect	ed Data Not	Normal at 5	% Significa	ance Level				

	А	В	С		D	E	F	G	Н			J	K	L
1020														
1021			Kaplan-Me	ier (KN	A) Statist	ics using N	ormal Critical	Values a	nd other	Nonpara	ametric	UCLs		
1022						KM Mean	17.89			K	M Star	ndard Err	or of Mean	5.623
1023						KM SD	45.2				9	5% KM (BCA) UCL	29.47
1024					95%	KM (t) UCL	27.27		95	5% KM (Percen	tile Boot	strap) UCL	27.65
1025					95%	KM (z) UCL	27.14				95% ŀ	KM Boots	trap t UCL	30.89
1026				90%	KM Cheb	yshev UCL	34.76				95% K	M Cheby	/shev UCL	42.4
1027			(97.5%	KM Cheb	yshev UCL	53				99% K	M Cheby	/shev UCL	73.84
1028						-	1							
1029					Gamma	a GOF Test	s on Detecte	d Observa	ations On	ly				
1030					A-D T	est Statistic	0.328			Ande	erson-D	Darling G	OF Test	
1031				5	% A-D C	ritical Value	0.78	Detect	ed data a	ppear G	amma	Distribut	ed at 5% S	ignificance Level
1032					K-S T	est Statistic	0.147			Kolr	nogoro	v-Smirn	ov GOF	
1033				5	5% K-S C	ritical Value	0.201	Detect	ed data a	ppear G	amma	Distribut	ed at 5% S	ignificance Level
1034				Detec	ted data	appear Gar	nma Distribu	ted at 5%	Significa	nce Lev	el			
1035														
1036					G	amma Stati	stics on Dete	cted Data	Only					
1037					I	k hat (MLE)	0.741			k	: star (b	ias corre	cted MLE)	0.663
1038					Theta	a hat (MLE)	81.3			Theta	ı star (b	ias corre	cted MLE)	90.83
1039					n	u hat (MLE)	29.63				nu s	star (bias	corrected)	26.52
1040					Mea	an (detects)	60.22							
1041														
1042					Gamm	a ROS Stat	istics using l	mputed No	on-Detect	ts				
1043			GROS may no	ot be us	sed when	data set ha	s > 50% NDs	with many	/ tied obs	ervation	s at mu	Itiple DL	S	
1044		GR	OS may not be used wh	hen kst	tar of dete	ects is small	such as <1.0	, especial	ly when th	ne samp	le size	is small (e.g., <15-2	0)
1045			For s	uch sit	uations, (GROS meth	od may yield	incorrect v	alues of l	UCLs an	id BTVs	5		-
1046			E		I his is	especially t	rue when the	sample siz	ze is sma	II.				
1047			For gamma distributed	detect	ed data, l	BIVs and U	CLs may be o	computed	using gan	nma dist	ributior	n on KM	estimates	17 70
1048						Minimum	0.01						Mean	17.72
1049						Maximum	227						Median	0.01
1050							45.0				eter /k			2.574
1051					Thot	hat (MLE)	0.149			Thota	star (b	ias corre	cted MLE)	116.2
1052					mea		20.29			meta		tar (bias		20.72
1053			Adjust				20.20				nu s	stai (bias	corrected)	20.72
1054			Approvimate (Cu Lov	iare Valu	(20.72 a)	11 38		١bΔ	iustad C	hi Saus	are Value	(20 72 B)	11 23
1055			95% Gamma Approxim	ate UC		hen n>=50)	32.25	9	5% Gamn	na Adius	sted LIC		(20.72, p)	32.68
1050							02.20	5.	o /o Gamin	na Auju		DE (030 M		02.00
1057					Estimate	es of Gamm	a Parameter	s usina Kl	M Estima	tes				
1059						Mean (KM)	17.89						SD (KM)	45.2
1060					Va	riance (KM)	2043					SE of I	Mean (KM)	5.623
1061						k hat (KM)	0.157					ŀ	star (KM)	0.16
1062						nu hat (KM)	21.3					nı	star (KM)	21.69
1063					the	ta hat (KM)	114.2					theta	a star (KM)	112.1
1064			80	0% gar	nma pero	entile (KM)	20.43			90	% gam	ma perce	entile (KM)	53.44
1065			9!	5% gar	mma perc	entile (KM)	97.23			99	% gam	ma perce	entile (KM)	222.7
1066							•							
1067						Gamma Ka	plan-Meier (l	<m) statis<="" td=""><td>tics</td><td></td><td></td><td></td><td></td><td></td></m)>	tics					
1068			Approximate C	Chi Squ	uare Valu	e (21.69, α)	12.11		Adj	justed C	hi Squa	are Value	(21.69, β)	11.95
1069		95%	Gamma Approximate	KM-UC	CL (use w	hen n>=50)	32.04	95% (Gamma A	djusted	KM-UC	CL (use w	hen n<50)	32.46
1070														
1071					Lognorr	nal GOF Te	st on Detect	ed Observ	ations O	nly				
1072				Shapi	ro Wilk T	est Statistic	0.932			Sł	napiro \	Wilk GO	- Test	
1073			5%	Shapii	ro Wilk C	ritical Value	0.905	De	etected Da	ata appe	ear Log	normal a	t 5% Signif	icance Level
1074				Li	illiefors T	est Statistic	0.169				Lilliefo	rs GOF 1	Fest	
1075				5% Li	Iliefors Ci	ritical Value	0.192	De	etected D	ata appe	ear Log	normal a	t 5% Signif	cance Level
1076				D	etected L	ata appear	· Lognormal a	at 5% Sigr	nificance	Level				
1077					Lonnorm		tistics lains	Increased	lan Data					
1078					Lognorm	ial RUS Sta	atistics Using	Imputed I	Non-Dete	ects		Mana in		0.000
1079				IVI	ean in Or	iginal Scale	10.10					wean in	Log Scale	-0.239
1080			05% + LICL (00000	noc	rmality	BUC dote	40.4Z			0=0/	Doroc	ou in		2.370
1081			35 % LOCE (assum	011 63110		nuo uala)	21.37			30%	reicel or	S% Booto	tran t UCL	27.24
1082				90 %		(Log ROS)	252				90	- /0 DOOLS	ap i UCL	51.30
1083				90	/0 1 I-OCL	(LUY NUS)	2.52							L
1004			Statistics	s jisin/	1 KM Aeti	mates on L	oaaed Dete a	nd Assum	ning Loga	normel F)istrihu	tion		
1085			Glaustic	o aoniţ	KM Me	an (lonned)	-0.0114		a cogi	.ərmai L		KM	Geo Mean	0.989
1087					KM	(loaned)	2.288			95%	Critica	H Value	(KM-Log)	3.084
1007	<u></u>		KM Stand	dard Fr	ror of Me	an (logged)	0.285			0070	95%		(KM -Log)	32.05
1080					KMS	SD (loaned)	2.288			95%	Critica	I H Value	(KM-Loa)	3.084
1090			KM Stand	dard Er	ror of Me	an (logged)	0.285						3/	
1091						(-35-4)	1	1						<u>.</u>

	A B C	D E	F	G	ΗI	J K	L
1092	DI /2 Normal		DL/2 Statisti	CS		Transformed	
1093	DL/2 Normai	laan in Original Cool	17.0			- I ransformed Mean in Lan Caala	0.49
1094	IVI	En in Original Scal				Din Log Scale	-0.48
1095	05% + 1101	SD In Original Scal	45.57				2.594
1096	95% t UCL	(Assumes normality) 27.02		and historical roos	95% H-Stat UCL	47.99
1097		scommended metric	a, provided id	or compansons	and historical reas	ions	
1098		Nonnarametric	Distribution F	ree LICI Statio	atice		
1100	Detec	ted Data appear G	mma Distribu	ted at 5% Sign	ificance Level		
1100							
1102		Su	agested UCL	to Use			
1103	95% KM Appro	oximate Gamma UC	32.04				
1104				1			
1105	Note: Suggestions regarding the se	election of a 95% UC	L are provide	d to help the us	er to select the mos	t appropriate 95% U	ICL.
1106	Recomme	ndations are based	upon data size	e, data distribut	ion, and skewness.		
1107	These recommendations are base	ed upon the results of	of the simulation	n studies sumr	narized in Singh, Ma	aichle, and Lee (200	6).
1108	However, simulations results will not	cover all Real World	data sets; for	additional insig	ght the user may war	nt to consult a statis	tician.
1109							
1110							
1111			0				
1112	Tatal New			STICS	Newskaw of D		01
1113	i otal Nur	nber of Observation	5 68		Number of Dis	stinct Observations	21
1114	Numb	Number of Detect	s 19 a 10		Num	ber of Non-Detects	49
1115	Numb	Minimum Dated	5 I9 + 1.20		Number of D	istinct Non-Detects	2
1116		Maximum Detec	t 1.38		IVII Ma	nimum Non-Detect	0.25
1110		Variance Detect	a 12021735			arcent Non-Detects	72.06%
1110		Mean Detect	s 4201			SD Detects	6551
1120		Median Detect	s 955			CV Detects	1.559
1121		Skewness Detect	s 1.7			Kurtosis Detects	1.622
1122	Mea	an of Logged Detect	s 6.446		SD	of Logged Detects	2.932
1123			1	1			
1124		Normal (GOF Test on [Detects Only			
1125	Shap	iro Wilk Test Statisti	c 0.663		Shapiro \	Wilk GOF Test	
1126	5% Shapi	ro Wilk Critical Valu	e 0.901	Det	ected Data Not Nor	mal at 5% Significar	nce Level
1127	L	illiefors Test Statisti.	c 0.347		Lilliefo	rs GOF Test	
1128	5% Li	illiefors Critical Valu	e 0.197	Det	ected Data Not Nor	mal at 5% Significar	nce Level
1129		Detected Data No	ot Normal at 5	% Significance	Level		
1130	Kaplan Majar (Ki	M) Statistics using I	lormal Critica	Voluce and a	than Nannaramatria		
1131		KM Mea			KM Stan	dard Error of Mean	/81.2
1122		KM SI	3862		9	5% KM (BCA) UCI	2007
1133		95% KM (t) UC	1977		95% KM (Percen	tile Bootstran) UCI	2003
1135		95% KM (z) UC	1966		95% K	(M Bootstrap t UCL	2638
1136	90%	KM Chebyshev UC	2618		95% K	M Chebyshev UCL	3271
1137	4					M Chebyshev UCL	5962
1138	97.5%	KM Chebyshev UC	L 4179		99% K		0002
	97.5%	KM Chebyshev UC	L 4179		99% K		0002
1139	97.5%	KM Chebyshev UC	L 4179	d Observation	99% K s Only		0002
1139 1140	97.5%	KM Chebyshev UC Gamma GOF Tee A-D Test Statisti	L 4179 Sts on Detecte c 0.467	d Observation	99% K s Only Anderson-D	Darling GOF Test	5502
1139 1140 1141	97.5%	KM Chebyshev UC Gamma GOF Tea A-D Test Statisti 3% A-D Critical Valu	4179 Sts on Detecte c 0.467 e 0.832	d Observation	99% K s Only Anderson-E ata appear Gamma	Darling GOF Test Distributed at 5% S	ignificance Level
1139 1140 1141 1142	97.5%	KM Chebyshev UC Gamma GOF Tec A-D Test Statisti 3% A-D Critical Valu K-S Test Statisti	L 4179 sts on Detecte c 0.467 e 0.832 c 0.127 c 0.127	d Observation	99% K s Only Anderson-E ata appear Gamma Kolmogoro	Darling GOF Test Distributed at 5% S v-Smirnov GOF	ignificance Level
1139 1140 1141 1142 1143	97.5%	KM Chebyshev UC Gamma GOF Tee A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu	4179 sts on Detecte c 0.467 a 0.832 c 0.127 a 0.214 mma Distribution	d Observation Detected d Detected d ted at 5% Size	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ifeaano Lorat	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S	ignificance Level
1139 1140 1141 1142 1143 1144	97.5%	KM Chebyshev UC Gamma GOF Ter A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga	4179 sts on Detecte c 0.467 e 0.832 c 0.127 e 0.214 mma Distribu	d Observation Detected d Detected d ted at 5% Sign	s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ificance Level	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S	ignificance Level
1139 1140 1141 1142 1143 1144 1145	97.5%	KM Chebyshev UC Gamma GOF Ter A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta	4179 sts on Detecte 0.467 0.832 0.127 0.214 mma Distribut tistics on Detected	d Observation Detected d Detected d ted at 5% Sign	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ificance Level	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S	ignificance Level
1139 1140 1141 1142 1143 1144 1145 1146 1147	97.5%	KM Chebyshev UC Gamma GOF Te: A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE	4179 sts on Detecte c 0.467 a 0.832 c 0.127 a 0.214 mma Distribut tistics on Detected) 0.354	d Observation Detected d Detected d ted at 5% Sign	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ificance Level y k star (b	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE	ignificance Level
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148	97.5%	KM Chebyshev UC Gamma GOF Te A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE	4179 sts on Detecte 0.467 0.832 0.127 0.214 mma Distribu tistics on Detecte) 0.354) 11873	d Observation Detected d Detected d ted at 5% Sign acted Data Onl	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ificance Level y k star (b Theta star (b	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE)	ignificance Level ignificance Level 0.333 12614
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149	97.5%	KM Chebyshev UC Gamma GOF Te: A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE nu hat (MLE	4179 sts on Detecte 0.467 0.832 0.127 0.214 mma Distribu tistics on Detection) 0.354) 11873) 13.45	d Observation Detected d Detected d ted at 5% Sign acted Data Onl	99% K s Only Anderson-E ata appear Gamma ificance Level y k star (b Theta star (b nu s	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected)	ignificance Level ignificance Level 0.333 12614 12.66
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150	97.5%	KM Chebyshev UC Gamma GOF Te A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE nu hat (MLE Mean (detects	(1179) (1179) (1170	d Observation Detected d Detected d ted at 5% Sign	99% K s Only Anderson-E ata appear Gamma ificance Level y k star (b Theta star (b nu s	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected)	ignificance Level ignificance Level 0.333 12614 12.66
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151	97.5%	KM Chebyshev UC Gamma GOF Te A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE nu hat (MLE Mean (detects	(1179) (1179) (1170	d Observation Detected d Detected d ted at 5% Sign	99% K s Only Anderson-E ata appear Gamma ificance Level y k star (b Theta star (b nu s	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected)	ignificance Level ignificance Level 0.333 12614 12.66
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1151	97.5%	KM Chebyshev UC Gamma GOF Te A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE nu hat (MLE Mean (detects Gamma ROS Sta	(119) (110) (d Observation Detected d Detected d ted at 5% Sign acted Data Onl mputed Non-D	99% K s Only Anderson-E ata appear Gamma ificance Level y k star (b Theta star (b nu s etects	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected)	ignificance Level ignificance Level 0.333 12614 12.66
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153	97.5%	KM Chebyshev UC Gamma GOF Te A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE nu hat (MLE Mean (detects Gamma ROS Sta sed when data set h	(119) (110) (d Observation Detected d Detected d ted at 5% Sign acted Data Onl mputed Non-D with many tied	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ificance Level y k star (b Theta star (b nu s etects observations at mu	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected) tar (bias corrected)	ignificance Level ignificance Level 0.333 12614 12.66
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154	97.5%	KM Chebyshev UC Gamma GOF Te A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE nu hat (MLE Mean (detects Gamma ROS Sta sed when data set h tar of detects is sma	4179 sts on Detected c 0.467 a 0.832 c 0.127 a 0.214 mma Distribut tistics on Detected i) 0.354) 13.45) 4201 tistics using I as > 50% NDs II such as <1.00	d Observation Detected d Detected d ted at 5% Sign acted Data Onl with many tied , especially wh	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ificance Level y k star (b Theta star (b nu s etects lobservations at mu en the sample size	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected) Itiple DLs is small (e.g., <15-2	ignificance Level ignificance Level 0.333 12614 12.66 0)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155	97.5%	KM Chebyshev UC Gamma GOF Te A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE nu hat (MLE Mean (detects Gamma ROS Sta sed when data set h tar of detects is sma tuations, GROS met	4179 sts on Detecter c 0.467 a 0.832 c 0.127 a 0.214 mma Distribut tistics on Detecter i) 0.354) 13.45) 4201 ttistics using I as > 50% NSs II such as <1.0 hod may yield	d Observation Detected d Detected d ted at 5% Sign acted Data Onl mputed Non-D with many tied o, especially wh incorrect value	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ificance Level y k star (b Theta star (b nu s etects to be servations at mu ien the sample size is of UCLs and BTVs	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected) tar (bias corrected) ltiple DLs is small (e.g., <15-2	ignificance Level ignificance Level 0.333 12614 12.66 0)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156	97.5%	KM Chebyshev UC Gamma GOF Te A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE Mean (detects Gamma ROS Sta sed when data set h tar of detects is sma tuations, GROS met This is especially	_ 4179 sts on Detecte 0.467 c 0.467 a 0.832 c 0.127 a 0.214 mma Distribut tistics on Detecte tistics on Detecte 0.354) 13.45) 13.45) 4201 tistics using I as > 50% NDs II such as <1.0 hod may yield true when the	d Observation Detected d Detected d ted at 5% Sign acted Data Onl with many tied b, especially wh incorrect value sample size is	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ificance Level y k star (b Theta star (b nu s etects l observations at mu en the sample size is s of UCLs and BTVs small.	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected) tar (bias corrected) ltiple DLs is small (e.g., <15-2	ignificance Level ignificance Level 0.333 12614 12.66 0)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156	97.5%	KM Chebyshev UC Gamma GOF Te A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE Mean (detects Gamma ROS Sta sed when data set h tar of detects is sma tuations, GROS met This is especially ted data, BTVs and	4179 sts on Detecte c 0.467 a 0.832 c 0.127 a 0.214 mma Distribut tistics on Detected) 0.354) 11873) 13.45) 4201 tistics using I as > 50% NDs II such as <1.0 hod may yield true when the JCLs may be	d Observation Detected d Detected d ted at 5% Sign acted Data Onl with many tied b, especially wh incorrect value sample size is computed using	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ificance Level y k star (b Theta star (b nu s etects l observations at mu ien the sample size s of UCLs and BTVs small. g gamma distribution	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected) ltiple DLs is small (e.g., <15-2 s	ignificance Level ignificance Level 0.333 12614 12.66 0)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157	97.5%	KM Chebyshev UC Gamma GOF Te A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE nu hat (MLE Mean (detects Gamma ROS Sta sed when data set h tar of detects is sma tuations, GROS met This is especially ted data, BTVs and Minimur		d Observation Detected d Detected d ted at 5% Sign acted Data Onl with many tied b, especially wh incorrect value sample size is computed using	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ificance Level y k star (b Theta star (b nu s etects l observations at mu ien the sample size s of UCLs and BTVs small. g gamma distributior	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) ias corrected MLE) tar (bias corrected) ltiple DLs is small (e.g., <15-2 s n on KM estimates Mean	ignificance Level ignificance Level 0.333 12614 12.66 0)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158	97.5%	KM Chebyshev UC Gamma GOF Ter A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE Mean (detects Gamma ROS Sta set of detects is sma tuations, GROS met This is especially ted data, BTVs and Minimur Maximur	_ 4179 sts on Detecte 0.467 c 0.467 a 0.832 c 0.127 a 0.214 mma Distribut tistics on Dete) 0.354) 11873) 13.45) 4201 tistics using I as > 50% NDs II such as <1.0 hod may yield true when the JCLs may be 0 1 21400 380	d Observation Detected d Detected d ted at 5% Sign acted Data Onl with many tied b, especially wh incorrect value sample size is computed using	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ifficance Level y k star (b Theta star (b nu s etects l observations at mu ien the sample size is s of UCLs and BTVs small. g gamma distribution	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected) ltiple DLs is small (e.g., <15-2 s n on KM estimates Mean Media	ignificance Level ignificance Level 0.333 12614 12.66 0) 1174 0.01 3 314
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1155 1155 1157 1158 1159	97.5%	KM Chebyshev UC Gamma GOF Ter A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE Theta hat (MLE Mean (detects Gamma ROS Sta sed when data set h tar of detects is smatuations, GROS met This is especially ted data, BTVs and Minimur Maximur Sta k hat (MLE K hat (MLE	_ 4179 sts on Detecte 0.467 c 0.467 a 0.832 c 0.127 a 0.214 mma Distribut tistics on Dete) 0.354) 11873) 13.45) 4201 tistics using I as > 50% NDs II such as <1.0 hod may yield true when the JCLs may be 0 1 21400 2 3891) 0.0952	d Observation Detected d Detected d ted at 5% Sign acted Data Onl with many tied b, especially wh incorrect value sample size is computed using	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ifficance Level y k star (b Theta star (b nu s etects l observations at mu en the sample size s of UCLs and BTVs small. g gamma distribution k star (b	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected) ltiple DLs is small (e.g., <15-2 s n on KM estimates Mean Median CV ias corrected MLE)	ignificance Level ignificance Level 0.333 12614 12.66 0) 1174 0.01 3.314 0.101
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1155 1155 1157 1158 1159 1160	97.5%	KM Chebyshev UC Gamma GOF Ter A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE Mean (detects Gamma ROS Sta sed when data set h tar of detects is sma tuations, GROS met This is especially ted data, BTVs and Minimur Maximur SI k hat (MLE Theta hat (MLE K hat	_ 4179 sts on Detecte 0.467 c 0.467 a 0.832 c 0.127 a 0.214 mma Distribution 11473 13.45 13.45 13.45 4201 tistics using I as > 50% NDs II such as <1.0 hod may yield true when the JCLs may be 6 1 21400 2 3891 1 0.0952 1 12334	d Observation Detected d Detected d ted at 5% Sign acted Data Onl with many tied b, especially wh incorrect value sample size is computed using	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ifficance Level y k star (b Theta star (b nu s etects lobservations at mu ien the sample size s of UCLs and BTVs small. g gamma distributior k star (b Theta star (b	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected) ltiple DLs is small (e.g., <15-2 s n on KM estimates Mean Median CV ias corrected MLE) ias corrected MLE) ias corrected MLE)	ignificance Level ignificance Level 0.333 12614 12.66 0) 1174 0.01 3.314 0.101 11648
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1155 1155 1155 1155 1155	97.5%	KM Chebyshev UC Gamma GOF Ter A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE Mean (detects Gamma ROS Sta sed when data set h tar of detects is smatuations, GROS met This is especially ted data, BTVs and Minimur Maximur SI k hat (MLE Theta hat (MLE L heta hat (MLE	4179 sts on Detecte c 0.467 a 0.832 c 0.127 a 0.214 mma Distribut tistics on Dete) 0.354) 13.45) 13.45) 4201 tistics using I as > 50% NDs II such as <1.0 hod may yield true when the J 0.01 1 21400) 3891) 12.334	d Observation Detected d Detected d ted at 5% Sign acted Data Onl with many tied b, especially wh incorrect value sample size is computed using	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ifficance Level y k star (b Theta star (b nu s etects lobservations at mu een the sample size s of UCLs and BTVs small. g gamma distributior k star (b Theta star (b Russer (b Ru	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected MLE) tar (bias corrected MLE) is small (e.g., <15-2 s n on KM estimates Mean Median CV ias corrected MLE) ias corrected MLE) tar (bias corrected MLE) tar (bias corrected MLE)	ignificance Level ignificance Level 0.333 12614 12.66 0) 1174 0.01 3.314 0.101 11648 13.71
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1155 1155 1155 1155 1155	97.5%	KM Chebyshev UC Gamma GOF Ter A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE Mean (detects Gamma ROS Sta sed when data set h tar of detects is sma tuations, GROS met This is especially ted data, BTVs and Minimur Maximur Sta k hat (MLE Theta hat (MLE Theta hat (MLE Cheta hat (MLE Cheta hat (MLE Cheta hat (MLE) Cheta hat (MLE)	4179 sts on Detects c 0.467 a 0.832 c 0.127 a 0.214 mma Distribut tistics on Detects itistics on Detects 0.354 11873 13.45 4201 tistics using I as > 50% NDs II such as <1.0 hod may yield true when the JCLs may be (a) 12334 12.94 0.0465	d Observation Detected d Detected d ted at 5% Sign acted Data Onl with many tied o, especially wh incorrect value sample size is computed using	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ifficance Level y k star (b Theta star (b nu s etects l observations at mu ien the sample size s of UCLs and BTVs small. g gamma distributior k star (b Theta star (b nu s	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected) ltiple DLs is small (e.g., <15-2 s n on KM estimates Mean Median CV ias corrected MLE) ias corrected MLE) ias corrected MLE) tar (bias corrected)	ignificance Level ignificance Level 0.333 12614 12.66 0) 1174 0.01 3.314 0.101 11648 13.71
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165	97.5%	KM Chebyshev UC Gamma GOF Ter A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu ted data appear Ga Gamma Sta k hat (MLE Theta hat (MLE Theta hat (MLE Mean (detects Gamma ROS Sta sed when data set h tar of detects is sma tuations, GROS met This is especially ted data, BTVs and Minimur Maximur SI k hat (MLE Theta hat (MLE Cheta hat (MLE C	4179 sts on Detects c 0.467 a 0.832 c 0.127 a 0.214 mma Distribution 11873 11873 13.45 11873 13.45 11873 13.45 1183 13.45 1180 as > 50% NDs II such as <1.0 hod may yield true when the JCLs may be of J 0.01 121400 3891 0.0952 12334 12.94 0.0465 0.371	d Observation Detected d Detected d ted at 5% Sign ected Data Onl with many tied b, especially wh incorrect value sample size is computed using	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ifficance Level y k star (b Theta star (b nu s etects l observations at mu ien the sample size is s of UCLs and BTVs small. g gamma distributior k star (b Theta star (b nu s Adjusted Chi Squa	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected MLE) tar (bias corrected MLE) is small (e.g., <15-2 s n on KM estimates Mean Median CV ias corrected MLE) ias corrected MLE) tar (bias corrected MLE) tar (bias corrected MLE) tar (bias corrected MLE) tar (bias corrected MLE)	ignificance Level ignificance Level 0.333 12614 12.66 0) 1174 0.01 3.314 0.101 11648 13.71 6.262
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164	97.5%	KM Chebyshev UC Gamma GOF Ter A-D Test Statisti 5% A-D Critical Valu K-S Test Statisti 5% K-S Critical Valu xed data appear Ga Gamma Sta K hat (MLE Theta hat (MLE Mean (detects) Gamma ROS Sta sed when data set h tar of detects is sma tuations, GROS met This is especially ted data, BTVs and Minimur Maximur SI K hat (MLE Theta hat (MLE Check Sta Sed when data set h tar of detects is sma tuations, GROS met This is especially ted data, BTVs and Minimur SI K hat (MLE Theta hat (MLE Check Sta Sa A A A A A A A A A A A A A A A A A A A	4179 sts on Detects c 0.467 a 0.832 c 0.127 a 0.214 mma Distribution 11873) 0.354) 11873) 13.45) 14201 tistics using I as > 50% NDs as > 50% NDs II such as <1.0 hod may yield true when the JCLs may be a 12334) 12.34) 0.0465) 0.371	d Observation Detected d Detected d ted at 5% Sign ected Data Onl with many tied , especially wh incorrect value sample size is computed using 95% C	99% K s Only Anderson-E ata appear Gamma Kolmogoro ata appear Gamma ifficance Level y k star (b Theta star (b nu s etects l observations at mu ien the sample size is s of UCLs and BTVs small. g gamma distributior k star (b Theta star (b Adjusted Chi Squa Gamma Adjusted UC	Darling GOF Test Distributed at 5% S v-Smirnov GOF Distributed at 5% S ias corrected MLE) ias corrected MLE) tar (bias corrected) ltiple DLs is small (e.g., <15-2 s n on KM estimates Mean Median CV ias corrected MLE) tar (bias corrected) tar (bias corrected) tar (bias corrected) tar (bias corrected) tar (bias corrected) tar (bias corrected) tar (bias corrected)	ignificance Level ignificance Level 0.333 12614 12.66 0) 1174 0.01 3.314 0.101 11648 13.71 6.262 2569

	Α	В	С	D	E	F	G	Н		J	K	L
1168				Estimate	es of Gamm	a Parameter	s using KM	I Estimates				
1169					Mean (KM)	1174					SD (KM)	3862
1170				Va	riance (KM)	14914934				SE of I	Mean (KM)	481.2
1171					k hat (KM)	0.0924					k star (KM)	0.0981
1172					nu hat (KM)	12.57				n	u star (KM)	13.35
1173				the	ta hat (KM)	12704				theta	a star (KM)	11963
1174			80% o	amma pero	entile (KM)	792.6			90% ga	mma perc	entile (KM)	3100
1175			95% 0	amma pero	entile (KM)	6822			99% ga	mma perc	entile (KM)	18825
1176											()	
1177					Gamma Ka	plan-Meier (k	(M) Statis	tics				
1178			Approximate Chi S	quare Valu	e (13 35 α)	6 127		Adiust	ed Chi Sa	uare Value	(13 35 B)	6.021
1170		95%	6 Gamma Approximate KM-I	ICL (use w	hen n>=50)	2558	95% 0	Samma Adiu	sted KM-I	ICL (use w	/hen n<50)	2603
1180												
1181				Lognorr	nal GOF Te	st on Detecte	od Observ	ations Only				
1107			Sha	niro Wilk T	est Statistic	0.856		adono only	Shanir	Wilk GO	F Test	
1102			5% Sha	niro Wilk Ci	ritical Value	0.901	Г	Detected Dat	ta Not Log	normal at	5% Signific	ance Level
118/			070 0114	Lilliefors T	est Statistic	0.001	-		l illie	fors GOF	Test	
1185			5%	Lilliefors C	ritical Value	0 197	Г	Detected Dat	ta Not Log	normal at	5% Signific	ance Level
1186			0,0	Detected	Data Not I	ognormal at	- 5% Signifi	cance Leve	I		o io orginito	
1100				20100104		lognormal at	o /o olgilli					
1107				Lognorm	al ROS Sta	tistics Using	Imputed N	Ion-Detects				
1100				Mean in Or	iginal Scale	1175				Mean in	Log Scale	-0.0387
1100				SD in Or	iginal Scale	3890				SD in	Log Scale	5 337
1101			95% t UCL (assumes r	normality of	ROS data)	1962			95% Per	entile Boo	tstran LICI	2026
1102			95	% BCA Bor	tstran LICI	2273			00701 010	95% Boots	tran t LICI	2640
1102			00	5% H-UCI		1 279F+8				50 /0 D000	500D	2040
1104				0,011 002	(2091100)	1.2762.0						<u> </u>
1105			Statistics usi	na KM esti	mates on l	onned Data a	nd Assum	ing Lognor	nal Distrit	ution		
1106				KM Mo	an (logged)			ing Logilon		KM	Geo Mean	2.23
1107				KM 9		3.825			95% Criti	al H Value	(KM-Log)	4 866
1100			KM Standard	Frror of Me	an (logged)	0.020			9	5% H-UCI	(KM -L og)	32525
1190				KM 9		3 825			95% Criti	al H Value	(KM - Log)	4 866
1200			KM Standard	Error of Me	an (logged)	0.020			50% Onu		(INII-LOG)	4.000
1200					an (logged)	0.477						
1201						DI /2 Statistic	~					
1202			DI /2 Norma	1					DI /2 I	og-Transfe	ormed	
1203			DEL Norma	Mean in Or	ininal Scale	1174			0020	Mean in	L og Scale	0.343
1204				SD in Or	iginal Scale	3891				SD in	Log Scale	4 122
1205			95% t UC		s normality)	1961				95% 1	I-Stat UCI	99429
1200	-		DI/2 is not a	recommen	ded methor	nrovided fo	r comparis	sons and his	storical re	asons	1 Oldi OOL	00120
1207			DELIGHTE				- company					
1200				Nonr	arametric l	Distribution F	ree UCL S	tatistics				
1210			Dete	cted Data	appear Ga	nma Distribut	ted at 5%	Significance	e Level			
1210												
1211					Sug	aested UCL_t	o Use					
1212			95% KM App	roximate G	amma UCL	2558						<u> </u>
1213			0070 Tull 7 pp			2000						
1215		Note	: Suggestions regarding the	selection of	f a 95% UCI	are provided	to help th	e user to se	lect the mo	ost approp	riate 95% l	JCL.
1216			Recomm	nendations	are based u	pon data size	, data distr	ibution, and	skewness	5.		
1217		The	se recommendations are ba	sed upon th	ne results of	the simulatio	n studies s	ummarized	in Singh, I	Maichle, ar	nd Lee (200	06).
1218		Howev	er, simulations results will no	ot cover all	Real World	data sets; for	additional	insight the u	iser may w	ant to con	sult a statis	stician.
1219												
1220	Xylenes (total)										
1221	- `											
1222					G	eneral Statis	tics					
1223			Total N	umber of O	bservations	68		Ν	umber of	Distinct Ob	servations	22
1224				Numbe	r of Detects	20			Nu	mber of N	on-Detects	48
1225			Num	ber of Disti	nct Detects	20		1	Number of	Distinct N	on-Detects	2
1226				Minir	num Detect	1.92				Minimum N	Non-Detect	0.75
1227				Maxir	num Detect	5120			N	Maximum N	Non-Detect	1.5
1228				Varia	nce Detects	2332293				Percent N	on-Detects	70.59%
1229	-			Me	ean Detects	1130				Ś	SD Detects	1527
1230				Med	ian Detects	564.5				(CV Detects	1.351
1231				Skewne	ess Detects	1.617				Kurto	sis Detects	1.622
1232			М	ean of Load	ged Detects	5.427			5	SD of Loga	ed Detects	2.601
1233				5.		1	1					1
1234	-				Normal G	OF Test on D	etects On	ly				
1235			Sha	piro Wilk T	est Statistic	0.744			Shapiro	Wilk GO	F Test	
1236			5% Sha	piro Wilk Ci	ritical Value	0.905		Detected D	ata Not No	ormal at 59	% Significa	nce Level
1237				Lilliefors T	est Statistic	0.282			Lillie	fors GOF	Test	
1238	-		5%	Lilliefors C	ritical Value	0.192		Detected D	ata Not No	ormal at 59	% Significa	nce Level
1239				Detecte	ed Data Not	Normal at 59	% Significa	ance Level			-	
1240							-					

	А	В	С	D	E	F	G	Н		J	K	L
1241			Kaplan-Meier (K	(M) Statisti	ics using No	ormal Critical	Values ar	nd other No	nparametr	ic UCLs		
1242					KM Mean	333			KM Sta	andard Err	or of Mean	119.1
1243					KM SD	957.4				95% KM	(BCA) UCL	562.3
1244				95%	KM (t) UCL	531.7		95%	KM (Perce	entile Boot	strap) UCL	539.6
1245				95% ł	KM (z) UCL	528.9			95%	KM Boots	strap t UCL	652.1
1246			90%	6 KM Cheb	yshev UCL	690.4			95%	KM Cheb	vshev UCL	852.2
1247			97.5%	6 KM Cheb	vshev UCL	1077			99%	KM Cheb	, vshev UCL	1518
1248					,						,	
1240				Gamma	a GOF Test	s on Detecte	d Observa	tions Only				
1249				A-D Te	est Statistic	0.363			Anderson	-Darling G	OF Test	
1250				5% A-D Cr	ritical Value	0.822	Detect	ed data ann	ear Gamm	a Distribut	ted at 5% S	ignificance Level
1251				K-S T	est Statistic	0.113	Dottoot		Kolmogo	rov-Smirn		
1252				5% K-S Cr	ritical Value	0.207	Detect	ed data ann	ear Gamm	a Distribut	ed at 5% S	ignificance Level
1255			Dete	cted data	annear Gan	ma Distribut	ad at 5%	Significance				
1254			Dele					olgrinicario	5 20401			
1200				G	amma Stati	etice on Dete	ated Data	Only				
1256					k hot (MLE)			Only	k ctor	/hinc corr	octod MLE)	0.291
1257				Thete		0.403			K Sidi			0.301
1258				Theta		2/03			Theta star	(DIAS COILE		2907
1259				nu Maa		10.30			nu	i star (blas	corrected)	15.24
1260				IVIE	an (detects)	1130						
1261					BOO 0			<u> </u>				
1262			0500	Gamma	a ROS Stat	Istics using in	nputed No	on-Detects				
1263			GROS may not be u	used when	data set ha	s > 50% NDs	with many	tied observ	ations at n	nultiple DL	S	
1264		GH	OS may not be used when k	star of dete	ects is small	such as <1.0	, especiali	y when the	sample siz	e is small	(e.g., <15-2	.0)
1265			For such s	ituations, C	ROS meth	od may yield i	ncorrect v	alues of UC	Ls and BT	Vs		
1266				I his is	especially ti	ue when the	sample siz	ze is small.				
1267			For gamma distributed detect	cted data, l	BIVs and U	CLs may be c	computed i	using gamm	a distributi	on on KM	estimates	
1268					Minimum	0.01					Mean	332.5
1269					Maximum	5120					Median	0.01
1270					SD	964.7					CV	2.901
1271					k hat (MLE)	0.108			k star	(bias corre	ected MLE)	0.113
1272				Theta	a hat (MLE)	3084			Theta star	(bias corre	ected MLE)	2946
1273				ทเ	u hat (MLE)	14.66			nu	ı star (bias	corrected)	15.35
1274			Adjusted Le	evel of Sign	ificance (β)	0.0465						
1275			Approximate Chi So	quare Value	e (15.35, α)	7.504		Adjus	ted Chi Sq	uare Value	e (15.35, β)	7.385
1276			95% Gamma Approximate U	ICL (use wl	hen n>=50)	680	95	5% Gamma	Adjusted L	JCL (use v	vhen n<50)	691
1277												
1278				Estimate	es of Gamm	a Parameter	s using KM	M Estimates	3			
1279					Mean (KM)	333					SD (KM)	957.4
1280				Var	riance (KM)	916619				SE of	Mean (KM)	119.1
1281					k hat (KM)	0.121					k star (KM)	0.125
1282				r	nu hat (KM)	16.45				n	u star (KM)	17.06
1283				the	ta hat (KM)	2753				thet	a star (KM)	2655
1284			80% ga	amma perc	entile (KM)	306.6			90% ga	mma perc	entile (KM)	954.5
1285			95% ga	amma perc	entile (KM)	1889			99% ga	mma perc	entile (KM)	4711
1286												
1287					Gamma Ka	plan-Meier (H	(M) Statis	tics				
1288			Approximate Chi So	quare Value	e (17.06, α)	8.716		Adjus	ted Chi Sq	uare Value	e (17.06, β)	8.586
1289		95%	6 Gamma Approximate KM-U	ICL (use wl	hen n>=50)	651.9	95% 0	Gamma Adji	usted KM-L	JCL (use v	vhen n<50)	661.7
1290												
1291				Lognorn	nal GOF Te	st on Detecte	ed Observ	ations Only				
1292			Shap	piro Wilk Te	est Statistic	0.869			Shapiro	Wilk GO	F Test	
1293			5% Shap	piro Wilk Cr	ritical Value	0.905	0	Detected Da	ta Not Log	normal at	5% Signific	ance Level
1294				Lilliefors Te	est Statistic	0.196			Lillief	fors GOF	Test	
1295			5% l	Lilliefors Cr	ritical Value	0.192		Detected Da	ta Not Log	normal at	5% Signific	ance Level
1296				Detected	Data Not L	ognormal at	5% Signifi	icance Leve	əl 🛛			
1297												
1298				Lognorm	al ROS Sta	tistics Using	Imputed N	Non-Detects	3			
1299			Ν	lean in Ori	iginal Scale	333.2				Mean in	Log Scale	-0.22
1300				SD in Ori	iginal Scale	964.4				SD in	Log Scale	4.779
1301			95% t UCL (assumes n	ormality of	ROS data)	528.3			95% Perc	entile Boo	tstrap UCL	536.4
1302			95%	% BCA Boo	otstrap UCL	597.4			1	95% Boots	strap t UCL	667.6
1303			9	5% H-UCL	(Log ROS)	2831200						
1304												
1305			Statistics usir	ng KM esti	mates on Lo	ogged Data a	nd Assum	ning Lognor	mal Distrib	oution		
1306				KM Me	an (logged)	1.393				KM	Geo Mean	4.028
1307				KMS	SD (logged)	2.945			95% Critic	cal H Value	e (KM-Log)	3.602
1308			KM Standard E	Error of Me	an (logged)	0.366			95	5% H-UCL	(KM -Log)	1124
1309				KM S	SD (logged)	2.945			95% Critic	al H Value	e (KM-Log)	3.602
1310			KM Standard E	Error of Me	an (logged)	0.366						
1311												

	А	В	С	D	E	F	G	Н	I	J	K	L
1312						DL/2 Statisti	:s					
1313			DL/2 Norma						DL/2 L	.og-Transfo	ormed	
1314				Mean in Oi	iginal Scale	332.8				Mean in	Log Scale	0.924
1315				SD in Or	iginal Scale	964.6				SD in	Log Scale	3.242
1316			95% t UC	L (Assume	s normality)	527.9				95% H	I-Stat UCL	2386
1317			DL/2 is not a	recommer	nded method	d, provided fo	r comparis	sons and h	istorical re	asons		
1318												
1319				Non	parametric I	Distribution F	ree UCL S	tatistics				
1320			Dete	ected Data	appear Gar	nma Distribu	ted at 5%	Significand	e Level			
1321												
1322					Sug	gested UCL 1	o Use					
1323			95% KM App	oroximate G	iamma UCL	651.9						
1324												
1325		Note:	Suggestions regarding the	selection o	f a 95% UCI	are provided	I to help th	e user to s	elect the m	iost approp	riate 95% U	CL.
1326			Recomm	nendations	are based u	pon data size	, data distr	ibution, an	d skewnes	s.		
1327		The	se recommendations are ba	sed upon t	he results of	the simulatio	n studies s	ummarized	l in Singh,	Maichle, ar	nd Lee (200	6).
1328		Howeve	er, simulations results will no	ot cover all	Real World	data sets; for	additional	insight the	user may v	want to con	sult a statis	tician.
1329												

Attachment 2 (Continued)

Groundwater Samples from Q3 and Q4 2015, Off-Base (Input)
	А	В	С	D	E	F
1	1,2,4-Trimethylbenzene	d_1,2,4-Trimethylbenzene		1,2-Dibromoethane	d_1,2-Dibromoethane	
2	117	1		11.5	1	
3	111	1		8.16	1	
4	13.5	1		7.42	1	
5	9.14	1		6.96	1	
6	4.97	1		0.865	1	
7	1.25	0		0.825	1	
8	1.0065	1		0.8005	1	
9	0.5	0		0.696	1	
10	0.5	0		0.665	1	
11	0.5	0		0.558	1	
12	0.5	0		0.523	1	
13	0.5	0		0.4655	1	
14	0.5	0		0.397	1	
15	0.5	0		0.38	1	
16	0.5	0		0.366	1	
17	0.5	0		0.316	1	
18	0.5	0		0.297	1	
19	0.5	0		0.242	1	
20	0.5	0		0.228	1	
21	0.5	0		0.227	1	
22	0.5	0		0.183	1	
23	0.5	0		0.1585	1	
24	0.5	0		0.158	1	
25	0.5	0		0.143	1	
26	0.5	0		0.138	1	
27	0.5	0		0.137	1	
28	0.5	0		0.131	1	
29	0.5	0		0.119	1	
30	0.5	0		0.109	1	
31	0.5	0		0.107	1	
32	0.5	0		0.106	1	
33	0.5	0		0.1	1	
34	0.5	0		0.0962	1	
35	0.25	0		0.0897	1	
36	0.25	0		0.0877	1	
37	0.25	0		0.0857	1	
38	0.25	0		0.0818	1	
39	0.25	0		0.0787	1	
40	0.25	0		0.07795	1	
41	0.25	0		0.0766	1	
42	0.25	0		0.073	1	
43	0.25	0		0.072	1	
44	0.25	0		0.062	1	
45	0.25	0		0.0576	1	
46	0.25	0		0.0544	1	
47	0.25	0		0.0511	1	
48	0.25	0		0.0503	1	
49	0.25	0		0.0484	1	
50	0.25	0		0.0474	1	
51	0.25	0		0.0442	1	
52	0.25	0		0.0365	1	

	A	В	С	D	E	F
1	1,2,4-Trimethylbenzene	d_1,2,4-Trimethylbenzene		1,2-Dibromoethane	d_1,2-Dibromoethane	
53	0.25	0		0.03435	1	
54	0.25	0		0.0335	1	
55	0.25	0		0.0332	1	
56	0.25	0		0.0329	1	
57	0.25	0		0.0322	1	
58	0.25	0		0.0296	1	
59	0.25	0		0.0286	1	
60	0.25	0		0.0268	1	
61	0.25	0		0.025	1	
62	0.25	0		0.0217	1	
63	0.25	0		0.0214	1	
64	0.25	0		0.0211	1	
65	0.25	0		0.0208	1	
66	0.25	0		0.0192	1	
67	0.25	0		0.0178	1	
68	0.25	0		0.0149	1	
69	0.25	0		0.0148	1	
70	0.25	0		0.011	1	
71	0.25	0		0.00985	0	
72	0.25	0		0.00968	0	
73	0.25	0		0.00968	0	
74	0.25	0		0.00966	0	
75	0.25	0		0.00963	0	
76	0.25	0		0.00962	0	
77	0.25	0		0.0096	0	
78	0.25	0		0.00958	0	
79	0.25	0		0.00958	0	
80	0.25	0		0.00958	0	
81	0.25	0		0.00958	0	
82	0.25	0		0.00957	0	
83	0.25	0		0.00956	0	
84	0.25	0		0.00956	0	
85	0.25	0		0.00956	0	
86	0.25	0		0.00954	0	
87	0.25	0		0.00954	0	
88	0.25	0		0.00954	0	
89	0.25	0		0.00953	0	
90	0.25	0		0.00953	0	
91	0.25	0		0.00953	0	
92	0.25	0		0.00952	0	
93	0.25	0		0.00952	0	
94	0.25	0		0.00952	0	
95	0.25	0		0.00951	0	
96	0.25	0		0.00951	0	
97	0.25	0		0.00951	0	
98	0.25	0		0.00951	0	
99	0.25	0		0.0095	0	
100	0.25	0		0.00949	0	
101	0.25	0		0.00949	0	
102	0.25	U		0.00949	U	
103	0.25	U		0.00949	U	
104	0.25	0		0.00949	U	

	A	В	С	D	E	F
1	1,2,4-Trimethylbenzene	d_1,2,4-Trimethylbenzene		1,2-Dibromoethane	d_1,2-Dibromoethane	
105	0.25	0		0.00948	0	
106	0.25	0		0.00948	0	
107	0.25	0		0.00948	0	
108	0.25	0		0.00947	0	
109	0.25	0		0.00947	0	
110	0.25	0		0.00947	0	
111	0.25	0		0.00947	0	
112	0.25	0		0.00946	0	
113	0.25	0		0.00946	0	
114	0.25	0		0.00946	0	
115	0.25	0		0.00945	0	
116	0.25	0		0.00945	0	
117	0.25	0		0.009445	0	
118	0.25	0		0.00944	0	
119	0.25	0		0.00944	0	
120	0.25	0		0.00944	0	
121	0.25	0		0.00943	0	
122	0.25	0		0.00943	0	
123	0.25	0		0.00943	0	
124	0.25	0		0.00943	0	
125	0.25	0		0.00943	0	
120	0.25	0		0.00943	0	
120	0.25	0		0.00942	0	
127	0.25	0		0.00942	0	
120	0.25	0		0.00942	0	
120	0.25	0		0.00042	0	
121	0.25	0		0.000410	0	
122	0.25	0		0.00941	0	
102	0.25	0		0.00941	0	
124	0.25	0		0.00041	0	
134	0.25	0		0.00941	0	
135	0.25	0		0.00941	0	
127	0.25	0		0.00041	0	
120	0.25	0		0.0004	0	
120	0.25	0		0.0094	0	
139	0.25	0		0.0034	0	
140	0.25	0	+	0.00303	0	
141	0.25	0		0.00939	0	
142	0.25	0		0.00939	0	
143	0.25	0		0.00939	0	
1/4	0.25	0		0.00300	0	
1/6	0.25	0		0.0030	0	
140	0.25	0		0.00930	0	
14/	0.25	0	+	0.003373	0	
140	0.25	0		0.00937	0	
149	0.25	0		0.00937	0	
100	0.25	0		0.00937	0	
151	0.25	0		0.00937	0	
152	0.25	0		0.00337	0	
103	0.25	0		0.0030	0	
104	0.25	0		0.0030	0	
155	0.25	0		0.0030	0	
156	0.25	U		0.00936	U	

	Α	В	С	D	E	F
1	1,2,4-Trimethylbenzene	d_1,2,4-Trimethylbenzene		1,2-Dibromoethane	d_1,2-Dibromoethane	
157	0.25	0		0.00936	0	
158	0.25	0		0.00936	0	
159	0.25	0		0.00935	0	
160	0.25	0		0.00934	0	
161	0.25	0		0.00934	0	
162	0.25	0		0.00934	0	
163	0.25	0		0.00934	0	
164	0.25	0		0.00933	0	
165	0.25	0		0.00933	0	
166	0.25	0		0.00932	0	
167	0.25	0		0.00932	0	
168	0.25	0		0.00932	0	
169	0.25	0		0.00932	0	
170	0.25	0		0.00932	0	
171	0.25	0		0.00931	0	
172	0.25	0		0.00931	0	
173	0.25	0		0.00931	0	
174	0.25	0		0.00931	0	
175	0.25	0		0.00931	0	
176	0.25	0		0.0093	0	
177	0.25	0		0.0093	0	
178	0.25	0		0.00929	0	
179	0.25	0		0.00929	0	
180	0.25	0		0.00929	0	
181	0.25	0		0.00928	0	
182	0.25	0		0.00928	0	
183	0.25	0		0.00927	0	
184	0.25	0		0.00927	0	
185	0.25	0		0.00927	0	
186	0.25	0		0.00927	0	
187	0.25	0		0.00926	0	
188	0.25	0		0.00926	0	
189	0.25	0		0.00926	0	
190	0.25	0		0.00924	0	
191	0.25	0		0.00924	0	
192	0.25	0		0.00924	0	
193	0.25	0		0.00923	0	
194	0.25	0		0.00923	0	
195	0.25	0		0.00922	0	
196	0.25	0		0.00919	0	
197	0.25	0		0.00914	0	
198	0.25	0		0.00903	0	

	G	Н	I	J	К	L
1	1,2-Dichloroethane	d_1,2-Dichloroethane		1-Methylnaphthalene	d_1-Methylnaphthalene	
2	5.45	1		20.4	1	
3	5.41	1		18.6	1	
4	5	0		12.5	0	
5	4.24	1		11.6	1	
6	3.98	1		11.35	1	
7	3.83	1		10.8	1	
8	2.95	1		6.34	1	
9	2.57	1		5.62	1	
10	2.04	1		1.32	0	
11	1.94	1		1.28	0	
12	1.86	1		1.25	0	
13	1.44	1		1.25	0	
14	1.44	1		1.25	0	
15	1.37	1		1.25	0	
16	1.345	1		1.25	0	
17	1.09	1		1.25	0	
18	1.07	1		1.25	0	
19	1.05	1		1.25	0	
20	0.947	1		1.25	0	
21	0.8755	1		1.25	0	
22	0.807	1		1.25	0	
23	0.759	1		1.25	0	
24	0.758	1		1.25	0	
25	0.757	1		1.25	0	
26	0.7215	1		1.25	0	
27	0.707	1		1.25	0	
28	0.645	1		1.24	0	
29	0.644	1		1.24	0	
30	0.625	1		1.24	0	
31	0.568	1		1.24	0	
32	0.568	1		1.24	0	
33	0.502	1		1.24	0	
34	0.5	0		1.24	0	
35	0.5	0		1.24	0	
36	0.5	0		1.24	0	
37	0.5	0		1.24	0	
38	0.401	1		1.24	0	
39	0.39	1		1.24	0	
40	0.33	1		1.23	0	
41	0.3275	1		1.23	0	
42	0.295	1		1.23	0	
43	0.25	0		1.23	0	
44	0.25	0		1.23	0	
45	0.25	0		1.23	0	
46	0.25	0		1.23	0	
47	0.25	0		1.23	0	
48	0.25	0		1.23	0	
49	0.25	0		1.23	0	
50	0.25	0		1.23	0	
51	0.25	0		1.23	0	
52	0.25	0		1.23	0	

	G	Н		J	К	L
1	1,2-Dichloroethane	d_1,2-Dichloroethane		1-Methylnaphthalene	d_1-MethyInaphthalene	
53	0.25	0		1.23	0	
54	0.25	0		1.23	0	
55	0.25	0		1.23	0	
56	0.25	0		1.21	0	
57	0.25	0		1.21	0	
58	0.25	0		1.21	0	
59	0.25	0		1.21	0	
60	0.25	0		1.21	0	
61	0.25	0		1.21	0	
62	0.25	0		1.21	0	
63	0.25	0		1.21	0	
64	0.25	0		1.21	0	
65	0.25	0		1.21	0	
66	0.25	0		1.21	0	
67	0.25	0		1.21	0	
68	0.25	0		1.21	0	
69	0.25	0		121	0	
70	0.25	0		1.21	0	
71	0.25	0		121	0	
72	0.25	0		121	0	
73	0.25	0		121	0	
74	0.25	0		1 205	0	
75	0.25	0		12	0	
76	0.20	0		12	0	
70	0.25	0		12	0	
79	0.25	0		1.2	0	
70	0.25	0		1.2	0	
79 00	0.25	0		1.2	0	
00	0.25	0		1.2	0	
01	0.25	0		1.2	0	
02	0.25	0		1.2	0	
03	0.25	0		1.2	0	
04 95	0.25	0		1.2	0	
00	0.25	0		1.2	0	
00 07	0.25	0		1.2	0	
0/	0.25	0		1.2	0	
00 00	0.20	0		1.2	0	
09	0.20	0		1.2	0	
90	0.25	0		1.2	0	
91	0.25	0		1.2	0	
92	0.25	0		1.2	0	
93	0.25	0		1.2	0	
94	0.25	0		1.2	Ű	
95	0.25	0		1.2	Ŭ	
96	0.25	0		1.2	0	
97	0.25	0		1.2	0	
98	0.25	0		1.2	0	
99	0.25	0		1.2	0	
100	0.25	0		1.2	0	
101	0.25	0		1.2	0	
102	0.25	0		1.2	0	
103	0.25	0		1.2	0	
104	0.25	0		1.195	0	

	G	Н	J	К	L
1	1,2-Dichloroethane	d_1,2-Dichloroethane	1-Methylnaphthalene	d_1-MethyInaphthalene	
105	0.25	0	1.195	0	
106	0.25	0	1.19	0	
107	0.25	0	1.19	0	
108	0.25	0	1.19	0	
109	0.25	0	1.19	0	
110	0.25	0	1.19	0	
111	0.25	0	1.19	0	
112	0.25	0	1.19	0	
113	0.25	0	1.19	0	
114	0.25	0	1.19	0	
115	0.25	0	1.19	0	
116	0.25	0	1.19	0	
117	0.25	0	1.19	0	
118	0.25	0	1.19	0	
119	0.25	0	1.19	0	
120	0.25	0	1.19	0	
121	0.25	0	1.19	0	
122	0.25	0	1.19	0	
123	0.25	0	1.19	0	
124	0.25	0	1.19	0	
125	0.25	0	1.19	0	
126	0.25	0	1.19	0	
127	0.25	0	1.19	0	
128	0.25	0	1.19	0	
129	0.25	0	1.18	0	
130	0.25	0	1.18	0	
131	0.25	0	1.18	0	
132	0.25	0	1.18	0	
133	0.25	0	1.18	0	
134	0.25	0	1.10	0	
130	0.25	0	1.10	0	
127	0.25	0	1.10	0	
132	0.25	0	1 18	0	
130	0.25	0	1 18	0	
140	0.25	0	1 18	0	
141	0.25	0	1.18	0	
142	0.25	0	1.18	0	
143	0.25	0	1.18	0	
144	0.25	0	1.18	0	
145	0.25	0	1.18	0	
146	0.25	0	1.18	0	
147	0.25	0	1.18	0	
148	0.25	0	1.18	0	
149	0.25	0	1.18	0	
150	0.25	0	1.18	0	
151	0.25	0	1.18	0	
152	0.25	0	1.18	0	
153	0.25	0	1.18	0	
154	0.25	0	1.18	0	
155	0.25	0	1.18	0	
156	0.25	0	1.18	0	

	G	Н	J	К	L
1	1,2-Dichloroethane	d_1,2-Dichloroethane	1-Methylnaphthalene	d_1-MethyInaphthalene	
157	0.25	0	1.18	0	
158	0.25	0	1.18	0	
159	0.25	0	1.18	0	
160	0.25	0	1.18	0	
161	0.25	0	1.18	0	
162	0.25	0	1.18	0	
163	0.25	0	1.18	0	
164	0.25	0	1.18	0	
165	0.25	0	1.18	0	
166	0.25	0	1.18	0	
167	0.25	0	1.18	0	
168	0.25	0	1.18	0	
169	0.25	0	1.18	0	
170	0.25	0	1.18	0	
171	0.25	0	1.18	0	
172	0.25	0	1.18	0	
173	0.25	0	1.18	0	
174	0.25	0	1.175	0	
175	0.25	0	1.17	0	
176	0.25	0	1.17	0	
177	0.25	0	1.17	0	
178	0.25	0	1.17	0	
179	0.25	0	1.17	0	
180	0.25	0	1.17	0	
181	0.25	0	1.17	0	
182	0.25	0	1.17	0	
183	0.25	0	1.17	0	
184	0.25	0	1.165	0	
185	0.25	0	1.16	0	
186	0.25	0	1.16	0	
187	0.25	0	1.16	0	
188	0.25	0	1.16	0	
189	0.25	0	1.16	0	
190	0.25	0	1.16	0	
191	0.25	0	1.16	0	
192	0.25	0	1.16	0	
193	0.25	0	1.16	0	
194	0.25	0	1.16	0	
195	0.25	0	1.16	0	
196	0.25	0	1.16	0	
197	0.25	0	1.16	0	
198	0.25	0	0.619	0	

	М	N	0	Р	Q	R
1	2-Methylnaphthalene	d_2-Methylnaphthalene		Acetophenone	d_Acetophenone	
2	12.5	0		903	1	
3	11.6	0		860	1	
4	9.93	1		129	1	
5	1.61	1		122	1	
6	1.32	0		8.78	1	
7	1.28	0		3.68	1	
8	1.25	0		1.68	1	
9	1.25	0		1.32	0	
10	1.25	0		1.28	0	
11	1.25	0		1.25	0	
12	1.25	0		1.25	0	
13	1.25	0		1.25	0	
14	1.25	0		1.25	0	
15	1.25	0		1.25	0	
16	1.25	0		1.25	0	
17	1.25	0		1.25	0	
18	1.25	0		1.25	0	
19	1.25	0		1.25	0	
20	1.25	0		1.25	0	
21	1.25	0		1.25	0	
22	1.25	0		1.25	0	
23	1.25	0		1.25	0	
24	1.25	0		1.25	0	
25	1.24	0		1.25	0	
26	1.24	0		1.25	0	
27	1.24	0		1.25	0	
28	1.24	0		1.24	0	
29	1.24	0		1.24	0	
30	1.24	0		1.24	0	
31	1.24	0		1.24	0	
32	1.24	0		1.24	0	
33	1.24	0		1.24	0	
34	1.24	0		1.24	0	
35	1.24	0		1.24	0	
36	1.24	0		1.24	0	
37	1.23	0		1.24	0	
38	1.23	0		1.24	0	
39	1.23	0		1.24	0	
40	1.23	0		1.23	0	
41	1.23	0		1.23	0	
42	1.23	0		1.23	0	
43	1.23	0		1.23	0	
44	1.23	0		1.23	0	
45	1.23	0		1.23	0	
46	1.23	0		1.23	0	
47	1.23	0		1.23	0	
48	1.23	0		1.23	0	
49	1.23	0		1.23	0	
50	1.23	0		1.23	0	
51	1.23	0		1.23	0	
52	1.23	0		1.23	0	

	М	N	0	Р	Q	R
1	2-Methylnaphthalene	d_2-Methylnaphthalene		Acetophenone	d_Acetophenone	
53	1.21	0		1.23	0	
54	1.21	0		1.23	0	
55	1.21	0		1.23	0	
56	1.21	0		1.21	0	
57	1.21	0		1.21	0	
58	1.21	0		1.21	0	
59	1.21	0		1.21	0	
60	1.21	0		1.21	0	
61	1.21	0		1.21	0	
62	1.21	0		1.21	0	
63	1.21	0		1.21	0	
64	1.21	0		1.21	0	
65	1.21	0		1.21	0	
66	1.21	0		1.21	0	
67	1.21	0		1.21	0	
68	1.21	0		1.21	0	
69	1.21	0		1.21	0	
70	121	0		1.21	0	
71	121	0		1 21	0	
72	1 205	0		1 21	0	
72	12	0		1.21	0	
73	12	0		1.21	0	
75	12	0		1 205	0	
76	1.2	0		1.200	0	
70	1.2	0		1.2	0	
70	1.2	0		1.2	0	
70	1.2	0		1.2	0	
79	1.2	0		1.2	0	
01	1.2	0		1.2	0	
01	1.2	0		1.2	0	
02	1.2	0		1.2	0	
03	1.2	0		1.2	0	
84	1.2	0		1.2	0	
85	1.2	0		1.2	0	
86	1.2	0		1.2	0	
87	1.2	0		1.2	0	
88	1.2	U		1.2	U	
89	1.2	U		1.2	U	
90	1.2	Ű		1.2	U	
91	1.2	0		1.2	U	
92	1.2	0		1.2	U	
93	1.2	0		1.2	0	
94	1.2	U		1.2	0	
95	1.2	0		1.2	U	
96	1.2	0		1.2	0	
97	1.2	0		1.2	0	
98	1.2	0		1.2	0	
99	1.2	0		1.2	0	
100	1.2	0		1.2	0	
101	1.2	0		1.2	0	
102	1.195	0		1.2	0	
103	1.195	0		1.2	0	
104	1.19	0		1.2	0	

	Μ	N	0	Р	Q	R
1	2-Methylnaphthalene	d_2-Methylnaphthalene		Acetophenone	d_Acetophenone	
105	1.19	0		1.195	0	
106	1.19	0		1.195	0	
107	1.19	0		1.19	0	
108	1.19	0		1.19	0	
109	1.19	0		1.19	0	
110	1.19	0		1.19	0	
111	1.19	0		1.19	0	
112	1.19	0		1.19	0	
113	1.19	0		1.19	0	
114	1.19	0		1.19	0	
115	1.19	0		1.19	0	
116	1.19	0		1.19	0	
117	1 19	0		1 19	0	
118	1 19	0		1 19	0	
119	1 19	0		1 19	0	
120	1 19	0		1 19	0	
121	1 19	0		1 19	0	
121	1 19	0		1.15	0	
122	1 10	0		1 10	0	
123	1 10	0		1.10	0	
124	1.19	0		1.19	0	
120	1.19	0		1.19	0	
120	1.19	0		1.19	0	
127	1.18	0		1.19	0	
128	1.18	0		1.18	0	
129	1.18	0		1.18	0	
130	1.18	0		1.18	0	
131	1.18	0		1.18	0	
132	1.18	0		1.18	0	
133	1.18	0		1.18	0	
134	1.18	0		1.18	0	
135	1.18	0		1.18	0	
136	1.18	0		1.18	0	
137	1.18	0		1.18	0	
138	1.18	0		1.18	0	
139	1.18	0		1.18	0	
140	1.18	0		1.18	0	
141	1.18	0		1.18	0	
142	1.18	0		1.18	0	
143	1.18	0		1.18	0	
144	1.18	0		1.18	0	
145	1.18	0		1.18	0	
146	1.18	0		1.18	0	
147	1.18	0		1.18	0	
148	1.18	0		1.18	0	
149	1.18	0		1.18	0	
150	1.18	0		1.18	0	
151	1.18	0		1.18	0	
152	1.18	0		1.18	0	
153	1.18	0		1.18	0	
154	1.18	0		1.18	0	
155	1.18	0		1.18	0	
156	1.18	0		1.18	0	

	Μ	N	0	Р	Q	R
1	2-Methylnaphthalene	d_2-Methylnaphthalene		Acetophenone	d_Acetophenone	
157	1.18	0		1.18	0	
158	1.18	0		1.18	0	
159	1.18	0		1.18	0	
160	1.18	0		1.18	0	
161	1.18	0		1.18	0	
162	1.18	0		1.18	0	
163	1.18	0		1.18	0	
164	1.18	0		1.18	0	
165	1.18	0		1.18	0	
166	1.18	0		1.18	0	
167	1.18	0		1.18	0	
168	1.18	0		1.18	0	
169	1.18	0		1.18	0	
170	1.18	0		1.18	0	
171	1.18	0		1.18	0	
172	1.175	0		1.175	0	
173	1.175	0		1.175	0	
174	1.17	0		1.17	0	
175	1.17	0		1.17	0	
176	1.17	0		1.17	0	
177	1.17	0		1.17	0	
178	1.17	0		1.17	0	
179	1.17	0		1.17	0	
180	1.17	0		1.17	0	
181	1.17	0		1.17	0	
182	1.17	0		1.17	0	
183	1.165	0		1.165	0	
184	1.16	0		1.16	0	
185	1.16	0		1.16	0	
186	1.16	0		1.16	0	
187	1.16	0		1.16	0	
188	1.16	0		1.16	0	
189	1.16	0		1.16	0	
190	1.16	0		1.16	0	
191	1.16	0		1.16	0	
192	1.16	0		1.16	0	
193	1.16	0		1.16	0	
194	1.16	0		1.16	0	
195	1.16	0		1.16	0	
196	1.16	0		1.16	0	
197	1.16	0		1.16	0	
198	0.619	0		0.619	0	

	S	Т	U	V	W	Х	Y	Z	AA
1	Benzene	d_Benzene		Ethylbenzene	d_Ethylbenzene		Lead	d_Lead	
2	2170	1		903	1		5.3	1	
3	1990	1		748	1		4.52	1	
4	508	1		186	1		3.83	1	
5	479	1		73.4	1		3	0	
6	36.7	1		64.8	1		3	0	
7	6.535	1		50.4	1		3	0	
8	4.21	1		6.79	1		3	0	
9	1.945	1		6.49	1		3	0	
10	1.25	0		5.69	1		3	0	
11	1.24	1		2.71	1		3	0	
12	0.624	1		1.25	0		2.18	1	
13	0.544	1		0.5	0		2.11	1	
14	0 538	1		0.5	0		2 07	1	
15	0.5	0		0.5	0		2	0	
16	0.5	0		0.5	0		2	0	
17	0.5	0		0.5	0		2	0	
18	0.5	0		0.5	0		2	0	
19	0.5	0		0.5	0		1.9	0	
20	0.5	0		0.5	0		1.9	0	
21	0.5	0		0.5	0		1.9	0	
22	0.5	0		0.5	0		1.9	0	
22	0.5	0		0.5	0		1.9	0	
24	0.5	0		0.5	0		1.9	0	
24	0.5	0		0.5	0		1.5	0	
20	0.5	0		0.5	0		1.0	0	
20	0.5	0		0.5	0		1.0	0	
27	0.5	0		0.5	0		1.75	0	
20	0.5	0		0.5	0		1.7	0	
20	0.5	0		0.5	0		1.7	0	
31	0.0	0		0.5	0		1.6	0	
22	0.5	0		0.5	0		1.0	1	
32 22	0.5	0		0.5	0		1.54	0	
33	0.5	0		0.3	0		1.5	0	
25	0.5	0		0.375	0		1.5	0	
20	0.20	0		0.20	0		1.0	0	
00 27	0.20	0		0.20	0		1.0	0	
37 20	0.25	0		0.25	0		1.5	0	
20	0.20	0		0.20	0		1.0	0	
39	0.25	0		0.20	0		1.0	0	
4U 11	0.20	0		0.20	0		1.0	0	
41 10	0.25	0		0.25	0		1.5	0	
42	0.25	0		0.25	0		1.5	0	
43	0.20	0		0.20	0		1.0	0	
44 15	0.25	0		0.25	0		1.5	0	
40 40	0.20	0		0.20	0		1.0	0	
40	0.20	0		0.20	0		1.0	0	
4/	0.25	0		0.25	0		1.5		
48 40	0.20	0		0.20	0		1.0	0	
49	0.25	0		0.20	0		1.0	0	
UC E1	0.25	0		0.20	0		1.0	0	
51	0.25	0		0.25	0		1.5	0	
52	0.25	U		0.25	U		1.5	l U	

	S	Т	U	V	W	Х	Y	Z	AA
1	Benzene	d_Benzene		Ethylbenzene	d_Ethylbenzene		Lead	d_Lead	
53	0.25	0		0.25	0		1.5	0	
54	0.25	0		0.25	0		1.5	0	
55	0.25	0		0.25	0		1.5	0	
56	0.25	0		0.25	0		1.5	0	
57	0.25	0		0.25	0		1.5	0	
58	0.25	0		0.25	0		1.5	0	
59	0.25	0		0.25	0		1.5	0	
60	0.25	0		0.25	0		1.5	0	
61	0.25	0		0.25	0		1.5	0	
62	0.25	0		0.25	0		1.5	0	
63	0.25	0		0.25	0		1.5	0	
64	0.25	0		0.25	0		1.5	0	
65	0.25	0		0.25	0		1.5	0	
66	0.25	0		0.25	0		1.5	0	
67	0.25	0		0.25	0		1.5	0	
68	0.25	0		0.25	0		1.5	0	
69	0.25	0		0.25	0		1.5	0	
70	0.25	0		0.25	0		1.5	0	
71	0.25	0		0.25	0		1.5	0	
72	0.25	0		0.25	0		1.5	0	
73	0.25	0		0.25	0		1.5	0	
74	0.25	0		0.25	0		1.5	0	
75	0.25	0		0.25	0		1.5	0	
76	0.25	0		0.25	0		1.5	0	
77	0.25	0		0.25	0		1.5	0	
78	0.25	0		0.25	0		1.5	0	
79	0.25	0		0.25	0		1.5	0	
80	0.25	0		0.25	0		1.5	0	
81	0.25	0		0.25	0		1.5	0	
82	0.25	0		0.25	0		1.5	0	
83	0.25	0		0.25	0		1.5	0	
84	0.25	0		0.25	0		1.5	0	
85	0.25	0		0.25	0		1.5	0	
86	0.25	0		0.25	0		1.5	0	
8/	0.25	0		0.25	0		1.5	0	
88	0.25	0		0.25	0		1.5	0	
89	0.25	0		0.25	0		1.5	0	
90	0.20	0		0.20	0		1.5	0	
91	0.20	0		0.20	0		1.0	0	
92	0.20	0		0.20	0		1.0	0	
93	0.25	0		0.25	0		1.5	0	
05	0.25	0		0.25	0		1.5	0	
90	0.25	0		0.25	0		1.5	0	
90	0.25	0		0.25	0		1.5	0	
97	0.25	0		0.25	0		1.5	0	
ga	0.25	0		0.25	0		1.5	0	
100	0.25	0		0.25	0		1.5	0	
101	0.25	0		0.25	0		1.5	0	
102	0.25	0		0.25	0		1.5	0	
103	0.25	0		0.25	0		1.5	0	
104	0.25	0		0.25	0		1.5	0	

	S	Т	U	V	W	Х	Y	Z	AA
1	Benzene	d_Benzene		Ethylbenzene	d_Ethylbenzene		Lead	d_Lead	
105	0.25	0		0.25	0		1.5	0	
106	0.25	0		0.25	0		1.5	0	
107	0.25	0		0.25	0		1.5	0	
108	0.25	0		0.25	0		1.5	0	
109	0.25	0		0.25	0		1.5	0	
110	0.25	0		0.25	0		1.5	0	
111	0.25	0		0.25	0		1.5	0	
112	0.25	0		0.25	0		1.5	0	
113	0.25	0		0.25	0		1.5	0	
114	0.25	0		0.25	0		1.5	0	
115	0.25	0		0.25	0		1.5	0	
116	0.25	0		0.25	0		1.5	0	
117	0.25	0		0.25	0		1.5	0	
118	0.25	0		0.25	0		1.5	0	
119	0.25	0		0.25	0		1.5	0	
120	0.25	0		0.25	0		1.5	0	
121	0.25	0		0.25	0		1.5	0	
122	0.25	0		0.25	0		1.5	0	
123	0.25	0		0.25	0		1.5	0	
124	0.25	0		0.25	0		1.5	0	
125	0.25	0		0.25	0		1.5	0	
126	0.25	0		0.25	0		1.5	0	
127	0.25	0		0.25	0		1.5	0	
128	0.25	0		0.25	0		1.5	0	
129	0.25	0		0.25	0		1.5	0	
130	0.25	0		0.25	0		1.5	0	
131	0.25	0		0.25	0		1.5	0	
132	0.25	0		0.25	0		1.5	0	
133	0.25	0		0.25	0		1.5	0	
134	0.25	0		0.25	0		1.5	0	
135	0.25	0		0.25	0		1.5	0	
136	0.25	0		0.25	0		1.5	0	
137	0.25	0		0.25	0		1.5	0	
138	0.25	0		0.25	0		1.5	0	
139	0.20	0		0.20	0		1.0	0	
140	0.25	0		0.25	0		1.5	0	
1/12	0.25	0		0.25	0		1.5	0	
1/12	0.25	0		0.25	0		1.5	0	
143	0.25	0		0.25	0		1.5	0	
145	0.25	0		0.25	0		1.5	0	
146	0.25	0		0.25	0		1.5	0	
147	0.25	0		0.25	0		1.5	0	
148	0.25	0		0.25	0		1.5	0	
149	0.25	0		0.25	0		1.5	0	
150	0.25	0		0.25	0		1.5	0	
151	0.25	0		0.25	0		1.5	0	
152	0.25	0		0.25	0		1.5	0	
153	0.25	0		0.25	0		1.5	0	
154	0.25	0		0.25	0		1.5	0	
155	0.25	0		0.25	0		1.5	0	
156	0.25	0		0.25	0		1.5	0	

	S	Т	U	V	W	Х	Y	Z	AA
1	Benzene	d_Benzene		Ethylbenzene	d_Ethylbenzene		Lead	d_Lead	
157	0.25	0		0.25	0		1.5	0	
158	0.25	0		0.25	0		1.5	0	
159	0.25	0		0.25	0		1.5	0	
160	0.25	0		0.25	0		1.5	0	
161	0.25	0		0.25	0		1.5	0	
162	0.25	0		0.25	0		1.5	0	
163	0.25	0		0.25	0		1.5	0	
164	0.25	0		0.25	0		1.5	0	
165	0.25	0		0.25	0		1.5	0	
166	0.25	0		0.25	0		1.5	0	
167	0.25	0		0.25	0		1.5	0	
168	0.25	0		0.25	0		1.5	0	
169	0.25	0		0.25	0		1.5	0	
170	0.25	0		0.25	0		1.5	0	
171	0.25	0		0.25	0		1.5	0	
172	0.25	0		0.25	0		1.5	0	
173	0.25	0		0.25	0		1.5	0	
174	0.25	0		0.25	0		1.5	0	
175	0.25	0		0.25	0		1.5	0	
176	0.25	0		0.25	0		1.5	0	
177	0.25	0		0.25	0		1.5	0	
178	0.25	0		0.25	0		1.5	0	
179	0.25	0		0.25	0		1.5	0	
180	0.25	0		0.25	0		1.5	0	
181	0.25	0		0.25	0		1.5	0	
182	0.25	0		0.25	0		1.5	0	
183	0.25	0		0.25	0		1.5	0	
184	0.25	0		0.25	0		1.5	0	
185	0.25	0		0.25	0		1.5	0	
186	0.25	0		0.25	0		1.5	0	
187	0.25	0		0.25	0		1.5	0	
188	0.25	0		0.25	0		1.5	0	
189	0.25	0		0.25	0		1.5	0	
190	0.25	0		0.25	0		1.5	0	
191	0.25	0		0.25	0		1.5	0	
192	0.25	0		0.25	0		1.5	0	
193	0.25	0		0.25	0		1.5	0	
194	0.25	0		0.25	0		1.5	0	
195	0.25	0		0.25	0		1.5	0	
196	0.25	0		0.25	0		1.5	0	
197	0.25	0		0.25	0		1.5	0	
198	0.25	0		0.25	0		1.5	0	

	AB	AC	AD	AE	AF	AG
1	MTBE (Methyl tert-butyl ether)	d_MTBE (Methyl tert-butyl ether)		Naphthalene	d_Naphthalene	
2	5	0		35	1	
3	5	0		23.8	1	
4	2.5	0		11.5	1	
5	1.25	0		6.87	1	
6	1.25	0		4.88	1	
7	0.645	1		3.21	1	
8	0.562	1		2.55	1	
9	0.5	0		1.25	0	
10	0.5	0		1.03	1	
11	0.5	0		0.938	1	
12	0.5	0		0.5	0	
13	0.5	0		0.5	0	
14	0.5	0		0.5	0	
15	0.5	0		0.5	0	
16	0.5	0		0.5	0	
17	0.5	<u> </u>		0.5	0	
18	0.5	0		0.5	0	
10	0.5	0		0.5	0	
20	0.5	0		0.5	0	
20	0.5	0		0.5	0	
21	0.5	0		0.5	0	
22	0.5	0		0.5	0	
23	0.5	0		0.5	0	
24	0.5	0		0.5	0	
20	0.5	0		0.5	0	
20	0.5	0		0.5	0	
27	0.5	0		0.5	0	
20	0.5	0		0.5	0	
29	0.5	0		0.5	0	
21	0.5	0		0.5	0	
31 22	0.5	0		0.5	0	
ა <u>∠</u>	0.5	0		0.5	0	
33	0.5	0		0.5	0	
34	0.375	0		0.0	0	
35	0.25	0		0.375	0	
36	0.25	0		0.25	0	
3/	0.25	0		0.25	0	
38	0.25	0		0.25	U	
39	0.25	0		0.25	0	
40	0.25	0		0.25	0	
41	0.25	0		0.25	0	
42	0.25	0		0.25	0	
43	0.25	0		0.25	0	
44	0.25	0		0.25	0	
45	0.25	0		0.25	0	
46	0.25	0		0.25	0	
47	0.25	0		0.25	0	
48	0.25	0		0.25	0	
49	0.25	0		0.25	0	
50	0.25	0		0.25	0	
51	0.25	0		0.25	0	
52	0.25	0		0.25	0	

	AB	AC	AD	AE	AF	AG
1	MTBE (Methyl tert-butyl ether)	d_MTBE (Methyl tert-butyl ether)		Naphthalene	d_Naphthalene	
53	0.25	0		0.25	0	
54	0.25	0		0.25	0	
55	0.25	0		0.25	0	
56	0.25	0		0.25	0	
57	0.25	0		0.25	0	
58	0.25	0		0.25	0	
59	0.25	0		0.25	0	
60	0.25	0		0.25	0	
61	0.25	0		0.25	0	
62	0.25	0		0.25	0	
63	0.25	0		0.25	0	
64	0.25	0		0.25	0	
65	0.25	0		0.25	0	
66	0.25	0		0.25	0	
67	0.25	0		0.25	0	
68	0.25	0		0.25	0	
69	0.25	0		0.25	0	
70	0.25	0		0.25	0	
71	0.25	0		0.25	0	
72	0.25	0		0.25	0	
73	0.25	0		0.25	0	
74	0.25	0		0.25	0	
75	0.25	0		0.25	0	
76	0.25	0		0.25	0	
70	0.25	0		0.25	0	
78	0.25	0		0.25	0	
70	0.25	0		0.25	0	
79	0.25	0		0.25	0	
00	0.25	0		0.25	0	
01	0.25	0		0.25	0	
02	0.25	0		0.25	0	
03 04	0.25	0		0.25	0	
84 95	0.25	0		0.25	0	
00	0.25	0		0.25	0	
80	0.25	0		0.25	0	
87	0.25	0		0.25	0	
80	0.25	0		0.25	0	
89	0.25	0		0.25	0	
90	0.25	0		0.25	0	
91	0.25	0		0.25	0	
92	0.25	0		0.25	0	
93	0.25	0		0.25	0	
94	0.25	0		0.25	0	
95	0.25	0		0.25	0	
96	0.25	0		0.25	0	
9/	0.25	0		0.25	0	
98	0.25	0		0.25	U	
99	0.25	0		0.25	Ű	
100	0.25	0		0.25	0	
101	0.25	0		0.25	0	
102	0.25	0		0.25	0	
103	0.25	0		0.25	0	
104	0.25	0		0.25	0	

	AB AC AD AE		AF	AG	
1	MTBE (Methyl tert-butyl ether)	d_MTBE (Methyl tert-butyl ether)	Naphthalene	d_Naphthalene	
105	0.25	0	0.25	0	
106	0.25	0	0.25	0	
107	0.25	0	0.25	0	
108	0.25	0	0.25	0	
109	0.25	0	0.25	0	
110	0.25	0	0.25	0	
111	0.25	0	0.25	0	
112	0.25	0	0.25	0	
113	0.25	0	0.25	0	
114	0.25	0	0.25	0	
115	0.25	0	0.25	0	
116	0.25	0	0.25	0	
117	0.25	0	0.25	0	
118	0.25	0	0.25	0	
119	0.25	0	0.25	0	
120	0.25	0	0.25	0	
121	0.25	0	0.25	0	
122	0.25	0	0.25	0	
123	0.25	0	0.25	0	
124	0.25	0	0.25	0	
125	0.25	0	0.25	0	
126	0.25	0	0.25	0	
127	0.25	0	0.25	0	
128	0.25	0	0.25	0	
129	0.25	0	0.25	0	
130	0.25	0	0.25	0	
131	0.25	0	0.25	0	
132	0.25	0	0.25	0	
133	0.25	0	0.25	0	
134	0.25	0	0.25	0	
135	0.25	0	0.25	0	
136	0.25	0	0.25	0	
137	0.25	0	0.25	0	
138	0.25	0	0.25	0	
139	0.25	0	0.25	0	
140	0.25	0	0.25	0	
141	0.25	0	0.25	0	
142	0.25	0	0.25	0	
143	0.25	0	0.25	0	
144	0.25	0	0.25	0	
145	0.25	0	0.25	0	
146	0.25	0	0.25	0	
147	0.25	0	0.25	0	
148	0.25	0	0.25	0	
149	0.25	0	0.25	0	
150	0.25	0	0.25	0	
151	0.25	0	0.25	0	
152	0.25	0	0.25	0	
153	0.25	0	0.25	0	
154	0.25	0	0.25	0	
155	0.25	0	0.25	0	
156	0.25	0	0.25	0	

	AB	AC	AD	AE	AF	AG
1	MTBE (Methyl tert-butyl ether)	d_MTBE (Methyl tert-butyl ether)		Naphthalene	d_Naphthalene	
157	0.25	0		0.25	0	
158	0.25	0		0.25	0	
159	0.25	0		0.25	0	
160	0.25	0		0.25	0	
161	0.25	0		0.25	0	
162	0.25	0		0.25	0	
163	0.25	0		0.25	0	
164	0.25	0		0.25	0	
165	0.25	0		0.25	0	
166	0.25	0		0.25	0	
167	0.25	0		0.25	0	
168	0.25	0		0.25	0	
169	0.25	0		0.25	0	
170	0.25	0		0.25	0	
171	0.25	0		0.25	0	
172	0.25	0		0.25	0	
173	0.25	0		0.25	0	
174	0.25	0		0.25	0	
175	0.25	0		0.25	0	
176	0.25	0		0.25	0	
177	0.25	0		0.25	0	
178	0.25	0		0.25	0	
179	0.25	0		0.25	0	
180	0.25	0		0.25	0	
181	0.25	0		0.25	0	
182	0.25	0		0.25	0	
183	0.25	0		0.25	0	
184	0.25	0		0.25	0	
185	0.25	0		0.25	0	
186	0.25	0		0.25	0	
187	0.25	0		0.25	0	
188	0.25	0		0.25	0	
189	0.25	0		0.25	0	
190	0.25	0		0.25	0	
191	0.25	0		0.25	0	
192	0.25	0		0.25	0	
193	0.25	0		0.25	0	
194	0.25	0		0.25	0	
195	0.25	0		0.25	0	
196	0.25	0		0.25	0	
197	0.25	0		0.25	0	
198	0.25	0		0.25	0	

	AH	AI	AJ	AK	AL
1	Toluene	d_Toluene		Xylenes (total)	d_Xylenes (total)
2	2880	1		537	1
3	2860	1	T	534	1
4	561	1		132	1
5	560	1		95.4	1
6	1.25	0	T	16.4	1
7	0.5	0	T	3.75	0
8	0.5	0		1.66	0
9	0.5	0		1.5	0
10	0.5	0		1.5	0
11	0.5	0		1.5	0
12	0.5	0		1.5	0
13	0.5	0		1.5	0
14	0.5	0	1	1.5	0
15	0.5	0		1.5	0
16	0.5	0	1	1.5	0
17	0.5	0		1.5	0
18	0.5	0		1.5	0
19	0.5	0	1	1.5	0
20	0.5	0	+	1.5	0
21	0.5	0	+	1.5	0
22	0.5	0	+	1.5	0
23	0.5	0	+	1.5	0
24	0.5	0		1.5	0
25	0.5	0	+	1.5	0
26	0.5	0		1.5	0
27	0.5	0		1.5	0
28	0.5	0	+	1.5	0
29	0.5	0	+	1.5	0
30	0.5	0	+	1.5	0
31	0.5	0		1.5	0
32	0.5	0	-	1.5	0
33	0.5	0	-	1.5	0
34	0.375	0		1.5	0
35	0.308	1		0.75	0
36	0.25	0	+	0.75	0
37	0.25	0	1	0.75	0
38	0.25	0		0.75	0
39	0.25	0	+	0.75	0
40	0.25	0	1	0.75	0
41	0.25	0	+	0.75	0
42	0.25	0		0.75	0
43	0.25	0	+	0.75	0
44	0.25	0	+	0.75	0
45	0.25	0	+	0.75	0
46	0.25	0	+	0.75	0
40	0.25	0		0.75	0
47	0.25	0		0.75	0
40	0.25	0	+	0.75	0
50	0.25	0	+	0.75	0
50	0.25	0	+	0.75	0
51	0.25	0		0.75	0
52	0.25	0		0.75	0

	AH	Al	AJ	AK	AL
1	Toluene	d_Toluene		Xylenes (total)	d_Xylenes (total)
53	0.25	0		0.75	0
54	0.25	0		0.75	0
55	0.25	0		0.75	0
56	0.25	0		0.75	0
57	0.25	0		0.75	0
58	0.25	0		0.75	0
59	0.25	0		0.75	0
60	0.25	0		0.75	0
61	0.25	0		0.75	0
62	0.25	0		0.75	0
63	0.25	0		0.75	0
64	0.25	0		0.75	0
65	0.25	0		0.75	0
66	0.25	0		0.75	0
67	0.25	0		0.75	0
68	0.25	0		0.75	0
69	0.25	0		0.75	0
70	0.25	0		0.75	0
71	0.25	0		0.75	0
72	0.25	0		0.75	0
73	0.25	0		0.75	0
74	0.25	0		0.75	0
75	0.25	0		0.75	0
76	0.25	0		0.75	0
77	0.25	0		0.75	0
78	0.25	0		0.75	0
79	0.25	0		0.75	0
80	0.25	0		0.75	0
81	0.25	0		0.75	0
82	0.25	0		0.75	0
83	0.25	0		0.75	0
84	0.25	0		0.75	0
85	0.25	0		0.75	0
86	0.25	0		0.75	0
87	0.25	0		0.75	0
88	0.25	0		0.75	0
89	0.25	0		0.75	0
90	0.25	Ű		0.75	U
91	0.25	0		0.75	U
92	0.25	0		0.75	U
93	0.25	0		0.75	0
94	0.25	U		0.75	U
95	0.25	0		0.75	0
96	0.25	0		0.75	U
9/	0.25	0		0.75	U
98	0.25	0		0.75	0
99 100	0.20	0		0.75	0
100	0.25	0		0.75	0
101	0.25	0		0.75	0
102	0.25	0		0.75	0
104	0.25	0		0.75	0

	AH	AI	AJ	AK	AL
1	Toluene	d_Toluene		Xylenes (total)	d_Xylenes (total)
105	0.25	0		0.75	0
106	0.25	0		0.75	0
107	0.25	0		0.75	0
108	0.25	0		0.75	0
109	0.25	0		0.75	0
110	0.25	0		0.75	0
111	0.25	0		0.75	0
112	0.25	0		0.75	0
113	0.25	0		0.75	0
114	0.25	0		0.75	0
115	0.25	0		0.75	0
116	0.25	0		0.75	0
117	0.25	0		0.75	0
118	0.25	0		0.75	0
119	0.25	0		0.75	0
120	0.25	0		0.75	0
121	0.25	0		0.75	0
122	0.25	0		0.75	0
123	0.25	0		0.75	0
124	0.25	0		0.75	0
125	0.25	0		0.75	0
126	0.25	0		0.75	0
127	0.25	0		0.75	0
128	0.25	0		0.75	0
129	0.25	0		0.75	0
130	0.25	0		0.75	0
131	0.25	0		0.75	0
132	0.25	0		0.75	0
133	0.25	0		0.75	0
134	0.25	0		0.75	0
135	0.25	0		0.75	0
136	0.25	0		0.75	0
137	0.25	0		0.75	0
138	0.25	0		0.75	0
139	0.25	0		0.75	0
140	0.25	0		0.75	0
141	0.25	0		0.75	0
142	0.25	0		0.75	0
143	0.25	0		0.75	U
144	0.25	0		0.75	0
145	0.25	0		0.75	0
146	0.25	0		0.75	0
14/	0.25	0		0.75	0
148	0.25	0		0.75	U
149	0.25	0		0.75	0
150	0.20	0		0.75	0
151	0.25	0		0.75	0
152	0.25	0		0.75	0
154	0.25	0		0.75	0
155	0.25	0	-	0.75	0
156	0.25	0		0.75	0

	AH	AI	AJ	AK	AL
1	Toluene	d_Toluene		Xylenes (total)	d_Xylenes (total)
157	0.25	0		0.75	0
158	0.25	0		0.75	0
159	0.25	0		0.75	0
160	0.25	0		0.75	0
161	0.25	0		0.75	0
162	0.25	0		0.75	0
163	0.25	0		0.75	0
164	0.25	0		0.75	0
165	0.25	0		0.75	0
166	0.25	0		0.75	0
167	0.25	0		0.75	0
168	0.25	0		0.75	0
169	0.25	0		0.75	0
170	0.25	0		0.75	0
171	0.25	0		0.75	0
172	0.25	0		0.75	0
173	0.25	0		0.75	0
174	0.25	0		0.75	0
175	0.25	0		0.75	0
176	0.25	0		0.75	0
177	0.25	0		0.75	0
178	0.25	0		0.75	0
179	0.25	0		0.75	0
180	0.25	0		0.75	0
181	0.25	0		0.75	0
182	0.25	0		0.75	0
183	0.25	0		0.75	0
184	0.25	0		0.75	0
185	0.25	0		0.75	0
186	0.25	0		0.75	0
187	0.25	0		0.75	0
188	0.25	0		0.75	0
189	0.25	0		0.75	0
190	0.25	0		0.75	0
191	0.25	0		0.75	0
192	0.25	0		0.75	0
193	0.25	0		0.75	0
194	0.25	0		0.75	0
195	0.25	0		0.75	0
196	0.25	0		0.75	0
197	0.25	0		0.75	0
198	0.25	0		0.75	0

Attachment 2 (Continued)

Groundwater Samples from Q3 and Q4 2015, Off-Base (Output)

—			E	G	Ц		1	K	1
<u> </u>	АВС			G Coto usith N			J	n	L
		OCL Statistic			NOII-Delec	ເຮ			
2									
3	User Selected Optio	ns							
4	Date/Time of Computation	ProUCL 5.16/20/2017 9:	15:37 AM						
5	From File	WorkSheet.xls							
6	Full Precision	OFF							
7	Confidence Coefficien	t 95%							
8	Number of Bootstrap Operations	3 2000							
q									
10	1 2 4-Trimethylbenzene								
11									
11			O an anal C						-
12							<u></u>		
13		tal Number of Observations	197			Number of	Distinct Of	servations	9
14		Number of Detects	6			N	imber of N	on-Detects	191
15		Number of Distinct Detects	6			Number of	Distinct N	on-Detects	3
16		Minimum Detect	1.007				Minimum N	Non-Detect	0.25
17		Maximum Detect	117			I	Maximum N	Non-Detect	1.25
18		Variance Detects	3065				Percent N	on-Detects	96.95%
19		Mean Detects	42.77				S	SD Detects	55.36
20		Median Detects	11.32				(CV Detects	1.294
21		Skewness Detects	0.949				Kurtos	sis Detects	-1.845
22		Mean of Logged Detects	2 649			9	SD of Logg	ed Detects	1 843
22			2.010				55 0. 2099		
23		Normal	COF Teet	on Detect	e Only				
24		Shanira Wilk Tast Statistic	0 716		5 Only	Shani		E Toot	
25	E0/	Shapiro Wilk Critical Value	0.710		Detected	Dete Net N	o wiik GO	VF Test	
26	5%	Snapiro Wilk Critical Value	0.788		Detected		iormal at 5	% Significa	nce Level
27		Lilliefors Test Statistic	0.368			Lillie	otors GOF	lest	
28		5% Lilliefors Critical Value	0.325		Detected	Data Not N	lormal at 5	% Significa	nce Level
29		Detected Data N	lot Normal	at 5% Sig	nificance L	.evel			
30									
31	Kaplan-	Meier (KM) Statistics using	Normal Cr	itical Value	es and othe	er Nonpara	metric UC	Ls	
32		KM Mean	1.545			KM St	andard Err	or of Mean	0.894
33		KM SD	11.45				95% KM ((BCA) UCL	3.195
34		95% KM (t) UCL	3.022		95%	6 KM (Perc	entile Boot	strap) UCL	3.197
35		95% KM (z) UCL	3.015			. 95%	KM Boots	strap t UCL	10.89
26		90% KM Chebyshev LICI	4 227			95%	KM Cheb	vshev UCI	5 442
27		97.5% KM Chebyshev UCL	7 128			90%	KM Cheb		10.44
37			7.120			557		yanev ool	10.44
38		Commo COE To	ata an Dai	acted Obe	onvotione	Only			
39					ervauoris	Anderes	n Darlin a (
40		A-D Test Statistic	0.467			Anderso	n-Daning (JUF Test	
41		5% A-D Critical Value	0.732	Detect	ted data ap	pear Gamr	na Distribu	ted at 5% S	ignificance Level
42		K-S Test Statistic	0.268			Kolmog	orov-Smirr	10V GOF	
43		5% K-S Critical Value	0.347	Detect	ted data ap	pear Gamr	na Distribu	ted at 5% S	ignificance Level
44		Detected data appear G	iamma Dis	tributed at	5% Signifi	icance Lev	el		
45									
46		Gamma St	atistics on	Detected I	Data Only				
47		k hat (MLE)	0.564			k star	(bias corre	ected MLE)	0.393
48		Theta hat (MLE)	75.87			Theta star	(bias corre	ected MLE)	108.8
49		nu hat (MLE)	6.764	1		nı	ı star (bias	corrected)	4.716
50		Mean (detects)	42.77				,	,	
51				I					-
51		Gamma ROS S	atistice ve	ina impute	d Non-Det	ects			
52	GPOS mou	not be used when data act	126 > 50%		nany tied o	hearvation	s at multipl	o Di s	
53	GROS IIIay	not be used when data set	1as > 50%		nany ueu o		s at multipi		15.00)
54	GRUS may not be used	when kstar or detects is sm	an such as	I.U, espe	cially wriel	in une samp		maii (e.g., <	10-20)
55	Fo	r such situations, GROS me	triod may y	riela incorre	ect values	or UCLs an	aBIVS		
56		This is especiall	y true wher	the sampl	le size is si	mall.			
57	For gamma distribut	ed detected data, BTVs and	UCLs may	be compu	ited using g	gamma dist	ribution on	KM estima	tes
58		Minimum	0.01					Mean	1.312
59		Maximum	117					Median	0.01
60		SD	11.51					CV	8.77
61		k hat (MLE)	0.163			k star	(bias corre	ected MLE)	0.164
62		Theta hat (MLE)	8.048	1		Theta star	(bias corre	ected MLE)	8.004
63		nu hat (MLE)	64.25			nı	star (bias	corrected)	64.6
6/	auihA	ted Level of Significance (R)	0.0488				,		
65	Δnnrovimate	Chi Square Value (64.60 m)	47 11	-	۵diu	sted Chi So	uare Value	(64 60 R)	47
05			10	05		Adjusted		(0+.00, p)	1 904
66	95% Gamma Approxir	nate UCL (use when n>=50)	٥.۱	95	o‰ Gamma	a Aujusted	JUL (USE V	vuen n<50)	1.804

	A B C D E	F	G H I J K	L
67	Estimates of Gam	ma Param	eters using KM Estimates	
69	Mean (KM)	1.545	SD (KM)	11.45
70	Variance (KM)	131.2	SE of Mean (KM)	0.894
71	k hat (KM)	0.0182	k star (KM)	0.0213
72	nu hat (KM)	7.17	nu star (KM) theta star (KM)	8.394
73	80% gamma percentile (KM)	0.00117	90% gamma percentile (KM)	0.296
75	95% gamma percentile (KM)	3.93	99% gamma percentile (KM)	42.82
76			· · · · · · · · ·	
77	Gamma k	Kaplan-Mei	er (KM) Statistics	2.041
78 79	95% Gamma Approximate KM-UCL (use when n>=50)	2.965	95% Gamma Adjusted KM-UCL (use when n<50)	4.409
80				
81	Lognormal GOF	Test on De	tected Observations Only	
82	Shapiro Wilk Test Statistic	0.925	Shapiro Wilk GOF Test	
83 84	Lilliefors Test Statistic	0.788	Lilliefors GOF Test	
85	5% Lilliefors Critical Value	0.325	Detected Data appear Lognormal at 5% Signifi	icance Level
86	Detected Data appe	ar Lognorr	nal at 5% Significance Level	
87			- In a law make of Mars. Data sta	
88 80	Lognormal ROS S Mean in Original Scale	1 317	Mean in Log Scale	-12.2
90	SD in Original Scale	11.51	SD in Log Scale	6.505
91	95% t UCL (assumes normality of ROS data)	2.672	95% Percentile Bootstrap UCL	2.939
92	95% BCA Bootstrap UCL	3.594	95% Bootstrap t UCL	14.86
93 04	95% H-UCL (Log ROS)	53/85/		
95	Statistics using KM estimates on	Logged Da	ata and Assuming Lognormal Distribution	
96	KM Mean (logged)	-1.263	KM Geo Mean	0.283
97	KM SD (logged)	0.753	95% Critical H Value (KM-Log)	1.978
98	KM Standard Error of Mean (logged) KM SD (logged)	0.0588	95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	1 978
99 100	KM Standard Error of Mean (logged)	0.0588		1.570
101				
102		DL/2 Sta	tistics	
103	DL/2 Normal	1 1 1 2	DL/2 Log-Transformed	1 926
104	SD in Original Scale	11.443	SD in Log Scale	0.888
106	95% t UCL (Assumes normality)	2.796	95% H-Stat UCL	0.27
107	DI /2 is not a recommanded math			
107		od, provide	ed for comparisons and historical reasons	
107	Nonnarametric	od, provide	ed for comparisons and historical reasons	
107 108 109 110	Nonparametric Detected Data appear G	od, provide c Distributi amma Dis	on Free UCL Statistics	
107 108 109 110 111	Nonparametric Detected Data appear G	od, provide c Distributi amma Dis	ed for comparisons and historical reasons on Free UCL Statistics rributed at 5% Significance Level	
107 108 109 110 111 112	Nonparametric Detected Data appear G St	od, provide c Distribution amma Distribution uggested L	ad for comparisons and historical reasons on Free UCL Statistics iributed at 5% Significance Level ICL to Use	
107 108 109 110 111 112 113 114	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL	od, provide c Distributi amma Dis uggested L 4.374	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level ICL to Use	
107 108 109 110 111 112 113 114 115	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U	od, provide c Distributi amma Dist uggested L 4.374 CL are prov	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level ICL to Use	
107 108 109 110 111 112 113 114 115 116	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based	od, provide c Distributi amma Dis uggested U 4.374 CL are prov upon data	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level ICL to Use //ided to help the user to select the most appropriate 95 size, data distribution, and skewness.	% UCL.
107 108 109 110 111 112 113 114 115 116 117	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results	c Distribution amma Distribution arggested L 4.374 CL are provupon data of the simu	ad for comparisons and historical reasons on Free UCL Statistics influted at 5% Significance Level ICL to Use vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee i for additional insight the user may want to consult a se	% UCL. (2006).
107 108 109 110 111 112 113 114 115 116 117 118 119	Nonparametric Detected Data appear G Su 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl	od, provide c Distributi amma Dis uggested L 4.374 CL are prov upon data of the simu d data sets	ad for comparisons and historical reasons on Free UCL Statistics iributed at 5% Significance Level ICL to Use ivided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s	% UCL. (2006). tatistician.
107 108 109 110 111 112 113 114 115 116 117 118 119 120	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane	c Distributi amma Dis aggested L 4.374 CL are prov upon data of the simu d data sets	ad for comparisons and historical reasons on Free UCL Statistics inbuted at 5% Significance Level ICL to Use vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s	% UCL. (2006). tatistician.
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane	c Distributi amma Distributi aggested L 4.374 CL are pro- upon data of the simu d data sets	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level iCL to Use //ided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s	% UCL. (2006). tatistician.
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane	c Distributi amma Distributi aggested L 4.374 CL are pro- upon data of the simu d data sets General S 197	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level ICL to Use ICL to Use Idea to help the user to select the most appropriate 95 size, data distribution, and skewness. Iation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations	% UCL. (2006). tatistician.
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Observations Number of Detects	c Distributi amma Dist aggested L 4.374 CL are prov upon data of the simu d data sets General S 197 69	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level ICL to Use ICL to Use Idea to help the user to select the most appropriate 95 size, data distribution, and skewness. Iation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Interference Instruct Observations Number of Distinct Observations Number of Non-Detects	% UCL. (2006). :tatistician. 116 128
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Observations Number of Detects Output Detects	c Distributi amma Dist uggested L 4.374 CL are pro- upon data of the simu d data sets General S 197 69	ad for comparisons and historical reasons on Free UCL Statistics iributed at 5% Significance Level ICL to Use ivided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	i% UCL. (2006). tatistician. 116 128 47
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126	Nonparametrik Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	c Distributi amma Dis aggested L 4.374 CL are pro- upon data of the simu d data sets General S 197 69 69 60	ad for comparisons and historical reasons on Free UCL Statistics iributed at 5% Significance Level ICL to Use i/ided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics tatistics Number of Distinct Observations Number of Non-Detects Minimum Non-Detects Minimum Non-Detects	i% UCL. (2006). tatistician. 116 128 47 0.00903 0.00003
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 127 127 127	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Observations Number of Detects Number of Detects Minimum Detect Maximum Detect	C Distributi amma Distributi aggested L 4.374 CL are provupon data of the simu d data sets 197 69 69 0.011 11.5 4.022	ad for comparisons and historical reasons on Free UCL Statistics induced at 5% Significance Level iCL to Use idea to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Derrent Non-Detect	i% UCL. (2006). tatistician. 116 128 47 0.00903 0.00985 64 97%
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Observations Number of Detects Number of Detects Minimum Detect Maximum Detects Variance Detects Mean Detects	c Distributi amma Distributi aggested L 4.374 CL are provupon data of the simu d data sets 9 69 69 0.011 11.5 4.083 0.655	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level iCL to Use idea to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Maximum Non-Detect Percent Non-Detects SD Detects	i% UCL. (2006). tatistician. 116 128 47 0.00903 0.00985 64.97% 2.021
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Maximum Detect Variance Detects Mean Detects	Clare provide Clare provide data sets General S 197 69 69 0.011 11.5 4.083 0.655 0.0877	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level iCL to Use idea to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Dercent Non-Detects SD Detects SD Detects CV Detects	i% UCL. (2006). tatistician. 116 128 47 0.00903 0.00985 64.97% 2.021 3.085
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131	Nonparametric Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Observations Number of Detects Number of Distinct Detects Maximum Detect Variance Detects Mean Detects Skewness Detects Skewness Detects	od, provide c Distributi amma Dis uggested L 4.374 CL are provide upon data of the simu d data sets General S 197 69 0.011 11.5 4.083 0.655 0.0877 4.127	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level iCL to Use iCL to Use ided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects CV Detects CV Detects Kurtosis Detects	i% UCL. (2006). tatistician. 116 128 47 0.00903 0.00985 64.97% 2.021 3.085 16.8
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 122	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Detects Number of Detects Number of Detects Minimum Detect Maximum Detect Median Detects Skewness Detects Mean of Logged Detects	od, provide c Distributi amma Dis uggested L 4,374 CL are provide upon data of the simu d data sets General S 197 69 0.011 11.5 4.083 0.655 0.0877 4.127 -2.156	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level CL to Use CL to Use Cd to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detect Maximum Non-Detect SD Detects CV Detects CV Detects Kurtosis Detects SD of Logged Detects	116 (2006). ttatistician. 116 128 47 0.00903 0.00985 64.97% 2.021 3.085 16.8 1.545
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Detects Number of Detects Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects	od, provide c Distributia amma Dis uggested L 4.374 CL are provide upon data of the simu d data sets General S 197 69 0.011 11.5 4.083 0.655 0.0877 4.127 -2.156 GOF Test	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level CL to Use CL to Use CL to Use Cd to help the user to select the most appropriate 95 size, data distribution, and skewness. Iation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Tatistics The second se	116 128 47 0.00903 0.00985 64.97% 2.021 3.085 16.8 1.545
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Detects Number of Detects Number of Detects Minimum Detect Maximum Detect Uariance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Normal	od, provide c Distributiamma Distanta uggested L 4.374 CL are provide upon data of the simudidate d data sets 9 0.011 11.5 4.083 0.655 0.0877 4.127 -2.156 GOF Test 0.343	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level CL to Use CL to Use CL to Use Cd to help the user to select the most appropriate 95 size, data distribution, and skewness. Iation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics tatistics tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detect Number of Distinct Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects Normal GOF Test on Detected Observation	i% UCL. (2006). tatistician. 116 128 47 0.00903 0.00985 64.97% 2.021 3.085 16.8 1.545
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136	Nonparametrik Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Detects Number of Detects Number of Detects Number of Detects Maximum Detect Maximum Detect Maximum Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk Polue	od, provide cod, provide coding coding	tatistics tatistics Number of Distinct Non-Detects Number of Distinct Non-Detects CV Detects CV D	i% UCL. (2006). tatistician. 116 128 47 0.00903 0.00985 64.97% 2.021 3.085 16.8 1.545 ons Only nce Level
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Observations Number of Detects Number of Detects Number of Detects Number of Detects Number of Detects Variance Detects Mean Detects Mean Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic	od, provide cod, provide coding coding	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level CL to Use CL to Use CL to Use Cd to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects on Detects Only Normal GOF Test on Detected Observatio Detected Data Not Normal at 5% Significar Lillefors GOF Test Detected Data Not Normal at 5% Significar	i% UCL. (2006). tatistician. 116 128 47 0.00903 0.00985 64.97% 2.021 3.085 16.8 1.545 16.8 1.545
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 137 138 139	Nonparametric Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Observations Number of Detects Number of Detects Number of Detects Maximum Detect Maximum Detects Median Detects Median Detects Median Detects Median Detects Median Detects Median Detects Mean of Logged Detects Mormal Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Critical Value Detected Data	od, provide c Distributi amma Dis uggested L 4.374 CL are provide upon data of the simu d data sets 99 0.011 11.5 4.083 0.655 0.0877 4.127 -2.156 GOF Test 0.343 0 0.107 ot Normal	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level iCL to Use ided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics tatistics tatistics Number of Distinct Observations Number of Distinct Non-Detects SD Detects CV Detects SD Detects SD of Logged Detects on Detects Only Normal GOF Test on Detected Observati Detected Data Not Normal at 5% Significar Lilliefors GOF Test Detected Data Not Normal at 5% Significar at 5% Significance Level	i% UCL. (2006). tatistician. 116 128 47 0.00903 0.00985 64.97% 2.021 3.085 16.8 1.545 16.8 1.545
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 137 138 139 140	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Wariance Detects Mean Detects Skewness Detects Median Detects Skewness Detects Mean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic	od, provide c Distributi amma Dis uggested L 4.374 CL are provide upon data of the simu d data sets General S 197 69 0.011 11.5 4.083 0.655 0.0877 4.127 -2.156 GOF Test 0.343 0 0.401 0.107 ot Normal	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level iCL to Use idea to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detectt Minimum Non-Detectt Percent Non-Detects SD Detects CV Detects SD of Logged Detects On Detects Only Normal GOF Test on Detected Observatio Detected Data Not Normal at 5% Significar at 5% Significance Level	i% UCL. (2006). tatistician. 116 128 47 0.00903 0.00985 64.97% 2.021 3.085 16.8 1.545 16.8 1.545 ons Only nce Level
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Detects Number of Detects Number of Detects Number of Detects Number of Detects Number of Detects Number of Detects Maximum Detect Maximum Detect Skewness Detects Median Detects Median Detects Median Detects Needian Detects Mean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data N	od, provide c Distributi amma Dis uggested L 4,374 CL are provide upon data of the simu d data sets 9 0 197 69 0.011 11.5 4.083 0.655 0.0877 4.127 -2.156 GOF Test 0.343 0 0.107 ot Normal Cri	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level iCL to Use iCL to Use ided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects SD Detects CV Detects SD of Logged Detects On Detects Only Normal GOF Test on Detected Observati Detected Data Not Normal at 5% Significar at 5% Significance Level	i% UCL. (2006). tatistician. 116 128 47 0.00903 0.00985 64.97% 2.021 3.085 16.8 1.545
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Detects Number of Detects Number of Detects Number of Detects Number of Detects Number of Detects Number of Detects Maximum Detect Maximum Detect Skewness Detects Mean Detects Skewness Detects Mean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data N	od, provide c Distributi amma Dis uggested L 4,374 CL are provide upon data of the simu d data sets General S 197 69 0.011 11.5 4.083 0.655 0.0877 4.127 -2.156 GOF Test 0.343 0 0.401 0.107 ot Normal Cri 0.235	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level iCL to Use iCL to Use ided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics tatistics tatistics tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects SD Detects CV Detects CV Detects CV Detects SD of Logged Detects Detected Data Not Normal at 5% Significance titcal Values and other Nonparametric UCLs KM Standard Error of Mean	i% UCL. (2006). tatistician. 116 128 47 0.00903 0.00985 64.97% 2.021 3.085 16.8 1.545 0015 0015 0015 0015 0015 0015 0015 0
IO7 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Detects Number of Detects Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data N Kaplan-Meier (KM) Statistics using KM Mean KM Mean	od, provide c Distributi amma Dis uggested L 4.374 CL are provide upon data of the simu d data sets 9 0.011 11.5 4.083 0.655 0.0877 4.127 -2.156 GOF Test 0.343 0 0.401 0.107 ot Normal Cri 0.235 1.226 0.381	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level CL to Use CL to Use CL to Use CL to use Cd to help the user to select the most appropriate 95 size, data distribution, and skewness. Iation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Tatistics The second	i% UCL. (2006). itatistician. 116 128 47 0.00903 0.00985 64.97% 2.021 3.085 16.8 1.545
IO7 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Observations Number of Detects Number of Detects Number of Detects Maximum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Median Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Skewness Control Value Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data N Kaplan-Meier (KM) Statistics using KM Mean KM Sa	od, provide c Distributi amma Dis uggested L 4,374 CL are provide upon data of the simu d data sets 9 0.011 11.5 4.083 0.655 0.0877 4.127 -2.156 GOF Test 0.343 0 0.401 0.107 ot Normal Cri 0.235 1.226 0.381	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level CL to Use CL to Use CL to Use CL to use Cd to help the user to select the most appropriate 95 size, data distribution, and skewness. Iation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Tatistics Tatistics Tatistics The second	i% UCL. (2006). itatistician. 116 128 47 0.00903 0.00985 64.97% 2.021 3.085 16.8 1.545 ons Only nce Level 0.088 0.383 0.385 0.526
IO7 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 144 145 146	Nonparametric Detected Data appear G St 95% KM Approximate Gamma UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl 1,2-Dibromoethane Total Number of Observations Number of Detects Number of Detects Number of Detects Maximum Detect Maximum Detect Uariance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk P Value Lilliefors Test Statistic 5% Shapiro Wilk P Value Lilliefors Critical Value Detected Data N Kaplan-Meier (KM) Statistics using KM Mean KM SD 95% KM (t) UCL 90% KM (chebyshev UCL	od, provide c Distributi amma Dis uggested L 4,374 CL are provide upon data of the simu d data sets 9 0.011 11.5 4.083 0.655 0.0877 4.127 -2.156 GOF Test 0.343 0 0.401 0.107 ot Normal Cri 0.235 1.226 0.381 0.38	ad for comparisons and historical reasons on Free UCL Statistics tributed at 5% Significance Level CL to Use CL to Use CL to Use CL to use Cd to help the user to select the most appropriate 95 size, data distribution, and skewness. Iation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Tatistics Tatistics The set of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects SD Detects CV Detects CV Detects CV Detects CV Detects SD of Logged Detects Detected Data Not Normal at 5% Significar LUIIIefors GOF Test Detected Data Not Normal at 5% Significar at 5% Significance Level KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Chebyshev UCL	% UCL. (2006). itatistician. 116 128 47 0.00903 0.00985 64.97% 2.021 3.085 16.8 1.545 ons Only nce Level 0.088 0.383 0.385 0.526 0.619

	A		В	С	D	E	F	G	Н	I		J	K	L
148					-									
149					Gamr	na GOF Te	sts on Det	ected Obs	ervations	Only				
150					A-D Te	est Statistic	8.044			Ande	rson	-Darling (GOF Test	
151					5% A-D Cr	itical Value	0.845	Dete	cted Data	Not Gan	nma	Distribute	ed at 5% Sig	inificance Level
152					K-S Te	est Statistic	0.254			Kolm	logo	rov-Smirr	nov GOF	
153					5% K-S Cr	itical Value	0.115	Dete	cted Data	Not Gan	nma	Distribute	ed at 5% Sig	inificance Level
154					Detected Da	ata Not Gar	nma Distri	buted at 5	% Signific	ance Le	evel			
155						<u> </u>								
156						Gamma Sta	atistics on	Detected [Data Only					0.070
157						(hat (MLE)	0.383			K S	star (bias corre	ected MLE)	0.376
158					Ineta		1./1Z			Theta s	star (DIAS COFFE	ected IVILE)	1.744
159					nu		52.8				nu	star (blas	corrected)	51.83
160					Iviea	in (detects)	0.655							L
161					Com		atiatiaa uai	na Imputo	d Non Do	ooto				
162					Gam					ecis	iono	ot multipl		
163		0	POS mov	GRUS may no	on keter of de	tooto io omo			any tieu o	bservat	mpla			(15.20)
164		e	inos illay	For s	uch situations		thod may y	< 1.0, espe					maii (e.y., s	15-20)
100				1013	This i		true when	the sampl		mall	sanu	DIVS		
167			For dam	ma distributed	detected data	BTVs and		he compu	ted using	nan. Tamma (dictri	bution on	KM estima	tes
169			i oi gan			Minimum	0.01		teu using (Jannia	uistri	button on	Mean	0.236
160						Maximum	11.5						Median	0.01
170						SD	1 23						CV	5.01
170					ŀ	(hat (MLF)	0.3			ks	star (bias corre	ected MLE)	0.298
172					Theta	a hat (MLE)	0.788			Theta s	star (bias corre	ected MLE)	0.791
173					nu	u hat (MLE)	118				nu	star (bias	corrected)	117.5
174				Adjusted	Level of Sign	ificance (β)	0.0488				-			
175			Ap	proximate Chi	Square Value	(117.55, α)	93.51		Adjust	ed Chi S	Squa	re Value	(117.55, β)	93.36
176			95% Gam	ma Approxima	te UCL (use wi	hen n>=50)	0.297	95	% Gamma	a Adjuste	ed U	CL (use v	vhen n<50)	0.297
177						,						,	,	
178					Estima	ites of Gam	ma Param	eters usin	g KM Esti	mates				
179						Mean (KM)	0.235		-				SD (KM)	1.226
180					Var	iance (KM)	1.504					SE of	Mean (KM)	0.088
181						k hat (KM)	0.0368						k star (KM)	0.0396
182					r	nu hat (KM)	14.5					n	u star (KM)	15.61
183					the	ta hat (KM)	6.394					theta	a star (KM)	5.938
184				809	% gamma perc	entile (KM)	0.0123			90%	6 gan	nma perc	entile (KM)	0.251
185				959	% gamma perc	entile (KM)	1.122			99%	6 gan	nma perc	entile (KM)	5.578
186														
187						Gamma k	(aplan-Mei	er (KM) St	tatistics					
188			A	pproximate Ch	i Square Value	e (15.61, α)	7.687		Adju	sted Chi	i Squ	are Value	e (15.61, β)	7.646
189		95%	Gamma A	Approximate K	M-UCL (use wh	hen n>=50)	0.478	95% G	amma Adj	justed K	M-U	CL (use v	vhen n<50)	0.48
190							_							
191					Logno	rmal GOF 1	est on De	tected Ob	servations	Only	-			
192				Shapiro Wilk A	pproximate Te	est Statistic	0.906			Sha	apiro	Wilk GO	F Test	
193					5% Shapiro W	/ilk P Value	1.8401E-5	[Detected D	ata Not	Log	normal at	5% Signific	ance Level
194				_	Lilliefors Te	est Statistic	0.115			L	_illief	ors GOF	Test	
195				5	% Lilliefors Cr	itical Value	0.107]	Detected D	ata Not	Logi	normal at	5% Signific	ance Level
196					Detecte	ed Data Not	Lognorma	ai at 5% Si	gnificance	Level				
197														

	А	В	С	D	E	F	G	Н	I	J	K	L
198				Lognorm	al ROS S	tatistics U	sing Imput	ed Non-D	etects			5 4 4 7
199				Mean in Origi	nal Scale	0.231				Mean in	Log Scale	-5.147
200		050/		SD in Origi	nal Scale	1.23			050/ D-	SD in	Log Scale	2.571
201		95%	t UCL (assume	S normality of H	tran LICI	0.376			95% Per	OF% Pasts	tstrap UCL	0.391
202						0.451				95% DUUIS		0.522
203				95% H-UCL (I	LOY RUS)	0.325						
204			Statistic	e ueina KM oeti	matee on	Logged D	ata and Ae	eumina l	ognormal	Dietribution		
205			Statistic	KM Mear		_3.814		sunning L	ognorman	KM	Geo Mean	0.0221
200				KM SC		1 518			95% Crit	ical H Value	(KM-Log)	2 682
207			KM Standa	rd Error of Mear	(logged)	0.109			0070 011	95% H-UCL	(KM -Log)	0.0935
200				KM SE	(loaaed)	1.518			95% Crit	ical H Value	e (KM-Log)	2.682
210			KM Standa	rd Error of Mear	(logged)	0.109					- (· ···· =- 3)	
211					(00)							
212						DL/2 Sta	tistics					
213			DL/2 No	rmal					DL/2	Log-Transf	ormed	
214				Mean in Origi	nal Scale	0.232				Mean in	Log Scale	-4.237
215				SD in Origi	nal Scale	1.23				SD in	Log Scale	1.782
216			95% t l	JCL (Assumes r	normality)	0.377				95% H	I-Stat UCL	0.103
217			DL/2 is n	ot a recommen	ded meth	od, provide	ed for com	parisons a	and histori	cal reasons	3	
218												
219				Non	parametric	c Distributi	on Free UC	CL Statist	ics			
220				Data do not follo	ow a Disc	ernible Dis	tribution at	5% Sign	ificance Le	evel		
221												
222					SL	Iggested L	ICL to Use					
223			95	5% KM (Chebys	hev) UCL	0.619						
224	N	-+ 0				01				4h		0/ LIOI
225	N	ote: Sugges	tions regarding	the selection of	ra 95% U	CL are prov	vided to hel	ip the use	r to select	the most ap	propriate 95	5% UCL.
226		These record	mendations ar	e based upon th	are based	of the simu	Size, uala		n, and ske	ingh Maich	le and lee	(2006)
227	Ном		ations results w	ill not cover all	Real Work	d data sets	for addition		at the user	may want to		(2000).
220	110%	ever, simule	niona resulta w			u uulu 3013		nai maigi	it the user	may want to		
229	1 2-Dichloroe	thane										
231	.,											
232						General S	tatistics					
233			Total	Number of Obs	ervations	197			Number of	Distinct Ob	servations	37
234				Number o	of Detects	36			N	umber of N	on-Detects	161
235			N	umber of Disting	t Detects	34			Number of	of Distinct No	on-Detects	3
236				Minimu	Im Detect	0.295				Minimum N	Non-Detect	0.25
237				Maximu	Im Detect	5.45				Maximum N	Non-Detect	5
238				Varianc	e Detects	2.003				Percent No	on-Detects	81.73%
239				Mea	n Detects	1.52				5	SD Detects	1.415
240				Media	n Detects	0.911				(CV Detects	0.931
241				Skewnes	s Detects	1.654				Kurtos	sis Detects	1.881
242				Mean of Logge	d Detects	0.0761				SD of Logg	ed Detects	0.813
243					Nerman	005 7	D-44-	Orto				
244				honira Wills Too	Normal		on Detects	Only	Chan		ETeet	
245			50/ 01			0.759		Detector	Snap		VF IESL	
240			5% 5		t Statistic	0.935		Delected			Teet	
247			5	% Lilliefors Criti	cal Value	0.245		Detected	LIII Data Not	Normal at 5	% Significa	
240			5	Detector	ed Data N	ot Normal	at 5% Sion	ificance	evel		orgrinical	
249				201001		et normal						
251			Kaplan-Me	ier (KM) Statist	ics usina	Normal Cri	itical Value	s and oth	er Nondar	ametric UC	Ls	
252				, ,	KM Mean	0.483			KMS	tandard Err	or of Mean	0.056
253					KM SD	0.773				95% KM (BCA) UCL	0.583
254				95% K	M (t) UCL	0.575		95%	% KM (Pero	centile Boot	strap) UCL	0.578
255				95% KN	/ (z) UCL	0.575			95	% KM Boots	strap t UCL	0.605
256			9	90% KM Chebys	shev UCL	0.651			959	% KM Cheb	yshev UCL	0.727
257			97	.5% KM Chebys	shev UCL	0.832			999	% KM Cheb	yshev UCL	1.04
258												
259				Gamma	a GOF Te	sts on Det	ected Obs	ervations	Only			
260				A-D Tes	t Statistic	1.229			Anderso	on-Darling (GOF Test	
261				5% A-D Criti	cal Value	0.765	Detec	cted Data	Not Gamm	a Distribute	ed at 5% Sig	nificance Level
262				K-S Tes	t Statistic	0.162			Kolmog	orov-Smirr	nov GOF	
263				5% K-S Criti	cal Value	0.149	Detec	ted Data	Not Gamm	a Distribute	ed at 5% Sig	nificance Level
264				Detected Dat	a Not Gar	mma Distri	buted at 59	% Signific	ance Leve	el		

	А	В	С	D	E	F	G	Н		J	K	L
265								•				
266				C	Gamma Sta	atistics on	Detected I	Data Only				
267				k	hat (MLE)	1.607			k star	r (bias corre	ected MLE)	1.492
268				Theta	hat (MLE)	0.945			Theta star	r (bias corre	ected MLE)	1.018
269				nu	hat (MLE)	115.7			n	u star (bias	corrected)	107.4
270				Mea	n (detects)	1.52						
271												
272				Gamn	na ROS St	atistics usi	ing Impute	d Non-Det	ects			
273			GROS may no	t be used when	n data set h	nas > 50%	NDs with n	nany tied o	bservation	is at multipl	e DLs	45.00
274		GROS may	not be used wh	hen kstar of det	ects is sma	all such as	<1.0, espe	cially wher	n the samp		mall (e.g., <	:15-20)
275			For s	uch situations,	GRUS me	thod may y	the compl	ect values (of UCLS al	nd BTVS		
2/6		For gon	ma distributed		BTVc and		he compu	tod uping o	nan.	tribution on	KM octimo	too
277		FUI yali		delected data,	Minimum		be compu	teu using g	jamma uis		Mean	0.286
270			-		Maximum	5 45					Median	0.01
280					SD	0.836					CV	2.926
281				k	hat (MLE)	0.279			k sta	r (bias corre	ected MLE)	0.278
282				Theta	hat (MLE)	1.023			Theta star	r (bias corre	ected MLE)	1.026
283				nu	hat (MLE)	110.1			n	u star (bias	corrected)	109.7
284			Adjusted	I Level of Signi	ficance (β)	0.0488						
285		Ap	proximate Chi	Square Value ((109.72, α)	86.54		Adjust	ed Chi Sq	uare Value	(109.72, β)	86.39
286		95% Gam	ma Approximat	e UCL (use wh	ien n>=50)	0.362	95	5% Gamma	Adjusted	UCL (use v	vhen n<50)	0.363
287												
288				Estimat	tes of Gam	ma Param	eters usin	g KM Estir	nates		00 ((0.0	0.770
289					Mean (KM)	0.483				05 -4	SD (KM)	0.773
290				vari	ance (KNI)	0.598				SEOT	k eter (KM)	0.050
291				n	K Hat (KM)	0.39					K Star (KIVI)	152 7
292				thet	a hat (KM)	1 238				thet	a star (KM)	1 246
293			80%	6 gamma perce	entile (KM)	0.776			90% a	amma perc	entile (KM)	1.372
295			95%	6 gamma perce	entile (KM)	2.029			99% g	amma perc	entile (KM)	3.686
296				<u> </u>	()						()	
297					Gamma k	Kaplan-Mei	ier (KM) Si	tatistics				
298		Ap	proximate Chi	Square Value ((152.69, α)	125.1		Adjust	ed Chi Sq	uare Value	(152.69, β)	124.9
299	95	5% Gamma /	Approximate KM	M-UCL (use wh	ien n>=50)	0.589	95% G	amma Adj	usted KM-	UCL (use v	vhen n<50)	0.59
300												
301				Lognor	mal GOF	Test on De	tected Ob	servations	Only			
302			S	hapiro Wilk Te	st Statistic	0.945			Shapi	iro Wilk GC	F Test	<u> </u>
303			5% 5	hapiro Wilk Cri	tical value	0.935	De	etected Dat	a appear i	Lognormal a	at 5% Signi	licance Level
304				% Lilliefors Cri	tical Value	0.112		atected Dat	annear l		at 5% Signi	ficance Level
305				Detected	Data anne	ar Lognor	nal at 5%	Significand	e Level	Lognorman	at 576 Signi	
307				20100104	Data appo			g				
308				Lognor	mal ROS S	statistics U	sing Imput	ted Non-De	etects			
309				Mean in Orig	ginal Scale	0.352				Mean in	Log Scale	-2.503
310				SD in Oriç	ginal Scale	0.819				SD in	Log Scale	1.763
311		95%	t UCL (assume	es normality of	ROS data)	0.449			95% Per	centile Boo	tstrap UCL	0.453
312				95% BCA Boot	tstrap UCL	0.47				95% Boots	strap t UCL	0.482
313				95% H-UCL	(Log ROS)	0.562						
314			01-11-11-									
315			Statistic	s using KM es	timates on		ata and As	suming Lo	ignormai i	Distribution	Cao Maan	0.227
316					D (logged)	-1.110			05% Crit	ical H Value		1.01/
317			KM Standa	rd Error of Mea	n (logged)	0.002			33 % CIII			0.446
310				KM S	D (logged)	0.662			95% Crit	ical H Value	e (KM-Log)	1.914
320			KM Standa	rd Error of Mea	an (logged)	0.0479					- (3)	
321					(*33**7]
322						DL/2 Sta	atistics					
323			DL/2 No	rmal					DL/2	Log-Transf	formed	
324				Mean in Orig	ginal Scale	0.394				Mean in	Log Scale	-1.656
325				SD in Orig	ginal Scale	0.819				SD in	Log Scale	0.92
326			95% t l	JCL (Assumes	normality)	0.491				95% H	H-Stat UCL	0.335
327			DL/2 is n	iot a recomme	nded meth	od, provid	ed for com	parisons a	nd histori	cal reasons	;	
328								<u></u>				
329			<u>-</u>	Nor	parametric	c Distributi	on Free U	CL Statistic	CS			
330				vetected Data	appear Log	ynormal Di	stributed a	n 5% Signi	mcance Le	evei		
331					e.	Indested						
332					SL KM H LICI		າວ∟ ເບ US€	7				
333						0.440						i

333 Net: Suggestors regarding the selection of a 59% UCL, are growided to help the user to select the most agromphile 85% UCL. 333 Net: Suggestors regarding the selection of a 59% UCL, are growided to help the user to select the most agromphile 85% UCL. 334 These economechations are based upon the regarding of the substant on taking summarizes in Singh. Marking, and Len (2006) 335 These economechations results with of care at Real Work data size, data distinuit inagit the user nay ward to consult a statistical. 336 Total Multice Care at Real Work data size, data distinuit inagit the user nay ward to consult a statistical. 337 Number of Distinuit December 124 Number of Distinuit December 127 Number of Distinuit December 127 338 Total Multice Care at Number of Distinuit December 123 Number of Distinuit December 123 Number of Distinuit December 123 339 Mean of Distinuit December 123 Provide Care at Distinuit December 123 Distinuit December 123 Distinuit December 123 330 Mean of Lingged Debets 136 December 2016 Other 2015 331 Mean of Lingged Debets 136 December 2016 Other 2015 333 Mean of Lingged Debets 136 December 2016 Other 2015 333		А	В	С	D)	E	F	G	Н	I	J K		L
	334													
33 These recommendations are based upon data size, data autochol, and severes. 33 These recommendations are based upon the size, data autochol, and severes. 33 Howere, immufations results will not cover all Reb Wold data size, for additional insight Market, and Lee (2006). 34 Howere, immufations results will not cover all Reb Wold data size, for additional insight Market, and Lee (2006). 34 Total Number of Determinations. 97 34 Number of Determinations. 7 34 Number of Determinations. 7 34 Number of Determinations. 7 34 Number of Determinations. 80.6 35 Mean Determinations. 80.6 80.6 35 Mean of Logged Detects. 2.396 SD of Logged Detects. 0.456 36 Mean of Logged Detects. 2.396 SD of Logged Detects. <th>335</th> <td>No</td> <td>te: Sugges</td> <td>tions regardir</td> <td>ng the sele</td> <td>ection of</td> <td>a 95% U</td> <td>CL are prov</td> <td>vided to he</td> <td>Ip the user</td> <td>to select th</td> <td>ne most appropriate 9</td> <td>5% UCL.</td> <td></td>	335	No	te: Sugges	tions regardir	ng the sele	ection of	a 95% U	CL are prov	vided to he	Ip the user	to select th	ne most appropriate 9	5% UCL.	
Market Robinsburger Number Robinsburger Number Robinsburger Number Robinsburger 33 Hendryingshifteline Image: Robinsburger 24 34 Hendryingshifteline Image: Robinsburger 24 35 Image: Robinsburger 7 Number Robinsburger 24 36 Total Number Robinsburger 7 Number Robinsburger 24 36 Number Robinsburger 7 Number Robinsburger 24 36 Number Robinsburger 7 Number Robinsburger 24 36 Number Robinsburger 14 Marcinum Non-Detect 15 36 Moninum Detect 52 Moninum Non-Detect 15 36 Median Letects 11.5 CV Detects 6.61 37 Median Letects 12.5 Kontons Detects 12.6 38 Median Letects 12.6 CV Detects 6.64 39 Detectect Detains Detects 12.6 CV Detects 0.64 39 Detectect Detains Detecte 12.6 Det	336	T		Re		dations a	re based	upon data	size, data	distribution	i, and skev	ness.	(2006)	
Add Number of Disservations 17 Number of District Observations 24 341 Add Number of District Observations 17 Number of District Observations 24 343 Total Number of District Observations 17 Number of District Observations 24 344 Number of District Observations 24 34 34 346 Number of District Observations 24 34 34 346 Maximum District 7 Number of District Observations 24 347 Maximum District 30.4 Maximum Non-Detect 36.97 348 Maximum District 30.2 Normal COF Test on District Observation 30.7 349 Stansmite 30.01 Stansmite 30.01 Stansmite 30.01 350 Stansmite 30.01 Stansmite 30.01 Stansmite 30.01 351 Stansmite 30.01 Stansmite 30.01 District Observation on and 37.8 Significance Level 353 Stansmite Stansmite 30.01 District O	337	Howe	ever simula	ations results	will not co	ver all R	eal Work	d data sets	for addition	nal insight	the user r	nav want to consult a	statisticia	n
301 HerryInspiritations Junctor of Distinct Observations 24 343 Total Number of Destrict Press 7 Number of Destrict Observations 24 344 Number of Destrict Press 7 Number of Destrict Press 71 345 Number of Destrict Press 7 Number of Destrict Press 71 346 Number of Destrict Press 7 Number of Destrict Press 71 347 Maximum Prostoct 7.8 Number of Destrict Press 71 348 Maximum Prostoct 7.8 Restrict Press 71 349 Maximum Prostoct 7.8 Restrict Press 71 340 Marinum Prostoct 7.0 Restrict Press 71 341 Marinum Prostoct 7.0 Restrict Press 72 342 Marinum Prostoct 700 Restrict Press 74 343 Statistica Test Statistic 723 Restrict Press 75 344 Statistica Test Statistic 724 Restrict Presstrict Presstrict Press 345<	339								,	jjjjjj				
31 Sevent Statist 32 Total Number of Observations 97 Number of Datin Cheervations 24 34 Number of Datin Cheevation 197 Number of Datin Cheevations 197 346 Number of Datin Cheevation 24 Number of Datin Cheevations 17 347 Maximum Devet 5.2 Marinum No-Devet 5.61 347 Maximum Devet 5.2 Marinum No-Devet 5.61 348 Maximum Devet 5.2 Marinum No-Devet 5.61 349 Mean Devet 5.1 Parcen No-Devets 5.61 340 Mean Devet 5.8 Marinum No-Devet 5.61 351 Mean Devet 5.60 Marinum No-Devet 5.63 352 Shappin Will Chicality Value 5.60 Marinum No-Devet 5.65 352 Shappin Will Chicality Value 5.60 Marinum No-Devet 5.65 353 Shappin Will Chicality Value 5.60 Marinum No-Devet 5.60 354 Devet Date Shappin Will Chicality Value	340	1-Methylnapht	halene											
General Statistics General Statistics 343 Total Number of Detextists 7 Number of District Observations 34 344 Number of Detextists 7 Number of Detextists 190 345 Number of Detextists 7 Number of Detextists 190 346 Marinum Detect 5.2 Marinum Nun-Cleest 12.3 347 Maximum Detects 12.1 Sto Detexts 6.61 349 Mean Detexts 12.1 Sto Detexts 0.64 351 Statement Detects 2.36 Stotage With Test Statistics 0.907 352 Stotage With Test Statistics 0.907 Stotage With Test Statistics 0.907 353 Stotage With Test Statistics 0.907 Detected Data appear Normal ESK Storffacture Level 353 Stotage With Test Statistics 0.907 Detected Data appear Normal ESK Storffacture Level 354 With Test Statistics 0.907 Normal ASK Storffacture Level 1.827 355 With Test Statistics 0.957 Normal ASK Storffacture of Manal 1.78 </th <th>341</th> <th></th>	341													
43.1 Index of UseR values 107 Number of UseR volces 24 44.1 Number of Disknet Dotes 7 Number of Disknet Non-Detes 170 44.1 Minimum Dotes 72 Number of Disknet Non-Detes 170 45.1 Minimum Dotes 72 Minimum Non-Detes 170 45.2 Minimum Non-Detes 171 Percent Non-Detes 6.65% 45.3 Mediam Detects 12.1 Percent Non-Detes 6.65% 45.3 Serverse Detects 0.502 Kursen Non-Detes 6.972 35.1 Mediam Detects 2.398 DSD of Logged Detects 0.448 35.3 Serverse Notes 0.502 Kursen Notes 0.972 35.4 Normel 4/204F Test on Detects Only Stager Normal at 5%, Significance Level 35.7 Signific Wilk Circlal Value 0.803 Detected Date appear Normal at 5%, Significance Level 36.8 Moreiron A/204E S.301 Detected Date appear Normal at 5%, Significance Level 36.9 Dotected Nata Normel 4/204E Significance Level 1.82	342					(0)		General S	tatistics				0.1	
Bit Number of Depine Depine 7 Number of Depine New Depices 77 286 Maimum Depice 204 Munitrum Non-Oberci 15.9 286 Wainen Depices 204 Mean Non-Oberci 12.6 286 Wainen Depices 12.1 Percent Non-Depices 56.4 281 Mean Depices 12.5 CV Depices 56.4 282 Mean Depices 12.5 CV Depices 56.4 283 Stewmess Detects 0.302 Kurnsie Detects 0.408 283 Normal COF Test on Detects Only Steppinov With Creat Statistic 0.301 Detected Data appear Normal TS% Significance Level 286 Shapiro With Creat Statistic 0.302 Detected Data appear Normal TS% Significance Level 287 Lillefors Critical Value 0.302 Significance Level 1.827 288 SNA (Mass In Value 0.302 Significance Level 1.83 289 Detected Data appear Normal TS% Significance Level 1.83 1.827 280 SNA (Mass Normal Critical Value 0.328	343			IOt		umber of	Detects	197		r	Number of	under of Non-Detects	24 190	
346 Minimum Durect 5.62 Minimum Nun-Dister 0.519 347 Warance Detects 31.47 Percent Non-Disters 64.45% 348 Warance Detects 1.21 SD Detects 65.45% 350 Median Detects 1.135 CV Detects 0.641 351 Staveness Detects 0.302 Kurans Detects 0.444 351 Staveness Detects 0.302 Kurans Detects 0.446 351 Staveness Detects 0.495 0.446 0.446 353 Stavpior Witk Tres statistic 0.301 Stavpior Witk Tres statistic 0.35 353 Stavpior Witk Tres statistic 0.35 Lillefors Core Test 1.28 354 Detected Data appear Normal at 5% Significance Level 1.28 1.28 1.28 353 Staviard Kitch Vice A 1.28 KN Standard Error of Mann 1.18 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.28	344				Number o	f Distinct	Detects	7			Number of	Distinct Non-Detects	130	
342 Maximum Deciset 20.4 Maximum Non-Deciset 2.5 348 Waring Non-Deciset 13.147 Present 5.6.1 359 Metan Detects 11.35 CV Deciset 0.644 351 Skewness Detects 0.502 Kurtosis Deciset 0.972 352 Mean of Logged Detects 2.399 SD of Logged Deciset 0.486 353 Shapiro Wilk Test Statistic 0.501 Shapiro Wilk GOF Test 0.486 355 Shapiro Wilk Test Statistic 0.50 Lilliefors Test Statistic 0.52 Lilliefors CoF Test 356 Shapiro Wilk Test Statistic 0.54 Lilliefors Cor Test 1.53 CURL 1.53 <th>346</th> <td></td> <td></td> <td></td> <td></td> <td>Minimur</td> <td>n Detect</td> <td>5.62</td> <td></td> <td></td> <td></td> <td>Minimum Non-Detect</td> <td>0.619</td> <td>9</td>	346					Minimur	n Detect	5.62				Minimum Non-Detect	0.619	9
346 Variance Detects 31.47 Percent Non-Detects 96.4%, 350 Median Detects 11.35 CV Detects 0.484 351 Stowness Detects 0.392 Kurtosis Detects 0.972 352 Mean of Logged Detects 2.395 SD of Logged Detects 0.485 353 Nomel COF Test on Detects Only 0.485 0.485 354 Nomel COF Test on Detects Only 0.486 355 Stagero Witk Kerls Statistic 0.301 Detected Data appeer Normal at 5% Significance Level 356 Detected Data appeer Normal at 5% Significance Level 0.486 0.486 350 Detected Data appeer Normal at 5% Significance Level 0.486 0.486 350 Kaplan-Meior (KOI) Statistics using Normal at 5% Significance Level 0.486 0.486 351 Kaplan-Meior (KOI) Statistics using Normal at 5% Significance Level 0.486 0.486 352 Kaplan-Meior (KOI) Statistics using Normal at 5% Significance Level 0.486 0.486 352 Statistics and Normal at 5% Significance Level 0.486 0.486 3	347					Maximur	n Detect	20.4			I	Maximum Non-Detect	12.5	
349 Mean Detects 12.1 SD Detects 5.61 350 Mean Detects 1.35 CV Detects -0.572 351 Skewness Detects 0.502 Kurtusis Detects 0.644 353 Stagin Of Logged Detects 0.502 Stagin Of Logged Detects 0.465 353 Stagin Wilk Test Statistic 0.801 Detected Data agear Nomial 55. Significance Level 354 Stagin Vilk Test Statistic 0.28 Lilliefors Test Statistic 0.28 355 Stagin Critical Vilue 0.34 Detected Data agear Normal at 55. Significance Level 359 Detected Data agear Normal at 55. Significance Level 1.135 1.135 361 Kaplan-Meire (Vol) Statistics using Normal Critical Values and other Nonparametric UCLa 1.135 362 KM Man 1.232 KN Maloa Terror Mean 1.135 363 Stagin Simple Vilk (N UCL 1.325 95% KM (Deck), UCL 1.222 364 95% KM (Deck), UCL 1.325 95% KM (Deck), UCL 1.222 365 Content Volk (V UCL 1.350 95% KM (Cek), UCL <th>348</th> <td></td> <td></td> <td></td> <td></td> <td>Variance</td> <td>Detects</td> <td>31.47</td> <td></td> <td></td> <td></td> <td>Percent Non-Detects</td> <td>96.45</td> <td>%</td>	348					Variance	Detects	31.47				Percent Non-Detects	96.45	%
350 Modula Details 11.53 C.V. Davids Davids 351 Skownas Details 1.332 Kutois Details 0.492 352 Maan of Loggel Deteils 2.366 SD of Logged Deteils 0.486 353 SD of Logged Deteils 2.366 SD of Logged Deteils 0.486 354 Namel GOF Test on Detects Only Stappiro Wilk Critical Value 0.803 Detected Data appear Normal at 5% Significance Level 357 Lillefors Critical Value 0.304 Detected Data appear Normal at 5% Significance Level 359 Detected Data appear Normal at 5% Significance Level 1.872 351 Kaplam-Meir (KM) Statistics using Mormal Critical Values and other Nonparametric UCLs 352 KM Mon 1.028 KM Significance Level 353 Statistics 0.324 99% KM (Debugher UCL 1.222 354 Statistics 0.324 99% KM (Debugher UCL 1.222 355 Genoma Critical Value 0.313 Detected data appear Gomma DataTicated at 5% Significance Level 356 Genoma Statistics 0.155 Kolagoon-Simon OGF	349					Mean	Detects	12.1				SD Detects	5.61	4
33 Mean of Cogget Detects 2.396 SD of Logget Detects 0.486 33 Normal GOF Test on Detects Only SD of Logget Detects 0.486 34 Staptio Wilk Test Statutal 0.801 Detected Data appear Normal at 5% Significance Level 35 Shapto Wilk Test Statutal 0.803 Detected Data appear Normal at 5% Significance Level 36 St Limifors Critical Value 0.804 Detected Data appear Normal at 5% Significance Level 37 Limitors Test Statutal 0.834 Detected Data appear Normal at 5% Significance Level 38 Detected Data appear Normal at 5% Significance Level 1.827 39 Kaptan-Meior (Kol) Statistics using Normal ctricel Values and other Nongarametric UCLs 1.827 39 Significance Level 1.835 1.837 395 95% KK (C) UCL 1.326 95% KM Bootstrapt UCL 1.822 396 Gamma GOF Test on Detected Obtas appear Normal at 5% Significance Level 2.823 396 Gamma GOF Test on Detected Obtas appear Sommo Sommor GOF 1.815 397 S% KK (C) UCL 1.852 95% KM Sonstrapt UCL 2.823	350				9	kownoss	Detects	0.502				CV Detects	-0.972	+
Solution Consideration Constraints Constraints Constraints 351 Shapiro Wilk ColF Test on Detected One Shapiro Wilk ColF Test 352 5% Shapiro Wilk Coltcal Value 0.801 Detected Data appear Normal at 5% Significance Level 353 5% Shapiro Wilk ColF Test 0.251 Detected Data appear Normal at 5% Significance Level 353 5% Unifiedro Test Statistic 0.251 Detected Data appear Normal at 5% Significance Level 354 Shapiro Wilk ColF Test Detected Data appear Normal at 5% Significance Level 355 Shapiro Wilk Old Test 0.18 356 KM Mean 1.028 KM Standard Error Mean 0.18 353 KM Kol UCL 1.325 95% KM (IBCA) UCL 1.877 356 95% KM (OULCL 1.325 95% KM (Debyshev UCL 1.815 357 95% KM (Physhev UCL 1.569 95% KM (Chebyshev UCL 1.815 357 95% KM Chebyshev UCL 1.569 95% KM Chebyshev UCL 2.823 351 Gamma GOF Tests on Detected Observations ON Madranco-Dering OF Test 3.3122 371	351				Mean o	f Loaaed	Detects	2.396			ç	SD of Logged Detects	0.48	3
Sig Nommal GOF Test on Detects Only Sign (VMK GOF Test) 355 Shapiro VMK rest Statistic 0.403 Detected Data appear Normal at 5% Significance Level 357 Lillidors Critical Value 0.303 Detected Data appear Normal at 5% Significance Level 358 Detected Data appear Normal at 5% Significance Level Detected Data appear Normal at 5% Significance Level 359 Detected Data appear Normal at 5% Significance Level Significance Level 360 Kaplen-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs Significance Level 361 Kaplen-Meier (KM) Statistics US Normal AT 5% Significance Level Significance Level 362 KM Mean 1.028 KM Standard Error of Mean 1.18 363 Significance Level Significance Level 1.827 395% KM (Policy Link) 1.821 364 95% KM (Policy Link) 1.528 95% KM (Deteyphery UCL 1.821 395% KM (Deteyphery UCL 2.823 370 APD Test Statistic 0.931 Detected Data appear Gamma Distributed at 5% Significance Level 372 371 5% APD Critical Value 0.71 Detected data appear	353													-
335 Shapiro Wilk Test Statistic 0.001 Shapiro Wilk OF Test 336 5% Shapiro Wilk Cricital Value 0.030 Detected Data appear Normal at 5% Significance Level 337 Lillefors OF Test Lillefors OF Test 338 Obtacted Data appear Normal at 5% Significance Level 349 Detected Data appear Normal at 5% Significance Level 350 KM Mean 1.032 353 KM Significance Level 354 Lillefors OF Test 355 KM Mean 1.032 356 KM Mean 1.032 353 Significance Level 1.237 354 95% KM (PCL) 1.257 356 95% KM (Pottop) 1.252 357 Significance Level 1.282 358 Camma GOF Tests on Detected Detas appear Camme Distributed ICL 1.282 359 Camma GOF Tests on Detected Detas appear Camme Distributed Significance Level 370 A-D Test Statistic 0.312 Netected data appear Camme Distributed Significance Level 371 Significance Level 3.312 Netected data appear Camme Distributed Signif	354						Normal	GOF Test	on Detects	3 Only				
356 5% Shapiro Wilk Ortical Value 0.803 Detected Data appear Normal at 5% Significance Level 357 Significance Level 0.304 Detected Data appear Normal at 5% Significance Level 358 S% Uliefors Critical Value 0.304 Detected Data appear Normal at 5% Significance Level 360 Normal At 5% Significance Level 0.18 0.18 361 Kaplan-Meier (KM) Statistics using Normal Critical Values and other Norparametric UCLs 0.18 362 KM Kong 2.342 95% KM (BCA) UCL 1.737 365 95% KM (Debyshev UCL 1.526 95% KM (Debyshev UCL 1.827 366 95% KM Chebyshev UCL 1.559 95% KM Chebyshev UCL 1.827 367 97.5% KM Chebyshev UCL 1.559 95% KM Chebyshev UCL 1.827 370 Ab Test Statistic 0.362 Anderson-Daring GOF Test 371 371 5% KK Chebyshev UCL 0.351 Detected data appear Gammo Distributed at 5% Significance Level 372 KK Stratical Value 0.352 Anderson-Daring GOF Test 371 373 Deteteted data appear Gammo Distributed	355				Shapiro V	Vilk Test	Statistic	0.901			Shapi	o Wilk GOF Test		
357 Lillefors (est statistic) 0.304 Detected Data appear Normal at 5% Significance Level 358 Detected Data appear Normal at 5% Significance Level 359 359 Detected Data appear Normal at 5% Significance Level 350 KM Mean 1028 KM Mean 1028 351 KM Mean 1028 KM Mean 1028 KM Mean 1028 352 KM Mean 1028 KM Mean 1028 KM Mean 1028 353 95% KM (BCA) UCL 1.827 1.827 364 95% KM (10 UCL 1.325 95% KM (BCA) UCL 1.827 365 95% KM Chebyshev UCL 1.825 95% KM Chebyshev UCL 1.828 366 Gamma GOF Festo an Detected Observations Only 1.815 2.823 370 A-D Test Statistic 0.321 Detected data appear Gamma Distributed at 5% Significance Level 371 5% K S Grincal Value 0.313 Detected data appear Gamma Distributed at 5% Significance Level 373 5% K S Grincal Value 0.313 Detected Data Only 3.122 374 Detected Data appear Gamma Distributed at 5% Significance Level 3.77 <	356			5%	Shapiro W	/ilk Critic	al Value	0.803		Detected Da	ata appear	Normal at 5% Signifi	cance Lev	vel
Gase Detected Data appear Vormit at SV Significance Level 360 Network Vorman SV Significance Level 361 Kaplan-Meier (KM) Statistics using Normal Critical Values and other Noparametric UCLs 362 KM Mean 1.028 KM Standard Error of Mean 0.18 363 Next Statistics using Normal Critical Values and other Noparametric UCLs 1.82 95% KM (DUCL) 1.327 364 95% KM (I) UCL 1.325 95% KM (Debysher UCL) 1.816 365 95% KM (Chebysher UCL) 1.826 95% KM (Debysher UCL) 1.816 367 97.5% KM Chebysher UCL 1.569 95% KM (Debysher UCL) 2.823 368 Gemma GOF Tests on Detected Observations Only 2.823 2.823 370 A-D Test Statistic 0.362 Anderson-Darling GOF Test 371 5% K-S Critical Value 0.313 Detected data appear Gamma Distributed at 5% Significance Level 373 5% K-S Critical Value 0.313 Detected data appear Gamma Distributed at 5% Significance Level 374 Detected data appear Gamma Distributed at 5% Significance Level 367 375 Gamma Sta	357				Lillief	ors l'est	Statistic	0.25		Detected D	Lillie ata annocr	Normal at 5% Signifi	anco I ci	(ol
300 Construct of point (NM) and any of the optimization of other 361 Kaplan-Meler (KM) Statistics using Normal Critical Values and other Nonparametric UCLs 362 KM Standard Error of Mean 0.18 363 KM Standard Error of Mean 0.18 364 95% KM (U) UCL 1.325 95% KM (Mercenitie Bootsharp) UCL 1.737 365 95% KM (U) UCL 1.325 95% KM No tohyshory UCL 1.822 366 90% KM Chebryshory UCL 1.859 95% KM No tohyshory UCL 2.823 367 97.5% KM Chebryshory UCL 2.155 99% KM Chebryshory UCL 2.823 368 Gamma GOF Tests on Detected Observations Only 2.823 2.823 371 A-D Test Statistic 0.155 Kolmogorov-Smirov GOF 2.823 372 K-S Test Statistic 0.155 Kolmogorov-Smirov GOF 3.122 373 Gamma Statistics on Detected Data Only 3.122 3.877 3.122 373 Gamma Statistics and piperit of the sample size is small 3.122 3.877 374 Hot (MEE) 2.415 nu star (bias correc	358				5% Lillien	etected	Data anr	0.304	lat5%,Si	anificance		normal at 5% Signin	cance Lev	/ei
Sec Kaplan-Meler (KM) Statistics using Normal Critical Values and other Nonparametric UCLS 362 KM Mean 1.028 KM Stander Error of Mean 0.18 363 KM SD 2.342 SS% KM (BCA) UCL 1.327 364 95% KM (1) UCL 1.326 95% KM (BCA) UCL 1.737 365 95% KM (2) UCL 1.325 95% KM (Chebyshev UCL 1.827 366 90% KM Chebyshev UCL 2.155 95% KM (Chebyshev UCL 2.823 367 37.5% KM Chebyshev UCL 2.155 95% KM (Chebyshev UCL 2.823 368 Gamma GOF Tests on Detected Observations Only 2.823 2.823 370 A-D Test Statistic 0.352 Anderson-Darling GOF Test 2.823 371 5% K-D Critical Value 0.313 Detected data appear Gamma Distributed at 5% Significance Level 373 5% K-S Critical Value 0.313 Detected data appear Gamma Distributed at 5% Significance Level 374 Detected data appear Gamma Distributed at 5% Significance Level 3.77 374 Gamma Statistics on Detected Data Only 3.77 375	360				0	5.50.04	a - a - a - a - a - a - a - a - a			ə041100				
Bag2 KM Mean 1.028 KM Seq 0.18 363 KM SD 2.342 96% KM (AUC) UCL 1.327 364 95% KM (0) UCL 1.325 95% KM (Bootstrap) UCL 1.327 365 90% KM Chebyshev UCL 1.569 95% KM Chebyshev UCL 1.816 367 97.5% KM Chebyshev UCL 1.569 95% KM Chebyshev UCL 2.823 368 Gamma GOF Tests on Detected Observations Only 2.823 2.823 370 A-D Test Statistic 0.152 Anderson-Darling GOF Test 371 CA-D Test Statistic 0.153 Detected data appear Gamma Distributed at 5% Significance Level 373 SK SC Ottical Value 0.313 Detected data appear Gamma Distributed at 5% Significance Level 374 Detected data appear Gamma Distributed at 5% Significance Level 374 374 Detected data appear Gamma Distributed at 5% Significance Level 375 375 Gamma Statistics on Detected Data Only 371 376 Gamma Statistics an Detected Data oppar Gamma Distributed at 5% Significance Level 374 376 Gamma Statistics an Dete	361			Kaplan-N	leier (KM)	Statistic	s using	Normal Cr	itical Value	s and othe	r Nonpara	metric UCLs		
KM SD 2.342 95% KM (BCA) UCL 1.827 364 95% KM (UCL 1.325 95% KM (BCA) UCL 1.737 365 95% KM (Cbubysher UCL 1.559 95% KM Chebysher UCL 2.65 366 90% KM Chebysher UCL 2.155 95% KM Chebysher UCL 2.823 368	362					K	M Mean	1.028			KM St	andard Error of Mean	0.18	
384 95% KM (1) UCL 1.326 95% KM (2) UCL 1.371 385 95% KM (2) UCL 1.325 95% KM (2) UCL 1.262 386 97.5% KM Chebyshev UCL 1.569 95% KM (2) UCL 1.262 387 97.5% KM Chebyshev UCL 2.155 99% KM (2) UCL 2.823 388	363						KM SD	2.342				95% KM (BCA) UCL	1.82	7
385 95% KM (2) UCL 1.55 95% KM Chebyshev UCL 1.56 367 97.5% KM Chebyshev UCL 2.155 95% KM Chebyshev UCL 2.823 369 Gamma GOF Tests on Detected Observations Only 2.823 370 A-D Test Statistic 0.362 Anderson-Darling GOF Tests 371 5% A-D Critical Value 0.31 Detected data appear Gamma Distributed at 5% Significance Level 372 K-S Test Statistic 0.195 Kolmozov-Smirnov GOF 373 5% K-S Critical Value 0.31 Detected data popear Gamma Distributed at 5% Significance Level 374 Detected data papear Gamma Distributed at 5% Significance Level 3.122 375 Gamma Statistics on Detected Data Only 3.122 378 Theta hat (MLE) 2.285 Theta star (bias corrected MLE) 3.127 379 nu hat (MLE) 7.45 nu star (bias corrected MLE) 3.72 379 nu hat (MLE) 7.45 nu star (bias corrected MLE) 3.72 378 Gamma ROS Statistics using imputed Non-Detects 3.77 3.77 Satata tarchis acorrected MLE) 3.87 </td <th>364</th> <td></td> <td></td> <td></td> <td></td> <td>95% KM</td> <td>I (t) UCL</td> <td>1.326</td> <td></td> <td>95%</td> <td>KM (Perc</td> <td>entile Bootstrap) UCL</td> <td>1.73</td> <td>7</td>	364					95% KM	I (t) UCL	1.326		95%	KM (Perc	entile Bootstrap) UCL	1.73	7
300 300 httm://interview.clim. 1.303 300 httm://interview.clim. 1.303 307 97.5% kM Chebyshev UCL 2.155 99% kM Chebyshev UCL 2.823 308	365				00% KM	95% KM	(Z) UCL	1.325			95%	M Chebyshev UCL	1.264	2
Solution Construction of the statistic of the statis of the statistic of the statistic of the statisti	367				97.5% KM	Chebys	hev UCL	2.155			99%	KM Chebyshev UCL	2.823	3
369 Gamma GOF Tests on Detected Observations Only 370 A-D Test Statistic 0.362 Anderson-Darling GOF Test 371 5% A-D Critical Value 0.11 Detected data appear Gamma Distributed at 5% Significance Level 372 K-S Test Statistic 0.195 Kolmogorov-Smirnov GOF 373 5% K-S Critical Value 0.313 Detected data appear Gamma Distributed at 5% Significance Level 374 Detected data appear Gamma Distributed at 5% Significance Level 375 375 Statistics on Detected Data Only 3.122 378 Camma Statistics on Detected Data Conly 3.127 379 n that (MLE) 2.285 Theta star (bias corrected MLE) 3.877 379 n that (MLE) 1.21 nu star (bias corrected MLE) 3.877 381 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 388 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 386 382 GROS may not be used when data set has > 50% NDs with many tied observations on KI estimates 388 383 383 384 384 384 384	368					,								-
370 A-D Test Statistic 0.362 Anderson-Darling QOF Test 371 5% A-D Critical Value 0.171 Detected data appear Gamma Distributed at 5% Significance Level 373 5% K-S Critical Value 0.133 Detected data appear Gamma Distributed at 5% Significance Level 374 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level 375 Camma Statistics on Detected Data Only 3.122 378 Theta hat (MLE) 2.295 Theta star (bias corrected MLE) 3.122 379 nu hat (MLE) 7.4.15 nu star (bias corrected MLE) 3.877 380 Mean (detects) 12.1	369					Gamma	GOF Te	sts on Det	ected Obs	ervations (Only			
371 Describer of a stratistic Detected data appear Gamma Distributed at 5% Significance Level 372 K-S Test Statistic 0.195 Komogrov-Smirnov GOF 373 Detected data appear Gamma Distributed at 5% Significance Level 0.313 Detected data appear Gamma Distributed at 5% Significance Level 374 Detected data appear Gamma Distributed at 5% Significance Level 375 375 Gamma Statistics on Detected Data Only 377 77 K hat (MLE) 5.296 K star (bias corrected MLE) 3.122 378 Theta hat (MLE) 74.15 nu star (bias corrected MLE) 3.877 379 nu hat (MLE) 74.15 nu star (bias corrected MLE) 3.877 380 Mean (detects) 12.1 43.7 43.7 381 GROS may not be used when data set has > 50% NDs with many ted observations at multiple DLs 384 GROS may not be used when katar of detects is small sequerially when the sample size is small (e.g., <15-20)	370				ŀ	A-D Test	Statistic	0.362			Anderso	n-Darling GOF Test		
372 Komogorov-Smirnov GU 373 6.5% K-S Critical Value 0.313 Detected data appear Gamma Distributed at 5% Significance Level 374 Detected data appear Gamma Distributed at 5% Significance Level 375 376 Gamma Statistics on Detected Data Only 3.122 378 A that (MLE) 5.296 k star (bias corrected MLE) 3.877 379 Nu kat (MLE) 2.285 Theta star (bias corrected MLE) 3.877 380 Mean (detects) 12.1 nu star (bias corrected MLE) 3.7 381 Gamma ROS Statistics using Imputed Non-Detects 383 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 384 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 385 Tor such situations, GROS method may yied incorrect values of UCLs and BTVs 386 386 This is especially true when the sample size is small (e.g., <15-20)	371				5% A	A-D Critic	al Value	0.71	Detect	ed data ap	pear Gamr	na Distributed at 5%	Significan	ce Level
3/3 Detected data apper Gamma Distributed at 5% Significance Level 3/5 Camma Statistics on Detected Data Only 3/7 Camma Statistics on Detected Data Only 3/7 K hat (MLE) 5.296 k star (bias corrected MLE) 3.122 3/8 Theta hat (MLE) 2.285 Theta star (bias corrected MLE) 3.877 3/9 nu hat (MLE) 74.15 nu star (bias corrected MLE) 3.877 3/80 Mean (detects) 12.1 nu star (bias corrected MLE) 3.877 3/81 Camma ROS Statistics using imputed Non-Detects 3383 GROS may not be used when data set has > 50%. NDs with many tied observations at multiple DLs 3/84 GROS may not be used when kata of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) 3/85 For such situations, GROS method may yield incorrect values of UCLs and BTVs 3/86 Theis is especially true when the sample size is small. 3/87 For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates 3/88 Minimum 0.01 Mean 0.458 3/89 Adjusted Level of Significance (β) 0.448	372				F9/ k	K-S Test	Statistic	0.195	Dotoot	od data an	Kolmog	Distributed at 5%	Significan	
Gramma Statistics on Detected Data Only 376 Gamma Statistics on Detected Data Only 377 k hat (MLE) 5.296 k star (bias corrected MLE) 3.122 378 Theta hat (MLE) 2.285 Theta star (bias corrected MLE) 3.877 379 nu hat (MLE) 7.4 15 Theta star (bias corrected MLE) 3.877 380 Mean (detects) 12.1	373				Detecte	ed data a	opear G	amma Dist	ributed at	5% Signific	cance Lev		significan	
376 Gamma Statistics on Detected Data Only 377 k hat (MLE) 5.296 k star (bias corrected MLE) 3.122 378 Theta hat (MLE) 2.285 Theta star (bias corrected MLE) 3.877 379 nu hat (MLE) 74.15 nu star (bias corrected) 43.7 380 Mean (detects) 12.1 nu star (bias corrected) 43.7 381 Gamma ROS Statistics using Imputed Non-Detects 333 GROS may not be used when data set has > 50%. NDs with many tied observations at multiple DLs 384 382 GROS may not be used when data set has > 50%. NDs with many tied observations at multiple DLs 385 383 For such situations, GROS method may yield incorrect values of UCLs and BTVs 385 384 GROS may not be used when data with may = 0.0 Maximum 0.01 385 For such situations, GROS method may yield incorrect values of UCLs and BTVs 386 388 Minimum 0.01 Mean 389 Maximum 20.4 Median 0.01 391 k tar (bias corrected MLE) 0.209 332 392 The	375													
377 k hat (MLE) 5.296 k star (bias corrected MLE) 3.122 378 Theta hat (MLE) 2.285 Theta star (bias corrected MLE) 3.877 379 nu hat (MLE) 74.15 nu star (bias corrected) 43.7 380 Mean (detects) 12.1 ustar (bias corrected) 43.7 381 Camma ROS Statust council (bias corrected) 43.7 Council (bias corrected) 43.7 382 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs Start Start 384 GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) Start 385 For such situations, GROS method may yield incorrect values of UCLs and BTVs Start 388 Minimum 0.01 Mean 0.458 389 Maximum 20.4 Median 0.01 380 CV 5.36 CV 5.36 CV 5.36 381 Maximum 0.01 Mean 0.458 382 Maximum 0.01 Mean 0.458	376					Ga	mma Sta	atistics on	Detected D	Data Only				
378 Theta hat (MLE) 2.285 Theta star (bias corrected MLE) 3.877 379 nu hat (MLE) 74.15 nu star (bias corrected) 43.7 380 Mean (detects) 12.1 — — 381 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 383 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 384 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 386 — — 386 For such situations, GROS method may yield incorrect values of UCLs and BTVs — — — 387 For gamma distributed detected dat, BTVs and UCLs may be computed using gamma distribution on KM estimates — — — 388 Minimum 0.01 Mean 0.458 … … 389 Maximum 20.4 Median 0.01 … … … 389 Maximum 20.4 k star (bias corrected MLE) 0.209 … … … … … … … … … …	377					k ha	at (MLE)	5.296			k star	(bias corrected MLE)	3.122	2
379 nu nat (MLE) 74.1s nu star (blas corrected) 4.7 380 Mean (detects) 12.1	378					Theta ha	at (MLE)	2.285			Theta star	(bias corrected MLE)	3.87	7
360 Itera (decks) Itera 381	379					nu na	at (MLE)	/4.15 12.1			nı	i star (bias corrected)	43.7	
Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 384 GROS may not be used when katar of detects is small such as < 1.0, especially when the sample size is small (e.g., <15-20)	381					Wear (uciccia)	12.1						
383 GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs 384 GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)	382					Gamma	ROS St	atistics usi	ng Impute	d Non-Dete	ects			
384 GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20) 385 For such situations, GROS method may yield incorrect values of UCLs and BTVs 386 This is especially true when the sample size is small. 387 For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates 388 Minimum 0.01 Mean 0.458 389 Maximum 20.4 Median 0.01 390 SD 2.453 CV 5.36 391 K hat (MLE) 0.208 k star (bias corrected MLE) 0.209 392 Theta hat (MLE) 2.197 Theta star (bias corrected MLE) 2.194 393 nu hat (MLE) 82.09 nu star (bias corrected MLE) 2.194 394 Adjusted Level of Significance (β) 0.0488	383			GROS may r	not be use	d when c	lata set h	nas > 50%	NDs with m	nany tied ol	oservation	s at multiple DLs		
385 For such situations, GROS method may yield incorrect values of UCLs and BTVs 386 This is especially true when the sample size is small. 387 For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates 388 Minimum 0.01 389 Maximum 20.4 390 SD 2.453 391 k hat (MLE) 0.208 392 Theta hat (MLE) 2.197 393 nu hat (MLE) 82.09 394 Adjusted Level of Significance (β) 0.0488 395 Approximate Chi Square Value (82.18, a) 62.29 396 95% Gamma Approximate UCL (use when n>=50) 0.604 397 95% Gamma Approximate UCL (use when n>=50) 0.604 398 Estimates of Gamme Parameters using KM Estimates 399 399 Mean (KM) 1.028 391 K hat (KM) 0.193 392 Mean (KM) 1.028 393 Optimizer Chi Square Value (82.18, b) 62.16 394 Adjusted Level of Signifficance (β) 0.	384	G	ROS may	not be used v	when kstar	r of detec	ts is sma	all such as	<1.0, espe	cially wher	the samp	e size is small (e.g.,	<15-20)	
300 This is expectally use when the sample size is Strain. 387 For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates 388 Minimum 0.01 Mean 0.458 389 Maximum 20.4 Median 0.01 390 SD 2.453 CV 5.36 391 K hat (MLE) 0.208 k star (bias corrected MLE) 0.209 392 Theta hat (MLE) 2.197 Theta star (bias corrected MLE) 2.194 393 nu hat (MLE) 82.09 nu star (bias corrected) 82.18 394 Adjusted Level of Significance (β) 0.0488	385			For	such situa	ations, G	KUS met	thod may y	the come!	ect values o	or UCLs an	a BTVs		
Bit is a structure to the bit of the bit o	385		For nam	ıma distribute	d detected	d data R	TVs and	UCLs may	be comput	e size is Sr ted usina a	amma dist	ribution on KM estimation	ites	
389 Maximum 20.4 Median 0.01 390 SD 2.453 CV 5.36 391 k hat (MLE) 0.208 k star (bias corrected MLE) 0.209 392 Theta hat (MLE) 2.197 Theta star (bias corrected MLE) 2.194 393 nu hat (MLE) 82.09 nu star (bias corrected) 82.18 394 Adjusted Level of Significance (β) 0.0488	388		. er gan			, D N	Ainimum	0.01		sea aonig g		Mear	0.458	3
390 SD 2.453 CV 5.36 391 k hat (MLE) 0.208 k star (bias corrected MLE) 0.209 392 Theta hat (MLE) 2.197 Theta star (bias corrected MLE) 2.194 393 nu hat (MLE) 82.09 nu star (bias corrected MLE) 82.18 394 Adjusted Level of Significance (β) 0.0488 395 Approximate Chi Square Value (82.18, α) 62.29 Adjusted Chi Square Value (82.18, β) 62.16 396 95% Gamma Approximate UCL (use when n>=50) 0.604 95% Gamma Adjusted UCL (use when n<50)	389					M	laximum	20.4				Mediar	0.01	
391 k hat (MLE) 0.208 k star (bias corrected MLE) 0.209 392 Theta hat (MLE) 2.197 Theta star (bias corrected MLE) 2.194 393 nu hat (MLE) 82.09 nu star (bias corrected) 82.18 394 Adjusted Level of Significance (β) 0.0488 395 Approximate Chi Square Value (82.18, α) 62.29 Adjusted Chi Square Value (82.18, β) 62.16 396 95% Gamma Approximate UCL (use when n>=50) 0.604 95% Gamma Adjusted UCL (use when n<50)	390						SD	2.453				CV	5.36	
392 Theta hat (MLE) 2.197 Theta star (bias corrected MLE) 2.194 393 nu hat (MLE) 82.09 nu star (bias corrected) 82.18 394 Adjusted Level of Significance (β) 0.0488 395 Approximate Chi Square Value (82.18, α) 62.29 Adjusted Chi Square Value (82.18, β) 62.16 396 95% Gamma Approximate UCL (use when n>=50) 0.604 95% Gamma Adjusted UCL (use when n<50)	391					k ha	at (MLE)	0.208			k star	(bias corrected MLE)	0.209	9
393 nu nat (MLE) 82.09 nu star (bias corrected) 82.18 394 Adjusted Level of Significance (β) 0.0488 395 Approximate Chi Square Value (82.18, α) 62.29 Adjusted Chi Square Value (82.18, β) 62.16 396 95% Gamma Approximate UCL (use when n>=50) 0.604 95% Gamma Adjusted UCL (use when n<50)	392					Theta ha	at (MLE)	2.197			Theta star	(bias corrected MLE)	2.194	1
334 Character Level of orginitation (p) 0.0400 395 Approximate Chi Square Value (82.18, α) 62.29 Adjusted Chi Square Value (82.18, β) 62.16 396 95% Gamma Approximate UCL (use when n>=50) 0.604 95% Gamma Adjusted UCL (use when n<50)	393			Adjust	ad Lovel a	nu ha f Signifia	at (MLE)	82.09			nı	i star (bias corrected)	82.18	
Signed of hoge of background (ker (k, je)) Signed of hoge of background (ker (k, je)) Signed of hoge of background (ker (ker (ker (ker (ker (ker (ker (ker	394		Δ	pproximate (Chi Sauare	Value (8	32,18. n)	62.29		Adius	ted Chi So	uare Value (82 18 R)	62 16	
397 398 Estimates of Gamma Parameters using KM Estimates 399 Mean (KM) 1.028 SD (KM) 2.342 400 Variance (KM) 5.486 SE of Mean (KM) 0.18 401 k hat (KM) 0.193 k star (KM) 0.193 402 nu hat (KM) 75.91 nu star (KM) 76.09 403 theta hat (KM) 5.336 theta star (KM) 5.324 404 80% gamma percentile (KM) 1.329 90% gamma percentile (KM) 3.108 405 95% gamma percentile (KM) 5.345 99% gamma percentile (KM) 11.54	396		95% Gam	ma Approxim	ate UCL (use wher	n n>=50)	0.604	95	% Gamma	Adjusted l	JCL (use when n<50)	0.605	5
398 Estimates of Gamma Parameters using KM Estimates 399 Mean (KM) 1.028 SD (KM) 2.342 400 Variance (KM) 5.486 SE of Mean (KM) 0.18 401 k hat (KM) 0.193 k star (KM) 0.193 402 nu hat (KM) 75.91 nu star (KM) 76.09 403 theta hat (KM) 5.336 theta star (KM) 5.324 404 80% gamma percentile (KM) 1.329 90% gamma percentile (KM) 3.108 405 95% gamma percentile (KM) 5.345 99% gamma percentile (KM) 11.54	397										-			
399 Mean (KM) 1.028 SD (KM) 2.342 400 Variance (KM) 5.486 SE of Mean (KM) 0.18 401 k hat (KM) 0.193 k star (KM) 0.193 402 nu hat (KM) 75.91 nu star (KM) 76.09 403 theta hat (KM) 5.336 theta star (KM) 5.324 404 80% gamma percentile (KM) 1.329 90% gamma percentile (KM) 3.108 405 95% gamma percentile (KM) 5.345 99% gamma percentile (KM) 11.54	398				E	Estimates	s of Gam	ma Param	eters using	g KM Estin	nates			
400 Variance (KM) 5.486 SE of Mean (KM) 0.18 401 k hat (KM) 0.193 k star (KM) 0.193 402 nu hat (KM) 75.91 nu star (KM) 76.09 403 theta hat (KM) 5.336 theta star (KM) 5.324 404 80% gamma percentile (KM) 1.329 90% gamma percentile (KM) 3.108 405 95% gamma percentile (KM) 5.345 99% gamma percentile (KM) 11.54	399					Me	an (KM)	1.028				SD (KM)	2.342	2
401 K Hat (KM) 0.193 K Star (KM) 0.193 402 nu hat (KM) 75.91 nu star (KM) 76.09 403 theta hat (KM) 5.336 theta star (KM) 5.324 404 80% gamma percentile (KM) 1.329 90% gamma percentile (KM) 3.108 405 95% gamma percentile (KM) 5.345 99% gamma percentile (KM) 11.54	400					Varian	ICE (KM)	5.486				SE of Mean (KM)	0.18	2
402 100 Hot (KM) 70.09 403 theta hat (KM) 5.336 theta star (KM) 5.324 404 80% gamma percentile (KM) 1.329 90% gamma percentile (KM) 3.108 405 95% gamma percentile (KM) 5.345 99% gamma percentile (KM) 11.54	401					KI	hat (KM)	75 01				K star (KM)	76.00	2
404 80% gamma percentile (KM) 1.329 90% gamma percentile (KM) 3.108 405 95% gamma percentile (KM) 5.345 99% gamma percentile (KM) 11.54	403					thetal	hat (KM)	5.336				theta star (KM)	5.324	1
405 95% gamma percentile (KM) 5.345 99% gamma percentile (KM) 11.54	404			80	0% gamma	a percent	tile (KM)	1.329			90% ga	mma percentile (KM)	3.108	3
	405			95	5% gamma	a percent	tile (KM)	5.345			99% ga	mma percentile (KM)	11.54	

\vdash	А	В		С		D		E	F	G	Н		I		J		K		L	
406							Ga	ımma k	(aplan-Me	ier (KM) S	tatistics									
408			Appr	oximate	Chi S	quare Va	alue (76	.09, α)	57		Adj	justed	Chi S	quare	Value	(76.	09, β)	56	6.87	
409	95%	6 Gamma	а Арр	roximate	e KM-L	JCL (use	when n	ו>=50)	1.373	95% G	Gamma A	djuste	d KM	-UCL (use w	hen	n<50)	1	.375	
410						Log	Inormal	GOF 1	est on De	tected Ob	servatio	ns Onl	у							
412					Sha	piro Wilk	Test St	tatistic	0.917				Shap	iro Wil	k GOI	F Te	st			
413				5%	6 Shap	oiro Wilk Lilliefors	Critical Test St	Value tatistic	0.803	De	etected L	Data ap	pear	Lognoi	rmal a	it 5% Test	Signi	licanc	e Level	
415					5% I	_illiefors	Critical	Value	0.304	De	etected D	Data ap	pear	Lognoi	rmal a	it 5%	Signif	ficanc	e Level	
416						Detect	ted Data	a appe	ar Lognori	nal at 5%	Significa	ince Le	evel							
417						Logr	normal	ROS S	tatistics U	sing Imput	ted Non-	Detec	ts							
419					Ν	Mean in (Original	Scale	1.175					Me	an in	Log	Scale	-0.	753	
420		95%	% t U	CL (assu	imes r	SD in (ormality	Original	Scale	2.477			95	% Pe	rcentile	SD in Boot	Log strar	Scale DUCL	1	.304 .469	
422				- (959	% BCA E	Bootstra	p UCL	1.554					95%	Boots	trap	t UCL	1	.613	
423					9	5% H-U	CL (Log	ROS)	1.387											
424				Statis	stics u	sing KM	l estima	ites on	Logged D	ata and As	suming	Logno	rmal	Distrib	ution					
426						KM N	Mean (Io	ogged)	-0.377			0.5			KM	Geo	Mean	0	.686	
427				KM Stan	ndard I	KN Error of N	M SD (lo Mean (lo	ogged)	0.54			95	% Crit	11cal H 95% H	Value	(KIV (KM	I-Log) -Log)	1	.839 .852	
429						KN	M SD (lo	ogged)	0.54			959	% Crit	tical H	Value	(KN	I-Log)	1	.839	
430				KM Stan	ndard I	Error of N	Mean (Io	ogged)	0.0416											
431									DL/2 Sta	tistics										
433				DL/2	Norm	al Anna in A	Orininal	0	1.020				DL/2	Log-T	ransfo	orme	d		200	
434					ľ	SD in (Original	Scale	2.379					IVIE	sD in	Log	Scale Scale	-0. 0	.572	
436				95%	5 t UCI	_ (Assum	nes norr	mality)	1.316					ç	95% H	I-Sta	t UCL	0	.853	
437				DL/2 i	is not	a recom	mende	d meth	od, provid	ed for com	parisons	s and h	nistori	cal rea	isons					
439						1	Nonpara	ametric	Distributi	on Free U	CL Statis	stics								
440					De	etected [Data ap	pear N	ormal Dist	ributed at	5% Sign	ificanc	e Lev	/el						
441								Sı	iggested L	ICL to Use)									
443						95	6% KM (1	t) UCL	1.326											
444	No	te: Suaae	estion	ns regardi	lina th	e selecti	on of a 9	95% U	CL are pro	vided to he	lp the us	er to s	elect	the mo	st apr	oropi	iate 9	5% U	CL.	
445				R		mondati					np ale ae		0.000		or app	o, op.			02.	
-++0					vecom	menuau	ons are	based	upon data	size, data	distribut	ion, an	id ske	wness						
447	T	hese reco	omme	endations	s are b	ased up	ons are on the r	e based results (upon data of the simu	size, data lation stud	distribut lies sumr	ion, an marize	d in S	wness ingh, N	Aaichle	e, ar	nd Lee	(2006	6). Tician	
447 448 449	T	hese reco ever, simu	omme ulatio	endations ns results	s are b	ased up	ons are on the r r all Rea	e based results o al Worlo	upon data of the simu d data sets	size, data lation stud ; for additi	distribut lies sumr onal insig	ion, an marize ght the	d in S user	wness ingh, N may w	Aaichl ant to	e, ar con	nd Lee sult a s	(2006 statist	6). tician.	
447 448 449 450	T Howe 2-Methylnaph	hese reco ever, simu t halene	omme ulatio	endations ns results	s are b	ased up	ons are on the r r all Rea	e based results (al Worl	upon data of the simu d data sets	size, data lation stud ; for additi	distribut lies sumr onal insi	ion, an marize ght the	id ske d in S user	wness ingh, N may w	Maichle ant to	e, ar	nd Lee sult a s	(2006 statist	6). ician.	
447 448 449 450 451 452	T Howe 2-Methylnapht	hese reco ever, simu :halene	omme ulatio	endations ns results	s are b	ased up	ons are on the r r all Rea	e based results (al Worl)	upon data of the simu d data sets General S	size, data lation stud ; for additi tatistics	distribut ies sumr onal insig	ion, an marize ght the	id ske d in S user	wness ingh, N may w	/aichl ant to	e, ar	nd Lee sult a s	(2000 statist	6). iician.	
447 448 449 450 451 452 453	T Howe 2-Methylnaph	hese recc ever, simu halene	omme	endations ns results To	s are b s will i	imber of	ons are on the ro r all Rea	e based results of al World	upon data of the simu d data sets General S 197	size, data lation stud ; for additi tatistics	distribut lies sumr onal insi	ion, an marize ght the Num	d ske d in S user ber of	wness ingh, M may w	Aaichle ant to ct Obs	e, ar	nd Lee sult a s	(2000 statist	6). iician.	
447 448 449 450 451 452 453 454 455	⊤ Howe 2-Methylnaphi	hese reco ever, simu halene	omme ulation	endations ns results To	s are b s will i otal Nu	imber of Numl ber of Di	ons are on the r r all Rea Observ ber of D istinct D	a based results of al World vations Detects Detects	upon data of the simu d data sets General S 197 2 2	size, data lation stud ; for additi tatistics	distribut ies sumr onal insig	ion, an marize ght the Num Num	d in S user ber of N	wness ingh, M may w f Distin lumber of Distin	Maichli ant to ct Obs	e, ar con serva	ations	(2000 statist 20 195	5). iician.	
447 448 449 450 451 452 453 454 455 456	Ti Howe	hese reco ever, simu halene	omme ulation	endations ns results To	s are b s will i otal Nu	imber of Di ber of Di Min	ons are on the ro r all Rea Observ ber of D istinct D nimum	vations Detects Detect	upon data of the simu d data sets General S 197 2 2 1.61	size, data lation stud ; for additi	distribut ies sumr onal insi	ion, an marize ght the Num Num	d in S user ber of hber c	wness ingh, M may w f Distin lumber of Distin Minin	Maichle ant to ant to ct Obs of No not No num N	e, ar con: serva on-De on-De lon-E	ations etects Detect	(2000 statist 20 195 18 0	6). iician. 0 5 3 .619	
447 448 449 450 451 452 453 454 455 456 457 458	T Howe	hese reco	omme	endations ns results To	s are b s will r otal Nu	umber of Di Min Ma Var	ons are on the r r all Rea Observ ber of D istinct D nimum ximum	vations Detects Detects Detects	upon data of the simu d data sets d data sets 197 2 2 1.61 9.93 34.61	size, data lation stud ; for additi tatistics	distribut ies sumr onal insi	ion, an marize ght the Num Nun	d in S user ber of N	wness ingh, M may w f Distin lumber of Distin Minin Maxin Perce	t Obs ct Obs of No not No num N	e, ar con: serva on-De on-De lon-E lon-E	ations etects Detect	(2006 statist 20 195 18 0 12 9	6). iician. 0 5 3 .619 2.5 3 98%	
447 448 449 450 451 452 453 454 455 456 457 458 459	T Howe	hese recc	omme	endations ns results To	otal Num	umber of Numi ber of Di Min Ma Var	ons are on the r r all Rea Observ ber of D istinct D nimum I ximum I riance D Mean D	vations Detects Detects Detects Detects Detects Detects	upon data of the simu. d data sets General S 197 2 2 1.61 9.93 34.61 5.77	size, data lation stud ; for additi tatistics	distribut ies sumr onal insi	ion, an marize ght the Num Num	d in S user ber of N	wness ingh, M may w f Distin lumber of Distin Minin Maxin Perce	ct Obs ct Obs of No not No num N num N ent No	e, ar con: serva on-De on-De lon-E lon-E lon-E	ations etects etects Detect etects etects etects etects etects etects	(2000 statist 20 195 18 0 12 98 5	6). dician. dician. 0 5 3 .619 2.5 3.98% .883	
447 448 449 450 451 452 453 454 455 456 457 458 459 460	Ti Howe	hese recc ever, simu thalene	omme	endations ns results To	otal Num	umber of Numl ber of Di Ma Var	ons are on the r r all Rea Observ ber of D istinct D nimum istinct D Mean D ledian D	vations Detects Detects Detects Detects Detects Detects Detects Detects Detects	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 5.77	size, data lation stud ; for additi tatistics	distribut ies sumr onal insis	Num	d ske d in S u user ber of N hber of	wness ingh, M may w f Distin lumber of Distin Minin Maxin Perce	ct Obs ct Obs of No not No num N num N ent No S C	e, ar con: serva pn-Da bn-Da lon-Da lon-Da c	ations etects etects Detect etects etects etects etects etects etects etects	(2000 statist 200 195 18 0 0 12 98 55 1 1	6). iician.) 5 3 .619 2.5 3.98% .883 .02 A	
447 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462	T Howe	hese recc ever, simu halene	omme	ndations ns results To	otal Num	Imber of Numl ber of Di Min Ma Var M Skev ean of Lc	Observing Observ	vations Detects Detects Detects Detects Detects Detects Detects Detects Detects Detects Detects Detects Detects Detects Detects Detects	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 5.77 N/A 1.386	size, data lation stud ; for additi tatistics	distribut ies sumr onal insi	Num	d ske d in S user ber of N hber of	wness ingh, M may w f Distin lumber of Distin Minin Maxin Perce	Alaichl Aant to ant to ct Obs of Nc net No num N ent No S C C Kurtos	e, ar con: serva on-Do on-Do lon-D lon-D lon-D co D Do CV Do cis Do eed Do	ations etects etects etects etects etects etects etects etects etects etects etects etects etects etects	(2000 statist 20 195 18 0 0 12 98 5 5 1 1 N//	6). iician. 0 5 3 619 2.5 3.98% 883 .02 A .286	
$\begin{array}{r} ++0 \\$	T Howe	hese recc ever, simu halene	omme	To	s are b s will i btal Nu Num	umber of Numi ber of Di Mia Var Skew ean of Lc	Observ Observ ber of D istinct D nimum ximum iance D Mean D ledian D wness D ogged D	vations petects petects petects petects petects petects petects petects petects petects petects petects petects petects petects	upon data of the simu d data sets General S 197 2 2 1.61 9.93 34.61 5.77 5.77 N/A 1.386	size, data lation stud ; for additi tatistics	distribut ies summ onal insig	ion, ann marize gght the Num Num	d ske d in S suser ber of N nber of	wness ingh, N may w f Distin lumber of Distin Minin Maxin Perce SD of	tant to ant to ct Obs of No not No num N num N sent No S C C Kurtos	e, ar con: serva on-De lon-De lon-De con-De lon-Ce con-De lon-Ce con-De lon-Ce con-De lon-Ce con-Ce	ations ations etects etects Detect Detect etects etects etects etects etects etects	(2000 statist 195 18 0 12 98 55 1 1 N// 1	5). icician. 0 5 3 6 19 2.5 3.98% .883 .02 A .286	
447 448 449 450 451 452 453 455 455 455 455 455 455 455 455 455 456 457 458 459 461 462 464 465	Ti Howe	hese recc ever, simu halene	ommed ulation	The second secon	s are b s will i otal Nu Num	umber of Numl ber of Di Min Ma Var Skev ean of Lc	^c Observ ber of D istinct D nimum I ximum I riance D Mean D ledian D vness D ogged D Warning uah to c	pased esuits of al Worl- vations petects betects betects betects betects betects betects betects g: Data	upon data of the sim. d data sets 197 2 2 1.61 9.93 34.61 5.77 5.77 N/A 1.386 set has o a meaning	size, data lation stud ; for additi tatistics	distribut ies sumr onal insig	ion, an marize ght the Num Num Nun	d ske d in S user ber of Nber of Nber c	wness ingh, N may w f Distin lumber of Distin Maxin Perco k SD of	Aaichl ant to ant to ct Obs of Nc nct Nc num N num N num N c C C Kurtos Logge	e, ar con on-De on-De lon-E lon-E lon-E con-De con-	ations ations betects betect betect betect betects betects betects betects betects betects	(2000 statist 20 195 18 0 12 98 5 1 1 N// 1	5). iician. 0 5 3 619 2.5 3.98% .883 .02 A 2.286	
447 448 449 450 451 452 453 454 455 456 457 458 450 461 462 463 464 465 466	T Howe	hese recc ever, simu halene	omme ulation	Tr	s are b s will i potal Nu Num Ma	Imber of Numl ber of Di Mii Ma Var Skew ean of Lo	Observ or and observ observ ber of D istinct D nimum I ximum I riance D Mean D ledian D bogged D Warning agh to c	al World esuits a la World vations Detects Det	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 5.77 N/A 1.386 set has o p meaning	size, data lation stud ; for additi tatistics	distribut ies sumr onal insig	ion, an marize ght the Num Num Num	d ske d in S user ber of N nber of N nber of	wness ingh, N may w f Distin lumber of Distin Minin Maxin Perco SD of	Maichl ant to ant to ct Obs c of Nc not Nc not Nc not Nc not Nc not Nc not Nc S C C Kurtos Logge	e, ar con: serva on-Do on-Do lon-E lon-E D Do CD CD C	ations etects etects etects etects etects etects etects etects etects etects etects	(2000 statist 200 195 18 00 12 98 55 1 1 N// 1	5). (ician.) 5 3 .619 2.5 3.98% .883 .02 A A .286	
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467	T Howe	hese recc ever, simu halene	omme	To	s are b s will i potal Nu Num	umber of Numl ber of Di Mii Ma Var Skev ean of Lc	ODSERV DESERV	vations al Worl- vations Detects Detec	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 N/A 1.386 set has o a meaning	size, data lation stud ; for additi tatistics	distribut ies sumr onal insig	ion, an marize ght the Num Num Num	d ske d in S user ber of N nber of N nber of	wness ingh, N may w f Distin lumber f Distin Minin Maxin Perco k SD of	Maichl ant to ant to ct Obs of Nc of Nc not Nc num N num N co C C C C C C C C C C C C C C C C C C	e, ar con: serva on-Do lon-Do lon-Do con-Do	ations etects etects etects etects etects etects etects etects etects etects etects	(2000 statist 195 18 0 12 98 5 1 N/// 1	5). icician. 0 5 3 .619 2.5 3.98% .883 .02 A .286	
++0 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469	T Howe	hese reccever, simu	ommeeden uiter in the second sec	To	S are b s will i Dotal Nu Num Ma	umber of Numi ber of Di Mia Var Skew ean of Lc	Ons are on the r r all Rea Observ ber of D istinct D nimum I ximum I riance D Mean D ledian D wness D ogged D Warning agh to c N Not	al World esuits al World vations Detects Detec	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 5.77 N/A 1.386 set has o p meaning GOF Test h Data to	size, data lation stud ; for additi tatistics tatistics hly 2 Dete ful or relial on Detect: Perform G	distribut ies summonal insignation onal insignation onal insignation cted Valiable statistics s Only OF Test	ion, an marize ght the Num Num Nun	d ske d in S user ber of N hber of N hber c	wness ingh, N may w f Distin lumber of Distin Maxin Maxin Perco SD of	Maichl ant to ant to of Nc of Nc not Nc not Nc Num N Nent Nc C C C Kurtos Logge	e, ar cons serva on-Do on-Do lon-Do lon-Do lon-Do con-Do con-Do lon-Do c	ations ations betects betect betect betects betects betects betects betects betects betects	(2000 statist 195 18 0 12 98 5 5 1 1 N/A 1	5). iician. 0 5 3 .619 2.5 3.98% .883 .02 A .286	
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 466 467 468 469 470	T Howe	hese reccever, simu	ommeedulation	Tr	s are b s will i otal Nu Num Ma	umber of Di Muml ber of Di Mii Ma Var Skew ean of Lo	Ons are on the r r all Rea Observe ber of D istinct D nimum ximum riance D Mean D ledian D wness D ogged D Warning ugh to c	a World esuits a al World vations Detects Dete	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 5.77 N/A 1.386 set has o b meaning GOF Test h Data to	size, data lation stud ; for additi tatistics http://www.commonscience.c	cted Valible statis	ion, an marize ght the Num Num Nun itics ar	d ske d in S user ber of N ber of N nber c	wness ingh, N may w f Distin lumber of Distin Minin Maxin Maxin SD of	t Obs of Not of Not num N num N c C c c c urtos Logge	e, ar con: serva on-Da lon-E lon-E lon-Da co	ations ations atects atects atects atects atects atects atects atects atects atects atects	(2000 (2000 195 18 00 12 98 5 1 N// 1 N// 1	5). icician. 0 5 3 619 2.5 3.98% .883 .02 A .286	
++0 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471	T Howe	hese recc ever, simu halene	ommeeden voor voor voor voor voor voor voor voo	Tro	s are b s will i btal Nu Num Mis is i his is i	Imber of Numi ber of Di Mi Ma Var Skev ean of Lc	Ons are on the r r all Rea Observ ber of D istinct D nimum I ximum I riance D Mean D ledian D wress D ogged D Warning igh to c N Not watistics KM	based esuits a la Worl- vations betect	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 5.77 N/A 1.386 set has o b meaning GOF Test h Data to Normal Cr 0.672	size, data lation stud ; for additi tatistics hily 2 Dete ful or relial on Detect: Perform G	cted Vali cted Vali ble statis	ion, an marize ght the Num Num Num	d ske d in S user ber of N hber of N hber of N hber of N hber of S KM S	wness ingh, N may w f Distin lumber of Distin Maxin Perce k SD of imates ametri Standar	t Obs of Nctor of Nctor Nctor Contor Nc	e, ar con serva n-Do n-Do lon-Do lon-Do lon-Do co b D Do co v D Do v D D Do v D D Do v D D Do v D D D v D D D D v D D D D v D D D D v D D D D	ations ations atects at	(2000 statist 195 18 0 0 12 98 55 1 1 N// 1	5). (ician.) 5 3 .619 2.5 3.98% .883 .02 A A 2.286	
447 448 449 450 451 452 453 454 455 454 455 456 457 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473	T Howe	hese reccever, simu	ommee ulatio	Tro	s are b s will i Dtal Nu Num Me his is i	Imber of Numl ber of Di Mii Ma Var M Skev ean of Lc N not enou	Ons are on the m r all Rea Observe ber of D istinct D nimum I ximum I riance D Mean D ledian D ledian D wress D ogged D Warning ugh to c N Not Not	vations al Worl- vations betects betec	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 N/A 1.386 set has o b meaning GOF Test h Data to Normal Cr 0.672 0.668	size, data lation stud ; for additi tatistics tatistics nly 2 Dete ful or relial on Detect Perform G	cted Val cted Val ble statis s Only OF Test as and o	ion, an marize ght the Num Num Nun	d ske d in S user ber of N ber of N nber of N nber of S S S S S S S S S S S S S S S S S S S	wness ingh, N may w i Distin lumber f Distin Maxin Perco k SD of iimates iimates iimates iimates j j j j j j j j j j j j j	Maichl ant to ct Obs of Nd of Nd O	e, ar con serva on-Do on-Do lon-Do lon-Do iD Do iD DO iDO iD DO iD DO iD DO iD DO iD DO iD DO iD DO iDO iD DO iDO iD DO iDO iDO ID DO ID DO ID DO ID DO ID DO ID DO ID D	Ad Lee sult a s ations attents betects	(2000 statist) 18 0 12 98 5 1 1 N// 1 1 0 0 0 12 98 5 1 1 N//	5). icician. 0 5 3 6 19 2.5 3.98% .883 .02 A .286 .286 .286 .02 A .286 .02 A .286 .02 A .286	
++47 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 470 471 472 473 474	T Howe	hese recc ever, simu halene	ommediation	Tr Kaplan-I	s are b s will i Dotal Nu Num Main Meier	Imber of Numl ber of Di Min Ma Skew ean of Lo (KM) St (KM) St	Ons are on the r r all Rea Observ ber of D istinct D nimum I ximum I riance D Mean D ledian D wness D ogged D Warning ugh to c N Not satistics KM F % KM (1 % K	a based esults a esults a al Worl vations betects betects betects betects betects betects betects g: Data computer lormal l Mean (M SD b) UCL b) UCL b) UCL	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 5.77 N/A 1.386 set has o a meaning GOF Test h Data to Normal Cr 0.668 0.784 0.784	size, data lation stud ; for additi tatistics tatistics hly 2 Dete ful or relial on Detect: Perform G	distribut ies summonal insignation onal	ion, an marize ght the Num Num Nun Sures.	d ske d in S user ber of N hber of N hber of N hber of K K S I (Perod	wness ingh, N may w f Distin lumber of Distin Maxin Maxin Perco F SD of imates SD of centile Standar 95% K KM	ct Obs of Not of Not net Not num N Num N ent Not S C C Curtos Logge S. C C Curtos Logge S. C C C Curtos Logge C C C C C C C C C C C C C C C C C C	e, ar con on-Di on-Di lon-Di lon-Di D Di C D Di C Di C	Ad Lee suit a s ations betects	(2000 statist	5). iician. 5 3 619 2.5 3.98% .883 .02 A .286 .286 .286 .286 .02 A .286 .286 .286	
++0 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 466 467 468 469 470 474 475 476	T Howe	hese reccever, simu		Tro	s are b s will i btal Nu Num Ma his is i Meier	Imber of Number of Di Mii Ma Var Var Skew ean of Lc Not enou	ons are on the r r all Rea on the r r	a work al work vations betects betects betects betects betects g: Data sompute iormal i Enoug using i Mean (M SD t) UCL 2) UCL ev UCL	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 N/A 1.386 set has o a meaning GOF Test h Data to Normal Cr 0.672 0.668 0.784 0.783 0.875	size, data lation stud is for additi tatistics	distribut ies summonal insignation onal	ion, an marize ght the Num Num Num Sum Sum Sum Sum Sum Sum Sum Sum Sum S	d ske d in S user ber of N hber of N hber of N hber of N hber of N hber of N hber of N hber of N h hber of N hber of N h hber of N h hber of N hber of N hber of N hber of N hber of N hber of N hber of N hber of N hber N h hber of N hber of N hber N h hber of N hber of N h h h h h h h h h h h h h h h h h h	wness ingh, N may w f Distin lumber of Distin Maxin Perco k SD of imates imates g5% centile % KM % KM (6)	ct Obs of Nctor of Nctor Nctor of Nctor of Nctor Nctor of Nctor Nctor of Nctor Nctor S CCCO S C CCCO S C C C C C C C C C C C	e, ar con: con: con: Don-Do lo	Ad Lee suit a s ations atects	(2000 statist 195 18 0 12 98 5 1 1 N// 1 1 	5). icician. 5 3 6 3 3 6 19 2 5 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 8 3 9 8 8 8 3 9 8 8 8 8 9 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	
++0 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 470 471 472 473 476 477	T Howe 2-Methylnapht	hese recc ever, simu halene		Tr	s are b s will i btal Nu Num Mis is i Meier 9009 97.59	Imber of Di Numl ber of Di Mii Ma Var M Skev ean of Lc Not enou (KM) St (KM) St 95 95 95 95	Ons are on the r r all Rea Observ ber of D istinct D nimum I ximum I riance D Mean D ledian D uged D Warning agh to ca N Not satistics KM k KM k KM c beyshe beyshe	al World esuits a al World vations Detects Det	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 5.77 N/A 1.386 set has o b meaning GOF Test h Data to Normal Cr 0.672 0.668 0.784 0.783 0.875 1.095	size, data lation stud is for additi tatistics	cted Vali cted Vali ble statis s Only cOF Test as and of 95	ion, an marize ght the Num Num Num Sum Sum Sum Sum Sum Sum Sum Sum Sum S	d ske d in S user ber ol N hber ol N hber ol N hber ol N hber ol S S S S S S S S S S S S S S S S S S S	wness ingh, N may w f Distin lumber of Distin Maxin Perco F SD of sD of imates ametrin Standar 95% centile % KM % KM (0 % KM (0	ct Obs of Nct of Nct of Nct of Nct net Nct num N our Nct of Nct Num N our Nct S C C C C C C C C C C C C C C C C C C	e, ar con: con: con-Di lon-Di lon-Di lon-Di con-Di lon-Ci con-Di	Ad Lee suit a s ations atects	(2006 statist 195 18 0 12 98 5 1 1 N// 1 1	5). (ician.) 5 3 .6 19 .5 .6 19 .5 .8 .8 .8 .02 A .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	
++0 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 470	T Howe 2-Methylnaphi	hese reccever, simu		Tr	s are b s will i Dtal Nu Num Meier 90% 97.5%	Imber of Di Mai Ma	Ons are on the r r all Rea Observ ber of D istinct D nimum I ximum I riance D dedian D ledian D ledian D ledian D wress D ogged D Warning gh to c N Not satistics KM KM (z rebyshe rebyshe	al Work al Work vations betect	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 N/A 1.386 set has o a meaning GOF Test h Data to Normal Cr 0.672 0.668 0.784 0.783 0.875 1.095 sts on Def	size, data lation stud ; for additi tatistics tatistics nly 2 Dete ful or relial on Detect Perform G	distribut ies sumr onal insig onal insig cted Vali- ble statis s Only iOF Test as and of 98 99	ion, an marize ght the Num Num Num Signal Signal Si	d ske d in S user ber ol N hber o N hber o N hber o N hber o S S S S S S S S S S S S S S S S S S S	wness ingh, N may w i Distin lumber of Distin Maxin Perco F SD of iimates iimates centile % KM % KM (% KM (ct Obs of Notional Content of Notional Content	e, ar con: con: con-Di on-Di on-Di lon-Di lon-Di co	Ad Lee suit a s suit a s ations betect	(2000 statist) 200 199 18 0 0 12 98 5 1 1 N// 1 1 0 0 N// N// N// 0 0 1	5). icician. 0 5 3 619 2.5 3.98% .883 .02 A .286 0677 A A .345	
++v 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 470 471 472 473 476 477 478 479 480	T Howe 2-Methylnaphi	hese reccever, simu		Tr Kaplan-I	s are b s will i botal Nu Num Maine Meier 900 97.59	Imber of Numl ber of Di Min Ma Var M Skew ean of Lc N not enou	Ons are on the r r all Rea Observ ber of D istinct D nimum iximum iance D Mean D ledian D wness D ogged D Warning igh to c N Not atistics KM KM KM i % KM (i % KM	a World esuits a a World vations Detects Detec	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 5.77 N/A 1.386 set has o a meaning GOF Test h Data to Normal Cr 0.668 0.784 0.783 0.875 1.095 sts on Def h Data to	size, data lation stud ; for additi tatistics tatistics http://www.commonstrates ful or relial on Detect: Perform G tical Value ected Obs Perform G	distribut ies summonal insignation onal insignation onal insignation cted Valid ble statistics s Only OF Test of Test of Test	ion, an marize ght the Num Num Nun Nun Soft KM	d ske d in S user ber of N hber o N hber o N hber o N hber o N hber o S S S 99°	wness ingh, N may w ingh, N may w ingh ing	ct Obs of Not of Not net Not num N num N ent Not S C C Curtos Logge S C C Curtos Logge S C C C Curtos Logge C Curtos C	e, ar con: serva on-Do lon-Do	Ad Lee suit a s ations atects betects betect betects atect	(2000 statist 199 18 0 12 98 5 1 1 N// 1 1 0 0 0. N// N// N// N// 0 1	5). iician. 5 6 6 3 .6 19 2.5 3.98% .883 .02 A .286 .286 .286 .286 .286 .286 .286 .286 .345	
++0 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 466 467 468 469 470 474 475 476 477 478 479 480 481	Ti Howe	hese reccever, simu		Tr Kaplan-I	s are b s will i btal Nu Num Mis is i his is i Meier 909 97.5?	Imber of Number of Di Mii Ma Var Var Skeve ean of Lc Mot enou (KM) St (KM) St 955 955 955 6 KM Ch 6 KM Ch	Ons are on the r r an the r c Observ ber of D istinct D nimum I ximum I riance D Mean D ledian D ledian D ogged D Warning agh to c r wness D ogged D Warning agh to c s KM N Not c atistics KM k % KM (i % KM (i	al World esuits a al World vations betects bet	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 N/A 1.386 set has o a meaning GOF Test h Data to Normal Cr 0.662 0.784 0.783 0.875 1.095 sts on Def h Data to	size, data lation stud itatistics tatistics hily 2 Dete ful or relial on Detect: Perform G titcal Value ected Obs Perform G	distribut ies summonal insignation onal insignation onal insignation onal insignation onal insignation onal insignation solution of Test	ion, an marize ght the Num Num Num State S	d ske d in S user ber of N hber of N hber of N h hber of N hber of N h hber of N hber of N h hber of N h hber of N h hber of N h hber of N h hber of N h hber of N h h hber of N h hber of N hber of N hber of N hber of N hber of N hber of N hber of N hber of N hber of N hber of N hber of N hber of N hber of N hber of N hber of N hber of N h h hber of N h h h h h h h h h h h h h h h h h h h	wness ingh, N may w f Distin lumber of Distin Maxin Perco k SD of imates imates centile % KM (% KM (ct Obs of Nctore of Nctore of Nctore of Nctore num N Noum N Noum N Noum N Noum N Noum N S C C C S C C C S C C C S C C C S C C C S C C C S C C C S C C C S C C C S C S C S C S C S S C S S C S S C S S C S S C S S C S S C S	e, ar on-Do on-Do lon-D lon-D D D C D D D C D D C D D D C C D C C D C C C C	Ad Lee suit a s ations atects	(2000 statist 195 18 0 12 98 5 1 1 N// 1 1 	5). icician. 5 3 6 3 6 3 3 8 3 9 5 3 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 8 3 9 8 8 8 3 9 8 8 8 3 9 8 8 8 3 9 8 8 8 9 8 8 8 9 8 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	
++v 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483	Ti Howe 2-Methylnapht	hese reccever, simu		Tro	s are b s will i btal Nu Num Mi his is i Meier 900 97.5%	Imber of Di Numl ber of Di Mii mot enou	ins are on the r r all Rea istinct D nimum istinct D nimum istinct D nimum istinct D wress D ogged D wress D w	al Work al Work vations betect	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 5.77 N/A 1.386 set has o p meaning GOF Test h Data to Normal Cr 0.672 0.668 0.784 0.783 0.875 1.095 sts on Def h Data to tistics on 1.508	size, data lation stud itatistics tatistics nly 2 Dete ful or relial on Detect: Perform G tical Value ected Obs Perform G Detected I	distribut ies summonal insignation onal	ion, an an marize ght the Num Num Num Strike	d ske d in S user ber ol N hber ol N hber ol N hber ol N hber ol S S S S S S S S S S S S S S S S S S S	wness ingh, N may w f Distin lumber f Distin Maxin Perco F SD of F SD of f standar 95% centile % KM % KM (%	ct Obs of Nct of Nct of Nct of Nct of Nct net Nct of Nct Net Nct S CAUTOS Logge S CUCL d Error KM (I Boots Boots Cheby Cheby Cheby	e, ar onnoise on-Do on-D	Ad Lee suit a s ations atects	(2006 statist 195 18 0 12 98 5 1 1 N// 1 1 0 0 N// N// N// N// N//	5). (ician.) 5 3 6 3 .6 19 2.5 3.98% .883 .02 A .286 .398 .398 .286 .398 .398 .286 .398 .286 .398 .398 .286 .398 .398 .286 .398 .398 .286 .398 .398 .398 .398 .398 .286 .398 .398 .398 .398 .398 .398 .398 .286 .3988 .398 .3988 .3988 .3988 .3988 .3988 .3988 .3988 .3988	
++0 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 470 471 472 473 474 475 470 471 472 473 474 475 476 477 480 481 482 483 484	T Howe 2-Methylnaphi	hese reccever, simu		Tr Kaplan-I	s are b s will i btal Nu Num Meier 909 97.5%	Imber of Di Numl ber of Di Mii ber of Di Mii Ma Var Mi Skev ean of Lco Mii Ma Skev ean of L	ons are on the r r all Rea Observe ber of D istinct D nimum l ximum l riance D Mean D ledian D ledian D wress D ogged D Warning ugh to c Warning Warni	al Work al Work vations betect	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 N/A 1.386 set has o a meaning GOF Test h Data to Normal Cr 0.672 0.668 0.784 0.783 0.875 1.095 sts on Def h Data to Nast 1.508 3.826 0.925	size, data lation stud ; for additi tatistics tatistics nly 2 Dete ful or relial on Detect: Perform G cected Obs Perform G	distribut ies summonal insignation onal	ion, an marize ght the Num Num Num Sitics ar Sitics ar S	d ske d in S user ber ol N hber o N hber o N N ber ol N N ber ol S S S S S S S S S S S S S S S S S S S	wness ingh, N may w i Distin lumber of Distin Maxin Maxin Perco P SD of iimates iimates SD of iimates iim	ct Obs of Not of Not net Not num N ent Not S C Curtos Logge S. C Curtos Logge S. C C Curtos Logge Curtos Logge Curtos Curtos Corree corree corree	e, ar con: serva on-Do on-Do lon-Eo lon-Eo lon-Eo co bor of BCA strap trap vshev vshev cted cted	Mean) UCL) UCL (UCL	(2000 statist) 195 18 0 12 98 5 1 1 N// 1 1 0 0 12 98 5 1 1 N// 1 1 0 0 12 98 5 1 1 N// 1 1 0 0 12 98 5 1 1 N// 195 18 18 10 195 18 18 195 18 18 195 18 18 195 18 18 195 18 18 195 18 18 195 18 18 195 18 18 195 18 18 195 18 18 195 18 18 195 18 18 195 18 18 195 18 18 195 18 195 18 195 18 195 18 195 19 18 195 19 18 19 19 19 19 19 19 19 19 19 19 19 19 19	5). icician. 5 3 6 19 2.5 3.98%	
++++ 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485	Ti Howe 2-Methylnaphi	hese reccever, simu		Tro Kaplan-I	s are b s will i botal Nu Num Maine 909 97.59	Imber of Numi ber of Di Min ber of Di Min Ma Var M Skew ean of Lo M (KM) St 95 95 % KM Ch % KM Ch % KM Ch	ons are on the r r all Rea Gobserv ber of D istinct D nimum istinct D nimum kince D Mean D ledian D wness D ogged D Warning agh to c Warning agh to c N Not Satistics KM ((% KM ((% KM (2 bebyshe nebyshe bebyshe bebyshe nebyshe comma G Not	a World esuits a al World vations Detects Detects Detects Detects Detects Detects g: Data Softects g: Data Softects ompute Unit of the softects ompute Softects Detects Detects g: Data Softects Detects	upon data of the simu d data sets 197 2 2 1.61 9.93 34.61 5.77 N/A 1.386 set has o b meaning GOF Test h Data to Normal Cr 0.668 0.784 0.783 0.875 1.095 sts on Def h Data to tistics on 1.508 3.826 6.033 5.77	size, data lation stud is for additi tatistics tatistics nly 2 Dete ful or relial on Detect Perform G titcal Value ected Obs Perform G	distribut ies summonal insignation onal insignation onal insignation onal insignation onal insignation onal insignation of test of test of test of test of test of test of test of test	ion, an marize ght the Num Num Num Strike St	d ske d in S user ber of N her of N her of N her of N her of N her of N her	wness ingh, N may w i Distin lumber of Distin Minin Maxin Perco	ct Obs of Not of Not of Not of Not not Not not Not not Not not Not set Not Correst Correst (bias of	e, ar on-Do on-Do lon-Do Do D Do C D D Do C D D D C D D C C D D D C D D C C D C D	Ations ations atects at	(2000 statist 199 18 0 12 98 5 1 1 N// 1 1 0 0 0	5). iician. 5 3 6 3 6 3 3 6 3 3 5 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 9 8 8 3 0 2 4 8 8 3 0 2 4 8 8 3 0 2 4 8 8 3 0 2 4 8 8 8 9 8 8 8 9 8 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	

-	A B C D E	F	G H I J K	L
487				
488	Estimates of Gam	ma Param	eters using KM Estimates	0.669
489	Variance (KM)	0.072	SE of Mean (KM)	0.008
491	k hat (KM)	1.01	k star (KM)	0.998
492	nu hat (KM)	398	nu star (KM)	393.3
493	theta hat (KM)	0.665	theta star (KM)	0.673
494	80% gamma percentile (KM)	1.081	90% gamma percentile (KM)	1.548
495	95% gamma percentile (KM)	2.014	99% gamma percentile (KM)	3.097
496	Gamma	(aplan-Mei	er (KM) Statistics	
498			Adjusted Level of Significance (β)	0.0488
499	Approximate Chi Square Value (393.26, α)	348.3	Adjusted Chi Square Value (393.26, β)	348
500	95% Gamma Approximate KM-UCL (use when n>=50)	0.759	95% Gamma Adjusted KM-UCL (use when n<50)	0.759
501			tested Observations Only	
502	Not Enoug	h Data to	Perform GOF Test	
503	·····•			
505	Lognormal ROS S	tatistics U	sing Imputed Non-Detects	
506	Mean in Original Scale	0.0587	Mean in Log Scale	-18.25
507	SD in Original Scale	0.716	SD in Log Scale	6.654
508	95% TOCE (assumes normality of ROS data) 95% BCA Bootstrap UCL	0.143	95% Percentile Bootstrap UCL	37.82
510	95% H-UCL (Log ROS)	4076		
511				
512	Statistics using KM estimates on	Logged Da	ata and Assuming Lognormal Distribution	
513	KM Mean (logged)	-0.461	KM Geo Mean	0.631
514	KM Standard Error of Mean (logged)	0.0212	95% H-UCL (KM -Log)	0.661
516	KM SD (logged)	0.209	95% Critical H Value (KM-Log)	1.693
517	KM Standard Error of Mean (logged)	0.0212		
518				
519	DI /2 Normal	DL/2 Sta	tistics	
520	Mean in Original Scale	0.706	Mean in Log Scale	-0.471
522	SD in Original Scale	0.86	SD in Log Scale	0.317
523	95% t UCL (Assumes normality)	0.808	95% H-Stat UCL	0.683
524	DL/2 is not a recommended meth	od, provide	ed for comparisons and historical reasons	
525	Nonparametric	: Distributi	on Free UCL Statistics	
527	Data do not follow a Disc	ernible Dis	tribution at 5% Significance Level	
528				
529	31	iggested L	ICL to Use	
530	95% KM (Chebyshey) UCI	0.967		
530 531	95% KM (Chebyshev) UCL	0.967		
530 531 532	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U	0.967 CL are prov	vided to help the user to select the most appropriate 95	5% UCL.
530 531 532 533	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based	0.967 CL are prov upon data	vided to help the user to select the most appropriate 95 size, data distribution, and skewness.	5% UCL.
530 531 532 533 534 535	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl	CL are prov upon data of the simu d data sets	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s	i% UCL. (2006). statistician.
530 531 532 533 534 535 536	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl	0.967 CL are pro- upon data of the simu d data sets	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s	i% UCL. (2006). statistician.
530 531 532 533 534 535 536 537	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone	0.967 CL are prov upon data of the simu d data sets	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s	5% UCL. (2006). statistician.
530 531 532 533 534 535 536 537 538	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone	0.967 CL are prov upon data of the simu d data sets	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s	5% UCL. (2006). tatistician.
530 531 532 533 534 535 536 537 538 539 540	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations	0.967 CL are pro- upon data of the simu d data sets General S 197	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics	5% UCL. (2006). ttatistician.
530 531 532 533 534 535 536 537 538 539 540 541	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects	0.967 CL are prov upon data of the simu d data sets General S 197 7	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Non-Detects	5% UCL. (2006). tatistician. 23 190
530 531 532 533 534 535 536 537 538 539 540 541 542	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Distinct Detects	0.967 CL are prov upon data of the simu d data sets General S 197 7 7	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects	5% UCL. (2006). statistician. 23 190 16
530 531 532 533 534 535 536 537 538 539 540 541 542 543 543	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	CL are provupon data of the simu d data sets General S 197 7 7 1.68 002	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Non-Detects Mumber of Distinct Non-Detects Mumber of Distinct Non-Detects	23 190 16 0.619
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects	0.967 CL are provupon data of the simu d data sets General S 197 7 7 1.68 903 166501	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Non-Detects Minimum Non-Detects Detects Percent Non-Detect	23 190 16 0.619 1.32 96.45%
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects Variance Detects Mean Detects	0.967 CL are provupon data of the simu d data sets 197 7 1.68 903 166501 289.7	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Percent Non-Detects SD Detects	23 190 16 0.619 1.32 96.45% 408
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Variance Detects Mean Detects Median Detects	0.967 CL are prov upon data of the simu d data sets General S 197 7 7 1.68 903 166501 289.7 122	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Percent Non-Detects SD Detects CV Detects	23 190 16 0.619 1.32 96.45% 408 1.408
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects Variance Detects Mean Detects Median Detects	0.967 CL are provupon data of the simu d data sets 197 7 1.68 903 166501 289.7 122 1.16	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Distinct Observations Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects CV Detects Kurtosis Detects	23 190 16 0.619 1.32 96.45% 408 1.408 -0.881
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects U Variance Detects Mean Detects Skewness Detects Mean of Logged Detects	0.967 CL are prov upon data of the simu d data sets 197 7 1.68 903 166501 289.7 122 1.16 3.889	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	5% UCL. (2006). statistician. 23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 544 545 546 547 548 549 550 550	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects	0.967 CL are provupon data of the simu d data sets 903 166501 289.7 122 1.16 3.889 GOF Test	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD of Logged Detects on Detects Only	5% UCL. (2006). ttatistician. 23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Number of Distinct Detects Naximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Normal Shapiro Wilk Test Statistic	0.967 CL are provupon data of the simu d data sets 903 166501 289.7 122 1.16 3.889 GOF Test 0.703	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Or Detects SD Detects SD Detects SD of Logged Detects on Detects Only Shapiro Wilk GOF Test	23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.967 CL are provupon data of the simu d data sets 903 166501 289.7 122 1.16 3.889 GOF Test 0.703 0.803	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Or Detects SD Detects SD Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data Not Normal at 5% Significar	23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566 nce Level
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 544 545 546 547 548 549 550 551 552 553 552 553 552 553 552 553 552 555 555	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Detects Number of Detects Number of Detects Minimum Detect Maximum Detect Maximum Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Shapiro Wilk Critical Value Lilliefors Test Statistic	0.967 CL are provupon data of the simu d data sets General S 197 7 7 1.68 903 166501 289,7 122 1.16 3.889 GOF Test 0.703 0.803 0.367	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Maximum Non-Detects SD Detects SD Detects SD Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data Not Normal at 5% Significar Lilliefors GOF Test	5% UCL. (2006). statistician. 23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 555 555 555 555 555	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Maximum Detect Variance Detects Median Detects Skewness Detects Median Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	0.967 CL are provupon data of the simu d data sets 903 197 7 7 1.68 903 166501 289.7 122 1.16 3.889 GOF Test 0.703 0.803 0.367 0.304 ot Normal	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects SD Detects CV Detects CV Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data Not Normal at 5% Significar at 5% Significance Level	23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566
530 531 532 533 534 535 536 537 538 539 540 542 543 544 545 546 547 548 549 550 551 555 555 556 557	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Detects Number of Detects Number of Detects Number of Detects Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Normal Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	0.967 CL are provupon data of the simu d data sets General S 197 7 7 1.68 903 166501 289.7 122 1.16 3.889 GOF Test 0.703 0.803 0.367 0.304 ot Normal	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect SD Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data Not Normal at 5% Significar Lilliefors GOF Test Detected Data Not Normal at 5% Significar at 5% Significance Level	3% UCL. (2006). statistician. 23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 551 552 555 556 557 558	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Median Detects Skewness Detects Mean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data N	0.967 CL are provupon data of the simu d data sets 197 7 1.68 903 166501 289.7 122 1.16 3.889 GOF Test 0.703 0.803 0.367 0.304 ot Normal Cr	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects CV Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data Not Normal at 5% Significar at 5% Significance Level	5% UCL. (2006). statistician. 23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 556 557 558 556 557 558 559	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Deservations Number of Detects Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Wariance Detects Mean Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data N Kaplan-Meler (KM) Statistics using KM Mean	0.967 CL are provupon data of the simu d data sets General S 197 7 7 1.68 903 166501 289.7 122 1.16 3.889 GOF Test 0.703 0.803 0.367 0.304 ot Normal Cri 10.89 20.00	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data Not Normal at 5% Significar at 5% Significance Level tical Values and other Nonparametric UCLs KM Standard Error of Mean	5% UCL. (2006). statistician. 23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566 mce Level mce Level 6.855 24.72
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 544 545 554 555 556 557 558 559 550 555 555 555 555 555 555	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Number of Distinct Detects Naximum Detect Variance Detects Mean Detects Keen Sbewenss Detects Neen of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Detected Data N Kaplan-Meier (KM) Statistics using KM Mean	0.967 CL are provupon data of the simu d data sets 197 7 1.68 903 166501 289.7 122 1.16 3.889 GOF Test 0.703 0.803 0.367 0.304 ot Normal Cr 10.89 Sormal Cr 10.89 8.908 22 22	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD Detects SD of Logged Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data Not Normal at 5% Significar Lilliefors GOF Test Detected Data Not Normal at 5% Significar at 5% Significance Level tical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL	5% UCL. (2006). statistician. 23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566 nce Level nce Level 6.855 24.72 23.89
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 556 557 558 550 556 557 558 550 560 561 562	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Maximum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Mean of Logged Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Cortected Data N Kaplan-Meier (KM) Statistics using KM Mean KM SD Shapiro KM (t) UCL	0.967 CL are provupon data of the simu d data sets 903 166501 289.7 122 1.16 3.889 GOF Test 0.703 0.803 0.367 0.304 ot Normal Cr 10.89 89.08 89.08 22.22 22.17	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects Detected Data Not Normal at 5% Significar Lilliefors GOF Test Detected Data Not Normal at 5% Significar at 5% Significance Level tical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL	i% UCL. (2006). istatistician. 23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566 nce Level 6.855 24.72 23.89 68.63
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 556 557 558 550 550 550 550 560 561 562 563	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Maximum Detect Maximum Detect Variance Detects Median Detects Skewness Detects Median Detects Skewness Detects Median Detects Median Detects Skewness Detects Median Cogged Detects Median Cogged Detects U Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Kaplan-Meier (KM) Statistics using KM Mean KM SD 95% KM (t) UCL 90% KM (chebyshev UCL	0.967 CL are provupon data of the simu d data sets 903 166501 289.7 122 1.16 3.889 GOF Test 0.703 0.803 0.367 0.304 ot Normal Cri 10.89 89.08 22.22 22.17 31.46	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data Not Normal at 5% Significar Lilliefors GOF Test Detected Data Not Normal at 5% Significar at 5% Significance Level tical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	i% UCL. (2006). statistician. 23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566 nce Level 6.855 24.72 23.89 68.63 40.77
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 544 545 544 545 556 557 558 555 556 557 558 559 560 561 562 563 564 555 556 557 558 559 560 561 562 563 564 555 558 556 557 558 556 557 558 556 557 558 556 557 558 556 557 558 557 558 559 560 561 557 558 559 560 557 558 559 550 557 558 559 550 557 558 559 550 557 558 559 550 557 558 556 557 558 556 557 558 556 557 558 556 557 558 556 557 558 556 557 558 556 557 558 556 557 558 556 557 558 556 557 558 556 557 558 557 558 556 557 558 556 557 558 557 558 556 557 558 557 558 557 558 556 557 558 558	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Kaplan-Meier (KM) Statistics using KM Mean KM SD 95% KM (t) UCL 97.5% KM Chebyshev UCL	0.967 CL are provupon data of the simu d data sets General S 197 7 7 1.68 903 166501 289,7 122 1.16 3.889 GOF Test 0.703 0.803 0.367 0.304 ot Normal Cr 10.89 89.08 22.22 22.17 31.46 53.7	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect ON-Detects SD Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data Not Normal at 5% Significar at 5% Significance Level KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Chebyshev UCL	3% UCL. (2006). statistician. 23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566 nce Level 6.855 24.72 23.89 68.63 40.77 79.1
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 550 551 552 553 556 556 557 558 560 561 562 563 564 565 566 567 568 566 567 568 566 567 568 566 566 566 566	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Maximum Detect U Variance Detects Mean Detects Skewness Detects Mean of Logged Detects Mean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Kaplan-Meler (KM) Statistics using KM Mean KM SD 95% KM (t) UCL 97.5% KM (chebyshev UCL 97.5% KM Chebyshev UCL	0.967 CL are provupon data of the simu d data sets General S 197 7 7 1.68 903 166501 289.7 122 1.16 3.889 GOF Test 0.703 0.803 0.367 0.304 ot Normal Cr 10.89 89.08 22.22 22.17 31.46 53.7	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect SD Detects SD Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data Not Normal at 5% Significar Lilliefors GOF Test Detected Data Not Normal at 5% Significar at 5% Significance Level KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	3% UCL. (2006). statistician. 23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566 nce Level 6.855 24.72 23.89 68.63 40.777 79.1
$\begin{array}{c} 530\\ 531\\ 532\\ 533\\ 533\\ 533\\ 533\\ 533\\ 533\\ 533$	95% KM (Chebyshev) UCL Note: Suggestions regarding the selection of a 95% U Recommendations are based These recommendations are based upon the results However, simulations results will not cover all Real Worl Acetophenone Total Number of Observations Number of Detects Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Maximum Detect Variance Detects Mean Detects Mean Detects Skewness Detects Mean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Kaplan-Meier (KM) Statistics using KM Mean KM SD 95% KM (t) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL	0.967 CL are provupon data of the simu d data sets General S 197 7 7 1.68 903 166501 289.7 122 1.16 3.889 GOF Test 0.703 0.803 0.367 0.304 ot Normal Normal Cr 10.89 89.08 22.22 22.17 31.46 53.7 sts on Det 0.435	vided to help the user to select the most appropriate 95 size, data distribution, and skewness. lation studies summarized in Singh, Maichle, and Lee ; for additional insight the user may want to consult a s tatistics Number of Distinct Observations Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Observations Detects SD Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data Not Normal at 5% Significar Lilliefors GOF Test Detected Data Not Normal at 5% Significar at 5% Significance Level tical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	i% UCL. (2006). istatistician. 23 190 16 0.619 1.32 96.45% 408 1.408 -0.881 2.566 nce Level 6.855 24.72 23.89 68.63 40.77 79.1

	۸	P	C C	D	E	E	C	ш	-	-	K	1
569	A	D	U	5% A-D Crit	ت tical Value	0 772	Detect	ed data an	near Gamn	na Distribu	red at 5% S	
500					et Statiatia	0.772	Delect	ou uula ap	Kolmo			igniticatios Level
569				K-3 Te		0.210	Datast		Kolinioge			Section and a section of
570				5% K-5 CI		0.332	Delect		Jear Gami		iteu al 5% S	ignificance Level
571				Detected data	appear Ga	amma Dist	riduted at	5% Signitio	cance Leve	Ð		
572												
573				C	amma Sta	tistics on	Detected I	Data Only				
574				k	hat (MLE)	0.374			k star	(bias corre	ected MLE)	0.309
575				Theta	hat (MLE)	775.3			Theta star	(bias corre	ected MLE)	938.3
576				nu	hat (MLE)	5.232			nu	ı star (bias	corrected)	4.323
577				Mea	n (detects)	289.7						
578												
579				Gamn	na ROS Sta	atistics usi	ng Impute	d Non-Dete	ects			
580			GROS may no	t be used wher	n data set h	as > 50% I	NDs with n	nany tied ol	oservations	at multipl	e DLs	
581	(GROS may	not be used wh	nen kstar of det	ects is sma	all such as	<1.0, espe	cially when	the sampl	e size is si	mall (e.g., <	:15-20)
582			For s	uch situations.	GROS met	hod mav v	ield incorre	ect values of	of UCLs an	d BTVs		
583				This is	especially	true when	the sampl	e size is sr	nall.			
584		For dam	ma distributed	detected data	BTVs and	UCI s may	be compu	ted usina a	amma dist	ribution on	KM estima	tes
504		i oi guin		dottobiou data,	Minimum	0.01	be compa	tou uonig g			Mean	10.3
505					Maximum	0.01					Median	0.01
586						903					wieulan	0.01
587				1.		09.30			l	/h:		0.073
588				к т	nat (MLE)	0.12			K Star	(blas corre	ected MLE)	0.121
589				Iheta	hat (MLE)	86.19			I heta star	(bias corre	ected MLE)	85.07
590				nu	hat (MLE)	47.11			nı	i star (bias	corrected)	47.72
591			Adjusted	Level of Signif	icance (β)	0.0488						
592		A	pproximate Ch	i Square Value	(47.72, α)	32.87		Adjus	ted Chi Sq	uare Value	e (47.72, β)	32.78
593		95% Gamr	ma Approximat	e UCL (use wh	en n>=50)	14.96	95	5% Gamma	Adjusted l	JCL (use w	vhen n<50)	15
594												
595				Estimat	es of Gam	ma Param	eters usin	g KM Estin	nates			
596				Ν	/lean (KM)	10.89					SD (KM)	89.08
597				Vari	ance (KM)	7936				SE of I	Mean (KM)	6.855
598					k hat (KM)	0.015					k star (KM)	0.0181
599				n	u hat (KM)	5.89				nı	u star (KM)	7.134
600				thet	a hat (KM)	728.6				theta	a star (KM)	601.6
601			80%	6 gamma perce	entile (KM)	0.00152			90% ga	mma perce	entile (KM)	1.02
602			95%	6 gamma perce	entile (KM)	20.86			99% ga	mma perce	entile (KM)	307.2
602				- <u>g</u> =					j-			
604					Gamma k	anlan-Mei	er (KM) St	tatietice				
004				hi Square Valu	$a(7.13 \alpha)$	2 2/4		Adiu	sted Chi S	quare Valu	in (7 13 B)	2 224
605	059	Commo A	Approximate C		e(7.13, u)	24.62	05% (Auju	usted KM I		(7.13, p)	21.02
606	90		Approximate Ki	N-OCL (USE WIT	en n>=50)	34.02	95%6	annna Auji			men n<50)	34.93
607						ant on Da			0-1-1			
608				Lognor		est on De		servations				
609			S	hapiro Wilk Te	st Statistic	0.896			Shapir	o Wilk GO	P⊢ lest	
610			5% S	hapiro Wilk Cri	tical Value	0.803	De	etected Dat	a appear L	ognormal a	at 5% Signif	icance Level
611				Lilliefors Te	st Statistic	0.211			Lillie	fors GOF	Test	
612			5	% Lilliefors Cri	tical Value	0.304	De	etected Dat	a appear L	ognormal a	at 5% Signif	icance Level
613	613 Detected Data appear Lognormal at 5							Significanc	e Level			
614												
615				Lognori	nal ROS S	tatistics U	sing Imput	ted Non-De	tects			
616				Mean in Orig	inal Scale	10.3				Mean in	Log Scale	-15.39
617				SD in Orig	inal Scale	89.38				SD in	Log Scale	8.036
618		95%	t UCL (assume	s normality of	ROS data)	20.82			95% Perc	entile Boo	tstrap UCL	23.01
619				95% BCA Boot	strap UCL	27.75				95% Boots	strap t UCL	103.2
620				95% H-UCL	Log ROS)	1.337E+10						
621												
021												

	A	В	С	D		E	F	G	Н	1	J	К	L
622			Statistic	s using KN	/ estir	mates on	Logged D	ata and As	suming Lo	gnormal [Distribution	1	
623				KM	Mean	(logged)	-0.324				KM	Geo Mean	0.723
624				K	(M SD	(logged)	0.924			95% Criti	ical H Valu	e (KM-Log)	2.111
625			KM Standa	rd Error of	Mean	(logged)	0.0711			9501 0 10	95% H-UCL	_ (KM -Log)	1.274
626			KM Standa	K rd Error of	Maan	(logged)	0.924			95% Criti	ical H valu	e (KIM-LOG)	2.111
627			KIVI Stanua		wear	(loggeu)	0.0711						
629							DL/2 Sta	tistics					
630			DL/2 No	rmal						DL/2	Log-Trans	formed	
631				Mean in	Origin	nal Scale	10.87				Mean ir	n Log Scale	-0.357
632				SD in	Origin	nal Scale	89.31				SD ir	n Log Scale	0.934
633			95% t L	JCL (Assu	mes n	ormality)	21.39				95% I	H-Stat UCL	1.246
634			DL/2 is n	ot a recon	nmeno	ded meth	od, provid	ed for com	parisons a	nd historic	cal reasons	3	
635													
636				Detected	Nonp	arametri	c Distributi	on Free U	CL Statistic	xs	(a)		
637				Delected	Data	appear G	amma Dis	unduteu at	5% Signin	cance Lev	/ei		
630						S	uaaested L	ICL to Use)				
640			95% KM A	pproximate	e Gan	nma UCL	34.62						
641							1	1					
642	No	te: Suggestic	ons regarding	the select	tion of	a 95% U	CL are pro	vided to he	Ip the user	to select t	the most ap	propriate 98	5% UCL.
643			Rec	ommendat	tions a	are based	upon data	size, data	distributior	i, and skev	wness.		
644	TI	hese recomm	nendations ar	e based up	oon th	e results	of the simu	lation stud	ies summa	rized in Si	ingh, Maich	le, and Lee	(2006).
645	Howe	ever, simulati	ons results w	III not cove	er all F	Real Worl	d data sets	; tor additi	onal insight	the user i	may want to	o consult a s	statistician.
646	Bonzona												
647	Denzene												
648							General S	tatistics					
650			Total	Number o	of Obse	ervations	197		1	lumber of	Distinct Ob	oservations	15
651				Num	nber o	f Detects	12			N	umber of N	on-Detects	185
652			N	umber of D	Distinc	t Detects	12			Number of	f Distinct N	on-Detects	3
653				М	linimu	m Detect	0.538				Minimum I	Non-Detect	0.25
654				Ma	aximu	m Detect	2170				Maximum I	Non-Detect	1.25
655				Va	riance	e Detects	627742				Percent N	on-Detects	93.91%
656					Mear	1 Detects	433.3					SD Detects	792.3
657				N Sko	viediar	Detects	5.3/3				Kurto	CV Detects	1.829
658				Mean of L	ondes	Detects	2.815					sis Delects	2.059
660				moun or E	oggot		2.010				OD OI LOGG		0.200
661						Normal	GOF Test	on Detects	s Only				
662			S	hapiro Wil	k Test	t Statistic	0.607		-	Shapi	iro Wilk GC	OF Test	
663			5% SI	napiro Will	k Critio	cal Value	0.859		Detected	Data Not N	Normal at 5	5% Significa	nce Level
664	-			Lilliefor	s Test	t Statistic	0.358			Lillie	efors GOF	Test	
665			5	% Lilliefors	s Critic	cal Value	0.243		Detected	Data Not N	Normal at 5	% Significa	nce Level
666				D	etecte	d Data N	ot Normal	at 5% Sig	nificance L	evel			
667			Kanlan Ma		totioti					Nonner	omotrio LIC		
668			Rapiari-ivie		kausu	CS USING	26.63			KW S	tandard Fr	ror of Mean	15.92
670					·	KM SD	214			1411 0	95% KM	(BCA) UCL	56.9
671				9	5% KN	И (t) UCL	52.94		95%	KM (Perc	entile Boot	strap) UCL	53.75
672	-			95	5% KN	1 (z) UCL	52.82			95%	% KM Boots	strap t UCL	159.6
673			(90% KM C	hebys	hev UCL	74.39			95%	6 KM Cheb	yshev UCL	96.03
674			97	.5% KM C	hebys	hev UCL	126.1			99%	6 KM Cheb	yshev UCL	185
675				~		005-				D			
676				G		GUF TE	SIS ON Det	ectéd Obs	ervations (n Darling (
0// 670				Α-L 5% Δ_Γ) Critic	cal Value	0.977	Dete	cted Data M	Jot Gamm	a Distribute	ed at 5% Sid	inificance Level
679					S Test	t Statistic	0.275	Dere		Kolmon	orov-Smiri	nov GOF	
680				5% K-S	S Critic	cal Value	0.27	Dete	cted Data N	lot Gamm	a Distribute	ed at 5% Sid	unificance Level
681				Detecte	d Data	a Not Ga	mma Distri	buted at 5	% Significa	nce Leve	1		
682													
683					Ga	amma Sta	atistics on	Detected I	Data Only				
684					k h	at (MLE)	0.222			k star	r (bias corre	ected MLE)	0.222
685				Т	neta h	at (MLE)	1949			I heta star	(bias corre	ected MLE)	1950
686					nu h	(detects)	5.334			n	u star (bias	corrected)	5.334
600					wean	(uerects)	433.3						
680				G	amme	ROS SI	atistics usi	ng Impute	d Non-Det	ects			
690		G	ROS may no	t be used v	when	data set l	nas > 50%	NDs with n	nany tied of	oservation	is at multip	le DLs	
691	G	ROS may no	ot be used wh	en kstar o	f dete	cts is sm	all such as	<1.0, espe	cially wher	the samp	le size is s	mall (e.g., <	15-20)
692			For si	uch situatio	ons, G	ROS me	thod may y	ield incorre	ect values of	of UCLs ar	nd BTVs		
693				Tł	his is e	especially	true when	the sampl	e size is sr	nall.			
694		For gamm	a distributed	detected c	data, B	BTVs and	UCLs may	be compu	ted using g	amma dis	tribution on	n KM estima	tes

	A	В	С	D	Е	F	G	Н			J	K	L	
695				Mir	nimum	0.01						Mean	26.4	
696				Max	kimum	2170						Median	0.01	
697					SD	214.5						CV	8.126	
698				k hat	(MLE)	0.108			k	< star	(bias corre	ected MLE)	0.11	
699				Theta hat	(MLE)	243.9			Theta	a star	(bias corre	ected MLE)	240.1	
700				nu hat	(MLE)	42.65				n	u star (bias	corrected)	43.33	
701			Adjusted	Level of Significan	ice (β)	0.0488					(
701		Δ	nnroximate Ch	i Square Value (43	33 n)	29.24		μA	iusted C	hi Sc	iuare Value	= (43 33 B)	29.15	
702		95% Gam	ma Approximat		$\frac{100, 0}{12}$	20.21	QF	5% Gamr	na Δdius	stad		$\frac{10.00}{10.00}$	39.24	
703		oo /o cain			. 00)	00.10		o dann	na / laja	olou	002 (000 1		00.21	
704				Entimotoo	of Com	mo Dorom	otoro unin		timotoo					
705				Launates C		26.62			umates	,		SD (KM)	214	
706				Varianas		20.03					CE of	SD (KW)	15.02	
/0/				Variance		43776					3E 01		15.92	
708				кпа		0.0155						K Star (KIVI)	0.0186	
709				nu na	t (KM)	6.102					n	u star (KM)	7.343	
710				theta ha	t (KM)	1/19					thet	a star (KM)	1429	
711			80%	6 gamma percentile	e (KM)	0.00514			90)% ga	amma perc	entile (KM)	2.861	
712			95%	6 gamma percentile	e (KM)	53.89			99	9% ga	amma perc	entile (KM)	749.3	
713														
714				Ga	mma k	Kaplan-Mei	er (KM) S	tatistics						
715			Approximate C	hi Square Value (7.	.34, α)	2.361		A	djusted (Chi S	Square Valu	ue (7.34, β)	2.34	
716	95%	6 Gamma /	Approximate KI	A-UCL (use when n	ı>=50)	82.83	95% G	Gamma A	djusted	KM-	UCL (use v	when n<50)	83.56	
717														
718				Lognormal	GOF 1	Fest on De	tected Ob	servation	ns Only					
719			S	hapiro Wilk Test St	tatistic	0.856			S	Shapi	ro Wilk GC	OF Test		
720			5% S	hapiro Wilk Critical	Value	0.859		Detected	Data No	ot Lo	gnormal at	5% Signific	cance Level	
721				Lilliefors Test St	tatistic	0.196				Lilli	efors GOF	Test		
722			5	% Lilliefors Critical	Value	0.243	De	etected D)ata app	ear L	ognormal	at 5% Signi	ficance Level	
723			D	etected Data appea	ar App	roximate L	ognormal	at 5% Si	ignifican	nce L	evel			
724														
725				Lognormal I	ROS S	tatistics U	sing Impu	ted Non-	Detects	;				
726				Mean in Original	Scale	26.4					Mean ir	n Log Scale	-16.38	
727				SD in Original	Scale	214.5					SD ir	n Log Scale	9.592	
728		95%	t UCL (assume	s normality of ROS	6 data)	51.66			95%	Per	centile Boo	otstrap UCL	55.19	
729				95% BCA Bootstra	p UCL	68.57					95% Boots	strap t UCL	121	
730				95% H-UCL (Log	ROS)	6.710E+16								
731														
732			Statistic	s using KM estima	tes on	Logged Da	ata and As	ssuming	Lognorr	mal C	Distribution			
733				KM Mean (Ic	ogged)	-1.13					KM	Geo Mean	0.323	
734				KM SD (lo	ogged)	1.269			95%	o Criti	cal H Valu	e (KM-Log)	2.427	
735			KM Standa	rd Error of Mean (Io	ogged)	0.0945				ç	95% H-UCL	. (KM -Log)	0.901	
736				KM SD (lo	ogged)	1.269			95%	o Criti	cal H Valu	e (KM-Log)	2.427	
737			KM Standa	rd Error of Mean (lo	ogged)	0.0945								
738														
739						DL/2 Sta	tistics							
740			DL/2 No	rmal					C	DL/2	Log-Trans	formed		
741				Mean in Original	Scale	26.53					Mean ir	n Log Scale	-1.703	
742				SD in Original	Scale	214.5					SD ir	n Log Scale	1.411	
743			95% t l	JCL (Assumes norr	mality)	51.78					95% I	H-Stat UCL	0.639	
744			DL/2 is n	ot a recommended	d meth	od, provide	ed for com	parisons	and his	storic	cal reasons	5		
745														
746				Nonpara	ametric	c Distributio	on Free U	CL Statis	stics					
747			Detecte	d Data appear App	proxim	ate Lognor	mal Distri	buted at	5% Sigi	nifica	ince Level			
748														
749					SL	Iggested U	CL to Use	Ð					[
750				KMH	1-UCL	0.901								
751				<u></u>	0501 -	0		1. 2						
752	No	ite: Sugges	tions regarding	the selection of a s	95% U	CL are prov	/ided to he	eip the us	er to se	iect t	ne most ap	propriate 9	5% UCL.	
753			Rec	ommendations are	pased	upon data	sıze, data	distributi	ion, and	skev	vness.		(0000)	
754	T	hese recon	nmendations ar	e based upon the re	esults	of the simu	lation stud	lies sumr	narized	ın Si	ngh, Maich	nie, and Lee	(2006).	
755	Howe	ever, simula	ations results w	III not cover all Rea	ai Worl	d data sets	; tor additi	onal insig	ght the u	user i	may want to	o consult a	statistician.	
756	 .													
757	Ethylbenzene													
758						0								
759			.	Number (C)	- 41	General S	tatistics		N		Diat : C		14	
760			Total	Number of Observ	ations	19/			Numbe	er of	UISTINCT OF	oservations	14	
761				Number of D	etects	10				N	umber of N	on-Detects	18/	
762			N	umber of Distinct D	etects	10			Numb	per o	r Distinct N	on-Detects	4	
763				Minimum I	Detect	2./1					winimum l	Non-Detect	0.25	
764				Maximum I	Detect	903					IVIAXIMUM I	Non-Detect	1.25	
765				Variance D	etects	111403					Percent N	on-Detects	94.92%	
766				Mean D	etects	204.7						SU Detects	333.8	
767				Median D	etects	5/.6						UV Detects	1.63	
768				Skewness D	etects	1./2					Kurto	sis Detects	1.506	
				wean of Londed D	retects	i 3./56					SD OT LODO	Jea Detects	1 20/5	
	А	В	С	D	E	F	G	Н	I	J	K	L		
------------	---	-----------	----------------	--------------------	------------------------	---	---	--------------------------	---------------------------------------	-------------------	----------	-------------------	--	--
770					NI	00F T		<u>.</u>						
771			9	haniro Wilk Test	Normal Statistic		Shapiro Wilk GOF Test							
773			5% Sł	napiro Wilk Criti	0.842	Detected Data Not Normal at 5% Significance Level								
774				Lilliefors Test	t Statistic	0.353	Lilliefors GOF Test							
775			59	% Lilliefors Criti	cal Value	0.262	Detected Data Not Normal at 5% Significance Level							
776				Detecte	d Data N	ot Normal	at 5% Sign	ificance L	evel.					
777			Kenten Me											
778			Kapian-Mei	er (KM) Statisti	CS USING I	Normal Cri	tical value	s and othe	er Nonpara	ametric UCLs	f Mean	6 33		
780					KM SD	84.29			1411 0	95% KM (BC/	A) UCL	22.96		
781				95% KN	A (t) UCL	21.09	95% KM (Percentile Bootstrap) UCL 21.09							
782				95% KN	1 (z) UCL	21.04			959	% KM Bootstrap	ot UCL	61.02		
783			9	0% KM Chebys	hev UCL	29.62			95%	6 KM Chebyshe	ev UCL	38.22		
784			97	.5% KIVI Chebys	inev UCL	50.16			99%	6 KIVI Chebyshe	ev UCL	/3.61		
786	Gamma GOF Tests on Detected Observations Only													
787				A-D Test	t Statistic	0.579			Anderso	on-Darling GOF	Test			
788				5% A-D Criti	cal Value	0.792	Detecte	ed data ap	pear Gam	ma Distributed	at 5% S	ignificance Level		
789				K-S Test	t Statistic	0.212			Kolmog	orov-Smirnov	GOF			
790				5% K-S Criti	cal Value	0.284 amma Diet	Detecte	ed data ap 5% Signifi	pear Gam	ma Distributed	at 5% S	ignificance Level		
791					арреат Са			570 Olgrilli		0				
793				Ga	amma Sta	atistics on	Detected D	ata Only						
794				k h	at (MLE)	0.417			k star	(bias corrected	d MLE)	0.359		
795				Theta h	at (MLE)	490.5			Theta star	(bias corrected	d MLE)	570.6		
796				nu h Mean	(detects)	8.347			n	u star (bias cori	rected)	7.176		
797				Wedn	(uerecis)	204.7								
799				Gamma	a ROS Sta	atistics usi	ng Imputeo	l Non-Det	ects					
800			GROS may no	t be used when	data set h	as > 50% I	NDs with m	any tied o	bservation	s at multiple DI	S			
801		GROS may	not be used wh	en kstar of dete	cts is sma	all such as	<1.0, espec	cially wher	n the samp	le size is small	(e.g., <	15-20)		
802			For su	uch situations, G	ROS met	thod may y	the complete	ct values	of UCLs ar	nd BTVs				
803		For dam	ma distributed	detected data F	especially STVs and	UCLs may	the comput	ed using o	nan. Iamma dis	tribution on KM	estimat	tes		
805		i oi guin			Minimum	0.01	be compar	ou uoing g	jannia alo		Mean	10.4		
806				Ν	/laximum	903				١	Median	0.01		
807					SD	84.53					CV	8.126		
808				k h	at (MLE)	0.121			k star	(bias corrected	d MLE)	0.123		
809				I neta r	at (MLE)	85.69 47.83			I neta star	(blas corrected	I MLE)	84.62 48.43		
811			Adjusted	Level of Signific	cance (β)	0.0488					rected)	-010		
812		A	pproximate Chi	Square Value (48.43, α)	33.46		Adjus	sted Chi So	quare Value (48	3.43, β)	33.37		
813		95% Gamr	na Approximate	e UCL (use whe	n n>=50)	15.06	959	% Gamma	Adjusted	UCL (use when	n n<50)	15.1		
814				Fatimate	a of 0 am	ma Davan	atore volu							
815				Estimate	ean (KM)	10 63	eters usinį	J KIM ESUR	nates	S	D (KM)	84 29		
817				Varia	nce (KM)	7104				SE of Mea	n (KM)	6.33		
818				k	hat (KM)	0.0159				k sta	ar (KM)	0.019		
819				nu	hat (KM)	6.266				nu sta	ar (KM)	7.504		
820			<u>000</u>	theta	hat (KM)	668.3			0.0% a	theta sta	ar (KM)	558.1		
821			95%	amma percer	ntile (KM)	22.39			90 % ga	amma percentil	e (KM)	298.6		
823				. <u>9</u>							- ()			
824					Gamma K	Kaplan-Mei	er (KM) St	atistics						
825		7	Approximate Cl	ni Square Value	(7.50, α)	2.451	0.561 6	Adju	usted Chi S	Square Value (7	7.50, β)	2.43		
826	95	% Gamma A	pproximate KN	1-UCL (use whe	n n>=50)	32.54	95% G	amma Adj	usted KM-	UCL (use when	n n<50)	32.82		
ŏ∠/ 829				Loanorm	al GOF 1	est on De	tected Ohe	ervations	Only					
829			S	hapiro Wilk Test	t Statistic	0.916			Shapi	ro Wilk GOF T	est			
830			5% Sł	napiro Wilk Criti	cal Value	0.842	De	tected Dat	ta appear l	ognormal at 59	% Signif	icance Level		
831				Lilliefors Test	Statistic	0.212			Lilli	efors GOF Tes	t			
832			59	% Lilliefors Criti	cal Value	0.262	De	tected Dat	ta appear l	ognormal at 59	% Signif	icance Level		
833				Detected	vata appe	ar Lognorr	nai at 5% S	significanc	e levei					
835				Lognorm	al ROS S	tatistics U	sing Impute	ed Non-De	etects					
836				Mean in Origi	nal Scale	10.44				Mean in Log	g Scale	-9.87		
837				SD in Origi	nal Scale	84.52				SD in Log	g Scale	6.554		
838		95% 1	t UCL (assume	s normality of R	OS data)	20.4			95% Per	centile Bootstra	ap UCL	21.39		
839				95% HLICI /		26.9				95% Bootstrap	DT UCL	83.92		
840 841				3370 H-UUL (L	.uy nuo)	3070035								
842			Statistics	s using KM esti	mates on	Logged Da	ata and As	suming Lo	ognormal [Distribution				
843				KM Mean	(logged)	-1.125			· · · · · · · · · · · · · · · · · · ·	KM Geo	o Mean	0.325		
844				KM SD	(logged)	1.213			95% Crit	ical H Value (Kl	M-Log)	2.371		
845			KM Standar	d Error of Mean	(logged)	0.0911			0501 0 1	95% H-UCL (KN	И -Log)	0.832		
846			KM Ctand-	KM SD	(logged)	1.213			95% Crit	ical H Value (Kl	M-Log)	2.3/1		
047					(iogged)	0.0911								

	A B C D E	F	G H I J K	L									
848													
849		DL/2 Sta	tistics										
850	DL/2 Normal	40.50	Mean in Log Scale 1 600										
851	Mean in Original Scale	10.53	SD in Log Scale 1.699										
852	95% t LICL (Assumes normality)	20.48	95% H-Stat LICI	0.591									
854	DL/2 is not a recommended meth	od. provide	ed for comparisons and historical reasons	0.001									
855													
856	Nonparametric	c Distributi	on Free UCL Statistics										
857	Detected Data appear G	iamma Dist	ributed at 5% Significance Level										
858													
859	Su	uggested U	CL to Use										
860	95% KM Approximate Gamma UCL	32.54											
861	Note: Suggestions regarding the selection of a 95% []	CL are prov	vided to help the user to select the most appropriate 95	% UCI									
863	Recommendations are based upon data size, data distribution, and skewness.												
864	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).												
865	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.												
866													
867	Lead												
868													
869	Total Number of Observations	General S	tatistics	15									
6/U 871	Number of Detects	7	Number of Non-Detects	190									
872	Number of Distinct Detects	7	Number of Distinct Non-Detects	8									
873	Minimum Detect	1.54	Minimum Non-Detect	1.5									
874	Maximum Detect	5.3	Maximum Non-Detect	3									
875	Variance Detects	2.118	Percent Non-Detects	96.45%									
876	Mean Detects	3.079	SD Detects	1.455									
877	Median Detects	2.18	CV Detects	0.473									
878	Skewness Detects	0.612	Kurtosis Detects	-1.534									
8/9	Mean of Logged Detects	1.029	SD of Logged Detects	0.47									
881	Normal	GOF Test	on Detects Only										
882	Shapiro Wilk Test Statistic	0.871	Shapiro Wilk GOF Test										
883	5% Shapiro Wilk Critical Value	0.803	Detected Data appear Normal at 5% Signific	ance Level									
884	Lilliefors Test Statistic	0.303	Lilliefors GOF Test										
885	5% Lilliefors Critical Value	0.304	Detected Data appear Normal at 5% Signific	ance Level									
886	Detected Data app	bear Norma	al at 5% Significance Level										
887	Kanlan-Meier (KM) Statistics using	Normal Cri	tical Values and other Nonnarametric LICI s										
889	KM Mean	1.556	KM Standard Error of Mean	0.0298									
890	KM SD	0.387	95% KM (BCA) UCL	1.617									
891	95% KM (t) UCL	1.606	95% KM (Percentile Bootstrap) UCL	1.607									
892	95% KM (z) UCL	1.606	95% KM Bootstrap t UCL	1.62									
893	90% KM Chebyshev UCL	1.646	95% KM Chebyshev UCL	1.687									
894	97.5% KWI Chebyshev OCL	1.743	99% KW Chebyshev OCL	1.000									
896	Gamma GOF Te	sts on Det	ected Observations Only										
897	A-D Test Statistic	0.507	Anderson-Darling GOF Test										
898	5% A-D Critical Value	0.71	Detected data appear Gamma Distributed at 5% S	ignificance Level									
899	K-S Test Statistic	0.301	Kolmogorov-Smirnov GOF										
900	5% K-S Critical Value	0.313	Detected data appear Gamma Distributed at 5% S	ignificance Level									
901	Detected data appear G	amma Dist	Indred at 5% Significance Level										
902	Gamma Str	atistics on	Detected Data Only										
904	k hat (MLE)	5.41	k star (bias corrected MLE)	3.187									
905	Theta hat (MLE)	0.569	Theta star (bias corrected MLE)	0.966									
906	nu hat (MLE)	75.74	nu star (bias corrected)	44.61									
907	Mean (detects)	3.079											
908		atlation	ng Imputed New Detrate										
909	Gamma ROS St		ny imputed Non-Detects										
	GROS may not be used when data and h	10000	too man many aca observations at multiple DLS										
910	GROS may not be used when data set h GROS may not be used when kstar of detects is sma	all such as	<1.0, especially when the sample size is small (e.g. <	15-20)									
910 911 912	GROS may not be used when data set h GROS may not be used when kstar of detects is sma For such situations, GROS me	all such as thod may y	<1.0, especially when the sample size is small (e.g., < ield incorrect values of UCLs and BTVs	15-20)									
910 911 912 913	GROS may not be used when data set h GROS may not be used when kstar of detects is sma For such situations, GROS me This is especially	all such as thod may y true when	<1.0, especially when the sample size is small (e.g., < ield incorrect values of UCLs and BTVs the sample size is small.	15-20)									
910 911 912 913 914	GROS may not be used when data set h GROS may not be used when kstar of detects is sma For such situations, GROS me This is especially For gamma distributed detected data, BTVs and	all such as thod may y true when UCLs may	<1.0, especially when the sample size is small (e.g., < eld incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimat	15-20) es									
910 911 912 913 914 915	GROS may not be used when data set h GROS may not be used when kstar of detects is sma For such situations, GROS me This is especially For gamma distributed detected data, BTVs and Minimum	all such as thod may y y true when UCLs may	<1.0, especially when the sample size is small (e.g., < ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimat Mean	es 0.133									
910 911 912 913 914 915 916	GROS may not be used when data set f GROS may not be used when kstar of detects is sma For such situations, GROS me This is especially For gamma distributed detected data, BTVs and Minimum Maximum	all such as thod may y true when UCLs may 0.01 5.3	<1.0, especially when the sample size is small (e.g., < ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimat Mean Median	es 0.133 0.01									
910 911 912 913 914 915 916 917	GROS may not be used when data set f GROS may not be used when kstar of detects is sma For such situations, GROS me This is especially For gamma distributed detected data, BTVs and Minimum Maximum	all such as thod may y y true when UCLs may 0.01 5.3 0.63	<1.0, especially when the sample size is small (e.g., < ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimat Mean Median CV	es 0.133 0.01 4.72 0.290									
910 911 912 913 914 915 916 917 918 910	GROS may not be used when data set f GROS may not be used when kstar of detects is sma For such situations, GROS me This is especially For gamma distributed detected data, BTVs and Minimum Maximum SD k hat (MLE)	all such as thod may y y true when UCLs may 0.01 5.3 0.63 0.301 0.444	<1.0, especially when the sample size is small (e.g., < ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimat Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	es 0.133 0.01 4.72 0.299 0.445									
910 911 912 913 914 915 916 917 918 919 920	GROS may not be used when data set f GROS may not be used when kstar of detects is sma For such situations, GROS me This is especially For gamma distributed detected data, BTVs and Minimum Maximum SD khat (MLE) Theta hat (MLE) nu hat (MLE)	all such as thod may y y true when UCLs may 0.01 5.3 0.63 0.301 0.444 118.5	<1.0, especially when the sample size is small (e.g., < ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimat Median Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE)	es 0.133 0.01 4.72 0.299 0.445 118									
910 911 912 913 914 915 916 917 918 919 920 921	GROS may not be used when data set f GROS may not be used when kstar of detects is sma For such situations, GROS me This is especially For gamma distributed detected data, BTVs and Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β)	all such as thod may y y true when UCLs may 0.01 5.3 0.63 0.301 0.444 118.5 0.0488	<1.0, especially when the sample size is small (e.g., < ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimat Median Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	es 0.133 0.01 4.72 0.299 0.445 118									
910 911 912 913 914 915 916 917 918 919 920 921 922	GROS may not be used when data set f GROS may not be used when kstar of detects is sma For such situations, GROS me This is especially For gamma distributed detected data, BTVs and Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (118.00, α)	all such as thod may y y true when UCLs may UCLs may 0.01 5.3 0.63 0.301 0.444 118.5 0.0488 93.92	<1.0, especially when the sample size is small (e.g., < ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimat Median Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) Adjusted Chi Square Value (118.00, β)	es 0.133 0.01 4.72 0.299 0.445 118 93.76									
910 911 912 913 914 915 916 917 918 919 920 921 922 923	GROS may not be used when data set f GROS may not be used when kstar of detects is sma For such situations, GROS me This is especially For gamma distributed detected data, BTVs and Minimum Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) Adjusted Level of Significance (β) Approximate Chi Square Value (118.00, α) 95% Gamma Approximate UCL (use when n>=50)	las 2 000 l all such as thod may y v true when UCLs may 0.01 5.3 0.63 0.301 0.444 118.5 0.0488 93.92 0.168	<1.0, especially when the sample size is small (e.g., < ield incorrect values of UCLs and BTVs the sample size is small. be computed using gamma distribution on KM estimat Median Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) Adjusted Chi Square Value (118.00, β) 95% Gamma Adjusted UCL (use when n<50)	es 0.133 0.01 4.72 0.299 0.445 118 93.76 0.168									

	A B C D E	F	G H I J K	L					
925	Estimates of Gam	nma Param	eters using KM Estimates						
926	Mean (KM)	1.556	SD (KM)	0.387					
927	Variance (KM)	0.15	SE of Mean (KM) 0.0298						
928	k hat (KM)	16.14	k star (KM) 15.9						
929	nu hat (KM)	6360	nu star (KM)	6265					
930	theta hat (KM)	0.0964	theta star (KM) 0.0979						
931	80% gamma percentile (KM)	1.872	90% gamma percentile (KM) 2 073						
932	95% gamma percentile (KM)	2.249	99% gamma percentile (KM)	2.605					
033	3 ()		••••• 5 •••••• F ••••••• (•••••)						
03/	Gamma k	Kanlan-Mei	anlan-Maiar (KM) Statistics						
025	Approximate Chi Square Value (N/A, q)	6082	Adjusted Chi Square Value (N/A_B)	6080					
026	95% Gamma Approximate KM-LICL (use when n>=50)	1 603	95% Gamma Adjusted KM-UCL (use when n<50)	1 604					
930		1.000	503 95% Gamma Adjusted KM-OCL (use When II<50) 1.604						
937	Lognormal GOF 1	est on Detected Observations Only							
930	Shapiro Wilk Test Statistic	0 807 Shanira Wilk COE Tant							
939	5% Shapiro Wilk Critical Value	0.007	Detected Data appear Lognormal at 5% Signif	icance Level					
940	Lilliefors Test Statistic	0.003	Lilliefore GOE Test						
941	5% Lilliefors Critical Value	0.274	Detected Data appear Lognormal at 5% Signif	icance Level					
942	Detected Data appa		nel at 5% Significance Level						
943	Delected Data appe	ai Lughun							
944	Lognormal POS S	tatistics	sing Imputed Non Detects						
945	Logioninal Ross	0 200	Moon in Log Social	2 262					
940	SD in Original Scale	0.290	SD in Log Scale	-2.202					
947	95% t LICL (accumes normality of POS data)	0.043	05% Dereentile Restatron LICL	0.276					
948	05% RCA Restation UCI	0.374	05% Rootetrop + UCL	0.070					
949		0.4	93% DOUISITAP T UCL	0.400					
950	95% H-UCL (LUG RUS)	0.369							
951	Statistics using KM estimates on	Loggod D	ate and Assuming Lagnarmal Distribution						
952	Statistics using Kin estimates on		KM Coo Moon	1 524					
953	KM SD (logged)	0.420	95% Critical H Value (KM Log)	1.534					
954	KM Standard Error of Maan (logged)	0.142		1.075					
955	KW Standard Error of Mean (logged)	0.0109	95% Critical H Value (KM Log)	1.570					
956	KM Standard Error of Moon (logged)	0.142	95 % Childai H Value (Rivi-Log)	1.075					
957	KWI Standard Error of Mean (logged)	0.0109							
958			tistico						
959	DI /2 Normal	DDZ Sta	DL/2 Log Transformed						
960	DL/2 Normal Moon in Original Socia	0.974	DL/2 Log- I ransionned	0.100					
961	Mean In Original Scale	0.074	Mean III Log Scale	-0.199					
962	SD in Original Scale	0.516		0.280					
963	95% LOCE (Assumes normainly)	0.935		0.000					
964		ioa, proviae							
965	Nonnoromotri	o Diotributi	on Fron LICL Statistics						
966	Detected Data annear N	lormal Diet	ributed at 5% Significance Level						
967	Delected Data appear N		induted at 5% Significance Level						
968		Independent							
969	95% KM (t) LIC								
970	35 % KM (t) OCL	1.000							
971	Note: Suggestions regarding the selection of a 95% L		vided to help the user to select the most appropriate 95	5% LICI					
972	Recommendations are based	unon data	size data distribution and skewness	770 OOL.					
973	These recommendations are based upon the results	of the simu	lation studies summarized in Singh Maichle and Lee	(2006)					
075	However simulations results will not cover all Real Worl	d data sets	: for additional insight the user may want to consult as	statistician					
976				lationalia					
977	Naphthalene								
978	• • • •								
979		General S	tatistics						
980	Total Number of Observations	197	Number of Distinct Observations	13					
981	Number of Detects	9	Number of Non-Detects	188					
982	Number of Distinct Detects	9	Number of Distinct Non-Detects	4					
983	Minimum Detect	0.938	Minimum Non-Detect	0.25					
984	Maximum Detect	35	Maximum Non-Detect	1.25					
985	Variance Detects	139.7	Percent Non-Detects	95.43%					
986	Mean Detects	9.975	SD Detects 11.82						
987	Median Detects	4.88	CV Detects 1 185						
988	Skewness Detects	1.555	Kurtosis Detects 1.57						
980	Mean of Loaded Detects	1.639	SD of Loaged Detects 1 273						
990									
QQ1	Normal	GOF Test	on Detects Only						
992	Shapiro Wilk Test Statistic	0.782	Shapiro Wilk GOF Test						
002	5% Shaniro Wilk Critical Value	0.829	Detected Data Not Normal at 5% Significan	nce Level					
993	Lilliefors Test Statistic	0.27	Lilliefors GOF Test						
994 005	5% Lilliefors Critical Value	0.274	Detected Data appear Normal at 5% Signific	ance Level					
392	Detected Data appear Ar	Doroximete	Normal at 5% Significance Level						
390		-Pi Shinate							
391									

	A B C D E	F	G H I J K	L						
998	Kaplan-Meier (KM) Statistics using	Normal Cr	itical Values and other Nonparametric UCLs							
999	KM Mean	0.694	KM Standard Error of Mean	0.237						
1000	KM SD	3.13	95% KM (BCA) UCL 1.116							
1001	95% KM (t) UCL	1.085	95% KM Bootstran t UCI 1 735							
1002	90% KM Chebyshey LICL	1.003	95% KM Chebyshev UCI 1.735							
1003	97.5% KM Chebyshev UCL	2.172	95% KM Chebyshev UCL 1.725							
1001	· · · · · · · · · · · · · · · · · · ·		···· · · · · · · · · · · · · · · · · ·							
1006	Gamma GOF Te	sts on Det	ected Observations Only							
1007	A-D Test Statistic	0.307	Anderson-Darling GOF Test							
1008	5% A-D Critical Value	0.747	Detected data appear Gamma Distributed at 5% Si	ignificance Level						
1009	K-S Test Statistic	0.152	Kolmogorov-Smirnov GOF							
1010	Detected data appear G	amma Dist	ributed at 5% Significance Level	ignificance Level						
1011										
1013	Gamma Sta	atistics on	Detected Data Only							
1014	k hat (MLE)	0.886	k star (bias corrected MLE)	0.664						
1015	Theta hat (MLE)	11.26	Theta star (bias corrected MLE)	15.01						
1016	nu hat (MLE)	15.94	nu star (bias corrected)	11.96						
1017	Mean (detects)	9.975								
1018	Gamma BOS St	atistics usi	ng Imputed Non-Detects							
1013	GROS may not be used when data set h	nas > 50%	NDs with many tied observations at multiple DLs							
1021	GROS may not be used when kstar of detects is sma	all such as	<1.0, especially when the sample size is small (e.g., <	15-20)						
1022	For such situations, GROS me	thod may y	ield incorrect values of UCLs and BTVs							
1023	This is especially	/ true when	the sample size is small.							
1024	For gamma distributed detected data, BTVs and	UCLs may	be computed using gamma distribution on KM estimat	es						
1025	Minimum Maximum	0.01	Mean	0.405						
1026	SD	3.171	CV	6.815						
1027	k hat (MLE)	0.206	k star (bias corrected MLE)	0.206						
1029	Theta hat (MLE)	2.258	Theta star (bias corrected MLE)	2.255						
1030	nu hat (MLE)	81.19	nu star (bias corrected)	81.28						
1031	Adjusted Level of Significance (β)	0.0488								
1032	Approximate Chi Square Value (81.28, α)	61.51	Adjusted Chi Square Value (81.28, β)	61.38						
1033	95% Gamma Approximate OCL (use when h>-50)	0.015	95% Gamma Aujusted OCL (use when h<50)	0.010						
1034	Estimates of Gam	ma Param	eters using KM Estimates							
1036	Mean (KM)	0.694	SD (KM)	3.13						
1037	Variance (KM)	9.798	SE of Mean (KM)	0.237						
1038	k hat (KM)	0.0492	k star (KM)	0.0518						
1039	nu hat (KM) thete het (KM)	19.39	nu star (KM)	20.42						
1040	80% gamma percentile (KM)	0 107	90% gamma percentile (KM)	1 11						
1041	95% gamma percentile (KM)	3.739	99% gamma percentile (KM)	14.89						
1043										
1044	Gamma H	Kaplan-Mei	er (KM) Statistics							
1045	Approximate Chi Square Value (20.42, α)	11.16	Adjusted Chi Square Value (20.42, β)	11.11						
1046	95% Gamma Approximate KM-UCL (use when n>=50)	1.27	95% Gamma Adjusted KM-UCL (use when n<50)	1.276						
1047	Lognormal GOF	Test on De	tected Observations Only							
1049	Shapiro Wilk Test Statistic	0.956	Shapiro Wilk GOF Test							
1050	5% Shapiro Wilk Critical Value	0.829	Detected Data appear Lognormal at 5% Signif	icance Level						
1051	Lilliefors Test Statistic	0.119	Lilliefors GOF Test							
1052	5% Lilliefors Critical Value	0.274	Detected Data appear Lognormal at 5% Signifi	icance Level						
1053	Detected Data appe	ar Lognori	nai at 3% Significance Level							
1054	Loanormal ROS S	statistics U	sing Imputed Non-Detects							
1056	Mean in Original Scale	0.486	Mean in Log Scale	-7.125						
1057	SD in Original Scale	3.17	SD in Log Scale	4.122						
1058	95% t UCL (assumes normality of ROS data)	0.859	95% Percentile Bootstrap UCL	0.891						
1059	95% BCA Bootstrap UCL	1.044	95% Bootstrap t UCL	1.533						
1060	95% H-UCL (Log ROS)	22.61								
1067	Statistics using KM estimates on	Logaed D	ata and Assuming Lognormal Distribution							
1063	KM Mean (loaded)	-1.248	KM Geo Mean	0.287						
1064	KM SD (logged)	0.682	95% Critical H Value (KM-Log)	1.927						
1065	KM Standard Error of Mean (logged)	0.0515	95% H-UCL (KM -Log)	0.398						
1066	KM SD (logged)	0.682	95% Critical H Value (KM-Log)	1.927						
1067	KM Standard Error of Mean (logged)	0.0515								
1068			atistics							
1009	DL/2 Normal	222.00	DL/2 Log-Transformed							
1071	Mean in Original Scale	0.592	Mean in Log Scale	-1.818						
1072	SD in Original Scale	3.153	SD in Log Scale	0.838						
1073	95% t UCL (Assumes normality)	0.964	95% H-Stat UCL	0.261						
1074	DL/2 is not a recommended meth	od, provide	ed for comparisons and historical reasons							

	A B C D E	F	G H I J K	L
1075	Nonperametric	- Dietributi	on Free LICL Statistics	
1076	Detected Data appear Approxi	mate Norm	nal Distributed at 5% Significance Level	
1077				
1079	Su	uggested U	JCL to Use	
1080	95% KM (t) UCL	1.085		
1081	When a data set follows an approxima	ate (e.g., no	ormal) distribution passing one of the GOF test	
1083	When applicable, it is suggested to use a UCL base	ed upon a d	istribution (e.g., gamma) passing both GOF tests in Prol	UCL
1084	Note: Suggestions reporting the selection of a 05% LL		vided to help the upper to called the meet appropriate QE%	
1085	Recommendations are based	upon data	size, data distribution, and skewness.	OCL.
1087	These recommendations are based upon the results	of the simu	lation studies summarized in Singh, Maichle, and Lee (2	2006).
1088	However, simulations results will not cover all Real Worl	d data sets	; for additional insight the user may want to consult a sta	atistician.
1089	Toluene			
1091				
1092		General S	itatistics	
1093	Total Number of Observations Number of Detects	197	Number of Distinct Observations Number of Non-Detects	<u>9</u> 192
1095	Number of Distinct Detects	5	Number of Distinct Non-Detects	4
1096	Minimum Detect	0.308	Minimum Non-Detect	0.25
1097	Maximum Detect	2880	Maximum Non-Detect	1.25
1098	Mean Detects	1372	SD Detects	1386
1100	Median Detects	561	CV Detects	1.01
1101	Skewness Detects	0.48	Kurtosis Detects	-3.099
1102	Mean of Logged Delects	3.401		5.611
1104	Normal	GOF Test	on Detects Only	
1105	Shapiro Wilk Test Statistic	0.793	Shapiro Wilk GOF Test	
1106	Lilliefors Test Statistic	0.702	Lilliefors GOF Test	
1108	5% Lilliefors Critical Value	0.343	Detected Data appear Normal at 5% Significant	nce Level
1109	Detected Data app	bear Norma	al at 5% Significance Level	
1110	Kaplan-Meier (KM) Statistics using	Normal Cri	itical Values and other Nonparametric UCLs	
1112	KM Mean	35.07	KM Standard Error of Mean	23.3
1113	KM SD	292.5	95% KM (BCA) UCL	73.24
1114	95% KM (t) UCL 95% KM (z) UCL	73.59	95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	76.08
1116	90% KM Chebyshev UCL	105	95% KM Chebyshev UCL	136.6
1117	97.5% KM Chebyshev UCL	180.6	99% KM Chebyshev UCL	266.9
1118	Gamma GOF Te	sts on Det	ected Observations Only	
1120	A-D Test Statistic	0.613	Anderson-Darling GOF Test	
1121	5% A-D Critical Value	0.728	Detected data appear Gamma Distributed at 5% Sig	inificance Level
1122	K-S Test Statistic 5% K-S Critical Value	0.331	Colmogorov-Smirnov GOF Detected data appear Gamma Distributed at 5% Sig	nificance Level
1124	Detected data appear G	amma Dist	tributed at 5% Significance Level	
1125				
1126	k hat (MLE)	0.381	k star (bias corrected MLE)	0.286
1128	Theta hat (MLE)	3606	Theta star (bias corrected MLE)	4806
1129	nu hat (MLE)	3.805	nu star (bias corrected)	2.855
1130	Mean (detects)	13/2		
1132	Gamma ROS St	atistics usi	ing Imputed Non-Detects	
1133	GROS may not be used when data set h	nas > 50% I	NDs with many tied observations at multiple DLs	5 20)
1134	For such situations, GROS me	thod may y	ield incorrect values of UCLs and BTVs	J-20j
1136	This is especially	true when	the sample size is small.	
1137	For gamma distributed detected data, BTVs and	UCLs may	be computed using gamma distribution on KM estimate	S
1138	Minimum Maximum	2880	Mean	0.01
1140	SD	293.3	CV	8.419
1141	k hat (MLE)	0.102	k star (bias corrected MLE)	0.104
1142 1143	i neta nat (MLE) nu hat (MLF)	40.38	nu star (bias corrected MLE)	41.1
1144	Adjusted Level of Significance (β)	0.0488		
1145	Approximate Chi Square Value (41.10, α)	27.4	Adjusted Chi Square Value (41.10, β)	27.32
1146 1147	ອວ‰ Gamma Approximate UCL (use when n>=50)	52.25	95% Gamma Adjusted UCL (use when n<50)	JZ.4
1148	Estimates of Gam	ma Param	eters using KM Estimates	
1149	Mean (KM)	35.07	SD (KM)	292.5
1150	Variance (KM)	85584	SE of Mean (KM)	23.3
1152	nu hat (KM)	5.663	nu star (KM)	6.91
1153	theta hat (KM)	2440	theta star (KM)	2000
1154	80% gamma percentile (KM)	0.0034	90% gamma percentile (KM)	2.806
1100		00.00		

	A B C D E	F	G H I J K	L									
1156	· · · ·												
1157	Gamma I	Kaplan-Mei	er (KM) Statistics										
1158	Approximate Chi Square Value (6.91, α)	2.121	Adjusted Chi Square Value (6.91, β)	2.102									
1159	95% Gamma Approximate KM-UCL (use when n>=50)	114.2	95% Gamma Adjusted KM-UCL (use when n<50)	115.3									
1160	L ognormal GOE	Feet on De	tected Observations Only										
1161	Shaniro Wilk Test Statistic	0 721	Shaniro Wilk GOF Test										
1163	5% Shapiro Wilk Critical Value	0.721	Detected Data Not Lognormal at 5% Signific	ance Level									
1164	Lilliefors Test Statistic	0.388	Lilliefors GOF Test										
1165	5% Lilliefors Critical Value	0.343	Detected Data Not Lognormal at 5% Signific	ance Level									
1166	Detected Data No	t Lognorma	al at 5% Significance Level										
1167													
1168	Lognormal ROS S	statistics U	sing Imputed Non-Detects	01.11									
1169	Mean in Original Scale	34.84	Mean in Log Scale	-21.41									
1171	95% t LICL (assumes normality of BOS data)	69.38	95% Percentile Bootstran LICL	69.76									
1172	95% BCA Bootstrap UCL	93.02	95% Bootstrap t UCL	186.8									
1173	95% H-UCL (Log ROS)	N/A											
1174		•											
1175	Statistics using KM estimates on	Logged D	ata and Assuming Lognormal Distribution										
1176	KM Mean (logged)	-1.212	KM Geo Mean	0.298									
1177	KM SD (logged)	1.209	95% Critical H Value (KM-Log)	2.367									
1178	KM Standard Error of Mean (logged)	1 200	95% H-UCL (KM -Log) 95% Critical H Value (KM Log)	0.758									
1180	KM Standard Error of Mean (logged)	0.0963	33 % Childai H Valde (Kivi-Log)	2.507									
1181		0.0000											
1182		DL/2 Sta	itistics										
1183	DL/2 Normal		DL/2 Log-Transformed										
1184	Mean in Original Scale	34.97	Mean in Log Scale	-1.782									
1185	SD in Original Scale	293.3	SD in Log Scale	1.321									
1186	95% t UCL (Assumes normality)	69.51	95% H-Stat UCL	0.509									
1187	DL/2 is not a recommended meth	od, provide	ed for comparisons and historical reasons										
1188	Nonparametri	- Dietributi	on Free LICI Statistics										
1109	Detected Data appear N	lormal Dist	ributed at 5% Significance Level										
1191													
1192	Si	uggested L	ICL to Use										
1193	95% KM (t) UCL	73.59											
1194													
1195	Note: Suggestions regarding the selection of a 95% U	CL are prov	vided to help the user to select the most appropriate 95	5% UCL.									
1196	Recommendations are based	of the simu	size, data distribution, and skewness.	Recommendations are based upon data size, data distribution, and skewness.									
1197	I here recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).												
1198	However, simulations results will not cover all Real Worl	d data sets	; for additional insight the user may want to consult a s	(2006). statistician.									
1198 1199	However, simulations results will not cover all Real Wor	d data sets	; for additional insight the user may want to consult a s	(2006). statistician.									
1198 1199 1200	However, simulations results will not cover all Real Worl Xylenes (total)	d data sets	; for additional insight the user may want to consult a s	(2006). statistician.									
1198 1199 1200 1201	However, simulations results will not cover all Real Worl Xylenes (total)	d data sets	; for additional insight the user may want to consult a s	(2006). statistician.									
1198 1199 1200 1201 1202	However, simulations results will not cover all Real Worl Xylenes (total) Total Number of Observations	d data sets General S	tatistics	(2006). statistician.									
1198 1199 1200 1201 1202 1203 1204	However, simulations results will not cover all Real Worl Xylenes (total) Total Number of Observations Number of Detects	d data sets General S 197 5	tatistics summarized in ongri, matching, and tee sign additional insight the user may want to consult a statistics Number of Distinct Observations Number of Non-Detects	(2006). statistician.									
1198 1199 1200 1201 1202 1203 1204 1205	However, simulations results will not cover all Real Worl Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects	d data sets General S 197 5 5	tatistics tatistics tatistics tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects	(2006). statistician. 9 192 4									
1198 1199 1200 1201 1202 1203 1204 1205 1206	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect	General S 197 5 5 16.4	tatistics tatistics tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Ninimum Non-Detect	(2006). statistician. 9 192 4 0.75									
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect	General S 197 5 5 16.4 537	tatistics tatistics tatistics tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detect Minimum Non-Detect Maximum Non-Detect	(2006). statistician. 9 192 4 0.75 3.75									
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects	General S 197 5 5 16.4 537 63645	tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects	(2006). statistician. 9 192 4 0.75 3.75 97.46%									
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Variance Detects Mean Detects	d data sets General S 197 5 16.4 537 63645 263 163	tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detects SD Detects	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3									
1199 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 121	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detects Mean Detects Median Detects Otenees Detects	d data sets General S 197 5 5 16.4 537 63645 263 132 0 401	tatistics tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Percent Non-Detects SD Detects CV Detects	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 2.12									
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Skewness Detects Nean of Logged Detects Mean of Logged Detects Mean of Logged Detects	d data sets General S 197 5 5 16.4 537 63645 263 132 0.481 4.961	tatistics tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of L aroan Detects	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445									
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1212	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects	d data sets General S 197 5 5 16.4 537 63645 263 132 0.481 4.961	tatistics tatistics tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Normal Normal	d data sets General S 197 5 5 16.4 537 63645 263 132 0.481 4.961 GOF Test	tatistics tatistics tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects SD Detects CV Detects SD of Logged Detects on Detects Only	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1211 1212 1213 1214 1215	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Median Detects Nean of Logged Detects Normal Shapiro Wilk Test Statistic	d data sets General S 197 5 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802	tatistics tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects on Detects Only Shapiro Wilk GOF Test	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445									
1199 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1211 1212 1213 1214 1215 1216	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Needian Detects Nean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	General S 197 5 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802 0.762	tatistics tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects on Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Signific	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Maximum Detect Median Detects Median Detects Skewness Detects Nean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	General S 197 5 16.4 537 63645 132 0.481 4.961 GOF Test 0.802 0.762 0.298	tatistics tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Variance Detects Median Detects Median Detects Skewness Detects Nean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	General S 197 5 5 16.4 537 63645 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343	tatistics tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level ance Level									
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Variance Detects Median Detects Median Detects Skewness Detects Nean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data app	General S 197 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343	tatistics tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD Detects SD of Logged Detects SD of Logged Detects Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level ance Level									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1220	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Maximum Detect Maximum Detects Median Detects Median Detects Skewness Detects Nean of Logged Detects Normal Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data ap	General S 197 5 16.4 537 63645 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343 sear Normal	tatistics tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific al at 5% Significance Level	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1221 1221 1221 1221 1212 1213 1214 1215 1216 1217 1218 1219 1221 1221 1221	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Variance Detects Mean Detects Mean Detects Skewness Detects Keapar of Logged Detects Normal Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data ap Kaplan-Meier (KM) Statistics using	General S 197 5 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343 sear Normal Cri 7.405	tatistics tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects Number of Distinct Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects CLillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Kurtosis Detects Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Kurtosis Detects Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data Appear Normal at 5% Signific Lillefors GOF Test Detected Data Appear Normal Appear Detected Data Appear Normal Appear Detected Data Appear Detected Data Appear Normal Appear Detected Data Appear Detected Data Appear Detected Data Appear Detected	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level ance Level 4.358									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1221 1221 1221 1221 1212 1213 1214 1215 1216 1217 1218 1219 1221 1222 1222 1222 1222	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Number of Distinct Detects Naximum Detect Wariance Detects Mean Detects Mean Detects Skewness Detects Kean of Logged Detects Normal Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data ap Kaplan-Meier (KM) Statistics using KM Mean KM SD	General S 197 5 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343 Dear Normal Cri 7.405 54.71	tatistics tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific al at 5% Significance Level KM Standard Error of Mean 95% KM (BCA) UCL	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level ance Level 4.358 15.05									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1222 1222 1222 1222 1222 1222 1222 1222 1224	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Variance Detects Mean Detects Mean Detects Skewness Detects Kean of Logged Detects Normal Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Kaplan-Meier (KM) Statistics using KM Mean KM SD 95% KM (t) UCL	General S 197 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343 sear Normal Cri 7.405 54.71 14.61	tatistics tatistics tatistics Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects SD Detects CV Detects CV Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific al at 5% Significance Level KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level ance Level 4.358 15.05 N/A									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1222 1222 1222 1222 1222 1222 1222 1224 1225	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Number of Distinct Detects Naximum Detect Wariance Detects Mean Detects Mean Detects Skewness Detects Nermal Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data app Kaplan-Meier (KM) Statistics using KM SD 95% KM (t) UCL 95% KM (z) UCL	General S 197 5 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343 sear Normal Cri 7.405 54.71 14.61 14.57	tatistics tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects On Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Lillefors GOF Test Detected Data appear Normal at 5% Signific Significance Level KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Bootstrap) UCL 95% KM Bootstrap t UCL	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1221 1221 1221 1221 1221 1221 1222 1222 1222 1222 1222 1222 1224 1225 1226	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Number of Distinct Detects Naximum Detect Variance Detects Mean Detects Mean Detects Keevness Detects Normal Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data app Kaplan-Meier (KM) Statistics using KM Mean KM SD 95% KM (t) UCL 90% KM Chebyshev UCL	General S 197 5 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343 Dear Normal Cri 7.405 54.71 14.61 14.57 20.48	tatistics Italian statutes summarized in only it, indicate, and lece ; for additional insight the user may want to consult a s Number of Distinct Observations Number of Distinct Non-Detects Minimum Non-Detect Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects SD Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Significance Level tical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM Bootstrap UCL 95% KM Chebyshev UCL	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level ance Level 4.358 15.05 N/A 20.14 26.4									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1213 1214 1215 1216 12217 1228 12201 12212 12213 12214 1222 12210 12221 12221 12221 12221 12221 12221 12221 12221 12221 12221 12221 12222	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Number of Distinct Detects Naximum Detect Variance Detects Mean Detects Keen Detects Skewness Detects Keen of Logged Detects Normal Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data app Kaplan-Meier (KM) Statistics using KM Mean KM SD 95% KM (t) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL	General S 197 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343 oear Normal Cri 7.405 54.71 14.61 14.57 20.48 34.62	tatistics Iterative summarized in only it, indicate, and tech ; for additional insight the user may want to consult a s Number of Distinct Observations Number of Distinct Non-Detects Minimum Non-Detect Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD Detects SD of Logged Detects SD Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Stadard Error of Mean 95% KM (BCA) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level ance Level 4.358 15.05 N/A 20.14 26.4 50.77									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1213 1214 1215 1216 1221 1223 1224 1225 1226 1227 1228	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Number of Distinct Detects Naximum Detect Naximum Detect Skewness Detects Keen of Logged Detects Normal Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data app Kaplan-Meier (KM) Statistics using KM Mean KM SD 95% KM (t) UCL 90% KM Chebyshev UCL	General S 197 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343 oear Normal Cri 7.405 54.71 14.61 14.57 20.48 34.62	tatistics tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Minimum Non-Detect Maximum Non-Detect OPECATION SD Detects CV Detects SD Detects SD Detects SD of Logged Detects SD Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Standard Error of Mean 95% KM (BCA) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level 4.358 15.05 N/A 20.14 26.4 50.77									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1220 1221 1223 1224 1225 1226 12221 1223 1224 1225 1226 1227 1228 1229 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1220 1221 12221 12221	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Maximum Detect Variance Detects Mean Detects Keen Detects Keen Detects Keen Statistic Skewness Detects Normal Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Critical Value Detected Data app Kaplan-Meier (KM) Statistics using KM Mean KM SD 95% KM (z) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL	General S 197 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343 54.71 14.61 14.57 20.48 34.62	tatistics tatistics Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD Detects SD of Logged Detects SD of Logged Detects SD Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors KM (BCA) UCL 95% KM (BCA) UCL 95% KM (BCA) UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level 4.358 15.05 N/A 20.14 26.4 50.77									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1220 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1222 1221 1222 1222 1222 1221 1222 1222 1223 1224 1225 1226 1227 1228 1229	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Naximum Detect Wariance Detects Mean Detects Keeness Detects Keeness Detects Keeness Detects Normal Shapiro Wilk Test Statistic S% Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Critical Value Detected Data app Kaplan-Meier (KM) Statistics using KM Mean KM SD 95% KM (t) UCL 90% KM Chebyshev UCL 97.5% KM Chebyshev UCL Camma GOF Te A-D Test Statistic	General S 197 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343 54.71 14.61 14.57 20.48 34.62 sts on Det 0.379 0.622	tatistics Number of Distinct Observations Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD Detects SD of Logged Detects SD Detects Only Shapiro Wilk GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Stadard Error of Mean 95% KM (BCA) UCL 95% KM (BCA) UCL 95% KM Chebyshev UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL </th <th>(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level 4.358 15.05 N/A 20.14 26.4 50.77</th>	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level 4.358 15.05 N/A 20.14 26.4 50.77									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1220 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1222 1222 1222 1223 1224 1225 1226 1227 1228 1229 1231 1231	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Number of Distinct Detects Naximum Detect Waxinum Detect Kean Detects Kean Detects Kean of Logged Detects Normal Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Critical Value Detected Data app Kaplan-Meier (KM) Statistics using KM Mean KM SD 95% KM (t) UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL Camme GOF Te A-D Test Statistic S% A-D Critical Value Kun SD S% Shap Critical Value S% Statistic S% Shapiro VICL S% SM Chebyshev UCL S% S	General S 197 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343 54.71 14.61 14.57 20.48 34.62 sts on Det 0.379 0.693 0.296	tatistics Inder studies summarized in only it, indecide, and tech ; for additional insight the user may want to consult a s Interstation insight the user may want to consult a s Number of Distinct Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects SD Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Stababer Norma	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level 4.358 15.05 N/A 20.14 26.4 50.77 ignificance Level									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1220 1221 1221 1221 1221 1212 1221 1221 1221 1221 1221 1221 1221 1221 1222 1222 1222 1223 1231 1232 1233	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Number of Distinct Detects Naximum Detect Waxinum Detect Skewness Detects Kean of Logged Detects Normal Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Critical Value KM Mean KM SD 95% KM (t) UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL 7% KA D Test Statistic S% A-D Critical Value K-S Test Statistic S% K-S Critical Value K-S	General S 197 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343 54.71 14.61 14.57 20.48 34.62 sts on Det 0.379 0.693 0.266	tatistics Inder studies summarized in only it, indecide, and tech ; for additional insight the user may want to consult a s Interstation insight the user may want to consult a s Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detect Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD of Logged Detects SD of Logged Detects SD Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Stabpiro Wilk GOF Test Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific Stab Significance Level KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (BCA) UCL 95% KM Chebyshev UCL <th>(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level 4.358 15.05 N/A 20.14 26.4 50.77 ignificance Level ignificance Level</th>	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level 4.358 15.05 N/A 20.14 26.4 50.77 ignificance Level ignificance Level									
1198 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1220 1221 1221 1221 1212 1221 1221 1221 1221 1221 1221 1221 1221 1221 1222 1223 1224 1225 1226 1227 1228 1229 1231 1232 1233 1234	However, simulations results will not cover all Real Work Xylenes (total) Total Number of Observations Number of Detects Number of Distinct Detects Number of Distinct Detects Number of Distinct Detects Name Detects Name Detects Mean Detects Skewness Detects Nean of Logged Detects Normal Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Critical Value KM Mean KM SD 95% KM (t) UCL 97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL 75% A-D Test Statistic S% K-S Critical Value K-S Test Statistic S% K-S Critical Value S% K-S Critical	General S 197 5 16.4 537 63645 263 132 0.481 4.961 GOF Test 0.802 0.762 0.298 0.343 Dear Normal Cri 7.405 54.71 14.61 14.57 20.48 34.62 sts on Det 0.379 0.693 0.266 0.365 armma Dist	tatistics Inder studies summarized in only it, indecide, and teck ; for additional insight the user may want to consult a s Interstation Number of Distinct Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects SD Detects SD of Logged Detects SD Detected Data appear Normal at 5% Signific Detected Data appear Normal at 5% Signific Lilliefors GOF Test Detected Data appear Normal at 5% Signific at 5% Significance Level tical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM Chebyshev UCL	(2006). statistician. 9 192 4 0.75 3.75 97.46% 252.3 0.959 -3.12 1.445 ance Level 4.358 15.05 N/A 20.14 26.4 50.77 ignificance Level ignificance Level									

	А		В	С	D	E	F	G	Н		I	J	K	L	
1236					C	Gamma Sta	atistics on	Detected I	Data Only	1					
1237					k	hat (MLE)	0.95			k	< star	r (bias corre	ected MLE)	0.513	
1238					Theta	hat (MLE)	276.7	Theta star (bias corrected MLE) 512.1							
1239					nu	hat (MLE)	9.503	nu star (bias corrected) 5.135							
1240					Mea	n (detects)	263								
1241															
1242					Gamn	na ROS St	atistics usi	ng Impute	d Non-De	tects					
1243				GROS may no	t be used wher	n data set h	as > 50%	NDs with r	nany tied	observ	ation	s at multipl	e DLs		
1244		G	ROS may	not be used wh	nen kstar of det	tects is sma	all such as	<1.0, espe	ecially whe	en the s	samp	ole size is s	mall (e.g., •	<15-20)	
1245				For si	uch situations,	GROS met	thod may y	ield incorr	ect values	of UC	Ls ar	nd BTVs			
1246					This is	s especially	true when	the samp	le size is s	small.					
1247			For gam	ma distributed	detected data,	BTVs and	UCLs may	be compu	ited using	gamma	a dis	tribution on	KM estima	ites	
1248						Minimum	0.01						Mean	6.684	
1249	Maximum 537 Mediar												0.01		
1250	SD 54.94 CV											8.219			
1251				k		k	< star	r (bias corre	ected MLE)	0.127					
1252					Theta	hat (MLE)	53.12			Theta	a star	r (bias corre	ected MLE)	52.51	
1253					nu	hat (MLE)	49.57				n	u star (bias	corrected)	50.15	
1254				Adjusted	Level of Signi	ficance (β)	0.0488								
1255			A	pproximate Ch	i Square Value	e (50.15, α)	34.89		Adju	usted C	hi So	quare Value	e (50.15, β)	34.8	
1256			95% Gam	ma Approximat	e UCL (use wh	ien n>=50)	9.607	95	5% Gamm	a Adju	sted	UCL (use v	vhen n<50)	9.633	
1257	7														
1258					Estimat	tes of Gam	ma Param	eters usin	ig KM Est	imates	;			-	
1259					1	Mean (KM)	7.405						SD (KM)	54.71	
1260					Vari	ance (KM)	2993					SE of	Mean (KM)	4.358	
1261						k hat (KM)	0.0183						k star (KM)	0.0214	
1262					n	u hat (KM)	7.218					n	u star (KM)	8.442	
1263					thet	a hat (KM)	404.2					theta	a star (KM)	345.6	
1264				80%	6 gamma perce	entile (KM)	0.00592			90)% ga	amma perc	entile (KM)	1.451	
1265				95%	6 gamma perce	entile (KM)	19			99	9% ga	amma perc	entile (KM)	205.1	
1266															
1267						Gamma K	(aplan-Mei	ier (KM) S	tatistics						
1268				Approximate C	hi Square Valu	ie (8.44, α)	2.994		Adj	justed	Chi S	Square Valu	Je (8.44, β)	2.97	
1269	ç	95%	Gamma A	Approximate KN	И-UCL (use wh	ien n>=50)	20.88	95% 0	Gamma Ac	djusted	KM-	UCL (use v	vhen n<50)	21.05	
1270					-										
1271					Lognor	mal GOF 1	Fest on De	tected Ob	servation	s Only					
1272				5	napiro wiik Te	st Statistic	0.896			5	snapi	IO WIIK GU	PF Iest	Gamma Lawal	
1273				5% 51	hapiro wiik Cri		0.762	D	etected Da	ата арр	ear L	Lognormal a	at 5% Signi	ficance Level	
12/4				5	Lilliefors Cri	tical Value	0.219	D		ata ann			t E% Signi	ficance Loval	
1275				5	Detected	Data anne	ar Lognor	nal at 5%	Significan	ata app			at 5 % Signi		
1270					20100104	Data appo	ar Lognon		olgrinioan	100 201					
1277					Loanor	mal ROS S	tatistics U	sina Impu	ted Non-D	Detects	;				
1270					Mean in Orio	inal Scale	6.971				-	Mean in	Log Scale	-7.34	
1280					SD in Orig	ginal Scale	54.92					SD in	Log Scale	5.229	
1281			95%	t UCL (assume	s normality of	ROS data)	13.44			95%	Per	centile Boo	tstrap UCL	13.49	
1282					95% BCA Boot	tstrap UCL	18.27					95% Boots	strap t UCL	39.41	
1283					95% H-UCL	(Log ROS)	8863								
1284															
1285				Statistic	s using KM es	timates on	Logged Da	ata and As	ssuming L	.ognori	mal [Distribution			
1286					KM Mea	an (logged)	-0.154					KM	Geo Mean	0.857	
1287					KM S	D (logged)	0.851			95%	Crit	ical H Value	e (KM-Log)	2.052	
1288				KM Standa	rd Error of Mea	an (logged)	0.0678				ç	95% H-UCL	. (KM -Log)	1.394	
1289					KM S	D (logged)	0.851			95%	Crit	ical H Value	e (KM-Log)	2.052	
1290	-			KM Standa	rd Error of Mea	an (logged)	0.0678								
1291															
1292							DL/2 Sta	tistics							
1293				DL/2 No	rmal					C	DL/2	Log-Transf	formed		
1294					Mean in Orig	ginal Scale	7.099					Mean in	Log Scale	-0.726	
1295					SD in Orig	ginal Scale	54.89					SD in	Log Scale	0.979	
1296				95% t l	JCL (Assumes	normality)	13.56					95% H	H-Stat UCL	0.908	
1297				DL/2 is n	ot a recomme	naed meth	oa, provide	ed for com	parisons	and his	storio	cal reasons	5		
1298					N		Distal			lec					
1299					Nor Detected Date	iparametric	ormal Dist	un rree U		uCS Fiocers	1	rol .			
1300					Delected Data	a appear N	ormai Dist	inputed at	070 SIGNI	ncance	, LGA	61			
1301							agente d'								
1302					050/ 1				7					1	
1303					95% ł	VIVI (t) UCL	14.01								
1304		Na	to: Succe-	tions reactive-	the coloction	of a 050/ 14		vided to k	ln tha	or to ac	loot t	he most an	propriete 0	5% LICI	
1305		110	ie. Sugges	uons regarding	ommondation				distribut:		ect t	me most ap	propriate 9	5 /0 UCL.	
1306		TL	000 r000	Kec	ommenuations		upon data	size, data		Ju, and	SKel	wiless.	lo ond	(2006)	
1307		11	ver cimer	ations recults an	e paseu upon t			for addit		ht the	111 51	may want to		statisticion	
1.3(18)	HC	Jwe	ver, simula	auons results w	in not cover all		u uala sels	, iui additi	unai msigi	m uie t	196L	may want to	o consult a	รเสแรนเปลี่ไ.	
1000															