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·&J~·LAA&, .... tion of Descriptive Statistics for Multiply Censored Water Quality Data 

DENNIS R. HELSEL and TIMOTHY A. CoHN 

Water Resources Division, U.S. Geological Survey, Reston, Virginia 

This paper edends the work of Gilliom and Helsel (1986) on procedures for estimating descriptive 
statistics or water quality data that contain "less than" observations. Previously, procedures were evalu­
ated when only one detection limit was present. Here we investigate the p'erformanu of estimators for 
data that have multiple detedion limits. Probability plotting and maximum likelihood methods perform 
substantially betler than simple substitution procedures now commonly in use. Therefore simple lubsti· 
tution procedures (e.g., substitution of the detection limit) $hould be avoided. Probability plottiaa meth­
ods are more robust than maximum likelihood methods to misspecification of the parent distribution 
and their use should be encouraged in the typical situation where the parent distribution is unknown. 
When utilized correctly, Jess than values frequently contain nearly as much informatjon for estimating 
population moments and quantiles as would the same observations had the detection limit been below 
them. 

INTRODUCTION 

frequently encounter water quality data that 
sample concentrations reported only as "less than the 

detection limit." These "less thans" complicate 
of the data. Sample moments cannot be calculated 
and even the sample median does not exist if the 
of less thans exceeds 50% of the observations. Such 

arc called "censored data" in the statistical literature. 
paper explores procedures for estimating descriptive 

from censored data having multiple detection limits. 
detection limits arise because of (I) improvement in 
methods over time, resulting in a lowering of the 

limits, (2) management decisions to reduce costs by 
methods with higher detection limits, (3) combination of 

from several agencies or laboratories having different re-
levels, or (4) usc of differing laboratory procedures and 

limits due to differences in sample matrix character­
Following the approach of Gilliam and Helsel (1986], 

efficiency and robustness of estimators for the sample mo· 
and quantiles are tested, by Monte Carlo simulation, 

a number of hydrologically plausible parent distributions. 

LJTERA TUllE REVIEW 

procedures for estimating descriptive statistics of 
data have been recommended and used in air quality 

and Akland, 1973], radionudide [Gilbert and Kinnison, 
plant and sediment geochemistry [Shacklette and 

1984]. and groundwater quality [McBean and 
1984] applications. Simple substitution methods, such 

r·re:pl;acing all less thans with zero or the detection limit, are 
commonly used. The relative performance of these pro­

however, has rarely been evaluated. 
[1985] compared the performance of several methods 

estimation of a mean under the assumption that data 
a normal distribution. Simple substitution methods per­

poorly. Maximum likelihood produced estimates 
large bias and large variance for the small (n = 5, 10, 

15) sample sizes considered. The method with least error 
a fill-in technique, where less than data were replaced 

· paper is not subject to U.S. copyright. Published in 1988 by 
Ameritan Geophysical Union. 

number 88WROJ364. 

with expected values for their order statistics. Gilliom and 
Helsel [1986] compared procedures for calculating the mean, 
standard deviation, median, and interquartile range of cen­
sored data sets with a single detection threshold. They em­
ployed several parent distributions, some highly skewed, to 
mimic the observed distributions of water quality data. This 
allowed evaluation of the robustness of each method to mis­
specitication of the population distribution, avoiding an as­
sumption th_,t all water quality data follow a single parent 
distribution such as the lognormal. Simple substitution meth­
ods were found to produce biased and highly variable esti­
mates. Two methoos. maximum likelihood estimation and a 
probability plotting procedure, produced the lowest errors of 
estimation; that is, the sample descriptive statistics tended to 
be closest to the known population values for conditions be-
lieved to be typical of water quality data. Maximum likeli­
hood estimates contained lowest errors for quantiles, but had 
considerable bias when estimating moment statistics. The 
probability plotting procedure contained slightly more error 
for quantile estimates, but much less error than maximum 
likelihood for estimation of moments. Finally, they determined 
that there was little advantage in "optimizing" the estimation 
method based on population shape. Uncertainties in selecting 
parent population shapes from small sample data sets argued 
for robust, general purpose estimation methods which per-
formed well in most, or all, situations. 

Despite the frequent occurrence of multiple-detection limits 
in water quality studies, procedures for analysis of such data 
have received little or no attention in the hydrologic literature. 

The statistical aspects of censored data techniques are dis­
cussed by Dovid (1981] and Cohn (1988]. Kalbfleisch and Pren­
tice (1980] and Latra [1981] survey hypothesis test pro­
cedures appropriate for discerning differences between popu­
lations of censored data. For data analzed in a chemical lab­
oratory, a detection threshold fixed in value is reported. The 
number of observations below that threshold is a random 
variable, and therefore censoring is always type I. Alternate 
censoring mechanisms found in the statistical literature do not 
occur in this situation. Such mechanisms would include type 
II censoring, where the number of censored observations is 
fixed and the value of the threshold is varied, and random 
censoring, where the value of the threshold is generated by a 
random process. 

1997 
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Statisticians generally use the method of maximum likeli­

hood when analyzing type I censored data [David, 1981]. This 
involves defining a likelihood function (LF), having one factor 
for the n1 above-threshold observations, {x1 · • · x.J and a 
second factor for the n2 observations that were censored at 
thresholds { T1 · · · T,,} 

... Ill 

L(9) = n /8 (x;) TI Fe(7j) 
1-1 j= I 

Here 9 is a vector of parameter values, f is the probability 
density function of x, and F is the cumulative density function 
of x. The estimates are then found by differentiating with re­
spect to the parameters, setting the first derivatives to zero, 
and solving. It is always assumed, however, that the parent 
distribution is known exactly. 

Finney [1941] has shown that the maximum likelihood esti­
mator for the moments of lognormal populations tends to be 
highly biased for small samples. He derived the amount of 
bias, completely solving this problem, for the case where ob­
servations arc not subject to censoring. Cohn (1988] adapted 
Finney's estimator to obtain a nearly unbiased estimator for 
the population moments in cases where censoring occurs, and 
the parent distribution is known exactly. 

MIITHODS 

The eight methods to be evaluated in this study are listed 
Appendix A. Two simple substitution methods (ZE and DL) 
used by Gilliom and Helsel [1986] will be evaluated for the 
multiple threshold case. A third substitution method not pre­
viously evaluated, setting all less thans to a value of one half 
their detection limit (HA), will also be investigated. 

Two single-threshold methods, a "fill-in" probability plot­
ting procedure (LR) and a lognormal maximum likelihood 
procedure (LM), will be used in the multiple threshold case as 
follows: all points below the highest of the censoring thresh­
olds will be treated as though they were Jess thans at the 
highest threshold. Thus with two detection limits at 1 and 10 
units. all uncensored observations between l and 10, as well as 
censored observations reported as "< l," would be considered 
to he "< I 0." The single-threshold estimation method is then 
applied. Extensions of these two methods to incorporate 
multiple detection limits (MR and MM) will also be evaluated. 
Plotting positions for the MR method are those of Hirsch and 
Stedinger [1986] and are presented in detail in Appendix B~ 
Cohen [1976] discussed the multiple-threshold maximum like­
lihood method. 

Finally, the adjusted maximum likelihood procedure (AM) 
of Cohn [1988] will be evaluated. This method makes a first­
order correction in the bias of maximum likelihood estimates 
of population moments. It is described in more detail in Ap­
pendix C. 

Note that for the first five procedures in Appendix A the 
estimates II and u2 are the standard moment estimators 

- - ;, X, ii=X= L.­
;~a n 

• (X V>l -2 ~ ,- .,.., 
(T =- L. 

i=l II- I 

after lUling in values for the below-threshold observations. 
These estimators are therefore closest to the ramiliar descrip­
tive statistics and require no parametric assumptions except 
for determining fill-in values for the below-threshold observa­
tions. They also avoid transformation bias by computing sta­
tistics directly rrom the original data. The last three pro-

cedures, however, estimate the mean and standard deviitiotl ~ 
under the assumption that the water quality variates are log-. i 
normally distributed. This assumption may be appropriate fa • 
some circumstances. If it were exactly true, likelihood-bbed 
methods would be the most efficient estimators. Howcvcfi the -, 
validity of the lognormal assumption can rarely be verified in 
practice. In addition, small sample estimates of mean and 
standard deviation in log units are used in the rc­
transformation of estimates to the original units. This can 
introduce considerable bias into estimates of moment stati5tlcs 
for the original units [Kendall and Stuart, 1979, p. 74]. Here 
we compare tbc performance or the last three cstimaton 
which assume lognormality, to the five which do not, for esti­
mating statistics of parent distributions which are not always 
lognormal. The five following questions were considered. 

1. How much information is lost when single-threshold 
methods are used for data having multiple detection limits? 

2. How do estimates by multiple-threshold methods com­
pare to descriptive statistics from the uncensored sample or 
the same size? 

3. Which multiple-threshold methods perform well (i.e., 
have low rmse and bias) given the range of distributions speci­
fied? 

4. How important is the choice or specific plotting posi­
tion form~la for those methods that require them? 

5. How well does each method perform when the distri­
bution of data departs markedly from the lognormal? 

MONT£ CAJtLO EXPERIMENT 

Much research has focused on the performance of esti· 
mators designed for censored data when the sampling distri- < 

bution is known. Unfortunately, this is seldom, if ever, the C3# _;j····. 

with water quality data. To understand the behavior of tho :j 
different estimators under practical conditions, we emplo~ 
four special cases of four possible parent distributions to 
model water quality data. Details on the characteristics of 
these 16 distributions (Figure 1) are given by Gilltom anti 
Helsel [1986]. Parameters for the distributions, as well as the; 
distributional shapes, wen: chosen in order to mimic the obf 
served variation, skewness, and tail behavior of surface water 
quality data [Gil/iom and Helsel, 1986]. Included are contam~· 
naled lognormal distributions (mixtures of two lognormal dis· 
tributions) and delta distributions (lognormal distributions 
plus a percentage of true zero values). The mean of each distri­
bution was set to 1.0. 

Each method is tested on samples generated from IS of 
these distributions, which we call the "Monte Carlo (MC) 
population." We then deal separately with the 16th distri­
bution (gamma with coefficient of variation (CV),.. 2.0, so 
scale parameter = 4 and shape parameter = 1/CV:z == 0.25). 
This distribution differs markedly from a lognormal, and yet is 
quite plausible for the highly censored data sets typical ofsuch 
constituents as trace organic compounds. By using multiple 
parent distributions, it is possible to investigate the per­
formance of the eight estimation methods under conditions 
which might arise in practice. 

Design of Monte Carlo Experiment 

Five hundred repetitions (N = 500) of sample size n = 25 
were generated from each of the 16 distributions. Three per· 
centiles of each distribution were chosen as "detection limit" 
thresholds, and one third of each data set was randomly as­
signed to each threshold. Any value falling below its assigned 
threshold was censored. Several combinations of thresholds 

. ~ . 
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Probability density functions for the 16 parent distributions. 

evaluated; all results reported here arc for thresholds at 
20th, 40th. and 80th percentiles. Though the magnitudes of 

rlol:-m1ean-11au:are error (rmse) change with differing censoring 
!le:dl<>ld:s, relative method performance did not. 

for Comparison 

csuniaL·~~ of the four descriptive statistics produced by each 
were evaluated using their relative rmse (shown here 

the mean) and bias: 

r N (fl jJ)l/ ]1'1 rmsel = L~1 iJ• Jl- N 

500% 

R 
400% M 

s 
E 300% 

R 
A 200% 
T 
I 100% 
0 

011. 
~ ST. oev. MEDIAN IQR 

TABLB l. The nnse Ol Estimldion Methods for the MC 
Population 

Standard 
Method Mean Deviation Median IQR 

No censoring 0,19 0.38 0.20 0.29 
ZE 0.36 0.82 0.63 2.41 
HA O.Z2 0.42 0.25 0.98 
DL 0.28 0.43 0.71 0.21 
LR 0.27 0.48 0.47 0.45 
MR 9.20 0.42 0.20 0.31 
LM 0.26 4.31 0.33 0.40 
MM 0.21 0.68 0.18 0.29 
AM 0.19 0.37 0.18 0.29 

where k refers to the method, f11.k is the statistic estimated by 
the k1h method for the jth of N replicates, and ll is the true 
population value. The rmsc and bias are ••relative" in that they 
are divided by their true popula~ion value, in order to compile 
information from distributions with different character~stics, 
particularly CV. For the MC population, N = 7500 replicates, 
500 from each of the 15 distributions. 

RESULTS 

Single Versus M ulliple-Threshold Methods 

Figure 2 provides a comparison of the single threahold 
metllods {LM and LR) to their respective multiple-threshold 
extensions (MM and MR). Each method's rmsc has been stan­
dardized by dividing by the rmsc for the uncensored sample 
estimate. Unst~dardi.zed rmsc and bias are given in Tables 1 
and 2. A substantial improvement in estimation a~ility (as 
shown by lower rmsc) occurs when the multiple-threshold ex­
tensions are used. These methods incorporate the additional 
information available in the data values falling between detec­
tion thresholds and the relative magnitudes of the thresholds. 

Comparisons Among Multiple-Threshold Methods 

In addition to the MR and MM methods, the adjusted 
maximum likelihood procedure of Cohn [1988] was evaluated. 
This method, designated as AM, is identical to MM ror quan­
tile estimates, but makes a first-order correction in the bias of 
MM when estimating population moments. Higher rm~e for 
(uncorrected) MM estimates of the mean and standard devi-

MRvaLRMETHOD 

fJEAN ST. OEV. MEDIAN IClR 
POPULATION STATISTIC ESTIMATED 

I• MUL nPLE THRESHOLD iil SINGLE THRESHOLD 

Fig. 2. Comparison of methods rmsejuncensored rmse in percent for single and multiple threshold methods (7500 
replicates from the MC population). 

j' 

:(I 

)(. 
• I. 
l 



2000 HELSEL AND COHN: WATER QUALITY DATA 

TABLE 2. Bias of Estimation Methods for the MC Population 

Standard 
Method Mean Deviation Median IQR 

No censoring 0.01 -0.08 O.o2 -0.02 
ZE -0.27 0.46 -0.43 1.53 
HA -0.03 0.03 -0.01 0.33 
DL 0.20 -0.23 0.52 -0.05 
LR 0.05 -0.13 O.o? 0.03 
MR 0.02 -0.14 0.01 -0.03 
LM 0.06 0.15 0.07 0.01 
MM 0.04 0.02 0.00 0.04 
AM 0.02 -0.09 0.00 0.04 

ation, relative to AM, are therefore evident in Figure 3 and 
Tables I and 2. 

The rmse for all six multiple-threshold methods are illus­
trated in Figure 3. The three methods already discussed (AM, 
MR. and MM) can be compared to the three commonly used 
simple substitution methods ZE, HA, and DL. The MR and 
AM methods produce similar errors, and generally have the 
lowest rmse among the methods employed. Although the ad­
justed lihlihood method (AM) gives slightly lower errors than 
the plotling position method (MR) for the MC population, it 
is shown later to be less robust to severe departures from 
lognormality than is MR. 

The simple substitution methods always have higher rmse 
than MR or AM, with only one exception (the negatively 
biased detection limit (DL) estimate of the interquartile range). 
Thus there is no justification based on estimation error for use 
of simple substitution methods to estimate descriptive statis­
tics; better methods are always available. 

It was noted by one reviewer that the HA method appears 
to perform adequately for moment statistics and may be pre­
ferred for those due to ease of computation. So far we have 
considered the performance of each estimator for the MC 
population. One could also ask; For what distribution of 
water quality data does a given estimator make sense? The 
ZE, HA, and DL methods would be appropriate choices, of 
course, if one believed that all below-threshold observations of 
water quality data truly had values only at 0 (ZE), half the 
detection limit (HA), or at the detection limit, respectively. 
This is very unlikely. The HA and DL methods are certainly 
not representative of conditions typical of water quality data. 
It is conceivable that censored values might truly be zero for 

900% 

pesticides or other man-made organic compounds, but one 
never knows. As analytical methods have improved, and de­
tection limits decreased, man-made organics have been detect­
ed at concentrations below previous detection limits. Thus an 
assumption that all below detection limit values for man-made 
organics are zero has not been supported by past data. Given 
that simple substitution methods are unlikely to represent the 
true populations of water quality data and that methods with 
lower estimation errors are available, use of these methods 
(other than perhaps HA as a "quick and dirty" moment esti­
mator) appear unwarranted. 

The LR and MR methods assume that below-threshold 
data arise from the lower portion of a lognormal distribution. 
This avoids assuming that all below-threshold values are iden­
tical and agrees with the right-skewed, bounded-at-zero shape 
reported for water quality data by Gi/liom and Helsel [1986]. 
These methods also avoid making any assumptions con­
cerning the distribution of the entire data set and thus are less 
sensitive to incorrectly assuming all data are lognormal in 
shape. 

The parametric procedures (LM, MM. and AM) assume 
that water quality data are lognormally distributed over the 
complete range of values. They would perform better than the 
seminonparametric methods (LR and MR) if this assumption 
were valid. However, these parametric procedures are no 
longer optimal when the population is not lognormal. We 
believe that the J 6 distributions chosen, including the CV "" 2 
gamma distribution, approximately characterize conditions 
found in actual water quality data. As the parent distribution 
is rarely known in practice, the robustnes~ or estimators for 
descriptive statistics over the range of distributions likely to be 
encountered is of great importance. 

Comparisons Between Mulrip/y Censored 
and Uncensored Esrimators 

One measure of the quality of an estimator for censored 
data is how well it compares to the sample estimator had 
there been no censoring. Sample estimates of the four statistics 
were computed prior to censoring, and rmse and bias were 
calculated. These reflect error due only to differences between 
the n ., 25 sample and the true population vaJue, and are 
listed in Tables 1 and 2 and 4 and 5 as the "no censoring" 
entries. The rmse for the censored data were divided by the 
rmse for no censoring. These ratios have been presented for 

800% +-------------------------~----~~ R 
M 
s 
E 

R 
A 
T 
I 
0 

700% 

600% 

500% 

400% 

300% 

200% 

100% 

0% 
Mf.4W ST. DEY. MEDIAN lOA 

POPULATION STATISTIC ESTIMATED 

.2E .HA 
Rll. 
i!JM't 

B!I'Mvt 
DAM 

Fig. 3. Comparison of method rmsefuncensored rmse in percent for six multiple-threshold methods (7500 replicates from 
the MC population). 
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TABLE 3. Comparison Among Plotting Positions Using the LR 
Method for the MC Population 

Plotting Standard 
Positions Mean Deviation Median IQR 

rmse 
Weibull 0.16 0.38 0.19 0.35 
BJorn 0.16 0.38 0.18 0.33 
Hazen 0.15 0.39 0.18 0.29 

Bias 
Weibull 0.00 -0.09 -0,02 0.08 
BJorn 0.01 -0.10 0.00 0.04 
Hazen 0.01 -0.11 0.01 0.03 

One detection limit at 60th percentile. 

the six multiple-threshold methods in Figure 3. Errors for the 
simple substitution methods ZE, HA, and DL are generally 
greater than 100% of the no censoring rmse and thus repre­
sent a significant loss in information. On the other band, with 
the MR and AM methods, the sampling error dominates the 
estimation error due to censoring. Thus with these two ef­
ficient estimation methods, the presence of censored data 
having multiple detection limits adds very little additional 
error to estimates of summary statistics for a given sample 
size. 

Importance of Plotting Position Formula 

The general formula for plotting positions, the probability 
of being less than or equal to the ith smallest observation, 
given a complete sample of size n is 

i-(1. 
PPr~---­

n +I- 211 

where 0! is used to eliminate bias in the largest (and sometimes 
smallest) observations. There has been a great deal of dis· 
cussion about the theoretical basis for selecting 0! [Cunnane, 
1'178]. We conducted a modest experiment to determine the 
importance of the choice of IX used in the LR and MR meth· 
ods. The rmse and bias of the LR method (with one threshold 
at the 60th percentile) was computed using the Weibull 
(:x = 0.00), Blom (0! = 0.375), and Hazen (IX = 0.50) plotting 
positions. Differences in rmse and bias among the three plot-

1000% 
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TABLE 4. The rmse of Estimation Methods 

Standard 
Method Mean Deviation Median IQR 

No censoring 0.29 0.33 2.36 0.42 
ZE 0.36 0.40 1.35 0.57 
HA 0.4 0.40 5.94 0.45 
DL 0.51 0.39 10.33 0.36 
LR 0.56 0.43 7.7 0.35 
MR 0.37 0.40 1.99 0.54 
LM 0.66 8.55 5.52 0.31 
MM 45.25 1.26 0.45 
AM 3.04 1.5.05 1.26 0.45 

Gamma with CV =2.0. Three center dots indicate a value greater 
than or equal to 100.0. 

ting positions using simulations of 7500 repetitions from the 
MC population rarely exceeded 2% (Table 3), which is within 
the error of the simulation process. We conclude that choice of 
:x is not important when using the LR or MR methods, partic­
ularly in comparison to other sources of error. The Weibull 
position is used in all work reported here. 

Method Peiformance Under Severe 
Departure From Lognormality 

A final and crucial consideration when evaluating method 
performance is the robustness of the method to misspecifica­
tion of the distributional family. Both the AM and MM meth­
ods assume that a lognormal distribution is appropriate over 
the complete range of data, while the MR method employs 
that assumption only for estimating the below-threshold 
values. Since method performance was previously evaluated 
over a range of distributions, 1 I of which were not lognormal, 
a test of robustness has already been incorporated into the 
results. However, the distribution least resembling a lognor­
mal, the gamma distribution with a coefficient of variation of 
2.0, appears to validly represent the distribution of some con­
stituents where zero and small values are frequently present 
[Gilliom and Helsel, 1986]. Method performance for this dis­
tribution is given in Figure 4 and Tables 4 and 5. 

As evident in the figure, when the underlying population is 
severely misspecified the maximum likelihood methods (MM 
and AM) perform poorly for estimation of moments in the 

~----------------~ MBKD .2E .HA 
•a. 
lil~ 

l!l'l...., 
0-"M 

ST. OEV. MEDIAN IQR 

POPULATION STATISTIC ESTIMATED 

Fig. 4. Comparison of method rmse/uncensored rmse in percent for six multiple-threshold methods (N = 500. gamma 
CV = 2 distribution). 
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TABLE 5. Bias of Estimation Methods 

Standard 
Method Mean Deviation Median IQR 

No censoring 0.02 -0.04 1.19 -0.01 
ZE 0.0 -0.04 -0.11 -0.09 
HA 0.19 -0.07 5.71 -0.08 
DL 0.37 -0.08 9.4 0.27 
LR 0.36 -0.11 6.32 -0.03 
MR 0.05 -0.05 1.22 -0.11 
LM 0.41 2.11 4.85 -0.09 
MM 7.7 0.62 -0.32 
AM 1.9 8.20 0.62 -0.32 

Gamma with CV =2.0. Three center dots indicate a value greater 
than or equal to 100.0. 

original units. These methods are not robust to departures 
from lognormality when estimating moments. They provide 
efficient estimates or quantiles, however. The rmse for MM 
and AM are lower than for the uncensored sample estimates 
(Figure 4), similar to the gains in efficiency for maximum like­
lihood over method of moments estimates of quantiles of the 
lognormal distribution [Aitchison and Brown, 1957, p. 40]. In 
contrast, the MR method offers protection against model mis­
specification when estimating moments, at a relatively low 
cost in estimation error for quantiles (Figure 5). 

Figure 4 illustrates that several methods have lower rmse 
than does the uncensored sample estimate of the median. This 
is due to the large positive bias in the uncensored sample 
median (Table 5), which occurs because of the asymmetry of 
the confidence interval around the median for the quite asym­
metric parent population. 

The decision of whether to employ AM or MR depends on 
the likelihood of data lognormality and on the robustness 
desired. If a single estimation method for all four descriptive 
statistics is desired and the possibility of a nonlognormal 
parent such as the gamma CV = 2 distribution cannot be dis­
counted, MR should be chosen. It is a robust and efficient 
(near-minimum rmse) method for estimation of moment statis­
tics. Gains in efficiency (lower rmse) are available by using a 
second method (AM) when estimating the median and inter­
quartile range (Figure 5). Use of AM for all four descriptive 
statistics is appropriate only when lognormality is not an un­
reasonable assumption, such as for parent distriutions similar 
to the MC population. 

TABLE 6. Estimates Produced by Six Multiple-Threshold 
Methods for the Silver Data 

Standard 
Mean Deviation Median IQR 

ZE 12.36 75.48 0.00 1.10 
HA 13.91 75.28 1.10 3.]0 
DL 15.45 75.19 1.30 4.10 
MR 12.57 75.44 0.29 1..54 
AM 7.51 33.30 0.34 1.62 
MM 8.30 61.52 0.34 1.62 

WORKED EXAMPLE 

Silver concentrations in standard solutions were reported 
by several laboratories in an interlab comparison [Ianzer, 
1986]. The 56 analyses included 36 values below one of 12 
detection limits. One large outlier (a "far outside" value on a 
boxplot) of 560 JJg/L was also reported. The data are present­
ed below: 

0.8 <25.0 <5.0 <0.2 <0.5 5.0 <0.3 <0.2 
0.1 2.7 <0.1 <20.0 1.4 2.0 <25 2.0 
2.0 <1.0 < 10.0 <1.0 <0.2 1.0 <10.0 <0.2 
0.2 1.2 < 1.0 1.0 <6.0 < 1.0 0.7 < 1.0 

<5.0 3.2 2.0 10.0 1.0 4.4 <1.0 <1.0 
< 1.0 <20.0 <5.0 <10.0 <10.0 90.0 1.5 <1.0 
<2.0 <10.0 560.0 <5.0 O.J <20.0 < 1.0 <0.1 

Estimates of the four descriptive statistics for each of the six 
multiple-threshold methods are listed in Table 6. 

Because of the outlier at 560 pg/L, the shape of the data 
tend to resemble the gamma CV-2 distribution more so than a 
lognormal. It is not surprising therefore that the maximum 
likelihood methods give moment estimates dissimilar to the 
other methods. We generally select the MR moment estimates 
and the AM quantile estimates, due to the rmse results pre­
sented above. 

CONCLUSIONS 

I. Estimates of descriptive statistics for multiply censored 
data may contain no more error than those for uncensored 
data, if efficient estimation methods are used. 

2. The plotting position and adjusted maximum likelihood 
procedures are found to be substantially better than any of the 
simple substitution methods. 
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Fig. 5. The rmse of the MR and AM estimators. 
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3. The particular value of a used in plotting positions (e.g., 
Hazen versus Blom versus Wei bull) for the LR and MR meth­
ods is of negligible importance. 

4. Lognormal maximum likelihood estimators may have 
substantial positive bias when estimating sample moments 
from small or moderate sized samples, even for data from 
truly lognormal parent distributions. However, one can reduce 
this bias using the adjusted maximum likelihood estimator of 
Cohn [ 1988)-

5. When the parent distribution (e.g., lognormal) of the 
data is not known, the desirable, theoretical sampling proper­
ties of likelihood-based procedures do not necessarily apply. 
As the parent distributions of water quality data are rarely 
known, the decision of whether to employ AM or MR de­
pends on the likelihood of lognormality, and on the robust­
ness desired. If a single estimation method must be used for all 
four descriptive statistics and the possibility of a nonlognor­
mal parent such as the gamma CV "" 2 distribution cannot be 
discounted, MR should be chosen. It is a robust and efficient 
(near-minimum rmse) method. Additional gains in efficiency 
(lower rmse) are obtainable by using a maximum likelihood 
method (MM, which is identical to AM for quantiles) when 
estimating the median and interquartile range. Use of AM for 
all four descriptive statistics is appropriate only when lognor­
mality is not an unreasonable assumption, such as for parent 
distributions similar to the MC population. 

APPENDIX A: ESTIMATION METHODS UsED 

Simple Substitution Methods 

For ZE, censored observations were assumed to equal zero. 
For HA, censored observations were assumed to equal one 
half the detr::ction limit. For DL, censored observations were 
assumed to equal the detection limit. 

Probability Plotting Methods 

For LR, values for the censored observations are derived 
rrom a linear regression model of the logarithms of con­
centrations versus their normal quantiles [see Gilliom and 
Helsel, 1986]. This probability plotting procedure is appropri­
ate only for a single censoring threshold. For MR, an exten­
sion of the LR method to multiple thresholds, utilizing plot­
ting positions from Appendix C of Hirsch and Stedinger 
[1987]. 

Maximum Likelihood Methods 

For LM, maximum likelihood assuming that concentrations 
obey a lognormal distribution with censoring at a single 
threshold [Cohen, 1959). All observations below the highest 
threshold are treated as censored observations. For MM, 
maximum likelihood with multiple thresholds [Cohen, 1976)­
For AM, adjusted maximum likelihood with multiple thresh­
olds [Cohn, 1988). 

APPENDIX 8: PLOTTING POSITIONS 

FOR THE MR METHOD 

Consider the following data set of n = 18 observations and 
Ill = 2 detection limits: < I <I < I < l < 1 <I < 10 < 10 
< 10 3 7 9 12 15 20 27 33 and 50. Hirsch and Stedinger [1987] 
define a variable A1 as the number of uncensored observations 
above the jth threshold (here the jth detection limit) and below 

. " the next highest threshold. There are six uncensored observa­
tions above the higher detection limit of 10 (Az = 6), and three 

TABLE 7. Plotting Positions for the Appendix 8 Data 

Recorded Plotting Recorded Plotting 
Value Position Value Position 

<I 0.063 3 o.soo 
<I 0.127 7 0.556 
<I 0.190 9 0.611 
<I 0.254 
<I 0.317 12 0.714 
<I 0.381 IS 0.762 

20 0.810 
<10 0.167 27 0.857 
<10 0.333 33 0.905 
<10 0.500 so 0.952 

uncensored observations between the lower and higher detec· 
tion limits (A 1 = 3). They also define 8 1 as the number of 
observations, censored and uncensored, below the jth thresh­
old. There are six less thans below the lower detection limit 
(B 1 "" 6), and nine less thans plus three uncensored values 
below the higher detection limit (B1 = 12). The conditional 
probability of exceding the highest threshold is shown to be 
equal to A1/(A 1 + 81) or 6/18 = 0.33 for our ellample. In gen­
eral, the probability of exceeding the jth threshold P •. 1 is given 
as 

P •. J = P •. J .. t + (AJ/[AJ + 81])(1 - P •. J+ 1) 

which is solved iteratively for j = m, m - 1, · · · 2, 1. By con­
vention, P ....... 1 = 0. Thus the probability of exceeding the 
lower threshold is 

0.33 + (3/9)(0.67} - 0.556 

To assign plotting positions, the six uncensored observa­
tions above the highest detection limit are given Weibull plot­
ting positions between (1 - P •. 2) • 0.67 and 1.00 (Table 7 and 
Figure 6). The three uncensored values between the two detec­
tion limits have positions spread between (1 - P., 1) = 0.444 
and 0.67. In general, Weibull plotting positions for uncensored 
observations are 

p(i)- (1- P.) + (P,,i- Po,J+t) rj(AJ + 1) 

where r is the rank of the ith observation among the A 1 obser­
vations above the jth detection limit [Hirsch and Stedinger, 
1987]. 

PROBABIUTY Of' EXCEEDENCE 
0.1 0.1 0.4 o.z 0 

I I 
I I 

0.5541 o.u 
I I • I I • I I 
I I • I I 
I 0 ' • I I 

' I • ' : . ' 0 ' I 

' • I 
I I 
I • I 
I I 

0 I • I Data I I 
I I 

0 I I 
• aboYedl I I 

0 I 
I o belowdl 0 ' 0 I I 

I I 
0 0.444 0.17 

0 I I 

0 0.2 0.4 0.6 o.e 
PlOTllNG POSITION 

Fig. 6. Plolling positions illustrat~:d for the Appendix B data. 
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In l)rder w "till in" data prior to estimating moment statis­
tics using the M R method, plotting positions for censqred 
ohservations must be determined. The six censored observa­
tions below the lower detection limit can be assigned positions 
between 0.00 and f I - 0.556) = 0.444 (Table 7). The three cen­
sored observations below the higher detection limit are as­
signed positions spread between 0.00 and 0.67 (the upper se­
quence of points in Figure 6), since there is no information to 
determine whether they are above or below the lower detec­
tion limit. In general, Weibull plotting positions for censored 
observations are given by 

pdi) = (I - P.) rj(Cj + I) 
where r is the rank of the ith observation among the C; cen­
sored values known only to be less than thejth detection limit 

j- I 

cj = B; - L fA. + Bl) 
·~() 

and A0 = 8 0 = 0 Thus the first of three censored observations 
below the higher detection limit has the plotting position 

pc =(I - 0.33) 1/(3 + l) = 0.167. 

APPENDIX C: ADJUSTED LIKELIHOOD METHOD 

Cohn [1988) has derived the adjusted maximum likelihoo9 
method along the following lines. Results from Shenton and 
Bol\'man [1977] were used to obtain first-order estimates of 
the bivariate distribution of fi and 8 2• Asymptotically indepen­
dent functions of t.£ and a2 were derived. The drstribution of 
one function is asymptotically normal. The distribution of the 
second function is asymptotically gamma, with shape parame­
ter given as a function only of the censoring probability and 
sample size. An adjusted maximum likelihood estimator, simi­
lar to Finney's (1941], was then derived for estimating the 
lognormal moments. The estimator is asymptotically equiva­
lent to the maximum likelihood estimator MM. but is found 
to be substantially less biased than MM if u 2/N is large. 
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