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CONVERSION AND COMPARISON OF THE MATHEMATICAL, THREE-DIMENSIONAL,
FINITE-DIFFERENCE, GROUND-WATER FLOW MODEL TO THE MODULAR, THREE-
DIMENSIONAL, FINITE-DIFFERENCE, GROUND-WATER FLOW MODEL FOR
THE TESUQUE AQUIFER SYSTEM IN NORTHERN NEW MEXICO

By Amjad M.J. Umari and Timothy L. Szeliga

ABSTRACT

The mathematical, three-dimensional, finite-difference, ground-water flow
model of the Tesuque aquifer system in northern New Mexico was converted to
run using the U.S. Geological Survey's modular ground-water—flow code.
Results from the final versions of the predevelopment and 1947 to 2080
transient simulations of the two models are compared. A correlation
coefficient of 0.9905 was obtained for the match in block-by~block comnstant-
head fluxes and 0.9845 was obtained for the match in block-by-block head-
dependent fluxes for predevelopment conditions. There are, however,
significant differences in at least two specific cases. In the first case, 2
difference is associated with the net loss from the Pojoaque River and its
tributaries to the aquifer. The net loss by the river is given as 1.134 cubic
feet per second using the original ground-water model, which is 38.1 percent
less than the net loss by the river of 1.8319 cubic feet per second computed
by the new model in this study. In the second case, the large difference 1is
computed for the transient decline in the hydraulic head of a model block near
Tesuque Pueblo. The hydraulic-head decline by 2080 is, using the original
model, 249 feet, which is 14.7 percent less than the hydraulic head of 292
feet computed by this study. In general, the differences between the two sets
of results are not large enough to lead to different.conclusions regarding the
behavior of the system at steady state or when pumped.
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INTRODUCTION !

|
The U.S. Geological Survey was requested by the U.S5. Bureau ofEIndian.
Affairs to evaluate the effects of that agency's plan for irrigation
development within the Pojoaque basin on ground-water levels and streamflow.
The results of that evaluation were presented by Hearne (1985). Hearne's
(1985) three-dimensional model simulation of the Tesuque aquifer system used
the model code developed by Posson and others (1980). The model code of

Posson and others (1980) can no longer be easily used because the code is
machine-dependent.

Purpose and Scope

|

In 1987, the U.S. Geological Survey, in cooperation with the U.S. :Bureau
of Indian Affairs, began the present investigation to determine if the 'Hearne
(1985) model could be converted to use the model code developed by McDonald
and Harbaugh (1984). The purpose of this report is to show the resuPts of
simulations of the original Hearme (1985) model and those of the same model
converted to the McDonald and Harbaugh (1984) code. The scope of this ireport
is limited to presenting these results and brief explanations of pdssible
differences in results, if any. The data arrays needed to run the Hearne
(1985) model using the McDonald and Harbaugh (1984) code are presente@ as a
supplement to this report (Umari, 1989).
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Geohydrologic Setting

The following brief summary of the geohydrology of the modeled area is
taken from Hearne (1985, p. 3-4). A more complete description is available in
Hearne (1985).

The Tesuque Formation (Santa Fe Group), of Miocene age, underlies
the central part of Espafola Basin (Kelley, 1978), including most
of the Pojoaque River basin [fig. l1]. The Espafiola Basin is one of
several interconnected basins that form the Rio Grande
depression. The eastern boundary of the basin is the Sangre de
Cristo uplift. The western boundary is a complicated fault system,
much of which has been covered by volcanic rocks of the Jemez
Mountains. The basin is separated from the San Luis Basin to the
north and from the Albuquerque Basin to the south by constrictions
in the bedrock. * * * The principal aquifer underlying the Pojoaque
River basin and vicinity is the Tesuque Formation, which is
composed of interbedded layers of gravel, sand, silt, and clay with
some intercalated volcanic ash beds. The degree of both sorting
and cementation is variable, but the beds are typically poorly
sorted and poorly cemented. Two important features of the Tesuque
Formation are the dip of the beds and the lack of continuity of the
individual beds. * * * Average dip of the beds is estimated to be
between 5 and 10 degrees (Kelley, 1952, p. 111), and toward the
west or northwest. * * * Except for the ash beds, the Tesuque
Formation was deposited as coalescing alluvial fans [fig. 2]. * * *
Miller and others (1963, p. 50) report that '* * * few beds can be
traced more than a mile or two.' The predominantly north-trending
faults further disrupt the continuity of individual beds of the
Tesuque Formation {fig., 2]. * * * The thickness of the Tesuque
Formation is unknown but has been estimated to exceed 3,700 feet in
some places (Galusha and Blick, 1971, p. 44). Kelley (1978)
estimated that the thickness of the Tesuque Formation may exceed
9,000 feet near the Rio Grande.
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Figure 2.--Generalized east-west geologic section near Pojoaque River basin.

Structure Represented in the Model

The brief summary of the structure represented in the model is taken from
Hearne (1985, p. 4-6).

It is impractical to model each bed of the Tesuque aquifer system as
a separate unit, This would require data on the hydrologic
characteristics, the areal extent, and hydraulic connection through
semiconfining beds to beds both above and below as well as connection
along any fault to other permeable beds. The model presented in this
report relies on the consistent heterogeneity of the Tesuque aquifer
system. As a unit, the salient structural features are the areal
boundaries, the thickness, and the strike and dip of the beds. * * *
The model describes the Tesuque aquifer system as a network of
contiguous but discrete cells aligned with the bedding planes in the
Tesuque Formation. The bedding planes were assumed to strike N. 25
E. and dip to the northwest at about 8 degrees on the east side of
the Rio Grande and about 4 degrees on the west side. The model grid
was oriented with principal axes dipping to the northwest at 8
degrees east of the Rio Grande and at 4 degrees west of the Rio
Grande with a strike of N. 25 E. [fig. 3). * * * The irregular
boundary to the east of the modeled area approximates the contact
between the Tesuque Formation and the crystalline rocks of the Sangre
de Cristo Mountains. The boundary to the west of the modeled area
approximates a fault zone beneath the Jemez Mountains [fig. 1], * * *
The north and south boundaries do not approximate geologic boundaries
but are sufficiently distant from the Pojoaque River basin that the
boundary effects are negligible. * * * The assumed thickness of the
Tesuque Formation in the Pojoaque River basin used in the model
ranges from a few hundred feet along the mountain front to about
4,000 feet along the Rio Grande [fig. 4].
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STEADY-STATE SIMULATION USING THE MODULAR MODEL CODE

The computer data arrays necessary to run the modular code for] the
steady-state simulation are presented in Umari (1989). Arrays used for the
Posson code were converted to the format required by the modular code,

preserving the elements of the mathematical model as described in Héarne
(1985). |

|
Simulated Steady-State Condition Water Surface E
I

Contours for the steady-state hydraulic heads of the topmost aétive
surface of the model, which represents the water table, are presente'd in
figure 5. The contours in figure 5A were constructed using results froé the
modular version of the model. The contours in figure 5B were constructed from
the original simulations using the Posson code (Hearne, 1985).

The steady-state water surfaces simulated using the two codes differ as
much as 50 feet west of the Rio Grande. The water surface computed using the
modular code is lower than the one presented in Hearne (1985).
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Simulated Flows at Constant-Head Blocks i

The flows at constant-head blocks simulated using the modular program are
compared with those of Hearne (1985) in table l. Positive numbers indicate
flow into the aquifer (away from the rivers), whereas negative numbers
indicate flow out of the aquifer (into the rivers). At the bottom of the
table, net flow for the Santa Cruz and lower Santa Fe Rivers and the Rio
Grande is given. !

The Santa Cruz River and the Rio Grande are represented by constant<head
blocks. Only the lower part of the Santa Fe River, referred to in tableil as
"Lower Santa Fe,” is represented by constant-head blocks, The rest of the
Santa Fe River is represented by constant-flux blocks.

'

i
A statistical computer package (P-STAT, Inc., 1986) was used to perform
linear regression on the flows for the blocks in table 1. The modular-
computed flows computed in this study are the dependent variable, and the
flows computed by Hearne (1985) are the independent variable. The "Pearson
correlation coefficient” is 0.9905, indicating a close correspondence between

constant-head flows computed in this study and those presented in Hearne
(1985). v

i
Table 1l.—Comparison of simulated steady-state flow rates, in cubic [
feet per second, at specified hydraulic-head boundaries i
|
|

computed by this study and Hearne (1985)

Differenc?, as

Hearne percentage of

Layer Row Column This study (1985) this study
2 2 4 -0.8700 -0.8170 6.1%
2 4 -0.7298 ~0.6055 17.0|
3 4 5 -1.1131 -1.1390 -2.3i
3 19 5 ~-1.1828 -1.0344 12.6%
3 20 5 ~1,1476 -0.8202 28.5]
3 21 4 -4.0719 -4.0078 1.6
3 22 4 -3.2591 -3.0804 5.5
3 23 4 -3.1799 -3,1699 0.3
3 23 5 -0.4635 -0.0793 82.9
4 5 6 -0.8006 -0.8328 -4,0
4 6 6 -0.3976 -0.3961 0.4
4 7 6 -0.4096 -0.4041 1.31
4 8 6 -0.4194 -0.4114 1.9!
4 9 6 -0.4381 -0.4280 2.3
4 10 6

-0.4475 -0.4364 2.5|

10
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Table l.-—Comparison of simulated steady-state flow rates, in cubic

feet per second, at specified hydraulic-head boundaries

computed by this study and Hearne (1985)-—Concluded

Difference, as

Hearne percentage of
Layer Row Column This study (1985) this study

4 11 6 ~0.4376 -0.4268 2.5
4 12 6 -0.4357 -0.4250 2.5
4 13 6 ~0.4391 -0.4286 2.4
4 14 6 -0.5054 -0.4914 2.8
4 15 6 -0.5191 -0.5052 2.7
4 16 6 -0.5367 -0.5241 2.3
4 17 6 -0.5537 ~0.5456 1.5
4 18 6 -1.0749 -1.1329 -5.4
4 23 6 -0.7391 -0.9872 -33.6
5 4 7 -0.9045 -0.8998 0.5
5 23 7 -0.5467 -0.6475 ~18.4
6 4 8 -0.2016 -0.4804 -138.3
6 23 8 -0.6282 -0.6400 -1.9
7 4 9 -0.1795 -0.1299 27.6
7 23 9 -0.5634 -0.5167 8.3
8 4 10 0.5440 0.5394 0.8
8 23 10 -0.0857 -0.2130 ~148,5
9 3 11 0.9671 0.9599 0.7
9 23 11 ~0.0149 -0.0149 0.0
10 3 12 1.2692 1.2669 0.2
10 23 12 -0.0203 -0.0203 0.0
11 3 13 1.3591 1.3444 1.1
11 23 13 -0.0165 -0.0168 ~1.8
12 22 14 -1.2901 -1.2114 6.1
Net -24.4838 -23.8092 2.8
Santa Cruz 2.8538 2.6005 8.9
Rio Grande -22.9692 -22.0626 3.9
Lower Santa Fe -4,3684 -4,3471 0.5
Total Santa Fe 2.8411 2.8624 0.7

11




Simulated Flows at Head—Dependent Flow Blocks i
}
|

Flows at the head-dependent blocks (which represent the Pojoaque River
and its tributaries) computed using the modular program are compared to those
presented in Hearne (1985, table 8, p. 25) in table 2 using the same technique
as described for table 1. The correlation coefficient is 0.9845, indlcating
close correspondence between the head-dependent flow values computed by this
study and those presented in Hearne (1985). Even though the overall
correspondence in block-by-block values is good, net flow into the aquifer
(recharge) is 1,8319 cubic feet per second according to the modular 31mulat10n
and 1.1340 cubic feet per second according to Hearne (1985).

COMBINED HISTORICAL AND FUTURE SIMULATIONS :
USING THE MODULAR MODEL CODE
In this report, "historical period” means 1947 to 1980. “Future period”
means 1981 to 2080. The data arrays required to run the modular progrém for
the combined historical-future run are presented in listings 7 throughslb of
the report on model input values by Umari (1989).

i
1
|
i

Simulated Hydraulic Heads for 1947 to 1980

Figures 6 through 14 present drawdown (with respect to steady-state
conditions) versus time for the historical period for simulations comparing
the modular and Posson codes. Each figure is for a specific model block,
which is indicated by a row, column, and layer number in the figure captilon.

|

Layer numbers for the modular code start with 1 for the top 1aye¥ and
increase downward., In the Posson code, however, layer numbers start with 1
for the bottom layer and increase upward., Drawdown from every stress period,
which range in duration from 1/25 of a year to | year, was used in the
plotting of figures 6A through 14A. However, in figures 6B through: 14B,
reproduced from Hearme (1985), only one drawdown from each year was used in
plotting. '

Simulated Water Surface for 2030

|
|
|
|

Figure 15 presents contours of the hydraulic head in the topmost ahtive
surface of the model, which represents the water table for 2030, constructed
using the modular model code of McDonald and Harbaugh (1984) and |from
figure 23 of Hearne (1985) using the model code of Posson and others (1980).
The results presented in the figure are based on pumping according to the
irrigation plan described in Hearne (1985). There is approximately 50 feet of
difference in the predicted water-table elevations between the two s1mu1at10ns
west of the Rio Grande. |
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Table 2.—Comparison of simulated steady-state flow rates, in cubic

feet per second, at hydraulic-head-dependent boundaries

computed by this study and Hearne (1985)

Difference, as

Hearne percentage of
Row Column Layer This study (1985) this study
11 5 -0.2794 -0.2940 -5.2
11 8 6 -0.2315 -0.2370 -2.4
10 9 7 -0.2020 -0.1980 2,0
10 10 8 -0.1936 -0.1810 6.5
9 11 9 ~0.1062 -0.0900 15.3
9 L2 10 -0.0432 -0.0270 37.5
10 12 10 0.0319 0.0440 -37.9
9 13 11 -0.0408 -0.0160 60.8
11 13 i1 0.0668 0.0830 -24.3
8 14 12 -0.0584 -0.0310 46.9
12 14 12 0.3640 0.3630 0.3
9 15 13 -0.1186 -0.1010 14.8
12 15 13 0.3417 0.3410 0.2
9 16 14 -0.2930 —-0.2870 2.0
10 16 14 -0.0032 0.0000 100.0
13 16 14 0.2797 0.2720 2.8
9 17 15 -0.3295 -0.3010 8.6
10 17 15 0.0124 0.0390 -214.5
11 17 15 0.0000 0.0000 0.0
14 17 15 0.2930 0.2720 7.2
9 18 16 -0.8163 ~-1,0050 -23.1
10 18 16 0.6714 0.5510 17.9
11 18 16 0.5360 0.5360 0.0
14 18 16 -0.0464 -0,0780 -68.1
11 19 17 0.7244 0.6390 11.8
15 19 17 0.1190 0.0640 46,2
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Table 2.—Comparison of simulated steady-state flow rates, im cubic .
feet per second, at hydraulic-head-dependent boundaries °
computed by this study and Hearne (1985)—Concluded

Difference, as

Hearne percentage of

Row Column Layer This study (1985) this study
}
|
15 20 18 0.1371 0.0660 51.9
H
16 21 19 © -0.0850 -0.2620 -208,2
16 22 20 0.5486 0.4190 23.4
17 22 20 0.5530 0.5530 0.0
Net 1.8319 1.1340 38.}
Recharge 4.6790 4.2420. 9.3

Discharge -2.8471 -3.1080 9.2
\
|
|
|
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Figure 14.--Comparison between decline in hydraulic head and declines in nonpumping water
levels measured in well B-7 simutated at: A--row 17, column 7, layer 6;
B--row 17, column 7, layer 17 (Hearne, 1985, fig. 20).
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Simulated Hydraulic Heads for 1947 to 2080

Figures 16 through 23 are plots of simulated decline (with respect to
steady-state conditions) versus time for the combined “historical-future
period” of 1947 to 2080, The agreement between the simulated decline in
hydraulic head shown in figures 16A through 23A and their counterparts
16B through 23B from Hearne (1985) is good for all bhut figure 23. This figure
indicates a large (approximately &43-foot) difference in simulated hydraulic-
head decline in 2080 for the model block indicated. ;

Effect of Withdrawals on Flow to Rivers

i
i
|
}
i
i
i
1

The simulated effect on flows to the Rio Grande and the Santa Cruz, :Santa
Fe, and Pojoaque Rivers in 1946 (steady state), 1980, and 2030 for the modular
and Posson results is compared in table 3. If only the name of the river and
the year appear on a line, then the amount shown is a net figure——positive for
flow into the aquifer and negative for flow away from the aquifer. If &8 line
contains the word “"discharge,” the amount is only the negative component of
the net figure above it. "Recharge" indicates only the positive component of
the net figure.

|

The 20.93 cubic feet per second of flow to the Rio Grande in 2030, with
irrigation is not totally a computer-simulated number; 0.85 cubig fooﬁ per
second of the total represents irrigation-return flow that is not taken' into
consideration by the model because it takes place in constant-head blocks
representing the Rio Grande. The procedure for arriving at this discharge
rate of 20.93 is the same one followed by Hearne (1985). i

The correlation coefficient for the comparison of the simulations using
the modular and Posson codes is 0.9929, This indicates good overall
correspondence between aggregate flow numbers., .

!

For the Pojoaque River, the annotation "with evapotranspiration”
indicates that the quantity of flow is the sum of the net head-dependent; flow
between the river and the aquifer plus the evapotranspiration of -1.1 cubic
feet per second, which is simulated as specified flux. The 1a#gest
discrepancies between the results obtained in this study and those of Hearne
(1985) are associated with the Pojoaque River, which is simulated 1n§both
models as a head-dependent boundary. i
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Figure 19.--Simulated decline in hydraulic head near Buckman well field
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A--row 17, column 7, layer 6

(Hearne, 1985, fig. 29).
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Table 3.—Comparison of simulated effect on flow to the rivers, in

cubic feet per second, computed

by this study and Hearne

35

(1985)
Absolute
Hearne differ—
This study (1985) ence
Rio Grande, 1946 -22.97 -22.06 0.91
Rio Grande, 1980 -21.98 -21.04 0.94
Rio Grande, 2030
(with irrigation) -20.93 -20.14 0.79
Rio Grande, 2030
~ (without irrigation) -21.05 -20.07 0.98
Santa Cruz, 1946 2.85 2.61 0.24
Santa Cruz, 1980 2.88 2.65 0.23
Santa Cruz, 2030
(with irrigation) 3.95 3.73 0.22
Santa Cruz, 2030
(without irrigation) 2.95 2.74 0.21
Santa Fe, 1946 2.84 2.86 0.02
Discharge -4,37 ~-4.35 0.02
Santa Fe, 1980
Discharge ~4,36 -4,34 0.02
Santa Fe, 2030
(with irrigation)
Discharge ~4,24 -4,21 0.03
Santa Fe, 2030
(without irrigation)
Discharge -4.32 -4,28 0.04
Pojoaque, 1946 1.83 1.14 0.69
Discharge -2.85 -3.11 0.26
Recharge 4,68 4,25 0.43




Table 3.—Comparison of simulated effect on flow to the rivers, in

cubic feet per second, computed by this study and Hearne

(1985)—Concluded

Absolute

Hearne differ-

This study (1985) ence

Pojoaque, 1946 1.83 1.14 0.6?

With evapotranspiration 0.73 0.04 0.6b

Pojoaque, 1980 1.74 1.19 0.55

With evapotranspiration 0.64 0.09 O.SF
Pojoaque, 2030

(with irrigation) 3.60 3.59 O.dl

With evapotranspiration 2.50 2.49 0.0p
Pojoaque, 2030

(without irrigation) 2,07 1.41 0.6§

With evapotranspiration 0.97 0.31 0.66
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POSSIBLE SOURCES OF DIFFERENCE BETWEEN POSSON AND MODULAR RESULTS

Results from the Posson version and the modular version generally are
similar. In some instances, however, there are differences. These instances
are: (1) differences in the steady-state contours west of the Rio Grande
presented in figure 5; (2) differences in flow into the aquifer for head-
dependent blocks representing the Pojoaque River (tables 2 and 3);
(3) differences in the contours west of the Rio Grande for 2030 presented in
figure 15; and (4) differences of 43 feet in the predicted drawdown for 2080
for the model block represented in figure 23.

One possible explanation for these differences is that the mathematical
formulation of the head-dependent flow boundary (which was used to represent
the Pojoaque River) in the Posson code is “explicit"” and requires obtaining
the steady-state solution tramsiently (Posson and others, 1980, p. 15). In an
explicit solution, the hydraulic head at the head-dependent blocks is first
assumed. Using the assumed values, the flows at these blocks are then
computed and imposed as boundary conditions. The set of equations
representing the model is then solved for the unknown heads, including those
at the head~dependent blocks, These newly computed heads at the head-
dependent blocks are then used to compute flows at these blocks, and the
process is repeated until the heads converge.

For the modular simulation, the formulation is implicit (McDonald and
Harbaugh, 1984). In an implicit formulation, the equations representing the
model are modified to include the dependence of the flows at the head-
dependent blocks on the hydraulic heads at these blocks. The system of
equations needs to be solved only once to obtain the final head
distribution. This difference in formulation probably affects the results,
but an investigation of the extent of the difference directly attributable to
this difference was beyond the scope of this study. )

Another possible source of differences in model results is the different
methods required to supply the modular and Posson programs with values of
vertical hydraulic conductivity. The modular program requires an array of
values (vertical hydraulic conductivity divided by the layer thickness) that
had to be computed separately before supplying them as model arrays. VCONT, a
parameter needed for the modular code, had to be computed from the horizontal
conductivity and the anisotropy ratio given for the Posson version of the
model.

A possible source for the difference in the contours presented in
figures 5 and 15 is the large size of the blocks on the west side of the Rio
Grande. The large surface area of these blocks tends to amplify any
differences that may exist between the two versions of the model.

In general, there is no one-to—one mapping of all the parameters used in
the Posson code to the parameters used in the modular code. Hydrologic and
mathematical judgment had to be exercised to perform a conversion of
individual parameters or groups of parameters of the Posson code to parameters
required for the modular code.
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CONCLUSIONS {
Computer array files in the format required by the modular code were
constructed that represent the mathematical model of the Tesuque aquifer
system. The results from the modular version of the model are simi;ar to
those of the original ground-water flow model. The overall correspondence of
the results is evidenced by correlation coefficients of 0.9905, 0.9845, and
0.9929 for comparison of the constant-head, head-dependent, and aggregate welr
flows, respectively, computed by the two versions of the model.

t
|

There are differences between some results. There is approximately
50 feet of difference in contoured water-table elevations west of the Rio
Grande both for steady state and 2030,

There is a difference in the computed flows between the aquifer and the
Pojoaque River, which is formulated as a head-dependent flow boundaryé The
net flow into the aquifer from the Pojoaque River is presented as 1.134 cubic
feet per second in the original model, which is 38.1 percent less than the
1.8319 cubic feet per second computed in this study. Also, there is 43 feet

of difference in the simulated head decline in 2080 for a block near Tesuque
Pueblo.

i
One potentially significant source for the difference in results boﬁh for
the Pojoaque River and the whole model is the different ways in which the
modular and Posson codes formulate the head-dependent flow boundary. In
general the difference between the two sets of results is not large enough to

lead to different conclusions regarding the behavior of the system at %teady
state or when pumped. i

|
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