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Disclaimer

The United States Environmental Protection Agency (EPA) through its Office of Research an d
Development funded and managed the research described here . It has been peer reviewed by the
EPA and approved for publication . Mention of trade names or commercial products does no t
constitute endorsement or recommendation by the EPA for use .

ProUCL software was developed by Lockheed Martin under a contract with the EPA and i s
made available through the EPA Technical Support Center in Las Vegas, Nevada .

Use of any portion of ProUCL that does not comply with the ProUCL User Guide is not
recommended .

ProUCL contains embedded licensed software . Any modification of the ProUCL source cod e
may violate the embedded licensed software agreements and is expressly forbidden .

ProUCL software provided by the EPA was scanned with McAfee VirusScan v4 .5 .1 SP1 and i s
certified free of viruses .

With respect to ProUCL distributed software and documentation, neither the EPA nor any of
their employees, assumes any legal liability or responsibility for the accuracy, completeness, o r
usefulness of any information, apparatus, product, or process disclosed . Furthermore, software
and documentation are supplied "as-is" without guarantee or warranty, expressed or implied ,
including without limitation, any warranty of merchantability or fitness for a specific purpose .
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Executive Summary

Exposure assessment and cleanup decisions in support of U .S. Environmental Protection Agenc y
(EPA) projects are often made based upon the mean concentrations of the contaminants o f
potential concern . A 95% upper confidence limit (UCL) of the unknown population arithmeti c
mean (AM), p„ is often used to :

• Estimate the exposure point concentration (EPC) term ,
• Determine the attainment of cleanup standards ,
• Estimate background level mean contaminant concentrations, o r
• Compare the soil concentrations with site specific soil screening levels .

It is important to compute a reliable, conservative, and stable 95% UCL of the population mean
using the available data . The 95% UCL should approximately provide the 95% coverage for the
unknown population mean, p, .

The EPA has issued guidance for calculating the UCL of the unknown population mean for
hazardous waste sites, and ProUCL software has been developed to compute an appropriate 95 %
UCL of the unknown population mean . All UCL computation methods contained in the EPA
guidance documents are available in ProUCL, Version 3 .0 . Additionally, ProUCL, Version 3 .0
can also compute a 95% UCL of the mean based upon the gamma distribution, which is bette r
suited to model positively skewed environmental data sets . ProUCL tests for normality ,
lognormality, and a gamma distribution of the data set, and computes a conservative and stabl e
95% UCL of the unknown population mean, p i . It should be emphasized that the computation
of an appropriate 95% UCL is based upon the assumption that the data set under study consist s
of observations only from a single population .

Several parametric and distribution-free non-parametric methods are included in ProUCL. The
UCL computation methods in ProUCL cover a wide range of skewed data distributions arisin g

from the various environmental applications . For lognormally distributed data sets, the use o f
Land's H-statistic many times yields unrealistically large and impractical UCL values . This
occurrence is prevalent when the sample size is small and standard deviation of the log -
transformed data is large . Gamma distribution has been incorporated in ProUCL to model these

types of positively skewed data sets . Singh, Singh, and Iasi (2002b) observed that a UCL of the
mean based upon a gamma distribution results in reliable and stable values of practical merit . It
is always desirable to test if an environmental data set follows a gamma distribution . For data
sets (of all sizes) which follow a gamma distribution, the EPC term should be computed using an

adjusted gamma UCL (when 0 .1 k < 0.5) of the mean or an approximate gamma UCL (when k
>_ 0 .5) of the mean. These UCLs approximately provide the specified 95% coverage to the

population mean, p i of a gamma distribution. For values of k < 0 .1, a 95% UCL may be obtaine d
using the bootstrap-t method or Hall's bootstrap method when the sample size is small (n < 15) ,

and for larger samples, a UCL of the mean should be computed using the adjusted or
approximate gamma UCL .



Introduction

The computation of a (1-a) 100% upper confidence limit (UCL) of the population mean depends
upon the data distribution. Typically, environmental data are positively skewed, and a defaul t
lognormal distribution (EPA, 1992) is often used to model such data distributions . The H-
statistic based Land's (Land 1971, 1975) H- UCL ofthe mean is used in these applications .
Hardin and Gilbert (1993), Singh, Singh, and Engelhardt (1997,1999), Schultz and Griffin,1999 ,
Singh et al . (2002a), and Singh, Singh, and Iaci (2002b) pointed out several problems associate d
with the use of the lognormal distribution and the H-UCL of the population AM In practice, for
lognormal data sets with high standard deviation (sd), a ; of the natural log-transformed data
(e.g., a exceeding 2 .0), the H-UCL can become unacceptably large, exceeding the 95% and 99 %
data quantiles, and even the maximum observed concentration, by orders of magnitude (Singh ,
Singh, and Engelhardt, 1997) . This is especially true for skewed data sets of smaller sizes (e .g . ,
n < 50) .
The H-UCL is also very sensitive to a few low or high values . For example, the addition ofa
sample with below detection limit measurement can cause the H-UCL to increase by a large
amount (Singh, Singh, and Iaci, 2002b) . Realizing that use ofthe H-statistic can result in
unreasonably large UCL, it is recommended (EPA, 1992) to use the maximum observed value a s
an estimate of the UCL (EPC term) in cases where the H-UCL exceeds the maximum observe d
value . Recently, Singh, Singh and Iaci (2002b), and Singh and Singh (2003) studied the
computation ofthe UCLs based upon a gamma distribution and several non-parametric bootstrap
methods . Those methods have also been incorporated in ProUCL Version 3 .0. ProUCL
Version 3 .0 contains fifteen UCL computation methods ; five are parametric and ten are non-
parametric . The non-parametric methods do not depend upon any of the data distributions .

Both lognormal and gamma distributions can be used to model positively skewed ,data sets . It
should be noted that it is difficult to distinguish between a lognormal and a gamma distribution ,
especially when the sample size is small (e .g ., n < 50) . Singh, Singh, and Iaci (2002b) observe d
that the UCL based upon a gamma distribution results in reliable and stable values of practica l
merit. It is therefore always desirable to test if an environmental data set follows a gamma
distribution. For data sets (of all sizes) which follow a gamma distribution, the EPC term should
be computed using an adjusted gamma UCL (when 0 .1 S k < 0.5) ofthe mean or an approximat e
gamma UCL (when k 0 .5) ofthe mean as these UCLs approximately provide the specifie d
95% coverage to the population mean, 1u1 = k9 of a gamma distribution . For values ofk < 0.1, a
95% UCL may be obtained using bootstrap-t method or Hall's bootstrap method when th e
sample size is small (n < 15), and for larger samples a UCL of the mean should be compute d
using the adjusted or approximate gamma UCL. For this application, k is the shape parameter of
a gamma distribution . It should be noted that both bootstrap-t and Hall's bootstrap method s
sometimes result in erratic, inflated, and unstable UCL values especially in the presence of
outliers . Therefore, these two methods should be used with caution . The user should examine
the various UCL results and determine ifthe UCLs based upon the bootstrap-t and Hall' s
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bootstrap methods represent reasonable and reliable UCL values of practical merit. If the result s
based upon these two methods are much higher than the rest of methods (except for the UCLs
based upon lognormal distribution), then this could be an indication of erratic UCL values. In
case these two bootstrap methods yield erratic and inflated UCLs, the UCL of the mean should
be computed using the adjusted or the approximate gamma UCL computation method for highl y
skewed gamma distributed data sets of small sizes .

ProUCL tests for normality, lognormality, and gamma distribution of a data set, and computes a
conservative and stable 95% UCL of the population mean, p, . It should be emphasized that
throughout this User Guide, and in the ProUCL software, it is assumed that one is dealing with a
single population. If multiple populations (e .g ., background and site data mixed together) ar e
present, it is recommended to separate them out (e .g., using other statistical populatio n
partitioning techniques), and respective appropriate 95% UCLs should be computed for each o f
the identified populations . Also, outliers if any should be identified and thoroughly investigated .
Outliers when present distort all statistics (mean, UCLs etc.) of interest . Decisions about thei r
exclusion (or inclusion) in the data set used to compute the EPC term should be made by al l
parties involved (e .g., EPA, local agencies, potentially responsible party etc .) . The critica l
values of Anderson-Darling test statistic and Kolmogorov-Smirnov test statistic to test for
gamma distribution were generated using Monte Carlo simulation experiments . These critical
values are tabulated in Appendix B for various values of the level of significance . Singh, Singh,
and Engelhardt (1997,1999), Singh, Singh, and Iaci (2002b), and Singh and Singh (2003) studie d
several parametric and non-parametric UCL computation methods which have been included in
ProUCL . Most of the mathematical algorithms and formulas used in the development o f
ProUCL to compute the various statistics are summarized in Appendix A . For details, the user i s
referred to Singh, Singh, and Iaci (2002b), and Singh and Singh (2003) . ProUCL computes th e
various summary statistics for raw, as well as log-transformed data . ProUCL defines log -
transform (log) as the natural logarithm (in) to the base e . ProUCL also computes the maximum
likelihood estimates (MLEs) and the minimum variance unbiased estimates (MVUEs) of various
unknown population parameters of normal, lognormal, and gamma distributions . This, of
course, depends upon the underlying data distribution . Based upon the data distribution ,
ProUCL computes the (1-a) 100% UCLs of the unknown population mean, p, using five
parametric and ten non-parametric methods .

The five parametric UCL computation methods include :

1. Student's-t UCL ,
2. approximate gamma UCL using chi-square approximation,
3. adjusted gamma UCL (adjusted for level significance) ,
4. Land's H-UCL, and
5. Chebyshev inequality based UCL (using MVUEs of parameters of a lognormal distribution) .
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The ten non-parametric methods included in ProUCL are :

1. the central limit theorem (CLT) based UCL,
2. modified-t statistic (adjusted for skewness) bases UCL,
3. adjusted-CLT (adjusted for skewness) based UCL,
4. Chebyshev inequality based UCL (using sample mean and sample standard deviation) ,
5. Jackknife method based UCL,
6. UCL based upon standard bootstrap ,
7. UCL based upon percentile bootstrap ,
8. UCL based upon bias - corrected accelerated (BCA) bootstrap ,
9. UCL based upon bootstrap-t, an d
10. UCL based upon Hall's bootstrap .

An extensive comparison of these methods has been performed by Singh and Singh (2003) usin g
Monte Carlo simulation experiments . It is well known that the Jackknife method (with sampl e
mean as an estimator) and Student's-t method yield identical UCL values. However, a typical
user may be unaware of this fact. It has been suggested that a 95% UCL based upon the
Jackknife method may provide adequate coverage to the population mean of skewe d
distributions, which of course is not true (just like a UCL based upon the Student's-t statistic) .
For the benefit of all ProUCL users, it was decided to retain the Jackknife UCL computation
method in ProUCL .

The standard bootstrap and the percentile bootstrap UCL computation methods do not perform
well (do not provide adequate coverage to population mean) for skewed data sets . For skewed
distributions, the bootstrap-t and Hall's bootstrap (meant to adjust for skewness) methods d o
perform better (in terms of coverage for the population mean) than the various other bootstrap
methods. However, it has been noted (e .g., see Singh, Singh, and Iaci (2002b), Singh and Singh
(2003)) that these two bootstrap methods sometimes yield erratic and inflated UCL values
(orders of magnitude higher than the other UCLs) . This is especially true when outliers may b e
present in a data set. Therefore, whenever applicable (e .g., based upon the findings of Singh an d
Singh (2003)), ProUCL provides a caution statement regarding the use of these two bootstrap
methods. ProUCL software provides warning messages whenever the use of these methods i s

recommended. However, for the sake of completeness, all of the parametric as well as non-
parametric methods have been included in ProUCL .

The use of some other methods (e .g., bias-corrected accelerated bootstrap method) that were no t
included in ProUCL Version 2 .1 was suggested by some practitioners due to opinions that thes e
omitted methods may perform better than the various other methods already incorporated in
ProUCL . In order to satisfy all users, ProUCL Version 3 .0 has several additional UCL
computation methods which were not included in ProUCL, Version 2 .1 .
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This User Guide contains software installation instructions and brief descriptions for eac h

window in the ProUCL software menu. A short glossary of terms used in this document and in
the ProUCL program is also provided .

Three appendices listed as follows provide additional information and details of the variou s
methods and references used in the development of ProUCL Version 3 .0 .

• Appendix A is a discussion of the methods incorporated into ProUCL for calculating th e
exposure point concentration term using the various methods and distributions . Appendix A

represents a stand-alone technical writeup of the various methods incorporated in ProUCL
and is provided for review by statistically advanced users . There is duplication between

some of the information provided in the main body of the User Guide and Appendix A . This
duplication is intentional since Appendix A is designed to be a stand-alone technica l
discussion of the methods incorporated into ProUCL .

• Appendix B contains the tables of the critical values of the Anderson-Darling Test statisti c

and Kolmogorov-Smirnov Test statistic for gamma distribution for various levels of
significance .

• Appendix C has the graphs from Singh and Singh (2003) showing coverage comparison s
(achieved confidence coefficient) for the various UCL computation methods for normal ,
gamma, and lognormal distributions as incorporated in ProUCL software package .

Should the Maximum Observed Concentration be Used as an Estimate of the EPC Term ?

Singh and Singh (2003) also included the Max Test (using the maximum observed value as a n
estimate of the EPC term) in their simulation studies . In the past (e .g., EPA 1992 RAG S
Document), the use of the maximum observed value has been recommended as a default value to
estimate the EPC term when a 95% UCL (e .g ., the H-UCL) exceeded the maximum value .
However, (e .g., EPA 1992), only two 95% UCL computation methods, namely : the Student's- t
UCL and Land's H-UCL were used to estimate the EPC term . Today, ProUCL, Version 3 .0 can
compute a 95% UCL of the mean using several methods based upon normal, gamma, lognormal ,

and non-parametric distributions . Thus, ProUCL, Version 3 .0 has about fifteen 95% UCL
computation methods, at least one of which (depending upon skewness and data distribution) can

be used to compute an appropriate estimate of the EPC term. Furthermore, since the EPC term
represents the average exposure contracted by an individual over an exposure area (EA) during a
long period of time, therefore, the EPC term should be estimated by using an average value (such
as an appropriate 95% UCL of the mean) and not by the maximum observed concentration . With

the availability of the UCL computation methods, the developers of ProUCL Version 3 .0 do no t
consider it necessary to use the maximum observed value as an estimate of the EPC term . Singh
and Singh (2003) also noted that for skewed data sets of small sizes (e .g., n < 10 - 20), the Max
Test does not provide the specified 95% coverage to the population mean, and for larger dat a

sets, it overestimates the EPC term . This can also viewed in the graphs presented in Appendi x
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C. Also, for the skewed distributions (gamma, lognormal) considered, the maximum value is no t
a sufficient statistic for the unknown population mean . The use of the maximum value as an
estimate of the EPC term ignores most (except for the maximum value) of the informatio n
contained in a data set . It is, therefore not desirable to use the maximum observed value a s
estimate of the EPC term representing average exposure to an individual over an EA .

It should also be noted that for highly skewed data sets, the sample mean may exceed the uppe r
90%, 95 %, etc. percentiles, and consequently, a 95% UCL of the mean can exceed the
maximum observed value of a data set . This is especially true when one is dealing with highl y
skewed lognormally distributed data sets of small sizes . For such highly skewed data sets which
can not be modeled by a gamma distribution, a 95% UCL of the mean should be computed usin g
an appropriate non-parametric method . These observations are summarized in Tables 1-3 of thi s
User Guide .

Alternatively, for such highly skewed data sets, other measures of central tendency such as the
median (or some higher order quantile such as 70% etc .) and its upper confidence limit may b e
considered. The EPA and all other interested agencies and parties need to come to an agreemen t
on the use of median and its UCL to estimate the EPC term. However, the use of the sample
median and/or its UCL as estimates of the EPC term needs further research and investigation .

It is recommended that the maximum observed value NOT be used as an estimate of th e
EPC term . For the sake of interested users, the ProUCL displays a warning message when the
recommended 95% UCL (e .g., Hall's bootstrap UCL etc.) of the mean exceeds the observed
maximum concentration . For such cases (when a 95% UCL does exceed the maximum observed
value), if applicable, an alternative 95% UCL computation method is recommended by ProUCL .

Handling of Non-Detects

ProUCL does not handle left-censored data sets with non-detects, which are inevitable in many
environmental applications . All parametric as well as non-parametric recommendations (a s
summarized in Tables 1-3) to compute the mean, standard deviation, 95% UCLs and all othe r
statistics computed by ProUCL are based upon full data sets without censoring. It should be
noted that for mild to moderate number of non-detects (e .g., < 15%), one may use the commonly
used %2 detection limit (V2 DL) proxy method to compute the various statistics. However, the
proxy methods should be used cautiously, especially when one is dealing with lognormall y
distributed data sets . For lognormally distributed data sets of small sizes, even a single value - -
small (e .g., obtained after replacing the non-detects by %2 DL) or large (e .g., an outlier) can hav e
a drastic influence (can yield an unrealistically large 95% UCL) on the value of the associate d
Land's 95% UCL. The issue of estimating the mean, standard deviation, and an appropriate 95 %
UCL of the mean based upon left-censored data sets with varying degrees of censoring (e .g. ,
15% - 50%, 50% - 75%, greater than 75% etc .) is currently under investigation .



Installation Instructions

• Caution : If you have previous versions of the ProUCL which were installed, you shoul d
remove or rename the directory in which that version is currently located .

• Download the file SETUP.EXE from the EPA website and save to a temporary location .

• Run the SETUP.EXE program. This will create a ProUCL directory and two folders ; USER
GUIDE and the DATA (sample data) .

• To run the program, use Windows Explorer to locate the ProUCL application file and doubl e
click on it, or use the RUN command from the start menu to locate and run ProUCL .exe .

• To uninstall the program, use Windows Explorer to locate and delete the ProUCL folder .

Minimum Hardware Requirement s

• Intel Pentium 200MHz

• 12 MB of hard drive spac e

• 48 MB of memory (RAM)

• CD-ROM driv e

• Windows 98 or newer . ProUCL was thoroughly tested on NT-4, Windows 2000, and
Windows XP operating systems. Limited testing has been conducted on Windows ME .
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A. ProUCL Menu Structure

ProUCL contains a pull-down menu structure, similar to a typical Windows program .

The screen below appears when the program is executed .

The following menu options appear on the screen

1. File

2. View

3. Help

The options available with these menu items are described on the following pages .

2



1. File

Click on the File menu item to reveal these drop-down menu options .

1 H :\cdehsl 1
2 H :yog3
3 H : og35 .
4 H :Vog5
5 H :\test2
6 H :Atrac k

The following File drop-down menu options are available :

• New option: creates new spreadsheet .

• Open option: browses the disk for a file . The browse program will start in the working

directory if a directory has been set .

• Working directory option : select and set a working directory .

Note : A file from the directory must be selected before setting the directory . All subsequent

files are read from and saved in the chosen working directory .

• Print Setup option : sets printer options . For example, one can choose the landscape format .

• Click on a previously used file to re-open that file .

• Exit option : exits ProUCL .

3



2. View

Click on the View menu item to reveal these drop-down options .

The following View drop-down menu options are available :

• Toolbar: the Toolbar is that row of symbols immediately below the menu items . Clicking on
this option toggles the display . This is useful if the user wants to view more data on the
screen .

• Status Bar : the Status Bar is the wide bar at the bottom of the screen which displays helpfu l
information . Clicking on this option toggles the display. This is useful if the user wants to
view more data on the screen .
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3. Help

Click on the Help menu item to reveal these drop-down options .

He View Help

For, Help, press Fl

	

4

The following Help drop-down menu options are available :

• Help Topics : help topics have not been developed for Version 3 .0 .

• About ProUCL : displays the software version number .

ProUCL Version 3 .0
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B. ProUCI, Components

The following menu structure of ProUCL appears after opening or creating a data file .

ProUCL Versio
He Edit View Options Summary Statistics Histogram Goodness-of-Fit Tests UCLs Window Hey _ c

41 ► 1\ Sheet 1

For Help, press F 1

The following menu items are available .

1. File
2. Edit
3. View
4. Option s
5. Summary Statistic s
6. Histogram
7. Goodness-of-Fit Test s
8. UCLs
9. Window
10. Help

The options available with these menu items are described on the following pages .
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1 . File

Click on the File menu item to reveal these drop-down options .

Options Summary Statistics Histogra m

Ctrt+N

Ctrl+O

Working directory

Print . . .

	

Ctrl+ P

Print Preview

Print Setup . . .

1 H :`cdelv 1

2 H :\Jog 3

3 H :1Jog3 5

4 H :1Jog 5

5 H:\test2

6 H :\track

Exit

Goodness-ot-ht Tests UCLs Window

The following File drop-down menu options are available :

• New option : opens a blank spreadsheet screen .

• Open option : browses the disk and selects a file which is then opened in spreadsheet format .
The browse program will start in the working directory if a working directory has been set .

Recognized input format options :
Excel

	

* .xls
Text

	

* .txt (tab delimited )
Lotus

	

* .wk?
Lotus

	

* .123
Default

	

* .* will be read in Excel format.

• Close option : closes the active window.
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• Save As option : allows the user to save the active window . This option follows th e
Windows standard and saves the active window to a file in Excel 95 (or higher) format . Al l
modified/edited data files, and output screens generated by the software, can be saved i n
Excel 95 (or higher) format.

• Working directory option : selects and sets a working directory for all I/O operations . Al l
subsequent files are read from and saved in the working directory . You must select a fil e
before you set the working directory .

• Print option : sends the active window to the printer .

• Print Preview option: displays a preview of the output on the screen .

• Print Setup option : follows Windows standard . The user can choose the landscape format
under this option .

• Previously opened files: click on a previously used file to re-open that file .

• Exit option : exits ProUCL .

NOTE : All subsequent screens and examples in this User Guide use the spreadsheets given b y
track.xls and Cdelvl .xls to illustrate the various goodness-of-fit test procedures and the UCL
computation methods as incorporated in the software ProUCL, Version 3 .0 .
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la. Input File Forma t

• Data in each column must end with a non-zero value . The last non-zero entry in eac h
column is considered as the end of that column's data. If your data column ends with a zer o
value, that last zero value will be ignored . This may require you to move observations
around if your column ends with zero values .

• The program can read tab delimited Text (ASCII), Excel, and Lotus files .

• Columns in a Text (ASCII) file should be separated by one tab . Spaces between columns are
not allowed in this format .

• All input data files should have column labels in the first row and numerical data without text
(e .g ., non-numeric characters and blank values) for those variables in the remaining rows .

• The data file can have multiple variables (columns) with unequal number of observations .

• Non-numeric text may only appear in the header row (first row) of each column . All other
non-numeric data (blank, other characters, and strings) appearing elsewhere in the data fil e
are treated as zero entries . The user should make sure that his data set does not contain suc h
non-numeric values .

• A large value, such as 1E31 (1x10 31), can be used for missing (alpha numeric text or blank
values) data . All entries with this value are ignored from the computations.

• Note that all other zero data (in the beginning or middle of a data column) are treated as vali d
zero values .

• ProUCL does not handle the left-censored data sets with non-detects which are inevitable in
environmental applications . All parametric as well as non-parametric recommendation s
made by ProUCL are based upon full data sets without censoring . The issue of estimating
the mean, standard deviation, and a 95% UCL of the mean based upon left-censored data set s
with varying degrees of censoring is currently under investigation . For mild to moderate
number of non-detects (e .g., < 15%), one may use the commonly used %2 detection limi t
(DL) proxy method . However, the proxy methods should be used cautiously, especiall y
when one is dealing with lognormally distributed data sets . For lognormally distributed data
sets of small sizes, a single value, whether small (e.g., obtained after replacing the non-detect
by %2 DL) or large (e .g., an outlier), can have a drastic influence (can yield an unrealistically
large 95% UCL) on the value of the associated Land's 95% UCL .
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lb. Result of Opening an Input Data Fil e

• The data screen follows the standard Windows design . It can be resized, or portions of data
can be viewed using scroll bars .

• Note that scroll bars appear when the window is activated and the title bar is highlighted .
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2. Edit

Click on the Edit menu item to reveal the following drop-down options .

Summary Statistics Histogram Goodness-of--Fit Tests UCL sEdit : View Option s

Erase Ctrl+E

Copy Ctrl+C

Paste CtrI+V

	

0 .0018

	

0 .001 8

	

0.00185 :

	

0 .0018 5

	

0.00185-

	

0 .01 8

	

0 .00191

	

0 .0019'.

	

0 .002 :

	

0 .2 :

	

0 .00215

	

0 .002 :

	

0 .00425'

	

42

	

0 .018 :

	

0 .00185 :

	

0 .0215

	

0 .0305 :

	

0 .08'

	

0 .0021 5

	

0 .13

	

0 .7155

C

	

D

	

E
	Dieldrin	 Heptachlor	 Endrin aldehyde

	

0 .0018

	

0 .001

	

0 .001 9

	

0 .00165

	

1 .05

	

2 .05

	

0 .018

	

0 .1051

	

0 .0019 :

	

0 .029 :

	

0 .001

	

0 .00195 :

	

0 .2

	

D .D011

	

0 .0019 '

	

0 .002 ;

	

0 .001

	

0 .2 4.

	

29

	

0 .125 ; 0 .0019 5

	

0 .00185 .

	

0 .001'

	

0 .0020 5

	

0 .37

	

0 .00105 ;

	

O .D021 .

	

0 .00215

	

0 .00105'

	

0 .0018 5

	

180

	

0 .00095

	

0 .0195

The following Edit drop-down menu options are available :

• Erase option: used to remove the highlighted portion of the data. Note that the erased data i s
not written to any buffer and cannot be recovered . Therefore, when data is erased, it is gone .

• Copy option: similar to a standard Windows Edit option, such as in Excel . It performs
typical edit functions of identifying highlighted data (similar to a buffer) .

• Paste option : similar to a standard Windows Edit option, such as in Excel . It performs
typical edit functions of pasting data identified (highlighted) to the current spreadsheet cell .

• There is no Cut option available in ProUCL because there is no actual buffer available in the
commercial software(s) used in the development of ProUCL software .
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3. View

Click on the View menu item to reveal these drop-down options.

FUe Edit Options Summary Statistics Histogam Goodness-of-Ft Tests UCLs Window Help
r Toolbar
v 5tatusBar

3

	

14000

	

7

	

32

	

1a5

	

45100

	

574€

	

1
	 4	 	 14900

	

17 6

	

376100

	

368'

	

0 .1 7
	 5	 141001	 6.15	 24 .55

	

20 .6` 4045(3 :	 671	 0 .488
6	 	 9510E	 5.31	 171	 17 .3	 265001,	 11201_	 0 .4
7	 	 9110,	 4 2	 24 .6	 14 .71,	 38600	 7591	 0 .5
S

	

13900	 6.9

	

17 .41	 21 .2	 42700	 727'

	

0 :34'
21300

	

7

	

28 .2 ,

	

14

	

410001

	

409E

	

1 .1 1
70 ; 	 	 911 D	 	 4 .4	 21	 10 .7	 267001	 434 (	 0 .451

The following View drop-down menu options are available :

• Toolbar: the Toolbar is that row of symbols immediately below the menu items . Clicking on
this option toggles the display . This is useful if the user wants to view more data on the
screen .

• Status Bar: the Status Bar is the wide bar at the bottom of the screen which displays helpfu l
information . Clicking on this option toggles the display . This is useful if the user wants to
view more data on the screen .
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4. Option s

Click on the Options menu item to reveal these drop-down options .

- ProUCL Version 3.0 	 1 ~
File Edit

	

View Options

	

Summary Statistics

	

Histogram Goodness-of-Fit Tests

	

UCCs

	

window

	

Helpa
i Set Data

	

? ~ IR~

C: \ProUCLNData\t rack. xis

y 1

Al As

	

C Fe

	

Mn Se

	

1 S I
12600

	

6.8 22 .4 18 .1 39800 501 0.31 5
140001 19 .51 45100 574 1
14900

	

5 .1 22.7 , 17 .6 37600 368 0 .1 7
14100 :

	

6 .1 5
9510 !

	

5 .3
24.55

17,
20.6 1
17 .31

40450
265001

671 0.488

9-1-1–0

	

4.21 24.8i 14 .7 38600 i
1 715920_

0.5 i
8 3900

	

6 9! 17.4 21 .2, 42700 727 0.341

,dam

Currently, Set Data is the only drop-down menu option available .

• Set Data option : resets the active portion of the data window . The program examines th e
active spreadsheet and selects default values representing the first row of data (row 2), the
last row which contains data (dependent upon actual data), the leftmost column (typically
column 1) where data and text occur, and the rightmost column (dependent upon actual data)
where data and text occur.

NOTE: Caution should be exercised when varying from the default values . If values other
than the default values are used, calculation errors may result . Therefore, it is recommended
to avoid the use of the Set Data option .

• The user can pre-process the data outside of the ProUCL software by usin g
a separate spreadsheet program, such as Excel . Pre-processing the data
outside of ProUCL will eliminate the need to use the Set Data option.
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4a. The Data Location Screen

The following Data location screen appears when Set Data option is executed .

• It is recommended to use the default settings for the data screen . This means that all of

the data will be processed .

• Caution : Highlighting a portion of the spreadsheet before invoking the Set Data option may

sometimes cause unpredicted results .

• Caution : Blank cells in the top data row may confuse the automatic sizing algorithm. The

user can avoid this problem by re-setting the Rightmost column value using this option .

• The first row in the spreadsheet contains the alphanumeric text (column headings), not data .

• The default Top row of data is row 2 . This value can be changed to process a subset of the

data in the spreadsheet .

• The default Bottom row is the last row in the spreadsheet which contains nonzero data . This

value can be changed to process a subset of the data in the spreadsheet .

• The selected data must correspond to the same columns as the text in the first row . The

Leftmost column value (column number) cannot be changed by the user .

• The Rightmost column number can be changed by the user . Note that you must have a

column of data for the selected Rightmost column .
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5. Summary Statistics

• This option computes general summary statistics for all variables in the data file .

• Two Choices are available :

Raw data (the default option)
Log-transformed data (Natural logarithm )

• In ProUCL, Log-transformation means natural logarithm (ln) .

• When computing summary statistics for raw data, a message will be displayed for eac h
variable that contains non-numeric values .

• The Summary Statistics option computes log-transformed data only if all of the data value s
for the selected variable are positive real numbers . A message will be displayed if non-
numeric characters, zero, or negative values are found in the column corresponding to th e
selected variable .
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5a. Summary Statistics Menu

Click on the Summary Statistics menu item to reveal the following drop-down option .

PraUCL Version .
File Edit ew Options Histogram Goodness-of-Fit Tests Uas Window Hel p

Al	 As

	

Cr

	

Co	 Fe	 Mn	 Se	 S
12600
14000

	6.8	 22.4	 18 .1	 ' 39800 :	 501	 0 .315:	 0,055

	

71

	

32i

	

19 .5 1

	

451001

	

5741

	

1

	

0 .115 :

When the user clicks on the
Compute option button ,
the window on the right appears .

Compute

• Select your data choice, and click on the Compute button to continue or on the Cancel butto n
to cancel the summary operations .

• The results screen follows the standard Windows design . It can be edited, widened, printed ,
resized, or scrolled .

• The resulting Summary Statistics screen can be saved as an Excel file . Right double click on
the screen for additional save options .
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5b. Results Obtained Using the Summary Statistics Optio n

D

	

L1?

	

k'? !

A

	

13

	

U

	

E

	

'1

	

G

	

H

	

I

	

J
I

	

From File

	

C :IProUCL\Data\track .xl s

3

	

Variable name

	

NumObs Minimum

	

Maximum

	

Mean

	

Median

	

Sd

	

CV

	

Skewness Varianc e
2

-

	

- -

5

	

Al

	

221

	

25201

	

2130011755 .4551

	

125001 3959 .426 0 .3368161 -0 .209602115677055 1
6

	

As

	

22

	

27

	

42090101018

	

6 .075 B .9541896 iO .9929041 3128270960 17751 1
7

	

Cr

	

22

	

12 2
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4,44
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4 .

B

	

Ca
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9

	

Fe
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37400114006 .057 0 .40077161 -0094731

	

2E+008
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22
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2400 823 89159
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Se
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012
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143015
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Zn
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0 .353229 :1 .86244751396 .15535 1
1 4

04, 4

15

	

--.--- .

	

, _ .44444

	

4.

L±i .J\	 Summary Statistics for RawData/
For Kelp press Fl

On the results screen, the following summary statistics are displayed for each variable in the data
file :

/ NumObs = Number of Observations
/ Minimum = Minimum value
/ Maximum = Maximum value
/ Mean = Average value
/ Median = Median valu e
/ Sd Standard Deviation
/ CV = Coefficient of Variation
/ Skewness = Skewness statisti c
/ Variance = Variance statisti c

These summary statistics are described in detail in Appendix A .

5c. Printing Summary Statistic s

• The summary statistics results and all other results can be printed by clicking the Print option
under the menu item File . It is recommended that these statistics be printed in landscap e
format which is available under the Print Setup option .

Pr&JCL Version 3 .0 - [Summary Statistics (Raw Data)]
File Edit View Options 5unynar Statistics Histogram Goodness-of-Fit Tests UCIs

'C IFlo
H*

-

-
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6. Histogram

• This option produces a histogram for the selected variable in the data file .

• For data sets with more than one variable, the user should select a variable first. The
histogram is computed and displayed for each selected variable, one variable at a time .

- By default, the program selects the first variable .

• The user specifies if the data should be transformed .

- The default choice is to display the histogram for raw data .

• Two Choices are available :

- Raw data (the default option)
- Log-transformed data (natural logarithm, ln)

•

	

The user can select the number of bins for the histogram.

- The default number of bins is 15 .

• Note that in order to display and capture the best histogram window, the user may want t o

maximize the window before printing .
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6a. Histogram Screen

• Click on the Histogram menu item and then click on the Draw Histogram option .

Goodness-of-Ft Tests UCLs Window He

C : 1ProUCL\Data\track.xls

126001

	

6 .B I

	

22 . 4
	14000

• The window on the right
will appear .

4.4'-DDT
Dieldri n
Heptachlo r
Endrin aldehyd e
Dieldri n
4A'-DD E
Araclor-124 8
Araclor-124 2

Display

• Select Raw data or Log-transformed data .

• You can change the number of bins to be used in the histogram .

• Select a variable and then hit the display key to view the histogram for the selected variable .
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6b. Results of Histogram Option

ProUCL Var ion 3 0

Edit View Options summary Statistics Histogram Goodness-of-Fit Tests UCLs

	

indow Help — o~

Histogram of Al

• The Histogram window shown above has been resized for display and reflects.the use of
default values displayed in Section 6a (Histogram Screen) .

• You may close the window by using normal windows operations or click on the Clos e
window button at the bottom left corner of the screen .

• The histogram can be printed or copied by clicking on the right button on the mouse .

• Caution : A right click of the mouse will have options other than print and save . These
options may function but are NOT recommended due to the program disruption that may
occur. Use these other options only at your own risk !
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7. Goodness-of-Fit Tests

• Several goodness-of-fit tests are available in ProUCL which are described in Appendix A .

• Throughout this User Guide, and in ProUCL, it is assumed that the user is dealing with a
single population. If multiple populations are present, it is recommended to separate them
out (using other statistical techniques) . Appropriate tests and statistics (e .g., Goodness-of-fit
tests, 95% UCLs) should be computed separately for each of the identified populations .
Also, outliers if any should be identified and thoroughly investigated . The presence o f
outliers distort all statistics including the UCLs. Decisions about their inclusion (or
exclusion) from the data set to be used to compute the UCLs should be made by all partie s
involved .

• For data sets with more than one variable, the user should select a variable first . The data
distribution is tested using an appropriate goodness-of-fit test and the associated result s
are displayed for the selected variable, one variable at a time.

♦ By default, the program selects the first variable .

• This option tests for normal, gamma, or lognormal distribution of the selected variable .

• The user specifies the distribution (normal, gamma, or lognormal) to be tested .

• The user specifies the level of significance . Three choices are available for the level o f
significance : 0.01, 0 .05, or 0 .1 .

♦ The default choice for level of significance is 0 .05 .

• ProUCL displays a Quantile-Quantile (Q-Q) plot for the selected variable (or the log -
transformed variable) . A Q-Q plot can be generated for each of the three distributions .

• The linear pattern displayed by the Q-Q plot suggests approximate goodness-of-fit for th e
selected distribution .

• The program computes the intercept, slope, and the correlation coefficient for the linea r
pattern displayed by the Q-Q plot . A high value of the correlation coefficient (e .g ., > 0.95) i s
an indication of approximate goodness-of-fit for that distribution. Note that these statistic s
are displayed on the Q-Q plot.

• On this graph, observations that are well separated from the bulk (central part) of the dat a
typically are potential outliers needing further investigation .
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• Significant and obvious jumps in a Q-Q plot (for any distribution) are indication of the
presence of more than one population which should be partitioned out before estimating an
EPC Term. It is strongly recommended that both graphical and formal goodness-of fit test s
should be used on the same data set to determine the distribution of the data set under study .

• In addition to the graphical normal and lognormal Q-Q plot, two more powerful methods are
also available to test the normality or lognormality of the data set :

♦ Litliefors Test : a test typically used for samples of larger size (> 50). When the
sample size is greater than 50, the program defaults to the Lilliefors test . However,
note that the Lilliefors test is available for samples of all sizes . There is no applicabl e
upper limit for sample size for the Lilliefors test.

♦ Shapiro and Wilk W-Test : a test used for samples of smaller size (< 50) . W-Test is
available only for samples of size 50 or less .

♦ It should be noted that sometimes, these two tests may lead to different conclusions .
Therefore, the user should exercise caution interpreting the results .

• In addition to the graphical gamma Q-Q plot, two more powerful Empirical Distributio n
Function (EDF) procedures are also available to test the gamma distribution of the data set .
These are the Anderson-Darling Test and the Kolmogorov-Smirnov Test .

♦ It should be noted that these two tests may also lead to different conclusions .
Therefore, the user should exercise caution interpreting the results .

♦ These two tests may be used for samples of size in the range 4-2500 . Also, for these
two tests, the value of k (k hat) should lie in the interval [0 .01,100.0] . Consult
Appendix A for detailed description of k . Extrapolation beyond these sample size s
and values of k is not recommended .

• ProUCL computes the relevant test statistic and the associated critical value, and prints the m
on the associated Q-Q plot . On this Q-Q plot, the program informs the user if the data are
gamma, normally, or lognormally distributed . It highly recommended not to skip the use of

graphical Q-Q plot to determine the data distribution as a Q-Q plot also provides the usefu l

information about the presence of multiple populations and/or outliers .

• The Q-Q plot can be printed or copied by clicking on the right button on the mouse .

• Note : In order to capture the entire graph window, the user should maximize the window
before printing .
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7a. Goodness-of-Fit Tests Screen

• Click on the Goodness-of-Fit Tests menu item and a drop-down menu list will appear as
shown in the screen below :

ProUCL Version 3 .0 - [CAProUCL‘Elata‘track.xts]
--

	

"' r'--) 5-'(

File

	

Edit

	

view

	

options

	

Summary Statistics

	

Histogram

	

Goodness-of-Fit Tests

	

UCLs

	

Window Help

	

-

	

x

D or ? k?I

	

Perform Normality Test

Perform Lognormality Test
A B C D

	

I Perform Gamma Test H

1 Al As Cr Co SI ZnFe --ryll l

2 12600 6.8 22 .4 18 .1 39800 501 0.315 0 .055 46 . 3
3 14000 32 19 .5 45100 574 1 0 .115 45 . 4
4 14900 5 .1 22 .7 17 .6 37600 368 0 .17 0 .055 61 . 2
5 14100 6.15 24 .55 20.6 40450 671 0 .488 0 .123 48 . 3
6 9510 5.3 17 17 .3 26500 1120 Q .4 0 .05 37 . 5

9110 1 4 .2 24 .8 14 .7 38600 759 0 .5 0 .12 36 . 5
8 13900 6 .9 17 .4 21 .2 42700 727 0.34 1 68 . 7
9 21300 7 28 .2 14 41000 409 1 .1 0 .125 55

18 9110 4 .4 21 10 .7 26700 434 0 .45 0 .06 42 . 6
11 14600 5 .2 13 .1 10 .4 31300 586 0 .8 0 .11 54.3

• To test your variable for normality, click on Perform Normality Test from the drop-down
menu list .

• To test your variable for lognormality, click on Perform Lognormality Test from the drop -
down menu list.

• To test your variable for gamma distribution, click on Perform Gamma Test from the drop -
down menu list.
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7b. Result of Selecting Perform Normality Test Optio n

The following window will appear :

• Select a variable .

• Select a Level of Significance .

• Click on either Lilliefors Test or Shapiro-Wilk Test .
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7c. Resulting Q-Q Plot Display to Perform Normality Tes t

ProUGL Version 3 . 0
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f

• The Q-Q plot window shown above has been resized for display .

• Two different Q-Q plot windows are produced for each Normality test request . The first
graph plots the raw data along the vertical axis, and the second plot (as shown above) use s
the standardized data along the vertical axis. These two Q-Q plots convey the same
information about the data distribution and potential outliers, and therefore they also loo k
very similar, but they do represent two separate (not duplicate) plots . It is the user' s
preference to pick one of these two Q-Q plots to assess approximate normality of the data se t
under study .

• Right click on a graph to print or save that graph .

• Caution : A right click of the mouse will have options other than print and save . These
options may function but are NOT recommended due to the program disruption that ma y
occur. Use these other options only at your own risk !
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7d. Result of Selecting Perform Lognormality Test Option

The following window will appear :

• Select a variable .

• Select a Level of Significance .

• Click on either Lilliefors Test or Shapiro-Wilk Test .
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7e. Resulting Lognormal Q-Q Plot Display to Perform Lognormality Test

ProUCL Version 3 .+)

	

it
Fie

	

Edit View

	

Options

	

Summary Statistics

	

tfistogram

	

Goodness-of-Ft Tess

	

UCLs

	

Window

	

Help

	

- a X

D a'

	

! ? R? 1

Lognormal 0-U Pot for C a

2 .5

2 .0

n

	

1 .5 +

	

+
_rte

1 .0

0 .5

0

	

0 .0

E 41 5

-1 . 5

-2.0
-2.0

	

-15

	

-1 .0

	

-0.5

	

0 .0

	

0 .5 1 .0

	

1 .5

	

2. 0
Theoretical Quanta= (Standard Normal )

N

	

21 Mean = 2.9320 . Sd . 0.539 3
Slope = 0.9891, Intercept = 0,0000, Correlation, R = 0 .55530053

talliefom Statistic = 0.161, Critical Value[0 .05] = 0.189, Data are Lognormal

Close wdo

For Help, press Fl

• The Q-Q plot window shown above has been resized for display .

• Two different Q-Q plot windows are produced for each Lognormality test request . The first
plot uses the log-transformed data along the vertical axis, and the second plot (shown above )
uses the standardized data . As mentioned before, these two plots provide the sam e
information about the data distribution and potential outliers, but they do represent tw o
separate (not duplicate) plots . The user can pick any of these two Q-Q plots to asses s
approximate lognormality of the data set under study .

• Right click on a graph to print or save that graph .

• Caution : As before, a right click of the mouse will have options other than print and save .
These options may function but are NOT recommended due to the program disruption that
may occur . Use these other options only at your own risk !
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7f. Result of Selecting Perform Gamma Test Optio n

The following window will appear:

• Select a variable .

• Select a Level of Significance .

• Click on either the Anderson - Darling Test or Kolmogorov - Smirnov Test .
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7g. Resulting Gamma Q-Q Plot Display to Perform Gamma Tes t

ProUCL Version 3 .0

Gamma Q-Q Plot for Zn

120

11 0

100

7n

60

0

	

5D

4 0

30

20

20

	

30

	

40

	

50

	

00

	

70

	

BO

	

06

	

100

Theoretical GI uanhles of Gamma Distribution

N .22 . Mean = 56.348 . k hat =10 .466 8
Slope =1 .033, Intercept = -1 .759, Correlation, R = 0.942

A-D Test Statistic 0.632, Critical Value[0.05) = 0 .743- Data are Gamma Distributed

4	
Close windo

Far Help, press F l

• The Q-Q plot window shown above has been resized for display .

• Only one Q-Q plot window is produced for each Gamma test request : the display using the
original raw data (as shown above) .

• Right click on the graph to print or save the graph .

• Caution : A right click of the mouse will have options other than print and save . These
options may function but are NOT recommended due to the program disruption that may
occur. Use these other options only at your own risk !
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8. UCLs

• This option computes the UCLs for the selected variable .

• The program can compute UCLs using all available methods. For details regarding the
various distributions and methods, refer to Appendix A.

• The user specifies the confidence level ; a number in the interval [0 .5, 1), 0.5 inclusive. The
default choice is 0 .95 .

• The program computes several non-parametric UCLs using the Central Limit Theorem ,
Chebyshev inequality, Jackknife, and the various Bootstrap methods .

• For the bootstrap method, the user can specify the number of bootstrap runs . The default
choice for the number of bootstrap runs is 2000 .

• The user is responsible for selecting an appropriate choice for the data distribution : normal ,
gamma, lognormal, or non-parametric . The user determines the data distribution using the
Goodness-of-Fit Test option prior to using the UCLs option. The UCLs option will als o
inform the user if the data are normal, gamma, lognormal, or non-parametric. The program
computes relevant statistics depending on the user selection .

• For data sets which are not normal, one should try the gamma UCLs next . The program wil l
offer you advice if you chose the wrong UCLs option .

• For data sets which are neither normal nor gamma, you should try the lognormal UCLs next .
The program will offer you advice if you chose the wrong UCLs option .

• Data sets that are not normal, gamma, or lognormal are classified as non-parametric data sets .
The user should use non-parametric UCLs option for such data sets . The program will offer
you advice if you chose the wrong UCLs option .

• For lognormal data sets, ProUCL can compute only a 90% or a 95% Land's statistic based H-
UCL of the mean . For all other methods, ProUCL can compute a UCL for any confidenc e
coefficient in the interval [0 .5,1 .0), 0.5 inclusive .

• If you have selected a proper distribution, ProUCL will provide a recommended UC L
computation method for the 0.95 confidence coefficient . Even though ProUCL can compute
UCLs for confidence coefficients in the interval [0 .5, 1 .0), recommendations are provided
only for 95% UCL computation methods as the EPC term is estimated by a 95% UCL of th e
mean .
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• ProUCL can compute the H-UCL for sample sizes up to 1000 using the critical values a s
given by Land (1975) .

• For lognormal data sets, ProUCL also computes the Maximum Likelihood Estimates (MLEs )
of the population percentiles, and the minimum variance unbiased estimates (MVUEs) of the
population mean, median, standard deviation, and the standard error (SE) of the mean . Note
that for lognormally distributed background data sets, these MLEs of the populatio n
percentiles (e .g., 95% percentile) can be used as estimates of the background level threshol d
values .

• The detailed theory and formulas used to compute these gamma and lognormal statistics are
given by Land (1971, 1975), Gilbert (1987), Singh, Singh, and Engelhardt (1997, 1999) ,
Singh et al . (2002a), Singh et al . (2002b), and Singh and Singh (2003) .

• Formulas, methods, and cited references used in the development of ProUCL are summarize d
in Appendix A.
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8a. UCLs Computation Screen

Click on the UCLs menu item and the drop down menu shown below will appear .

ProUCL Version 3 .0

	

[C .\ProUCLtDato\track.xts ]
WP File

	

Edit

	

View

	

Options

	

Summary Statistics Histogram Goodness-of-Fit Tests

	

Lb_Ls

	

Wii ndow Help

	

X

Cl Gi
9

	

eila Compute UCL s
Fixed Excel Format

A B C D tE
Al As ~Cr Cc Fe Mn Se BSI Zn

2
3
4

1260 0
14170 0
14900

6 .8
7

5 .1

22 .4 '
32

22 .7

18 . 1
19 . 5
17 .6

39800
45100 :
37600

501 ;
574 1
368

0 .31511
1

0 .17

0.055

	

46 . 3
0 .115

	

45 . 4
0 .055

	

61 . 2
5 14100 6 .15 24 .55 20 .6 40450 671 0.488 0.123

	

48 . 3
6 9510 5 .3 ,

	

17 ~~ 17 .3 26500 1120 : 0 .4 0 .05

	

37 . 5
7 9110 4 .2 24.8 14 .7 36600 759 0 .5 0 .12

	

36 . 5
8 13900 6 .9 17 .4 21 .2 42700 727 : 0 .34 1

	

68 .7 '
9 21300 ; 7 28.21 14 41000 ; 409 1 .1 1 0.125

	

55
70 9110 1 4.4 21 } _ 10 .7 26700 434 0.45 ; 0 .06

	

42 . 6
11 14600 ; 5 .2 13 .1 1 10 .4 31300 : 586 : 0 .8 0 .11

	

54 . 3
12 5270 26 .2 85 .8 24 .5 ; 13600 1060 1001 35 .7

	

95 . 3

(~

1 3
1 4
15

►

14900
14600
10400
A

2 . 7
1

	

7 . 1
5 .15

18 . 6
46 . 2

16 .25

9 . 6
24 . 6

18 .45 :

31500
46200
29100

950
1280

527 .5

0 .265
0.12 E
0 .411

0 .12 :

	

53 . 7
0 .121

	

68 . 1
0 .125

	

38 .45

Data M1

	

.~

• The Compute UCLs option is intended for general use . It displays results in a format
suitable for review by all users . The output results can be printed or saved for subsequent
use . Saved results can be imported into other documents and reports.

• The Fixed Excel Format option produces a results screen that can be exported to anothe r
program written for production purposes . Therefore, UCL results are stored in specific cells
and no attempt has been made to accommodate human review . These fixed format results
are not formatted to be printed .
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8b. Results After Clicking on Compute UCLs Drop-Down Menu Ite m

• Note that the UCLs are computed for one variable at a time . The user selects a variable from
the variable list .

• The user may change the Confidence Coefficient (default is 0 .95). The range allowed is
between 0.5 and 1 .0, 0 .5 inclusive .

• The user may adjust the number of bootstrap runs (default is 2,000) .

• The user selects one of the options : Normal, Gamma, Lognormal, Non-parametric, or Al l
option . The All option is the default choice . The All option automatically determines the
data distribution without checking for outliers and/or the presence of multiple populations . . It
is highly recommended to verb the data distribution (for outliers and multiple populations)
using an appropriate Q-Q plot under the Goodness-of-Fit Tests option .

• The All option computes and displays the UCLs using all parametric and non-parametric
methods available in ProUCL. Finally, the user clicks on the Compute UCLs button.

Select Variable s

AI
As
Cr
Co
Fe
Mn
Se
S I
Zn

Confidence Coefficent [0 .5, 1 .0 )

0 .95

Compute UCLs

– Select UCL Type

C" Normal

• Gamm a

Lognormal

Non-Parametric

('* Al l

Number of Bootstrap Run s

2000

Cance l
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8c. Display After Selecting the Normal UCLs Optio n

~- -' ProUCL Uersidn 3 .0 [Noerrra[ UCE Statistics ford'
File Edit View Options Summary Statistics Histogram Goodness-of-Fit Tests UCts

	A	 B	 j	 C	 I	 D
n Data File C :\PrOUCL\Dataltrack .xl s

Number of Valid Samples
	Number of Distinct Samples
Minimum

	 8	 Median
	 9	 Standard Deviation
10	 [Variance

	12	 Skewness
	13	 _
14 Shapiro-Wilk Test Statisitic

	

0 .943194
	 15	 Shapiro-Wilk 5% Critical Value	 I	 0.911

16	 Data are normal at 5% significancelevel	

Recommended UCL to use :

	 25	 Use Student's-t UCL
Normal Statistic s

For Help, press F l

• This data does not follow the normal distribution for the selected variable .

• The program notes that the data follow an approximate gamma distribution and suggests i n
blue that the user should try Gamma UCLs .

• This output spreadsheet is easily saved by using the Save As option under the File menu .

• Double right click on the UCL output spreadsheet to view a screen with more options t o
save, print, or write this output sheet to a file .
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8d. Display After Selecting the Gamma UCLs Optio n

ProUCL Version 3 .0 - [Gamma UCL Statistics for Zn]

A

	

a

	

C

	

O

	

F

	

G

• Save this output spreadsheet by using the Save As option under the File menu .

• Double right click on the UCL output spreadsheet to view a screen with more options t o
save, print, or write this output sheet to a file .

lie C: 4P

Number of Valid Sample s
	4	 Number of DistinctSamples_
5	 Minimum	 	 35 . 6

56.34772 7
19.90365 2

9	 Variance

	

396 .1553_5 .
10	 k hat

	

110 .46677 3
11

	

k star (bias corrected)

	

19 .069788 7
12 Theta hat

	

15 .383486 2
	 13	 Theta star	 6 .2126835	

14	 nu hat	 460.53601
15	 nu star

	

399.0707
16 Approx .Chi Square Value (05) 1353 .75646
	 17	 Adjusted Level of Significance

	

0 .0386
	 18	 Adjusted Chi Square Value	 ,350.57725

	20	 A-D Test Statistic

	

0-.6-3-15704 . _
21 A-D 5% Critical Value

	

0 .7434474
	22	 K-S Test Statistic

	

0 .1313278
	23	 K-S 5% Critical Value	 0 .1852904
	24	 Data followgamma distribution
	25	 at 5% signifcance leve l

	 27	 95% UCL (Adjusted for Skewness) 	 I	 I
28	 Adjust ed-CLT UCL	 65 .1280421	
29	 Modified-t UCL

	

-

	

~=63 .93048 1

31__95% Non-parametric UC L
32	 Bootstrap-t UCL	 	 66 .748464	
33	 Hall's Bootstrap UCL

	

1 9-B-.97-9--4-3-6-

35

	

95% Gamma UCLs (Assuming Gamma Distributio n
	 36	 Approximate Gamma UCL	 163 .565559

37	 Adjusted Gamma UCL 	 64 .142003

41	 Recommended UCL to use :

Use Approximate Gamma UC L

► Gamma Statistics/

Mea n
Standard Deviatio n

42
43

File Edit Vi

	

Options Summary Statistics Histogr Goodnes -of-Fit Tests ups Window Help

	

x
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8e. Display After Selecting the Lognormal UCLs Optio n

ProUCL Version 3 ..0 - [Lognormal UCI_ Statistics for Cr. ]
File Edit View Options Summary Statistics Histogram Goodness-of-Fit Test s

Data f = ile . iG .lProUGI ~Dataltrack . xl s

	

3

	

Number of Valid Samples
Number of Distinct Samples	 __

	

22 1
Minirrum of	 log data

	

2 .501436 1
Maximum of Iog_ data

	

14 .709530 2
Mean of lo data	 13_295822 9
Standard Deviation of log ,data~

	

0 .5602537 1
Variance of log data

	

0 .3138842 1
10

	 a9149804 :

	

12	 Shapiro-Wilk 5°3o Critical Value

	

q .91 1
	 13	 Data are - lognormal at 5°16 -significance level , 	
1 4
	15

	

95% UCL (Assuming Normal Distribution)
	 16	 St u d e nt s t

	

!41 052366
1 7
	18	 Estimates Assuming Lognormal Distributio n
19 MLE Mean

	

- 31 .587611 i
	20	 MLE Standard Deviation

	

19 .18102 1
	21	 MLE Coefficient of Variation

	

q .6072324 1

	

22	 MLE Skewness

	

(2,0456027 1
	23	 MLE Median	 126 .9996231
24 MLE 80% Quantile

	

143 .346989
	 25	 MLE 90% Quantile

	

155 .4. 6481 5
26 MLE 95% Quantil e----	 67 ..859553 '
	27	 MLE 99% Quantile

	

,99 382186 1
28
29 MVU Estimate of Median

	

126 807641 1
	 30	 MVU Estimate of Mean	 	 «31 .332966 ;
31 MVU Estimate of Sd

	

F18.480569 !
	 32	 MVU Estimate of SE of Mean

	

L3 _9208996 ;
33

	

34

	

95% Non-parametric UC L
	 35	 Adjusted CLT UCLSAdjusted for Skewnes)l43 .376415

	

36	 Modified-t UCL (Adjusted for Skewness)

	

1. 41 .47558
Halls Bootstrap UCL

	

180 .951244
	38	 95% Chebyshev Mean, Sd) UCL

	

J54 .582557
	39	 97 .5% Chebyshev (Mean, Sd) UCL

	

164 .255707
99% Chebyshev (Mean Sd) UCL

	

183.256736

UCLs Assuming Lognormal Distributio n
95% H-UCL

	

40 .52767 4
95°l° Chyshe(MVUE) UCL	 48 .423771I
97 .5% Chebyshev (MVUE UCL

	

56 .81_13976 I
99% Chebyshev (MVUE) UCL

	

70 .345424

• Use the Print or Save As option under File menu or double right click on the UCL outpu t
spreadsheet to view a screen with more options to save, print, or write this output sheet to a
file .
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8f. Display After Selecting the Non-Parametric UCLs Optio n

°- ProUCL Version 3.0 - [Non-parametric UCL Statistics for Si]
'°` File Edit Vie Options Summary Statistics Histogra m

N e T

Goodness-of-Fit Tests UCLs Window Help

A B

	

C

	

D

	

F
1 Data File C:1ProUCL\Data1track .xis

	

'Variable :

	

(S I

Number of Valid Samples

	

19 ,
Number of_ Unique Samples 	 13
Minimum

	

0 .05 1
Maximum

	

69.5 1
Mean

	

6 .0651579
Median

	

mm

	

0 .12 1
9 Standard Deviation

	

1117 .421608 .
10 Variance

	

1303.51243
11
12-=-
13
14
15
16

Coefficient of Variation

	

1
2 .872408 1

Skewness

	

3 .2642255
Mean of lag data

	

-1 .322622 :
Standard Deviation of log data

	

:2 1718122

95_% UCL (Adjusted for Skewness)
17 A u_sted-_CLT_UCL

	

115 .8374 1
18 Modified-t UCL

	

13 .49469 .
19
20 95% Nonparametric UCL

	

j~
21
22
23
24
25

CLT UCL

	

112 .639294 :1
Jackknife UCL

	

12 .995847 ;
Standard Bootstrap UCL

	

112 .472003 :
Bootstrap-t UCL

	

163 .261944
Hall's Bootstrap UCL

	

174 .990748 ;
26 Percentile Bootstrap UCL

	

13 .367789 1
27 8CA Bootstrap UCL

	

18.762789 ;
28 95% Chebyshev (Mean, Sd) UCL

	

123 .486766 1
29 97 .5% Chebyshev (Mean, Sd) UCL

	

[ 31 .02511 i
30 _99%
31
32
33

35
34Recommende d

Chebyshev

Data are Non-parametric (005)

_

	

mended UCL to use :
Use 99% Chebyshev (Mean Sd) UCL

j ► (\	 Non-parametric Statistics_f
For Help, press F l

• The program notes that the data follow an approximate gamma distribution, and suggests in
blue that the user should try Gamma UCLs .

• Save this output spreadsheet by using the Save As option under the File menu .

• Double right click on the UCL output spreadsheet to view a screen with more options to
save, print, or write this output sheet to a file .
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8g. Display After Selecting the All UCLs Optio n

A

	

1

	

: B

	

C

	

I

	

D E ..

	

F

	

G H,

	

:_

	

1
1 Data File I CAProUCLlDatattrack xls (Variable :

	

E(Zn
2

	

. .
3 Raw Statistics

22
22

Normal Distribution Test
Shapiro Wilk Test Statisitic

	

0 .8179533
Shapiro-Wilk 5% Critical Value

	

0 .91 1
4
5

Number of Valid Sample s
Number of Unique Samples

6 Minimum 35.6 Data not normal at 5% significance level ,
7
8
9

Maximum
Mean

	

_ ..
56 .347727

Median

120i
~~- 95% UCL (Assuming Normal Distribution).. ... .... ..........

]

	

54 .65 Student's-t UCL_
	 _

163,649652
70 Standard Deviation 19 .903652 :
1 1
1 2
13

.Varianc e
Coefficient of Variatio n
Skewness

€396 .15535
1 0 .353229
1 .8624475

Gamma Distribution Test
A-D Test Statisti c
A-D 5% Critical Value

q .631570 4
0.743447 4

1 4
15
16
17

Gamma Statistic s
k ha t
k star (bias corrected)

	

j9 . q 697087 I
110 .466773( .

K-S Test Statisti c
K-S 5% Critical Valu e
Data follow gamma distributio n
at 5% significance level

0 .131327 8
0.185290 4

18 Theta hat 5 .3834862 1
1 9
20
21

Theta star

	

_
nu ha t
nu star

:6 .2126835 ;
1460 .53801 1

399 .0707 ;

95% UCLs (Assuming Gamma Distribution)

	

-
Approximate Gamma UCL

	

'63 56555 9
Adjusted Gamma UCL

	

64 .142003
22 Approx_Chi Square Value (;05)
23
24
25

Adjusted Level of Significanc e
Adjusted Chi Square Value

13_53 .75646~~
0.0386 1

350 .577251
Lognormal Distribution Tes t

Shapiro Wilk Test Statisitic

	

0 .9260604
Shapiro-Wilk 5% Critical Value

	

0 .91 1
26
27
28
29

_

	

Log-transformed Statistic s
Minimum of log dat a
Maximum of log dat a
Mean of log data

13 5723455 .
4 .7874917 1
13 .98301171

Data are lognormal at 5% significance leve l

95% UCLs (Assuming Lognormal Distributio n
95% H-UCL [63 .567309

30 Standard Deviation of log data 1

	

0.30625' 95% Chebyshev (MVUE) UCL 72.348122
31
32
33

Variance of log data €0 .0937891 97 .5% Cheb shev MVUE UCL
99% Chebyshev (MVUE) UCL

79 36529
93 .149158

34
35
36

......... ........ .................. .. ... ................... .................. (_	 a
95% Non-parametric UCLs ___ 	 y

CLT UCL
Adj-CLT UCL (Adjusted for skewness)

.. ................ .. .................
63 .32761 9
65 .12_8042

37 Mod-t UCL (Adjusted for skewness) 1 63 .93048 1
38
39
40

i_	
1

1	
Jackknife UC L
Standard Bootstrap__UCL 	 _62.968288

163.649652

{ Bootstrap-t UCL 67 .19281 8
41
42 _
43
44

RECOMMENDATION Hall's Bootstrap UC L
Percentile Bootstrap UC L
BGA Bootstrap UCL

	

167 . 022727
95% Chebyshev (Mean, Sd) UCL

78.089743
'63 .50909 1

74 .844596

(-
-

	

Data follow gamma distribution (0 .05)
_

Use Approximate Gamma UC L
45
46 [

97 .5% Chebyshev Mean Sd UC L
99% Chebyshev (Mean Sd) UCL

	

i98 .569749
82 .848206

General Statistic s

• For explanations of the methods and statistics used, refer to Appendix A .

• Use the Print or Save As option under File menu or double right click on the UCL outpu t
spreadsheet to view a screen with more options to save, print, or write this output to a file .

MILT_
UCLs Window Help

'roU

	

T erslon ► - i

	

tatlstics or n
ie File Edit View Options Summary Statistics ogram Goodness-of-Fit Test s
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8h. Result After Clicking on Fixed Excel Format Drop-Down Menu Ite m

• Note that the UCLs are computed for one variable at a time . The user selects a variable from
the variable list .

• For this Fixed Format option, the 0 .95 Confidence Coefficient is used in all UC L
computations .

• The user may adjust the number of bootstrap runs (default is 2,000) .

• Click on the Compute UCLs button to display the results .

• This option will display all statistics computed by ProUCL for each of the three parametri c
distributions and also for all non-parametric methods including the five bootstrap methods .

4A'-DDT
Dieldri n
Heptachlor
Endrin aldehyd e
Dieldri n
4,4'-DDE
Aroclor-1 24 8
Aroclor-1 242
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8i. Results After Clicking the Fixed Excel Format Compute UCLs Button

fr. ProUCL ttersitsn 3.0, [Fixed Format UCL Statisti

Histogram Goc ess-of-FiCTests UCLS " Window . Help

'F

	

1, .

	

G
	 A
Data File
Variable:	 ,
Raw Statistic s
Number of Observation s
Number of Missing Dat a
Number of Valid Sample s

[Number of Unique Sample s
Minimum F
Maximum
Mean
Standard	 Deviation
Variance
Coefficient of Variation
Skewness
Too Few Observations?
Normal Statistics
	 Lilliefors Test Statisiti c

Lilliefors 5%Critical Valu e
	 19	 ,Shapiro-Wilk Test Statisiti c
	 20	 ;Shapiro-VIk 5% Critical Valu e
	 5% Normality Test Result

D :1ProUCL\DATAICDELV 1 .XL S
	 Endrin aldehyde	

i t
1 6

0 .0018 °
120 1

7 .782076 5
28.9609331
838.73566i
3 .72149171

[4 .10269191
N O

N/R
N/R -
0.2945067 1

0 .892i
NOT NORMAL
120 .045264 i

1 1
1 2
13
14
15
16
17
1$.

21

E

Shapiro Wilk metho d
Shapiro Wilk metho d

Data not normal at 5 6 significanc e

• Note that the output is not sized to fit a printed page .

• This option can be omitted by all users who are not planning to import the ProUC L
calculation results into some other software to automate the calculations of exposure poin t
concentration terms . That is, all users who are not planning to use ProUCL as a production
tool to produce UCLs for several variables and data files may skip the use of this option .

• On Fixed Format output spreadsheet, each row contains a single item description o r
calculated statistic .

• Three primary columns contain information :
♦ Column A is a description of the various results and statistics .
♦ Column E contains all appropriate calculated results .
♦ Column G contains additional descriptive information as needed .
♦ Note that information from the primary columns (e.g., A, E, and G) may overflo w

into the columns to the right.
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• For column E:
♦ N/A means that the calculation for the associated statistic is not available .
♦ N/R means that the calculations for the associated statistic may not be reliable .
♦ Row 15 displays YES if there are too few observations to calculate appropriate UC L

statistics and displays NO if enough observations are available to compute al l
relevant statistics and UCLs .

♦ Row 35 displays AD GAMMA (if data are gamma distributed using A-D test) o r
NOT AD GAMMA (if data are not gamma distributed using A-D test) using th e
Anderson-Darling Gamma Test for 0 .05 level of significance .

♦ Similarly, Row 38 displays KS GAMMA or NOT KS GAMMA using th e
Kolmogorov-Smirnov Gamma Test for 0 .05 level of significance .

♦ As mentioned before, it should be noted that these two goodness-of-fit tests may lea d
to different conclusion (as is the case with other goodness-of-fit tests) about the dat a
distribution. In that case, ProUCL leads to the conclusion that the data follow an
approximate gamma distribution .

♦ Row 39 displays NOT GAMMA, APPROX GAMMA, or GAMMA depending on th e
results of the two Gamma goodness-of-fit tests .

♦ Row 52 displays LOGNORMAL or NOT LOGNORMAL depending on the result o f
the appropriate lognormality test for 0 .05 level of significance .

♦ Row 86 displays YES if user inspection is recommended and displays NO if n o
potential problems requiring manual inspection needed with the selected variable .

♦ Row 87 displays NORMAL, GAMMA, LOGNORMAL, or NON-PARAMETRIC a s
the distribution used in determining 95% UCL computation recommendations .

♦ Row 88 displays a recommended UCL value to use as an estimate of the EPC term .
♦ Row 89 displays a second recommended UCL (e .g., use of either Hall's bootstrap o r

bootstrap-t method may be recommended on the same data set) . These cells will be
blank if only one UCL is recommended for the selected variable .

♦ Row 90 displays a third recommended UCL . These cells will be blank if only one o r
two UCLs are recommended for the selected variable .

♦ Row 91 displays YES if the recommended 95% UCL exceeds the maximum value i n
the data set .

♦ Row 92 displays PLEASE CHECK if the recommended bootstrap UCLs are subject
to erratic or inflated values due to possible presence of outliers . Otherwise, row 92
displays NONE .

♦ Row 93 displays IN CASE if the recommended bootstrap UCL has an inflated valu e
due to the presence of outliers . Otherwise, row 93 displays NONE .

• For column G :
♦ Row 88 displays the name of the recommended 95% UCL .
♦ Row 89 displays the name of the second recommended 95% UCL . These cells wil l

be blank if only one UCL is recommended for the selected variable .
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♦ Row 90 displays the name of the third recommended 95% UCL . These cells will be
left blank if only one UCL is recommended for the selected variable .

♦ Row 93 displays the name of the alternative UCL to utilize if the recommende d
bootstrap (e .g., bootstrap-t or Hall's bootstrap) 95% UCL has an inflated value due to
presence of potential outliers .
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9. Window

Click on the Window menu to reveal these drop-down options .
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The following Window drop-down menu options are available :

• New Window option: opens a blank spreadsheet window .

• Cascade option : arranges windows in a cascade format . This is similar to a typical Windows
program option .

• Tile option : resizes each window and then displays all open windows . This is similar to a
typical Windows program option.

• Arrange Icons: similar to a typical Windows program option .

• The drop-down options include a list of all open windows with a check mark in front of the
active window . Click on any of the windows listed to make that window active .
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10. Help

Click on the Help menu item to reveal these drop-down options .

The following Help drop-down menu options are available :

• Help Topics option : ProUCL version 3 .0 does not have an online help program .

• About ProUCL: displays the software version number.

Summary Statistics Hstogram Goc)dn s-of-FitTests UCLs U ndow I Hey

Skewness
Mean of log dat a
Standarcl Deviation of log data

4 .102691 9
-2 .86761 1

X3 .499146 2
1 516

95% UCL (Adjusted for Skewnes s
Adjusted-CLT UC L
Modified-t UCL	

19
95% Non-parametric UCL

CLT UCL
Jackknife UCL

23 ,Standard Bootstrap UC L
Bootstrap-t UC L
.Hairs Bootstrap UCL
(Percentile Bootstrap UC L
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1 8

20
21
22

Non-parametric Statistics/
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Run Time Notes

• Cell size can be changed . The user can change the size of a cell by moving the mouse to th e
top row (the gray shaded row with a letter), then moving the mouse to the right side until th e
cursor changes to an arrow symbol

	

depress the left mouse button .

• This can be used to reveal additional precision or hidden text .
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Rules to Remember When Editing or Creating a New Data Fil e

ProUCL Version 3 . 0

Fle Edit view options Summary Statistics tiistogrartm Goodness-of-Fit Test UCLs Window Help

A	 B .	 C

1 . 3
2 . 9
4 .1

0

E

	

F. .

	

G

	

I

	

H

• Text may appear in the first row only. This row has column headers (variable names) fo r

your data.

• All alphanumeric text (including blanks, strings) appearing elsewhere (other than first row )
will be treated as zero data .

• Missing data (alphanumeric text, blanks) can be set to a large value such as 1x10 31 . All
entries with this value will be ignored from the computations .

• The last data entry for each column must be non-zero . The program determines the numbe r
of observations by working backwards up the data until a non-zero value is encountered .
Data in each column must end with a non-zero entry as shown above otherwise that zer o
value will be ignored. All intermediate zero entries are treated as valid data .

• It is recommended to use the default settings of the Data location screen when working wit h
your data sets .
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C. Recommendations to Compute a 95% UCL of the Population Mean (Th e
Exposure Point Concentration Term )

This section describes the recommendations on the computation of a 95% UCL of the unknow n
population arithmetic mean, ,u„ of a contaminant data distribution . These recommendations are
based upon the findings of Singh, Singh, and Engelhardt (1997, 1999) ; Singh et al . (2002a) ;
Singh, Singh, and Iaci (2002b) ; and Singh and Singh (2003) . These recommendations ar e
applicable to full data sets without censoring and non-detect observations .

Recommendations have been summarized for :

1) normally distributed data sets ,
2) gamma distributed data sets ,
3) lognormally distributed data sets, and
4) data sets which are non-parametric and do not follow any of the above mentioned thre e
distributions included in ProUCL .

A detailed description of the recommendations can be found in Section 5 of Appendix A. Also,
a list of all cited references is given in Appendix A .

For skewed parametric as well as non-parametric data sets, there is no simple solution t o
compute a 95% UCL of the population mean, p, . Contrary to the general conjecture, Singh et al .
(2002a), Singh, Singh, and Iaci (2002b), and Singh and Singh (2003) noted that the UCLs based
upon the skewness adjusted methods, such as the Johnson's modified-t and Chen's adjusted-CL T
do not provide the specified coverage (e .g., 95 %) to the population mean even for mildly t o
moderately skewed (e.g ., 6 , the sd of log-transformed data in interval [0 .5, 1 .0)) data sets for
samples of size as large as 100 . The coverage of the population mean by these skewness -
adjusted UCLs becomes poorer (much smaller than the specified coverage of 0 .95) for highly
skewed data sets, where the skewness levels are defined in Section 3 .2 .2 of Appendix A as a
function of a or d- (standard deviation of log-transformed data) .

It should be noted that even though, the simulation results for highly skewed data sets of smal l
sizes suggest that the bootstrap-t and Hall's bootstrap methods do approximately provide th e
adequate coverage to the population mean, sometimes in practice these two bootstrap method s
yield erratic inflated values (orders of magnitude higher than the other UCL values) whe n
dealing with individual highly skewed data sets of small sizes . This is especially true whe n
potential outliers may be present in the data set . Therefore, ProUCL Version 3 .0 provides
warning messages whenever the recommendations are made regarding the use the bootstrap-t
method or Hall's bootstrap method .
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D. Recommendations to Compute a 95% UCL of the Population Mean, p1

Using Symmetric and Positively Skewed Data Set s

Graphs from Singh and Singh (2003) showing coverage comparisons (e .g., attainment of the
specified confidence coefficient) for normal, gamma, and lognormal distributions for the variou s
methods considered are given in Appendix C . The user may want to consult those graphs for a
better understanding of the recommendations summarized in this section .

1 . Normally or Approximately Normally Distributed Data Set s

For normally distributed data sets, a UCL based upon the Student's-t statistic as given b y
equation (32) of Appendix A provides the optimal UCL of the population mean . Therefore ,
for normally distributed data sets, one should always use a 95% UCL based upon the
Student' s-t statistic .

• The 95% UCL of the mean given by equation (32) based upon Student's-t statistic may als o
be used when the sd, sy of the log-transformed data is less than 0 .5, or when the data set
approximately follows a normal distribution . A data set is approximately normal when th e
normal Q-Q plot displays a linear pattern (without outliers and significant jumps) and th e
resulting correlation coefficient is quite high (e .g ., 0 .95 or higher) .

• Student's-t UCL may also be used when the data set is symmetric (but possibly not normally
distributed) . A measure of symmetry (or skewness) is k3 , which is given by equation (43) of
Appendix A. As a rule of thumb, a value of k3 close to zero (e.g., 1k31< 0.2 — 0.3) suggests
approximate symmetry . The approximate symmetry of a data distribution can also be judged
by evaluating the histogram of the data set .
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2. Gamma Distributed Skewed Data Set s

In practice, many skewed data sets can be modeled both by a lognormal distribution and a
gamma distribution, especially when the sample size is smaller than 100 . Land's H-statisti c
based, 95% H-UCL of the mean based upon a lognormal model often results in an unjustifiabl y
large and impractical 95% UCL value. In such cases, a gamma model, G (k,6), may be used to
compute a reliable 95% UCL of the unknown population mean, ,u, .

• Many skewed data sets follow a lognormal as well as a gamma distribution . It should be
noted that the population means based upon the two models can differ significantly . The
lognormal model, based upon a highly skewed (e .g ., o 25) data set, will have an
unjustifiably large and impractical population mean, A, and its associated UCL . The gamma
distribution is better suited to model positively skewed environmental data sets .

One should always first check if a given skewed data set follows a gamma distribution . If a
data set does follow a gamma distribution or an approximate gamma distribution, one shoul d
compute a 95% UCL based upon a gamma distribution . Use of highly skewed (e .g ., o 2 .5 -
3 .0) lognormal distributions should be avoided . For such highly skewed lognormally
distributed data sets that can not be modeled by a gamma or an approximate gamm a
distribution, non-parametric UCL computation methods based upon the Chebyshe v
inequality may be used . ProUCL prints out at least one recommended UCL associated wit h
each data set .

• The five bootstrap methods do not perform better than the two gamma UCL computation
methods. It is noted that the performances (in terms of coverage probabilities) of bootstrap- t
and Hall's bootstrap methods are very similar . Out of the five bootstrap methods, bootstrap- t
and Hall's bootstrap methods perform the best (with coverage probabilities for the populatio n
mean closer to the nominal level of 0.95). This is especially true when skewness is quite
high (e .g., k < 0.1) and sample size is small (e .g ., n < 10-15) . This is illustrated in th e
graphs given in Appendix C . As mentioned before, whenever the use of Hall's UCL or
bootstrap-t UCL is recommended, an informative warning message about their use is als o
printed.

• Also, contrary to the conjecture, the bootstrap BCA method does not perform better than th e
Hall's method or the bootstrap-t method. The coverage for the population mean, p, provide d
by the BCA method is much lower than the specified 95% coverage . This is especially true
when the skewness is high (e .g., k < 1) and sample size is small (Singh and Singh (2003)) .

• From the results presented in Singh, Singh, and Iaci (2002b) and in Singh and Singh (2003),
it is concluded that for data sets which follow a gamma distribution, a 95% UCL of the mean
should be computed using the adjusted gamma UCL when the shape parameter, k, is :
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0.1 <_ k < 0.5, and for values of k 0.5, a 95% UCL can be computed using an approximat e

gamma UCL of the mean, p, .

• For highly skewed gamma distributed data sets with k < 0.1, bootstrap-t UCL or Hall' s

bootstrap (Singh and Singh (2003)) may be used when the sample size is small (e .g ., n < 15)

and adjusted gamma UCL should be used when sample size starts approaching and exceedin g

15 . The small sample size requirement increases as skewness increases (that is as k

decreases, n is required to increase) .

• It should be pointed out that the bootstrap-t and Hall's bootstrap methods should be use d
with caution as some times these methods yield erratic, unreasonably inflated, and unstabl e

UCL values, especially in the presence of outliers . In case Hall's bootstrap and bootstrap- t

methods yield inflated and erratic UCL results, the 95% UCL of the mean should b e

computed based upon adjusted gamma UCL .

These recommendations for the use of gamma distribution are summarized in Table 1 .

Table 1
Summary Table for the Computation of a 95% UCL

of the Unknown Mean, ,u 1 of a Gamma Distributio n

k Sample Size, n Recommendation

k

	

0 .5 For all n Approximate Gamma 95%UCL

0 .1 <_ k < 0.5 For all n Adjusted Gamma 95% UCL

k < 0.1
n < 15

n

	

15

95% UCL Based Upon Bootstrap-t or Hall' s
Bootstrap Method *

Adjusted Gamma 95% UCL if available ,
otherwise use Approximate Gamma 95% UCL

* If bootstrap-t or Hall's bootstrap methods yield erratic, inflated, and unstable UCL values

(which often happens when outliers are present), the UCL of the mean should be computed usin g

adjusted gamma UCL.
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3. Lognormally Distributed Skewed Data Sets

For lognormally distributed data sets, LN(u, a 2), the H-statistic based UCL provides the
specified 0 .95 coverage for the population mean for all values of a . However, the H-statistic
often results in unjustifiably large UCL values which do not occur in practice . This is especiall y
true when skewness is high (e.g., a > 2.0) . The use of a lognormal model unjustifiabl y
accommodates large and impractical values of the mean concentration and its UCLs. The
problem associated with the use of a lognormal distribution is that the population mean, p i of a
lognormal model becomes impractically large for larger values of a, which in turn results i n
inflated H-UCL of the population mean, p1 . Since the population mean of a lognormal mode l
becomes too large, none of the other methods except for the inflated H-UCL provides the
specified 95% coverage for that inflated population mean, p1 . This is especially true when the
sample size is small and skewness is high . For extremely skewed data sets (with a > 2 .5-3.0) of
sizes (e .g., < 70-100), the use of a lognormal distribution based H-UCL should be avoided (e .g . ,
see Singh et al . (2002a), Singh and Singh (2003)) . Therefore, alternative UCL computation
methods such as the use of a gamma distribution, or the use of a UCL based upon non-parametri c
bootstrap methods or Chebyshev inequality based methods, are desirable . All skewed data set s
should first be tested for a gamma distribution . For lognormally distributed data sets (that can
not be modeled by a gamma distribution), the method as summarized in Table 2 on the followin g
page, may be used to compute a 95% UCL of the mean. The details can be found in Appendix
A.

ProUCL can compute an H- UCL for samples of sizes up to 1000 . For highly skewed
lognormally distributed data sets of smaller sizes, some alternative methods to compute a 95 %
UCL of the population mean, p 1 , are summarized in Table 2 . Since skewness (as defined in
Section 3 .2.2, Appendix A) is a function of a (or 6 ), the recommendations for the computatio n
of the UCL of the population mean are also summarized in Table 2 for various values of the
MLE, a of a and the sample size, n . Here a is an MLE of a, and is given by the Sd of log -
transformed data given by equation (2) of Appendix A. Note that Table 2 is only applicable t o
the computation of a 95% UCL of the population mean based upon lognormally distributed data
sets without non-detect observations .
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Table 2
Summary Table for the Computation of a 95% UCL

of the Unknown Mean, 1u 1 of a Lognormal Population

Sample Size, n Recommendatio n

a < 0.5 For all n Student's-t, modified-t, or H-UCL

0 .5S a<1 .0 Foralln H-UCL

1 .0 <_ a<1 .5
n <25 95% Chebyshev (MVUE) UCL

n

	

25 H-UCL

1 .5 < a < 2.0

n <20 99% Chebyshev (MVUE) UCL

20

	

n < 50 95% Chebyshev (MVUE) UCL

n

	

50 . H-UCL

2.0 S a < 2 .5

n <20 99% Chebyshev (MVUE) UCL

20

	

n < 50 97.5% Chebyshev (MVUE) UCL

50

	

n < 70 95% Chebyshev (MVUE) UCL

n

	

70 H-UCL

2 .5 < a < 3 .0

n < 30
Larger of (99% Chebyshev (MVUE) UCL ,

99% Chebyshev(Mean, Sd) )

30

	

n < 70 97.5% Chebyshev (MVUE) UCL

70 _< n < 100 95% Chebyshev (MVUE) UCL

n

	

100 H-UCL

n< 15 Hall's bootstrap method 7

15

	

n < 50 Larger of (99% Chebyshev (MVUE) UCL ,
99% Chebyshev(Mean, Sd))

3 .0 _< a <_ 3 .5
50

	

n < 100 97.5% Chebyshev (MVUE) UCL

100

	

n < 150 95% Chebyshev (MVUE) UCL

n

	

150 H-UCL

a > 3.5 For all n Use non-parametric methods *

* If Hall's bootstrap method yields an erratic unrealistically large UCL value, then the UCL of
the mean may be computed based upon the Chebyshev inequality .
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4. Data Sets Without a Discernable Skewed Distribution - Non-parametric Skewed Dat a
Sets

The use of gamma and lognormal distributions as discussed here will cover a wide range o f
skewed data distributions . For skewed data sets which are neither gamma nor lognormal, one
can use a non-parametric Chebyshev UCL or Hall's bootstrap UCL (for small data sets) of th e
mean to estimate the EPC term .

• For skewed non-parametric data sets with negative and zero values, use a 95%
Chebyshev (Mean, Sd) UCL of the mean, p, to estimate the EPC term .

• For all other non-parametric data sets with only positive values, the following method
may be used to estimate the EPC term :

• For mildly skewed data sets with 6 0 .5, one can use the Student's-t statistic o r
modified-t statistic to compute a 95% UCL of the mean, ,u, .

• For non-parametric moderately skewed data sets (e .g., a or its estimate, a in the interva l
(0.5, 1]), one may use a 95% Chebyshev (Mean, Sd) UCL of the population mean, ,a, .

• For non-parametric moderately to highly skewed data sets (e.g ., a in the interval (1 .0 ,
2 .0]), one may use a 99% Chebyshev (Mean, Sd) UCL or 97.5% Chebyshev (Mean, Sd)
UCL of the population mean, ju„ to obtain an estimate of the EPC term.

• For highly skewed to extremely highly skewed data sets with a in the interval (2 .0, 3 .0] ,
one may use Hall's UCL or 99% Chebyshev (Mean, Sd) UCL to compute the EPC term.

• Extremely skewed non-parametric data sets with a exceeding 3 .0 are badly behaved and
UCLs based upon such data sets often provide poor coverage to the population mean .
For such highly skewed data distributions, none of the methods considered provide th e
specified 95% coverage for the population mean, ,u, . The coverages provided by the
various methods decrease as a increases . For such highly skewed data sets of sizes (e .g . ,
< 30), a 95% UCL can be computed based upon Hall's bootstrap method or bootstrap- t
method. Hall's bootstrap method provides the highest coverage (but less than 0 .95) when
the sample size is small . It is noted that the coverage for the population mean provide d
by Hall's method (and bootstrap-t method) does not increase much as the sample size, n
increases . However, as the sample size increases, coverage provided by 99% Chebyshev
(Mean, Sd) UCL method increases . Therefore, for larger samples, a UCL should be
computed based upon 99% Chebyshev (Mean, Sd) method. This large sample size
requirement increases as d increases (e .g ., n increases as Sd increases) . These
recommendations are summarized in Table 3 given in the following .
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Note : As mentioned before, the Hall's bootstrap method (and also bootstrap-t method )
sometimes yields erratic and unstable UCL values, especially when the outliers are present . If
Hall's bootstrap UCL represents an erratic and unstable value, a UCL of the population mean
may be computed using the 99% Chebyshev (Mean, Sd) method .

Table 3
Summary Table for the Computation of a 95% UCL of the Unknown Mean ,

,u l of a Skewed Non-parametric Distribution with all Positive Values ,
Where 6 is the Sd of Log-transformed Dat a

Sample Size, n Recommendatio n

6

	

0.5 For all n
95% UCL based upon Student's-t statistic o r

Modified-t statisti c

0.5 < 6 <_ 1 .0 For all n 95%

	

Chebyshev (Mean, Sd) UCL

1 .0 < d <_ 2 .0
n < 50 99%

	

Chebyshev (Mean, Sd) UCL

n

	

50 97 .5% Chebyshev (Mean, Sd) UCL

2 .0 <

	

3.0
n<10 Hall's Bootstrap UCL *

n

	

10 99%

	

Chebyshev (Mean, Sd) UCL

3.0<d

	

3.5
n<30 Hall's Bootstrap UCL *

n

	

30 99%

	

Chebyshev (Mean, Sd) UCL

6>3.5
n < 100 Hall's Bootstrap UCL *

n z 100 99%

	

Chebyshev (Mean, Sd) UCL

* If the Hall's bootstrap method yields an erratic and unstable UCL value (e .g ., this tends to
happen when outliers are present), the EPC term may be computed using the 99% Chebyshe v
(Mean, Sd) UCL .
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E. Should the Maximum Observed Concentration be Used as an Estimate o f
the EPC Term?

Singh and Singh (2003) also included the Max Test (using the maximum observed value as an
estimate of the EPC term) in their simulation study . Previous (e .g., EPA 1992 RAGS Document)
use of the maximum observed value has been recommended as a default value to estimate the
EPC term when a 95% UCL (e .g ., the H-UCL) exceeded the maximum value . Only two 95%
UCL computation methods, namely : the Student's- t UCL and Land's H-UCL were used
previously to estimate the EPC term (e .g ., EPA 1992) . ProUCL can compute a 95% UCL of
mean using several methods based upon normal, Gamma, lognormal, and non-parametri c
distributions . Thus, ProUCL has about fifteen (15) 95% UCL computation methods, at least one
of which (depending upon skewness and data distribution) can be used to compute an
appropriate estimate of the EPC term . Furthermore, since the EPC term represents the averag e
exposure contracted by an individual over an exposure area (EA) during a long period of time ;
therefore, the EPC term should be estimated by using an average value (such as an appropriate
95% UCL of the mean) and not by the maximum observed concentration . With the availability
of so many UCL computation methods, the developers of ProUCL, Version 3 .0 do not feel any
need to use the maximum observed value as an estimate of the EPC term. Singh and Singh
(2003) also noted that for skewed data sets of small sizes (e .g., <10-20), the Max Test does no t
provide the specified 95% coverage to the population mean, and for larger data sets, i t
overestimates the EPC term which may require unnecessary further remediation . This can also
be viewed in the graphs presented in Appendix C . Also, for the distributions considered, the
maximum value is not a sufficient statistic for the unknown population mean . The use of the
maximum value as an estimate of the EPC term ignores most (except for the maximum value) o f
the information contained in a data set. It is, therefore not desirable to use the maximum
observed value as an estimate of the EPC term representing average exposure by an individua l
over an EA . It is recommended that the maximum observed value NOT be used as an
estimate of the EPC term . However, for the sake of interested users, ProUCL displays a
warning message when the recommended 95% UCL (e .g ., Hall's bootstrap UCL etc .) of the
mean exceeds the observed maximum concentration . For such cases (when a 95% UCL does
exceed the maximum observed value), if applicable, an alternative UCL computation method i s
recommended by ProUCL .

It should also be noted that for highly skewed data sets, the sample mean indeed can even exceed
the upper 90%, 95 % etc. percentiles, and consequently, a 95% UCL of mean can exceed the
maximum observed value of a data set . This is especially true when one is dealing with
lognormally distributed data sets of small sizes . For such highly skewed data sets which can not
be modeled by a gamma distribution, a 95% UCL of the mean should be computed using a n
appropriate non-parametric method . These recommendations are summarized in Tables 1
through 3 of this User Guide .
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Alternatively, for such highly skewed data sets, other measures of central tendency such as th e
median (or some higher order quantile such as 70% etc .) and its upper confidence limit may b e
considered. The EPA, all other interested agencies and parties need to come to an agreement o n
the use of median and its UCL to estimate the EPC term. However, the use of the sampl e
median and/or its UCL as estimates of the EPC term needs further research and investigation .
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F. Left-Censored Data Sets with Non-detect s

ProUCL does not handle the left-censored data sets with non-detects, which are inevitable i n
many environmental studies . All parametric as well as non-parametric recommendations to
compute the mean, standard deviation, and a 95% UCL of the mean made by ProUCL software
are based upon full data sets without censoring . For mild to moderate number of non-detects
(e.g ., < 15%), one may compute these statistics based upon the commonly used rule of thumb o f
using %2 detection limit (DL) proxy method . However, the proxy methods should be use d
cautiously, especially when one is dealing with lognormally distributed data sets . For
lognormally distributed data sets of small sizes, even a single value -- small (e .g., obtained after
replacing the non-detect by %2 DL) or large (e .g ., an outlier) can have a drastic influence (ca n
yield an unrealistically large 95% UCL) on the value of the associated Land's 95% UCL . The
issue of estimating the mean, standard deviation, and a 95% UCL of the mean based upon left-
censored data sets of varying degrees (e .g ., <15%, 15%-50%, 50%-75%, or greater than 75%
etc.) of censoring is currently under investigation .
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Glossary

This glossary defines selected words in this User Guide to describe impractically large UCL

values of the unknown population mean, ,u 1 . In practice, the UCLs based upon Land's H-statisti c

(H-UCL), and some bootstrap methods such as the bootstrap-t and Hall's bootstrap method s
(especially when outliers are present) can become impractically large . The UCLs based upon

these methods often become larger than the UCLs based upon all other methods by severa l

orders of magnitude . Such large UCL values are not achievable as they do not occur in practice .

Words like unstable and unrealistic have been used to describe such impractically large UCL

values .

UCL : Upper Confidence Limit of the unknown population mean .

Coverage = Coverage Probability : The coverage probability (e .g ., = 0.95) of a UCL of the

population mean represents the confidence coefficient associated with the UCL .

Optimum : An interval is optimum if it possesses optimal properties as defined in the statistica l

literature. This may mean that it is the shortest interval providing the specified coverage (e .g . ,

0 .95) to the population mean . For example, for normally distributed data sets, the UCL of the

population mean based upon Student's t distribution is optimum .

Stable UCL : The UCL of a population mean is a stable UCL if it represents a number of

practical merit, which also has some physical meaning . That is, a stable UCL represents a

realistic number (e.g., contaminant concentration) that can occur in practice . Also, a stable UCL

provides the specified (at least approximately, as much as possible, as close as possible to th e

specified value) coverage (e .g., -0.95) to the population mean .

Reliable UCL : This is similar to a stable UCL.

Unstable UCL = Unreliable UCL = Unrealistic UCL : The UCL ofa population mean i s
unstable, unrealistic, or unreliable if it is orders of magnitude higher than the various other UCLs

ofpopulation mean . It represents an impractically large value that cannot be achieved i n

practice . For example, the use of Land's H statistic often results in impractically large inflate d

UCL value. Some other UCLs such as the bootstrap-t UCL and Hall's UCL, can be inflated by

outliers resulting in an impractically large and unstable value . All such impractically large UCL

values are called unstable, unrealistic, unreliable, or inflated UCLs in this User Guide .

58



References

EPA (1992), "Supplemental Guidance to RAGS : Calculating the Concentration Term, "
Publication EPA 9285 .7-081, May 1992 .

Gilbert, R.O . (1987), Statistical Methods for Environmental Pollution Monitoring, New York :
Van Nostrand Reinhold .

Hardin, J.W., and Gilbert, R.O. (1993), "Comparing Statistical Tests for Detecting Soi l
Contamination Greater Than Background," Pacific Northwest Laboratory, Battelle, Technica l
Report # DE 94-005498 .

Land, C . E. (1971), "Confidence Intervals for Linear Functions of the Normal Mean an d
Variance," Annals of Mathematical Statistics, 42, 1187-1205 .

Land, C . E. (1975), "Tables of Confidence Limits for Linear Functions of the Normal Mean and
Variance," in Selected Tables in Mathematical Statistics, Vol . III, American Mathematica l
Society, Providence, R .I ., 385-419.

Schulz, T. W., and Griffin, S . (1999), Estimating Risk Assessment Exposure Point
Concentrations when Data are Not Normal or Lognormal . Risk Analysis, Vol . 19, No. 4, 1999 .

Scout: A Data Analysis Program, Technology Support Project . EPA, NERL -LV, Las Vegas ,
NV 89193-3478 .

Singh, A. K., Singh, Anita, and Engelhardt, M., "The Lognormal Distribution in Environmenta l
Applications," EPA/600/R-97/006, December 1997 .

Singh, A. K., Singh, Anita, and Engelhardt, M., "Some Practical Aspects of Sample Size and
Power Computations for Estimating the Mean of Positively Skewed Distributions in
Environmental Applications," EPA/600/S-99/006, November 1999 .

Singh, A, . Singh, A .K., Engelhardt, M ., and Nocerino, J .M. (2002a), " On the Computation o f
the Upper Confidence Limit of the Mean of Contaminant Data Distributions ." Under EPA
Review .

Singh, A., Singh, A . K., and Iaci, R. J . (2002b) . " Estimation of the Exposure Point
Concentration Term Using a Gamma Distribution ." EPA/600/R-02/084 .

59



Singh, A . and Singh, A .K. (2003). Estimation of the Exposure Point Concentration Term (95 %
UCL) using Bias-Corrected Accelerated (BCA) Bootstrap Method and Several Other Method s
for Normal, Lognormal, and Gamma Distributions . Draft EPA Internal Report.

60



APPENDIX A

TECHNICAL BACKGROUND

METHODS FOR COMPUTING

THE EPC TERM ((1-a) 100%UCL)

AS INCORPORATED IN

ProUCL VERSION 3 .0 SOFTWARE



METHODS FOR COMPUTING THE EPC TERM ((1-a) 100%UCL)

AS INCORPORATED IN ProUCL VERSION 3 .0 SOFTWARE

1. Introduction

Exposure assessment and cleanup decisions in support of U .S . EPA projects are often made

based upon the mean concentrations of the contaminants of potential concern . A 95% upper

confidence limit (UCL) of the unknown population arithmetic mean (AM), A, is often used to :

estimate the exposure point concentration (EPC) term (EPA, 1992, EPA, 2002), determine th e

attainment of cleanup standards (EPA, 1989 and EPA, 1991), estimate background leve l

contaminant concentrations, or compare the soil concentrations with site specific soil screening

levels (EPA, 1996) . It is, therefore, important to compute a reliable, conservative, and stabl e

95% UCL of the population mean using the available data . The 95% UCL should

approximately provide the 95% coverage for the unknown population mean, 1 u, . EPA (2002) has

developed a guidance document for calculating upper confidence limits for hazardous wast e

sites . All of the UCL computation methods as described in the EPA (2002) guidance document

are available in ProUCL, Version 3 .0. Additionally, ProUCL, Version 3 .0 can also compute a

95% UCL of the mean based upon the gamma distribution which is better suited to model

positively skewed environmental data sets .

Computation of a (1-a) 100% UCL of the population mean depends upon the data

distribution. Typically, environmental data are positively skewed, and a default lognorma l

distribution (EPA, 1992) is often used to model such data distributions . The H-statistic based

Land's (Land 1971, 1975) H-UCL of the mean is used in these applications . Hardin and Gilbert

(1993), Singh, Singh, and Engelhardt (1997,1999), Schultz and Griffin,1999, Singh et al .

(2002a), and Singh, Singh, and Iaci (2002b) pointed out several problems associated with the

A-1



use of the lognormal distribution and the H-UCL of the population AM. In practice, for

lognormal data sets with high standard deviation (Sd), a of the natural log-transformed dat a

(e.g ., a exceeding 2 .0), the H-UCL can become unacceptably large, exceeding the 95% and

99% data quantiles, and even the maximum observed concentration, by orders of magnitud e

(Singh, Singh, and Engelhardt, 1997) . This is especially true for skewed data sets of size s

smaller than n < 50 - 70 .

The H-UCL is also very sensitive to a few low or high values . For example, the addition of a

sample with below detection limit measurement can cause the H-UCL to increase by a large

amount (Singh, Singh, and Iaci, (2002b)) . Realizing that the use of H-statistic can result in

unreasonably large UCL, it has been recommended (EPA, 1992) to use the maximum observe d

value as an estimate of the UCL (EPC term) in cases where the H-UCL exceeds the maximu m

observed value . Recently, Singh, Singh and Iaci (2002b), and Singh and Singh (2003) studie d

the computation of the UCLs based upon a gamma distribution and several non-parametri c

bootstrap methods . Those methods have also been incorporated in ProUCL, Version 3 .0. There

are fifteen UCL computation methods available in ProUCL; five are parametric and ten are non-

parametric . The non-parametric methods do not depend upon any of the data distributions .

Graphs from Singh and Singh (2003) showing coverage comparisons for normal, gamma, and

lognormal distributions for the various methods are given in Appendix C .

Both lognormal and gamma distributions can be used to model positively skewed data sets .

It should be noted that it is hard to distinguish between a lognormal and a gamma distribution ,

especially when the sample size is small such as n < 50 - 70 . In practice many skewed data set s

follow a lognormal as well as a gamma distribution . Singh, Singh, and Iaci (2002b) observed

that the UCL based upon a gamma distribution results in reliable and stable values of practica l

merit . It is therefore, always desirable to test if an environmental data set follows a gamm a

distribution. For data sets (of all sizes) which follow a gamma distribution, EPC should b e
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computed using an adjusted gamma UCL (when 0.1 k < 0 .5) of the mean or an approximate

gamma UCL (when k 0.5) of the mean as these UCLs approximately provide the specified

95% coverage to the population mean, 1U1 = kB of a gamma distribution. For values of k < 0 .1 ,

a 95% UCL may be obtained using bootstrap-t method or Hall's bootstrap method when th e

sample size, n is less than 15, and for larger samples, a UCL of the mean should be computed

using the adjusted or approximate gamma UCL . Here, k is the shape parameter of a gamm a

distribution as described in Section 2 .2 . It should be pointed out that both bootstrap-t and Hall' s

bootstrap methods sometimes result in erratic, inflated, and unstable UCL values especially in

the presence of outliers . Therefore, these two methods should be used with caution . The user

should examine the various UCL results and determine if the UCLs based upon the bootstrap- t

and Hall's bootstrap methods represent reasonable and reliable UCL values of practical merit . If

the results based upon these two methods are much higher than the rest of methods (except for

the UCLs based upon lognormal distribution), then this could be an indication of erratic UCL

values . ProUCL prints out a warning message whenever the use of these two bootstrap method s

is recommended. In case these two bootstrap methods yield erratic and inflated UCLs, the UCL

of the mean should be computed using the adjusted or the approximate gamma UCL computation

method .

ProUCL has been developed to test for normality, lognormality, and a gamma distribution of

a data set, and to compute a conservative and stable 95% UCL of the population mean, p, . The

critical values of Anderson-Darling test statistic and Kolmogorov-Smirnov test statistic to test

for gamma distribution were generated using Monte Carlo simulation experiments . These

critical values are tabulated in Appendix B for various levels of significance . Singh, Singh, and

Engelhardt (1997,1999), Singh, Singh, and Iaci (2002b), and Singh and Singh (2003) studie d

several parametric and non-parametric UCL computation methods which have been included in

ProUCL . Most of the mathematical algorithms and formulae used in ProUCL to compute th e

various statistics are summarized in this Appendix A . For details, the user is referred to Singh ,
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Singh, and Iaci (2002b), and Singh and Singh (2003) . Some graphs from Singh and Sing h

(2003) showing coverage comparisons for normal, gamma, and lognormal distributions for the

various methods are given in Appendix C . ProUCL computes the various summary statistics fo r

raw, as well as log-transformed data . In this User Guide and in ProUCL, log-transform (log)

stands for the natural logarithm (in) to the base e . ProUCL also computes the maximum

likelihood estimates (MLEs) and the minimum variance unbiased estimates (MVUEs) of various

unknown population parameters of normal, lognormal, and gamma distributions . This, of

course, depends upon the underlying data distribution . Based upon the data distribution ,

ProUCL computes the (1-cc) 100% UCLs of the unknown population mean, p using five (5)

parametric and ten (10) non-parametric methods .

The five parametric UCL computation methods include :

1) Student's- t UCL,

2) approximate gamma UCL,

3) adjusted gamma UCL,

4) Land's H-UCL, and

5) Chebyshev inequality based UCL (using MVUE of parameters of a lognormal distribution) .

The ten non-parametric methods included in ProUCL are :

1) the central limit theorem (CLT) based UCL,

2) modified-t statistic (adjusted for skewness) ,

3) adjusted-CLT (adjusted for skewness) ,

4) Chebyshev inequality based UCL (using sample mean and sample standard deviation) ,

5) Jackknife UCL ,

6) standard bootstrap ,

7) percentile bootstrap ,

8) bias - corrected accelerated (BCA) bootstrap ,
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9) bootstrap-t, and

10) Hall's bootstrap .

An extensive comparison of these methods have been performed by Singh and Singh (2003 )

using Monte Carlo simulation experiments . It is well known that the Jackknife method (with

sample mean as an estimator) and Student's-t method yield identical UCL values . It is also wel l

known that the standard bootstrap method and the percentile bootstrap method do not perform

well (do not provide adequate coverage) for skewed data sets . However, for the sake o f

completeness all of the parametric as well as non-parametric methods have been included in

ProUCL. Also, it has been noted that the omission of a method (e .g., bias-corrected accelerate d

bootstrap method) triggers the curiosity of some of the users as they start thinking that the

omitted method may perform better than the various other methods already incorporated in

ProUCL. In order to satisfy all users, ProUCL Version 3 .0 has additional UCL computation

methods which were not included in ProUCL Version 2 .1 .

1 .1 Non-detects and Missing Data

ProUCL does not handle non-detects . All parametric as well as non-parametri c

recommendations to compute the mean, standard deviation, and a 95% UCL of the mean made

by ProUCL software are based upon full data sets without censoring . The program can be

modified to incorporate methods which can be used to compute appropriate estimates of th e

population mean and standard deviation, and a UCL of the mean for left-censored data sets with

non-detects . For now, for data sets with mild to moderate number of non-detects (e .g ., < 15%) ,

one may replace non-detects by half of the detection limit (as often done in practice) and us e

ProUCL on the resulting data set to compute an appropriate 95% UCL of the mean, p, . However,

the proxy methods such as replacing non-detects by %2 of the detection limit (DL) should be use d

cautiously, especially when one is dealing with lognormally distributed data sets . For
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lognormally distributed data sets of small sizes, even a single value -- small (e .g ., obtained afte r

replacing the non-detect by '/2 DL) or large (e .g., an outlier) can have a drastic influence (ca n

yield an unrealistically large 95% UCL) on the value of the associated Land's 95% UCL . The

issue of estimating the mean, standard deviation, and a 95% UCL of the mean based upon left -

censored data sets of varying degrees of censoring (e .g., < 15%, 15% - 50%, 50% - 75%, and

greater than 75%) is currently under investigation.

However, it should be noted that ProUCL can handle missing data . Missing data value can be

entered as a very large value in scientific notation, such as 1 .0 E 31 . All entries with this valu e

will be treated as missing data .

2 . Procedures to Test for Data Distributio n

Let x,, x2, . . . , x„ be a random sample (e .g., representing lead concentrations) from the

underlying population (e .g, remediated part of a site) with unknown mean, fir„ and variance, 01 2 .

Let p and u represent the population mean and the population standard deviation (Sd) of the log-

transformed (natural log to the base e) data . Let y and sy (_ 8) be the sample mean and sampl e

Sd, respectively, of the log-transformed data, y, = log (x,) ; i = 1, 2, . . . , n . Specifically, let

-

	

1 "
Y = — EYEn ~= 1

2

	

" - 20-

	

- n-1tE( yi - Y )

Similarly, let x and sX be the sample mean and Sd of the raw data, xl , x2 , . . , x,,, obtained by

replacing y by x in equations (1) and (2), respectively . In this User Guide, irrespective of th e

underlying distribution, p,, and a12 represent the mean and variance of the random variable X

(1 )

(2)
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(in original units), whereas ,u, and a 2 represent the mean and variance of its logarithm, given by

Y = loge(X) = natural logarithm .

Three data distributions have been considered . These include the normal and lognormal

distributions, and the gamma distribution. Shapiro - Wilk (n 50) and Lilliefors (n > 50) tes t

statistics are used to test for normality or lognormality of a data set . The empirical distributio n

function (EDF) based methods: the Kolmogorov-Smirnov (K-S) test and the Anderson-Darlin g

(A-D) test are used to test for a gamma distribution . Extensive critical values for these two test

statistics have been obtained via Monte Carlo simulation experiments . For interested users ,

these critical values are given in Appendix B for various levels of significance . In addition to

these formal tests, the informal histogram and quantile-quantile (Q-Q) plot are also available t o

test data distributions . A brief description of these tests follows .

2.1 Test Normality and Lognormality of a Data Set

ProUCL tests the normality or lognormality of the data set using the three differen t

methods described below. The program tests normality or lognormality at three different level s

of significance, namely, 0 .01, 0.05, and 0 .1 . The details of these methods can be found in the

cited references .

2.1.1 Normal Quantile-Quantile (Q-Q) Plo t

This is a simple informal graphical method to test for an approximate normality o r

lognormality of a data distribution (Hoaglin, Mosteller, and Tukey (1983), Singh (1993)) . A

linear pattern displayed by the bulk of the data suggests approximate normality or lognormalit y

(performed on log-transformed data) of the data distribution. For example, a high value (e .g . ,

0 .95 or greater) of the correlation coefficient of the linear pattern may suggest approximate
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normality (or lognormality) of the data set under study . However, it should be noted that on thi s

graphical display, observations well separated (sticking out) from the linear pattern displayed b y

the bulk data represent the outlying observations . Also, apparent jumps and breaks in the Q- Q

plot suggest the presence of multiple populations . The correlation coefficient of such a Q-Q plo t

can still be high, which does not necessarily imply that the data follow a normal (or lognormal )

distribution. Therefore, the informal graphical Q-Q plot test should always be accompanied b y

other more powerful tests, such as the Shapiro-Wilk test or the Lilliefors test . The goodness-of-

fit test of a data set should be judged based upon the formal more powerful tests . The normal Q-

Q plot may be used as an aid to identify outliers and/or to identify multiple populations .

ProUCL performs the graphical Q-Q plot test on raw data as well as on standardized data . All

relevant statistics such as the correlation coefficient are also displayed on the Q-Q plot .

2.1. 2 Shapiro-Wilk W Test

This is a powerful test and is often used to test the normality or lognormality of the data se t

under study (Gilbert, 1987) . ProUCL performs this test for samples of size 50 or smaller . Based

upon the selected level of significance and the computed test statistic, ProUCL also informs th e

user if the data are normally (or lognormally) distributed . This information should be used to

obtain an appropriate UCL of the mean. The program prints the relevant statistics on the Q- Q

plot of the data (or the standardized data) . For convenience, the normality, lognormality, o r

gamma distribution test results at 0 .05 level of significance are also displayed on the UCL Excel -

type output summary sheets .

2.1.3 Lilliefors Test

This test is useful for data sets of larger size (Dudewicz and Misra, 1988) . ProUCL perform s

this test for samples of sizes up to 1000 . Based upon the selected level of significance and th e

A-8



computed test statistic, ProUCL informs the user if the data are normally (or lognormally )

distributed . The user should use this information to obtain an appropriate UCL of the mean .

The program prints the relevant statistics on the Q-Q plot of data (or standardized data) . For

convenience, the normality, lognormality, or gamma distribution test results at 0 .05 level o f

significance are also displayed on the UCL output summary sheets . It should be pointed out

that sometimes, in practice, these two goodness-of-fit tests can lead to different conclusions .

2 .2

	

Gamma Distribution

Singh, Singh, and Iaci (2002b) studied gamma distribution to model positively skewe d

environmental data sets and to compute a UCL of the mean based upon a gamma distribution .

They studied several UCL computation methods using Monte Carlo simulation experiments . A

continuous random variable, X (e .g., concentration of a contaminant), is said to follow a gamm a

distribution, G (k,6) with parameters k > 0 (shape parameter) and 0 > 0 (scale parameter), if it s

probability density function is given by the following equation :

f(xk,0=~,]~ 1 .xk-lex/e

U T(k)
(3 )x> 0

and zero otherwise . The parameter k is the shape parameter, and 0 is the scale parameter . Many

positively skewed data sets follow a lognormal as well as a gamma distribution . Gamma

distribution can be used to model positively skewed environmental data sets . It is observed that

the use of a gamma distribution results in reliable and stable 95% UCL values. It is therefore ,

desirable to test if an environmental data set follows a gamma distribution . If a skewed data se t

does follow a gamma model, then a 95% UCL of the population mean should be computed using

a gamma distribution . For details of the two gamma goodness-of-fit tests, maximum likelihoo d

estimation of gamma parameters, and the computation of a 95% UCL of the mean based upon a

gamma distribution, refer to D'Agostino and Stephens (1986), and Singh, Singh, and Iac i
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(2002b) . These methods are briefly described as follows .

For data sets which follow a gamma distribution, the adjusted 95% UCL of the mean based

upon a gamma distribution is optimal and approximately provides the specified 95% coverage t o

population mean, 1u1 = kO (Singh, Singh, and Iaci (2002b)) . Moreover, this adjusted gamma

UCL yields reasonable numbers of practical merit . The two test statistics used for testing for a

gamma distribution are based upon the empirical distribution function (EDF). The two EDF

tests included in ProUCL are the Kolmogorov-Smirnov (K-S) test and Anderson - Darling (A-D )

test which are described in D'Agostino and Stephens (1986) and Stephens (1970) . The

graphical Q-Q plot for gamma distribution has also been included in ProUCL . The critical

values for the two EDF tests are not easily available, especially when the shape parameter, k i s

small (k < 1) . Therefore, the associated critical values have been obtained via extensive Mont e

Carlo simulation experiments . These critical values for the two test statistics are given in

Appendix B . The 1%, 5%, and 10% critical values of these two test statistics have bee n

incorporated in ProUCL, Version 3 .0. A brief description of the three goodness-of-fit tests fo r

gamma distribution is given as follows. It should be noted that the goodness-of-fit tests fo r

gamma distribution depend upon the MLEs of gamma parameters, k and 0 which should be

computed first before performing the goodness-of-fit tests .

2 .2 .1 Quantile - Quantile (Q-Q) Plot for a Gamma Distribution

Let x 1 , x2 , . . . , x„ be a random sample from the gamma distribution, G(k,0) . Let

x(1) S x(2) <_ . . . . S x() represent the ordered sample . Let k and B represent the maximum

likelihood estimates (MLEs) of k and 8, respectively . For details of the computation of MLEs of

k and 0, refer to Singh, Singh, and Iaci (2002b) . Estimation of gamma parameters is also briefly

described later in this User Guide . The Q-Q plot for gamma distribution is obtained by plotting

the scatter plot of pairs (xo, ,x ( , ) ) ; i := 1,2, . . .,n. The quantiles, xo , are given by the
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equation x0, = z0,9/ 2; is = 1,2, . . .,n , where the quantiles zo, (already ordered) are obtaine d

by using the inverse chi-square distribution and are given as follows .

z
o,

f (X zk
)cIX ;k = (i — 1/ 2) / n ; i := 1,2, . . .,n

	

(4)
0

In (4), X
2k

represents a chi-square random variable with 2k degrees of freedom (di.) . The

program, PPCHI2 (Algorithm AS91) as given in Best and Roberts (1975), Applied Statistic s

(1975, Vol . 24, No. 3) has been used to compute the inverse chi-square percentage points, z o, as

given by the above equation given by (4) . This is an informal graphical test to test for a gamm a

distribution. This informal test should always be accompanied by the formal Anderson-Darlin g

test or Kolmogorov- Smirnov test . A linear pattern displayed by the scatter plot of bulk of the

data may suggest approximate gamma distribution . For example, a high value (e .g ., 0 .95 or

greater) of the correlation coefficient of the linear pattern may suggest approximate gamm a

distribution of the data set under study. However, on this Q-Q plot points well separated fro m

the bulk of data may represent outliers . Also, apparent breaks and jumps in the gamma Q-Q plot

suggest the presence of multiple populations . The correlation coefficient of such a Q-Q plot ca n

still be high which does not necessarily imply that the data follow a gamma distribution .

Therefore, the graphical Q-Q plot test should always be accompanied by the other mor e

powerful formal EDF tests, such as the Anderson-Darling test or the Kolmogorov-Smirnov test .

The final conclusion about the data distribution should be based upon the formal goodness-of-fi t

tests. The Q-Q plot may be used to identify outliers and/or presence of multiple populations . Al l

relevant statistics including the MLE of k are also displayed on the gamma Q-Q plot.

2.2.2 Empirical Distribution Function (EDF) Based Goodness-of -Fit Test s

Next, the two formal EDF test statistics used to test for a gamma distribution are described

briefly. Let F(x) be the cumulative distribution function (CDF) of the gamma random variabl e
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X . Let Z=F(X), then Z represents a uniform U(0,1) random variable . For each x, , compute z,

using the incomplete gamma function given by the equation z, = F(x, );i:= 1,2, . . .,n . The

algorithm as given in Numerical Recipes book (Press et al ., 1990) has been used to compute th e

incomplete gamma function. Arrange the resulting, z, in ascending order as

z(1)

	

z (2) S . . .S z (n) . Let z =

	

z, / n be the mean of the z, ;is= 1,2, . . .,n . Compute the

following two test statistics .

D+ = max, {1 / n — z ( ;) } and D- = max, {z( , ) — (i — 1) / n}

The Kolmogorov - Smirnov test statistic is given by D = max(D+ , D- ) .

Anderson Darling test statistic is given by the following equation .

n

A 2 = - n- (1 / n)E {(2i - 1)[logz( ;) + log(1- z(n+1_,) )] }

The critical values for these two statistics D and A 2 are not readily available . For the Anderson-

Darling test, only asymptotic critical values are available in the statistical literature (D'Agostin o

and Stephens (1986)) . Some raw critical values for K-S test are given in Schneider (1978), an d

Schneider and Clickner (1976) . For these two tests, ExpertFit (2001) software and Law an d

Kelton (2000) use generic critical values for all completely specified distributions as given in

D'Agostino and Stephens (1986) . It is observed that the conclusions derived using these generi c

critical values for completely specified distributions and the simulated critical values for gamma

distribution with unknown parameters can be different . Therefore, to test for a gamma

distribution, it is preferred and advised to use the critical values of these test statistic s

specifically obtained for gamma distributions with unknown parameters .

(5)

(6)
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In practice, the distributions are not completely specified and exact critical values for thes e

two test statistics are needed . It should be noted that the distributions of the K-S test statistic, D

and A-D test statistic, A2 do not depend upon the scale parameter, 9 , therefore, the scal e

parameter, 9 has been set equal to 1 in all of the simulation experiments . The critical values fo r

these two statistics have been obtained via extensive Monte Carlo simulation experiments fo r

several small and large values of the shape parameter, k and with B = 1 . These critical are

included in Appendix B. In order to generate the critical values, random samples from gamm a

distributions were generated using the algorithm as given in Whittaker (1974). It is observed

that the critical values thus obtained are in close agreement with all available published critical

values . The generated critical values for the two test statistics have been incorporated i n

ProUCL for three levels of significance, 0 .1, 0 .05, and 0 .01 . For each of the two tests, if the test

statistic exceeds the corresponding critical value, then the hypothesis that the data follow a

gamma distribution is rejected. ProUCL computes these test statistics and prints them on th e

gamma Q-Q plot and also on the UCL summary output sheets generated by ProUCL . The

estimation of the parameters of the three distributions as incorporated in ProUCL is discusse d

next. It should be pointed out that sometimes, in practice, these two goodness-of-fit tests ca n

lead to different conclusions .

3. Estimation of Parameters of the Three Distributions Included in ProUC L

Through out this User Guide, p, and a12 are the mean and variance of the random variable X ,

and /d and a2 are the mean and variance of the random variable Y = log(X) . Also, 6 represents

the standard deviation of the log-transformed data . It should be noted that for both lognorma l

and gamma distributions, the associated random variable can take only positive values . This i s

typical of environmental data sets to consist of only positive values .
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3 .1

	

Normal Distribution

Let X be a continuous random variable (e .g., concentration of COPC), which follows a

normal distribution, N(v, 2) with mean, ,u„ and variance, u, 2 . The probability density functio n

of a normal distribution is given by the following equation :

1
f

	

61 ) =
61

2 exp(- (x - p,) 2 / 2o-1 2 ) ;-oo < x < o0
-Jr—Tr

For normally distributed data sets, it is well known (Hogg and Craig, 1978) that the minimum

variance unbiased estimates (MVUEs) of mean, ,u„ and variance, 612 are respectively given by

the sample mean,

	

and sample variance, sX . It is also well known that for normally distribute d

data sets, a UCL of the unknown mean, p, based upon Student's-t distribution is optimal . It is

observed via Monte Carlo simulation experiments (Singh and Singh (2003) Draft EPA Report )

that for normally distributed data sets, the modified-t UCL and UCL based upon bootstrap- t

method also provide the exact 95% coverage to the population mean. For normally distribute d

data sets, the UCLs based upon these three methods are very similar .

3.2 Lognormal Distribution

If Y= log(X) is normally distributed with the mean 1u and variance 2 , Xis said to be

lognormally distributed with parameters fc and a2 and is denoted by LN(u, a 2) . It should b e

noted that id and a 2 are not the mean and variance of the lognormal random variable, X, but the y

are the mean and variance of the log-transformed random variable Y, whereas A, and Ql
2

represent the mean and variance of X . Some parameters of interest of a two-parameter

lognormal distribution, LN(,u, Q 2 ), are given as follows :

Mean

	

= p1 = exp(p+ 0 .5a')

	

(8)

(7)
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(9)

(10)

(12)

Median

	

= M = exp(u)

Variance

	

= Qi = exp(2p+ o- (exp(a 2) - 1 )

Coefficient of Variation

	

= CV = /µ l = V/(exp(a 2 )- 1 )

Skewness

	

= (CV ) 3 + 3(CV )

3.2.1 MLEs of the Parameters of a Lognormal Distributio n

For lognormal distributions, note that y and s y (= a ) are the maximum likelihood

estimators (MLEs) of p and a, respectively . The MLE of any function ofthe parameters p and

a 2 is obtained by simply substituting these MLEs in place ofthe parameters (Hogg and Craig ,

1978). Therefore, replacing, and a by their MLEs in equations (8) through (12) will result i n

the MLEs (but biased) of the respective parameters of the lognormal distribution. The program

ProUCL computes all of these MLEs for lognormally distributed data sets . These MLEs are also

printed on the Excel-type output spread sheets generated by ProUCL .

3.2.2 Relationship Between Skewness and Standard Deviation, a

Note that for a lognormal distribution, the CV (given by equation (11) above) and th e

skewness (given by equation (12)) depend only on a . Therefore, in this User Guide and also in

ProUCL, the standard deviation, a (Sd of log-transformed variable, Y), or its MLE, sl, (=a) has

been used as a measure of skewness of lognormal and also of other skewed data sets with

positive values . The larger is the Sd, the larger are the CV and the skewness . For example, for a

lognormal distribution: with a = 0.5, the skewness = 1 .75 ; with a =1 .0, the skewness = 6 .185 ;

with a =1 .5, the skewness = 33 .468; and with a = 2 .0, the skewness = 414.36 . Thus, the

skewness of a lognormal distribution becomes unreasonably large as a starts approaching an d
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exceeding 2 .0. Note that for gamma distribution, skewness is a function of the gamma

parameter, k. As k decreases, skewness increases .

It is observed (Singh, Singh, Engelhardt (1997), and Singh et al . (2002a)) that for smaller

sample sizes (such as smaller than 50), and for values of a approaching 2 .0 (and skewnes s

approaching 414), the use of the H-statistic based UCL results in impractical and unacceptabl y

large values . For simplicity, the various levels of skewness of a positive data set as used i n

ProUCL and in this User Guide are summarized as follows :

Skewness as a Function ofo (or its MLE, sy = $ ), Sd of log(X )

Standard Deviation Skewness

a < 0.5 Symmetric to mild skewness

0.5

	

a < 1 .0 Mild Skewness to Moderate Skewness

1.0 c a < 1.5 Moderate Skewness to High Skewness

1.5 - a < 2.0 High skewness

2.0 _< a < 3 .0 Extremely high skewness

a z 3.0 Provides poor coverage

These values of a (or its estimate, Sd of log-transformed data) are used to define skewness level s

of lognormal and skewed non-parametric data distributions as used in Tables A2 and A3 .

3.2.3 MLEs of the Quantiles of a Lognormal Distributio n

For highly skewed (e .g., a exceeding 1 .5), lognormally distributed populations, the

population mean, ,u„often exceeds the higher quantiles (e .g ., 80%, 90%, 95%) of the

distribution. Therefore, the computation of these quantiles is also of interest . This is especiall y

true when one may want to use the MLEs of the higher order quantiles (e .g ., 95%, 97.5% etc .) as
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an estimate of the EPC term. The formulae to compute these quantiles are briefly describe d

here .

The pth quantile (or 100 pth percentile), xp, of the distribution of a random variable, X, i s

defined by the probability statement, P(X <_ xp) = p. If zp is the pth quantile of the standard

normal random variable, Z, with P(Z s zp) = p, then the pth quantile of a lognormal distribution

is given by xp = exp(p + zpa) . Thus the MLE of the pth quantile is given b y

Xp = exp(,u + zpa)

	

(13)

For example, on the average, 95% of the observations from a lognormal LN(,u, a) distribution

would lie below exp(p + 1 .65o) . The 0.5th quantile of the standard normal distribution is zo5 =

0, and the 0 .5th quantile (or median) of a lognormal distribution is M = exp(p), which i s

obviously smaller than the mean, p„ as given by equation (8) . Also note that the mean, ,u„ i s

greater than xp if and only if a > 2zp. For example, when p = 0.80, zp = 0.845, ,u, exceeds x 0 .80,

the 80 th percentile if and only if a > 1 .69, and, similarly, the mean, ,u„ will exceed the 95 th

percentile if and only if a > 3.29. ProUCL computes the MLEs of the 50% (median), 90% ,

95%, and 99% percentiles of lognormally distributed data sets . For lognormally distributed

background data sets, a 95% or 99% percentile may be used as an estimate of the background

threshold value, that is background level contaminant concentration .

3.2.4 MVUEs of Parameters of a Lognormal Distribution

Even though the sample AM, x , is an unbiased estimator of the population AM, p„ it does

not have the minimum variance (MY) . The MV unbiased estimates (MVUEs) of p, and 021 of a

lognormal distribution are given as follows :
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Ill = exp(Y)gn(sy /2),

	

(14 )

= exp(2.)1gg(2sy)- gn((n - 2)sy/(n - 1 ))]

	

(15 )

where the series expansion of the function g„( ,u) is given in Bradu and Mundlak (1970), an d

Aitchison and Brown (1976). Tabulations of this function are also provided by Gilbert (1987) .

Bradu and Mundlak (1970) give the MVUE of the variance of the estimate A,

d2 (/11 ) = exp(2y)[(gn(4I2))2- gn ((n- 2)s 2/(n- 1))]

	

(16 )

The square root of the variance given by equation (16) is called the standard error (SE) of the

estimate, ,u,, given by equation (14) . Similarly, a MVUE of the median of a lognormal

distribution is given b y

M= exp(y-)gn (- 4/(2(n- 1))) .

	

(17 )

For lognormally distributed data set, ProUCL also computes these MVUEs given by equation s

(14) through (17) .

3.3 Estimation of the Parameters of a Gamma Distribution

Next, we consider the estimation of parameters of a gamma distribution . Since the

estimation of gamma parameters is typically not included in standard statistical text books, thi s

has been described in some detail in this User Guide . The population mean and variance of a

gamma distribution, G(k,0), are functions of both parameters, k and B. In order to estimate the

mean, one has to obtain estimates of k and B. The computation of the maximum likelihoo d

estimate (MLE) ofk is quite complex and requires the computation of Digamma and Trigamma
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functions . Several authors (Choi and Wette, 1969, Bowman and Shenton, 1988, Johnson, Kotz ,

and Balakrishnan, 1994) have studied the estimation of shape and scale parameters of a gamm a

distribution. The maximum likelihood estimation method to estimate shape and scale parameter s

of a gamma distribution is described below .

Let x1,x2, . . .,Xn be a random sample (e .g ., representing contaminant concentrations) of size n

from a gamma distribution, G(k,0), with unknown shape and scale parameters k and 0 ,

respectively . The log likelihood function (obtained using equation (3)) is given as follows :

logL(x 1 ,x 2 , . . .,xn ;k,O) = –nklog(0) – nlogF(k)+ (k - 1)E log x 1 – Ex .

	

(18)

To find the MI,Es of k and 0, we differentiate the log likelihood function as given in (18) wit h

respect to k and 0, and set the derivatives to zero . This results in the following two equations :

log(0) + r(
= Elog(x ; ) , and

(

	 k
n

)

)

1
k8= — Ex; =

n

Solving equation (20) for B and substituting the result in equation (19), we get the followin g

equation :

r'(k) 1

	

( 1 Elog(k)
= n

E log(x ; ) – log
n

x;
r (k)

There does not exist a closed form solution of equation (21) . This equation needs to be solve d

numerically for k , which requires the use of Digamma and Trigamma functions . This is quite

easy to do using a personal computer. An estimate ofk can be computed iteratively by using th e

Newton-Raphson (Faires and Burden, 1993) method leading to the following iterative equation :

(19)

(20)

(21)
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log(k,_I)-

	

- M
=

	

1 /

	

-

	

' (kr-i )

(22)

The iterative process stops when k starts to converge. In practice, convergence is typically

achieved in fewer than 10 iterations . In equation (22)

M = log(x) - E log(x ; ) , and

(k) = dk (log I' (k)) , and ' (k) = k (T (k))

where tF (k) is the Digamma function, and tF' (k) is the Trigamma function . In order to obtai n

the MLEs of k and 0, one needs to compute the Digamma and Trigamma functions . Good

approximate values for these two functions (Choi and Wette, 1969) can be obtained using th e

following approximations . For k 8, these functions are approximated b y

tl'(k) log(k)- {1+ [1- (1/10- 1/(21k2))/k2]/(6k)}/(2k) (23)

and

F'(k) {1+{1+[1-(1/5- 1/(7k2))/k2]/(3k)}/(2k)}/k (24)

For k < 8, one can use the following recurrence relation to compute these functions :

(25)
(k) = `F(k+ 1)— 1/k,

and tll '(k)= P'(k+1)+1/k2 (26)
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In ProUCL, equations (23) - (26) have been used to estimate k . The iterative process requires an

initial estimate of k. A good starting value for kin this iterative process is give n

by k o = 1 / (2 Al) . Thom (1968) suggested the following approximation as an estimate of k:

k 4M(1+ /1+ 3 M
J

	

(27)

Bowman and Shenton (1988) suggested using lc" as given by (27) to be a starting value of k for

an iterative procedure, calculating lc" at the I th iteration from the following formula :

k7_1 {log(k1_1 ) —

	

(k1_1 ) }
=

	

M
(28)

Both equations (22) and (28) have been used to compute the MLE of k . It is observed that the

estimate, k based upon Newton-Raphson method as given by equation (22) is in clos e

agreement with that obtained using equation (28) with Thom's approximation as an initia l

estimate . Choi and Wette (1969) further concluded that the MLE of k, k , is biased high . A

bias-corrected (Johnson, Kotz, and Balakrishnan, 1994) estimate of k is given by :

k ' = (n — 3)k / n + 2 / (3n)

	

(29)

In (29), If" is the MLE of k obtained using either (22) or (28) . Substitution of equation (29) in

equation (20) yields an estimate of the scale parameter, 0 given as follows :

=

	

(30)

ProUCL computes simple MLE of k and 0, and also bias- corrected estimates of k and O . The

bias-corrected estimate of k as given by (29) has been used in the computation of the UCLs (as

given by equations (34) and (35)) of the mean of a gamma distribution .
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4. Methods for Computing a UCL of the Unknown Population Mea n

ProUCL computes a (1-a) 100 % UCL of the population mean, ,u, using the following fiv e

parametric and ten non-parametric methods . Five of the ten non-parametric methods are base d

upon the bootstrap method . Modified-t and adjusted central limit theorem adjust for skewnes s

for skewed data sets . However, it is noted that (Singh, Singh, and Iaci (2002b) and Singh an d

Singh (2003)) this adjustment is not adequate enough for moderately skewed to highly skewe d

data sets . Some graphs from Singh and Singh (2003) showing coverage comparisons for normal ,

gamma, and lognormal distributions for the various methods are given in Appendix C . The

methods as included in ProUCL are listed as follows .

Parametric Methods

1. Student's-t statistic - assumes normality or approximate normalit y

2. Approximate Gamma UCL - assumes gamma distribution of the data set

3. Adjusted Gamma UCL - assumes gamma distribution of the data set

4. Land's H-Statistic - assumes lognormality

5. Chebyshev Theorem using the MVUE of the parameters of a lognormal distribution

(denoted by Chebyshev (MVUE)) - assumes lognormality

Non-parametric Method s

1. Modified- t statistic - modified for skewed distribution s

2. Central Limit Theorem (CLT) - to be used for large samples

3. Adjusted Central Limit Theorem (Adjusted-CLT) - adjusted for skewed distributions an d

to be used for large samples
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4. Chebyshev Theorem using the sample arithmetic mean and Sd (denoted by Chebyshe v

(Mean, Sd))

5. Jackknife method - yields the same result as Student's-t statistic for the UCL of the

population mean

6. Standard bootstrap

7. Percentile bootstrap

8. Bias-corrected accelerated (BCA) bootstrap

9. Bootstrap- t

10. Hall's bootstrap

Even though it is well known that some of the non-parametric methods (e .g ., CLT method ,

UCL based upon Jackknife method (same as Student' s-t UCL), standard bootstrap and percentil e

bootstrap methods) do not perform well to provide the adequate coverage to the population mean

of skewed distributions, these methods have been included in ProUCL to satisfy the curiosity of

all users .

ProUCL can compute a (1-a) 100 % UCL (except for the H-UCL and adjusted gamma UCL )

of the mean for any confidence coefficient (1-a) value lying in the interval [0 .5, 1 .0). For the

computation of the H-UCL, only two confidence levels, namely, 0 .90 and 0 .95 are supported by

ProUCL. For adjusted gamma UCL, three confidence levels namely, 0 .90, 0 .95, and 0 .99 are

supported by ProUCL . An approximate gamma UCL can be computed for any level o f

significance in the interval [0 .5,1) . Based upon the sample size, n, skewness, and the dat a

distribution, the program also makes recommendations on how to obtain an appropriate 95 %

UCL of the unknown population mean, . These recommendations are summarized in th e

Recommendations and Summary Section 5 of this appendix . The various algorithms and

methods used to compute a (1-a) 100% UCL of the mean as incorporated in ProUCL ar e

described in section 4 .1 .
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4.1 (1-a) 100% UCL of the Mean Based Upon Student's-t Statisti c

The widely used well-known Student's-t statistic is given by,

(31 )

where x and sX are, respectively, the sample mean and sample standard deviation obtaine d

using the raw data . If the data are a random sample from a normal population with mean, ,u„ and

standard deviation, al , then the distribution of this statistic is the familiar Student's-t distributio n

with (n-1) degrees of freedom (di) . Let

	

be the upper a''h quantile of the Student's-t

distribution with (n-1) df.

A (1-0100% UCL of the population mean, /AI , is given by,

UCL = x +

	

l sx//.

	

(32)

For a normally (when the skewness is about -0) distributed population, equation (32) provide s

the best (optimal) way of computing a UCL of the mean . Equation (32) may also be used to

compute a UCL of the mean based upon very mildly skewed (e .g., Iskewnessl<0 .5) data sets ,

where skewness is given by equation (43). It should be pointed out that even for mildly to

moderately skewed data sets (e .g ., when o, Sd of log-transformed data starts approaching and

exceeding 0 .5), the UCL given by (32) may not provide the desired coverage (e .g., =0.95) to th e

population mean. This is especially true when the sample size is smaller than 20-25 (Singh et al .

(2002a), and Singh and Singh (2003)) . The situation gets worse (coverage much smaller tha n

0 .95) for higher values of the Sd, a, or its MME, si,,.
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4.2 Computation of UCL of the Mean of a Gamma, G(k,6) Distribution

In statistical literature, even though methods exist to compute a UCL of the mean of a gamm a

distribution (Grice and Bain, 1980, Wong, 1993), those methods have not become popular du e

to their computational complexity . Those approximate and adjusted methods depend upon the

Chi-square distribution and an estimate of the shape parameter, k . As seen above, computation

of an MLE of k is quite involved, and this works as a deterrent to the use of a gamma

distribution-based UCL of the mean. However, the computation of a gamma UCL currently

should not be a problem due to easy availability of personal computers .

Given a random sample, xi , x2 , . . . , x,, of size n from a gamma, G(k,O) distribution, it can b e

shown that 2nX / 0 follows a Chi-square distribution, x2,zk , with 2nk degrees of freedom (df) .

When the shape parameter, k, is known, a uniformly most powerful test of size a of the nul l

hypothesis, Ho :pizCs, against the alternative hypothesis, H 1 : p, < Cs, is to reject Ho i f

X / CS < x2nk (a) / 2nk . The corresponding (1-a)100% uniformly most accurate UCL for

the mean, p 1 , is then given by the probability statement .

P(2nkx / )(znk (a) >— ) = 1— a

	

(33)

where, ," (a) denotes the a cumulative percentage point of the Chi-square distribution (e .g . ,

a is the area in the left tail) . That is, if Y follows

	

, then P(Y

	

(a )) = a . In practice ,

k is not known and needs to be estimated from data. A reasonable method is to replace k by its

bias -corrected estimate, k ' , as given by equation (29) . This results in the following approximate

(1-a) 100% UCL of the mean, p, .

2Approximate - UCL = 2nk *x / x2 c (a ) (34)
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It should be pointed out that the UCL given by equation (34) is an approximate UCL and

there is no guarantee that the confidence level of (1-a) will be achieved by this UCL . However,

it does provide a way of computing a UCL of the mean of a gamma distribution . Simulation

studies conducted in Singh, Singh, and laci (2002b) and in Singh and Singh (2003) suggest tha t

an approximate gamma UCL thus obtained provides the specified coverage (95%) as the shape

parameter, k approaches 0 .5 . Thus when k 0 .5, one can always use the approximate UCL

given by (34) . This approximation is good even for smaller (e .g., n = 5) sample sizes as shown

in Singh, Singh, and Iaci (2002b), and in Singh and Singh (2003) .

Grice and Bain (1980) computed an adjusted probability level, 0 (adjusted level o f

significance), which can be used in (34) to achieve the specified confidence level of (1-a) . For

a = 0 .05 (confidence coefficient of 0 .95), a = 0.1, and a = 0 .01, these probability levels are given

below in Table 1 for some values of the sample size n. One can use interpolation to obtain an

adjusted R for values of n not covered in the table . The adjusted (1-a) 100% UCL of the

gamma mean, ,u, = kO is given by the following equation .

Adjusted - UCL = 2nk *x l

	

(f3),

	

(35)

where R is given in Table 1 for a = 0 .05, 0 .1, and 0.01 . Note that as the sample size, n, become s

large, the adjusted probability level, 0, approaches the specified level of significance, a . Except

for the computation of the MLE of k, equations (34) and (35) provide simple Chi-square-

distribution-based UCLs of the mean of a gamma distribution . It should also be noted that the

UCLs as given by (34) and (35) only depend upon the estimate of the shape parameter, k, and are

independent of the scale parameter, 0, and its ML estimate . Consequently, as expected, it i s

observed that coverage probabilities for the mean associated with these UCLs do not depen d

upon the values of the scale parameter, 0. It should also be noted that gamma UCLs do not

depend upon the standard deviation of data which gets distorted by the presence of outliers .
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Thus, outliers will have reduced influence on the computation of the gamma distribution base d

UCLs of the mean, p, .

Table 1. Adjusted Level of Significance, (3

a=0.05 a=0.1 a=0.0 1

n probability level, R probability level, p probability level, 1i

5 0.0086 0.0432 0.0000

10 0.0267 0.0724 0.001 5

20 0 .0380 0 .0866 0.0046

40 0.0440 0.0934 0.0070

-- 0.0500 0.1000 0.0100

4.3 (1-a) 100% UCL of the Mean Based Upon H-Statistic (H-UCL)

The one-sided (1-a)100% UCL for the mean, ,a„ of a lognormal distribution as derived by

Land (1971, 1975) is given as follows :

UCL = exp(y + 0.5s
y

+ syHI _ a/i/(n - 1) )

	

(36 )

Tables of H-statistic critical values can be found in Land (1975) and also in Gilbert (1987) .

Theoretically, when the population is lognormal, Land (1971) showed that the UCL given by

equation (36) possesses optimal properties and is the uniformly most accurate unbiase d

confidence limit . However, it is noticed that in practice, the H-statistic based results can b e

quite disappointing and misleading especially when the data set consists of outliers, or is a

mixture from two or more distributions (Singh, Singh, and Engelhardt, 1997, 1999), Singh ,

Singh, and Iaci (2002b)) . Even a minor increase in the Sd, sy , drastically inflates the MVUE of
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/A1 and the associated H-UCL . The presence of low as well as high data values increases the Sd,

s y„ which in turn inflates the H-UCL. Furthermore, it is observed (Singh, Singh, Engelhardt, an d

Nocerino (2002a)) that for samples of sizes smaller than 15-25, and for values of v approachin g

1 .0 and higher (for moderately skewed to highly skewed data sets), the use of H-statistic based

UCL results in impractical and unacceptably large UCL values .

In practice many data sets follow a lognormal as well as gamma model . However, the

population mean based upon a lognormal model can be significantly greater (often unrealisticall y

large) than the population mean based upon a gamma model . In order to provide the specifie d

95% coverage for an inflated mean based upon a lognormal model, the resulting UCL based

upon H-statistic also yield impractical UCL values . Use of a gamma model results in practica l

estimates (e .g ., UCL) of the population mean . Therefore, for positively skewed data sets, it is

recommended to test for a gamma model first . If data follow a gamma distribution, then the

UCL of the mean should be computed using a gamma distribution . The gamma distribution i s

better suited to model positively skewed environmental data sets .

4.4 (1-a) 100% UCL of the Mean Based Upon Modified-t Statistic for Asymmetrica l

Population s

Chen (1995), Johnson (1978), Kleijnen, Kloppenburg, and Meeuwsen (1986), and Sutto n

(1993) suggested the use of the modified-t statistic for testing the mean of a positively skewe d

distribution (including the lognormal distribution) . The (1 -a)100 % UCL of the mean thus

obtained is given b y

UCL = x + /(6szn) + tin- ,sxI,/

	

(37)

where P.3 , an unbiased moment estimate (Kleijnen, Kloppenburg, and Meeuwsen, 1986) of the
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third central moment, is given as follows ,

n

µ3 = n E (x;-x)3/[(n-1)(n-2)] .

	

(38)

It should be pointed out that this modification for a skewed distribution does not perform wel l

even for mildly to moderately skewed data sets (e .g., when a starts approaching and exceedin g

0.75) . Specifically, it is observed that the UCL given by equation (37) may not provide th e

desired coverage of the population mean, p i , when a starts approaching and exceeding 0.75

(Singh, Singh, and Iasi (2002b)). This is especially true when the sample size is smaller than

20-25. This small sample size requirement increases as a increases . For example, when a start s

approaching and exceeding 1 .5, the UCL given by equation (37) does not provide the specifie d

coverage (e .g., 95%), even for samples as large as 100 . Since this method does not require any

distributional assumptions, it is a non-parametric method .

4.5 (1-a) 100% UCL of the Mean Based Upon the Central Limit Theorem

The Central Limit Theorem (CLT) states that the asymptotic distribution, as n approaches

infinity, of the sample mean, xn is normally distributed with mean, p„ and variance, a1 2/n .

More precisely, the sequence of random variables given by

-n

	

r-1

,r

has a standard normal limiting distribution . In practice, for large sample sizes, n, the sample

mean, x, has an approximate normal distribution irrespective of the underlying distributio n

function. Since the CLTmethod requires no distributional assumptions, this is a non-parametri c

method.

Zn (39)
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As noted by Hogg and Craig (1978), if a, is replaced by the sample standard deviation, sX , the

normal approximation for large n is still valid . This leads to the following approximate larg e

sample non-parametric (1-a) 100% UCL of the mean ,

UCL = + z~sxIj.

	

(40)

An often cited rule of thumb for a sample size associated with the CLT method is n 30.

However, this may not be adequate enough if the population is skewed, specifically when, a (Sd

of log-transformed variable) starts exceeding 0 .5 (Singh, Singh, Iaci 2002b) . In practice for

skewed data sets, even a sample as large as 100 is not large enough to provide adequate coverage

to the mean of skewed populations (even for mildly skewed populations) . A refinement of the

CLT approach, which makes an adjustment for skewness as discussed by Chen (1995), is give n

as follows .

4.6 (1-a) 100% UCL of the Mean Based Upon the Adjusted Central Limit Theore m

(Adjusted -CLT)

The "adjusted-CLT" UCL is obtained if the standard normal quantile, za in the'upper limit o f

equation (40) is replaced by (Chen, 1995 )

za, ji = za +

	

(1 + 2z 2 ) .
6IT?

Thus, the adjusted (1 - a) 100 % UCL for the mean,

	

is given by

UCL= x+ [za+ k3 ( 1 +2za)/(61r)jsx/lr.

	

(42)

Here lr3 , the coefficient of skewness (raw data) is given by

(41 )
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Skewness (raw data) k3 = 113 /sx

	

(43)

where 113 , an unbiased estimate of the third moment, is given by equation (38) . This is another

large sample approximation for the UCL of the mean of skewed distributions. This is a non-

parametric method as it does not depend upon any of the distributional assumptions .

As with the modified-t UCL, it is observed that this adjusted-CLT UCL does not provide

adequate coverage to the population mean when the population is skewed, specifically when a

starts approaching and exceeding 0 .75 (Singh, Singh, and Iaci (2002b), Singh and Singh (2003)) .

This is especially true when the sample size is smaller than 20-25 . This small sample siz e

requirement increases as a increases . For example, when a starts approaching and exceedin g

1 .5, the UCL given by equation (42) does not provide the specified coverage (e .g ., 95%), even

for samples as large as 100 . Also, it is noted that the UCL as given by (42) does not provide

adequate coverage to the mean of a gamma distribution, especially when k 1 .0 and sample size

is small . Some graphs from Singh and Singh (2003) showing coverage comparisons for normal,

gamma, and lognormal distributions for the various methods are given in Appendix C .

Thus, the UCLs based upon these skewness adjusted methods, such as the Johnson' s

modified-t and Chen's adjusted-CLTdo not provide the specified coverage to the populatio n

mean for mildly to moderately skewed (e .g., a in (0 .5, 1 .0)) data sets, even for samples as larg e

as 100 (Singh, Singh, and Iaci (2002b)) . The coverage of the population mean provided b y

these UCLs becomes worse (much smaller than the specified coverage) for highly skewed data

sets .

4.7 (1-cc) 100% UCL of the Mean Based Upon the Chebyshev Theorem (Using the Sampl e

Mean and Sample Sd)
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The Chebyshev inequality can be used to obtain a reasonably conservative but stabl e

estimate of the UCL of the mean, ,u, . The two-sided Chebyshev theorem (Hogg and Craig, 1978 )

states that given a random variable, X, with finite mean and standard deviation, p, and o 1 , we

have

P (-ko1 sX- p1 skol) s1-1/k2 .

	

(44)

This result can be applied on the sample mean,x (with mean, p, and variance, o / n ) to

obtain a conservative UCL for the population mean, ,u, . For example, if the right side of equatio n

(44) is equated to 0 .95, then k = 4 .47, and UCL = .i-+ 4.47 al/VT; is a conservative 95% uppe r

confidence limit for the population mean, ,u, . Of course, this would require the user to know th e

value of a 1 . The obvious modification would be to replace a 1 with the sample standard

deviation, sX, but since this is estimated from data, the result is no longer guaranteed to b e

conservative . In general, the following equation can be used to obtain a (1-a) 100% UCL of the

population mean, p :

UCL = x +V(1/a)sx/J (45)

A slight refinement of equation (45) is given (suggested by S . Ferson) as follows, '

UCL=+ .J((1/a)-1)sx I -.J (46)

ProUCL computes the Chebyshev (1-a) 100% UCL of the population mean using equation

(46) . This UCL is denoted by Chebyshev (Mean, Sd) on the output sheets generated b y

ProUCL. Since this Chebyshev method requires no distributional assumptions about the data se t

under study, this is a non-parametric method . This UCL may be used as an estimate of the

upper confidence limit of the population mean, ,u, when data are not normal, lognormal, o r

gamma distributed especially when Sd, o (or its estimate, sy) starts approaching and exceeding
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1 .5 . Recommendations on its use to a compute an estimate of the EPC term are summarized i n

Section 5 .

4.8 (1-a) 100% UCL of the Mean of a Lognormal Population Based Upon the Chebyshe v

Theorem (Using theMVUE of the Mean and its Standard Error )

ProUCL uses equation (44) on theMVUEs of the lognormal mean and Sd to compute a UCL

(denoted by (1-a)100 % Chebyshev (MVUE) ) of the population mean of a lognormal population .

In general, ifp, is an unknown mean, /Ail is an estimate, and (jll) is an estimate of the standar d

error of ,u1 , then the following equation ,

UCL = ,u1 +((1/a) -1) 1 '2 a(,il )

	

(47)

will give an approximate (1-a) 100 % UCL for 1u1, which should tend to be conservative, but thi s

is not assured . For example, for a lognormally distributed data set, a 95% (with a =0 .05)

Chebyshev (11%tVUE) UCL of the mean can be obtained using the following equation ,

UCL = + (4.359) QCLZ)

	

(48)

where, Vi and a(,ul ) are given by equations (14) and (16), respectively . Thus, for lognormally

distributed data sets, ProUCL also uses equation (48) to compute a (1-a) 100% Chebyshev

(MVUE) UCL of the mean. It should be noted that for lognormally distributed data sets, som e

recommendations to compute a 95% UCL of the population mean are summarized in Table A 2

of the Recommendations and Summary Section 5 .0. It should however be pointed out tha t

goodness-of-fit test for a gamma distribution should be performed first . If data follow a gamma

distribution (irrespective of the lognormality of the data set), then the UCL of mean, il l should be

computed using a gamma distribution as described in Section 4 .2 .
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From Monte-Carlo results discussed in Singh, Singh, and Iaci (2002b) and in Singh an d

Singh (2003), it is observed that for highly skewed gamma distributed data sets (with k < 0 .5),

the coverage provided by the Chebyshev 95% UCL (given by (46)) is smaller than the specified

coverage of 0 .95. This is especially true when the sample size is smaller than 10-20 . As

expected, for larger samples sizes, the coverage provided by the 95% Chebyshev UCL is at leas t

95%. For larger samples, the Chebyshev 95% UCL will result in a higher (but stable) UCL of

the mean of positively skewed gamma distributions .

It is observed (Singh and Singh (2003)) that for moderately skewed to highly skewed

lognormally distributed data sets (e .g ., with a exceeding 1), 95% Chebyshev MVUE UCL does

not provide the specified coverage to the population mean. This is true when the sample size i s

less than 10-50 . Some graphs from Singh and Singh (2003) showing coverage comparisons fo r

normal, gamma, and lognormal distributions for the various methods are given in Appendix C .

For highly skewed (e .g., a > 2), lognormal data sets of sizes, n less than 50-70, the H-UCL

results in unstable (impractical values which are orders of magnitude higher than other UCLs)

unjustifiably large UCL values (Singh et al ., (2002a)) . For such highly skewed lognormall y

distributed data sets of sizes less than 50 - 70, one may want to use 97.5% or 99% Chebyshev

MVUE UCL ofthe mean as an estimate of the EPC term (Singh and Singh (2003)) . These

recommendations are summarized in Table A2 .

It should also be noted that for skewed data sets, the coverage provided by a 95% UCL based

upon Chebyshev inequality is higher than those based upon the percentile bootstrap method or

the BCA bootstrap method . Thus for skewed data sets, the Chebyshev inequality based 95 %

UCL of the mean (samples of all sizes from both lognormal and gamma distributions) perform s

better than the 95% UCL based upon the BCA bootstrap method . Also, when data ar e

lognormally distributed, the coverage provided by Chebyshev MVUE UCL (Singh and Singh

(2003)) is better than the one based upon Hall's bootstrap or bootstrap-t method . This i s
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especially true 'when the sample size starts exceeding 10-15 . However, for highly skewed dat a

sets of sizes less than 10-15, it is noted that Hall's bootstrap method provides slightly bette r

coverage than the Chebyshev MVUE UCL method. Just as for the gamma distribution, it is

observed that for lognormally distributed data sets, the coverage provided by Hall's an d

bootstrap-t methods do not increase much with the sample size .

4.9 (1-a) 100% UCL of the Mean Using the Jackknife and Bootstrap Methods

Bootstrap and jackknife methods as discussed by Efron (1982) are non-parametric statistica l

resampling techniques which can be used to reduce the bias of point estimates and construc t

approximate confidence intervals for parameters, such as the population mean . These two

methods require no assumptions regarding the statistical distribution (e .g., normal, lognormal, o r

gamma) of the underlying population, and can be applied to a variety of situations no matter ho w

complicated. There exists in the literature of statistics an extensive array of different bootstra p

methods for constructing confidence intervals for the population mean, ,ul . In the ProUCL,

Version 3 .0 software package, five bootstrap methods have been incorporated :

1) the standard bootstrap method ,

2) bootstrap-t method (Efron, 1982, Hall, 1988) ,

3) Hall's bootstrap method (Hall, 1992, Manly, 1997) ,

4) simple bootstrap percentile method (Manly, 1997), and

5) bias-corrected accelerated (BCA) percentile bootstrap method (Efron and Tibshirani ,

1993, Many, 1997) .

Let x l , x2 , 	 x„ be a random sample of size n from a population with an unknown parameter ,

B (e.g., 0= ~1) , and let 0 be an estimate of B, which is a function of all n observations . For

example, the parameter, B, could be the population mean, and a reasonable choice for the
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estimate, 0, might be the sample mean, x . Another choice for O is the MVUE of the mean of a

lognormal population, especially when dealing with lognormal data sets .

4.9.1 (1-a) 100% UCL of the Mean Based Upon the Jackknife Metho d

In the jackknife approach, n estimates of 0 are computed by deleting one observation at a

time (Dudewicz and Misra (1988)) . Specifically, for each index, I, denote by Om, the estimate of

0 (computed similarly as a') when the ith observation is omitted from the original sample of siz e

n, and let the arithmetic mean of these estimates be given by

(49)

A quantity known as the ith "pseudo-value" is defined b y

Jt = ne'- (n- 1)4) .

The jackknife estimator of 5 is given by the following equation .

J(d) = --J = n61 - (n- )1 B. (51 )=E T
1

If the original estimate a' is biased, then under certain conditions, part of the bias is removed b y

the jackknife method, and an estimate of the standard error of the jackknife estimate, J(a'), i s

given by

(50)

n

1

	

J - J .
n(n- 1)

	

'
(52)

Next, consider the t-type statistic given by
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t= J(bf)-«'

	

(53)

The t-type statistic given by (53) has an approximate Student's-t distribution with n-1 degrees of

freedom, which can be used to derive the following approximate (1-x)100% UCL for 0,

UCL = Jd; + tan- i dt(gt .

	

(54)

If the sample size, n, is large, then the upper dh t-quantile in equation (54) can be replaced wit h

the corresponding upper ath standard normal quantile, za. Observe, also, that when a is the

sample mean,x, then the jackknife estimate is also the sample mean, J ( i ) = x , and the estimate

of the standard error given by equation (52) simplifies to ss /n"z , and the UCL in equation (54)

reduces to the familiar t- statistic based UCL given by equation (32) . ProUCL uses the jackknife

estimate as the sample mean leading to J(i) = x, which in turn translates equation (54) to the

UCL given by equation (32) . This method has been included in ProUCL to satisfy the curiosity

of those users who do not recognize that this jackknife method (with sample mean as th e

estimator) yields a UCL of the population mean identical to the UCL based upon the Student's-t

statistic as given by equation (32) .

4.9 .2 (1-a) 100% UCL of the Mean Based Upon Standard Bootstrap Method

In bootstrap resampling methods, repeated samples of size n are drawn with replacement

from a given set of observations . The process is repeated a large number of times (e.g., 2000

times), and each time an estimate, al, of 0 is computed. The estimates thus obtained are used t o

compute an estimate of the standard error of a. A description of the bootstrap method ,

illustrated by application to the population mean, A, and the sample mean,x, is given a s

follows .
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Step 1 .

	

Let (x,1, x,2, . . . , x,) represent the sample of size n with replacement from the

original data set (x 1 , x2, . . ., x„) . Then compute the sample mean and denote it by .x;.

Step 2 .

	

Perform Step 1 independently N times (e.g., 1000-2000), each time calculating a ne w

estimate . Denote those estimates by x1,x2, . . . .' N• The bootstrap estimate of th e

population mean is the arithmetic mean, xB , of the N estimates x= : i = 1, 2, . . .,N. The

bootstrap estimate of the standard error of the estimate, x, is given by ,

1 N
x- 2N-1i=1

	

B~ . (55)

If some parameter, B (say, the population median), other than the mean is of concern with a n

associated estimate (e .g., the sample median), then the same steps described above could b e

applied with the parameter and its estimate used in place ofand x-. Specifically, the estimate ,

, would be computed, instead of zt , for each of the N bootstrap samples . The general

bootstrap estimate, denoted by AB , is the arithmetic mean of the Nestimates. The

difference, AB - O, provides an estimate of the bias of the estimate, 0, and an estimate of th e

standard error of 0 is given by

=B

N
	 1

	

(4- 9B ) .2
~N-

	

T
(56)

The (1- a)100% standard bootstrap UCL for B is given b y

UCL = + zad

	

(57)

ProUCL computes the standard bootstrap UCL by using the population AM and sample AM,

respectively given by ,u 1 and x . It is observed that the UCL obtained using the standard

bootstrap method is quite similar to the UCL obtained using the Student's-t statistic as given b y
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equation (32), and, as such, does not adequately adjust for skewness . For skewed data sets, th e

coverage provided by standard bootstrap UCL is much lower than the specified coverage .

Note : For lognormally distributed data sets, one may want to use the jackknife and the standar d

bootstrap methods on the MVUE of the population mean, ,u„ given by equation (14) . However,

the performance of these methods have not been studied . Also, these methods have not bee n

included in ProUCL .

4.9.3 (1-a) 100% UCL of the Mean Based Upon Simple Percentile Bootstrap Metho d

Bootstrap resampling of the original data set is used to generate the bootstrap distribution of

the unknown population mean (Manly, 1997) . In this method, x, , the sample mean is computed

from the ith resampling (i=1,2, . . ., N) of the original data. These x; , i :=1,2, . . .,N are arranged in

ascending order as x(1) S x ( , ) . . . .<_

	

. The (1-0100% UCL of the population mean, p, i s

given by the value, that exceeds the (1-a)100% of the generated mean values . The 95% UCL of

the mean is the 95 th percentile of the generated means and is given by :

95% Percentile — UCL = 95'h%x; ; i = 1,2, . . ., N

	

(58)

For example, when N=1000, a simple bootstrap 95% percentile-UCL is given by the 950th

ordered mean value given by X (95o)

Singh and Singh (2003) observed that for skewed data sets, the coverage provided by this

simple percentile bootstrap method is much lower than the coverage provided by the bootstrap-t

and Hall's bootstrap methods . It is observed that for skewed (lognormal and gamma) data sets ,

the BCA bootstrap method performs slightly better than the simple percentile method . Some

graphs from Singh and Singh (2003) showing coverage comparisons for normal, gamma, an d
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lognormal distributions for the various methods are provided in Appendix C .

4.9.4 (1-a) 100% UCL of the Mean Based Upon Bias - Corrected Accelerated (BCA )

Percentile Bootstrap Method

The BCA bootstrap method is also a percentile bootstrap method which adjusts for bias i n

the estimate (Efron and Tibshirani, 1993, Manly, 1997) . The performance of this method for

skewed distributions (e .g., lognormal and gamma) is not well studied . It was conjectured that

the BCA method would perform better than the various other methods . Singh and Singh (2003 )

investigated and compare its performance (in terms of coverage probabilities) with parametri c

methods and other bootstrap methods . For skewed data sets, this method does represent a sligh t

improvement (in terms of coverage probability) over the simple percentile method . However,

this improvement is not adequate enough and yields UCLs with coverage probability much lower

than the specified coverage of 0 .95. The BCA upper confidence limit of intended (1-a) 100 %

coverage is given by the following equation :

BCA- UCL = .x (a2) ,

	

(59)

where ("2) is the a 2 100t percentile of the distribution of the x, ; i = 1,2, . . ., N . For example,

when N=2000, x () = (a2N) t1i ordered statistic of Y, ; i = 1,2, . . ., N given by (a2N) . Here a 2

is given by the following probability statement .

Z0 + Z (1-" )
a2 = c (ZO + 1 a(10 + Z

(1-" ) ) )
(60)

Where c( .) is the standard normal cumulative distribution function and z('' ) is the 100*(1-a)`h

percentile of a standard normal distribution. For example, z
00 .95) = 1 .645, and 1(1 .645) = 0 .95 .
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Also in equation (60), 10 (bias correction)and a (acceleration factor) are given as follows .

z =
-1(#(x'

<

	

)N

where 0-' ( .) is the inverse function of a standard normal cumulative distribution function, e .g . ,

0-' (0.95)=1 .645 . a is the acceleration factor and is given by the following equation .

(Y -

(C-
)_ )2]1 . 5

where summation in (62) is being carried from i = 1 to I = n, the sample size . .k- is the sample

mean based upon all n observations, and x_; is the mean of (n-1) observations without the ith

observation, i = 1,2, . . .,n .

Singh and Singh (2003) observed that for skewed data sets (e .g., gamma and lognormal), the

coverage provided by this BCA percentile method is much lower than the coverage provided b y

the bootstrap-t and Hall's bootstrap methods . This is especially true when the sample size is

small . The BCA method does provide an improvement over the simple percentile method an d

the standard bootstrap method . However, bootstrap-t and Hall's bootstrap methods perfor m

better (in terms of coverage probabilities) than the BCA method. For skewed data sets, the BCA

method also performs better than the modified-t UCL . For gamma distributions, the coverag e

provided by BCA 95% UCL approaches 0 .95 as the sample size increases . For lognorma l

distributions, the coverage provided by the BCA 95% UCL is much lower than the specifie d

coverage of 0 .95 .

4.9.5 (1-a) 100% UCL of the Mean Based Upon Bootstrap-t Metho d

Another variation of the bootstrap method, called the "bootstrap-t" by Efron (1982), is a non-
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parametric method which uses the bootstrap methodology to estimate quantiles of the pivota l

quantity, t statistic, given by equation (31) . Rather than using the quantiles of the familia r

Student's-t statistic, Hall (1988) proposed to compute estimates of the quantiles of the statisti c

given by equation (31) directly from the data .

Specifically, in Steps 1 and 2 described above in Section 4 .9.2, if x is the sample mean

computed from the original data, and x, and so are the sample mean and sample standard

deviation computed from the ith resampling of the original data, the N quantitie s

t i = (/) (x, - x-}/sx t are computed and sorted, yielding ordered quantities, to) t(2)

	

The

estimate of the lower ath quantile of the pivotal quantity in equation (31) is to B = t( as). For

example, ifN = 1000 bootstrap samples are generated, then the 50th ordered value, t (50) , would be

the bootstrap estimate of the lower 0 .05th quantile of the pivotal quantity in equation (31) . Then

a (1-a) 100% UCL of the population mean based upon the bootstrap-t method is given b y

UCL =

	

- t(ow)s:/V;-2 .

	

(63 )

Note the `-` sign in equation (63) . ProUCL computes the Bootstrap-t UCL based upon th e

quantiles obtained using the sample mean, x . It is observed that the UCL based upon the

bootstrap-t method is more conservative than the other UCLs obtained using the Student's- t ,

modified -t, adjusted -CLT, and the standard bootstrap methods . This is specially true for

skewed data sets . This method seems to adjust for skewness to some extent .

It is observed that for skewed data sets (e .g., gamma, lognormal), the 95% UCL based upo n

bootstrap-t method performs better than the 95% UCLs based upon the simple percentile and the

BCA percentile methods (Singh and Singh (2003)) . For highly skewed (k < 0 .1 or a > 2 .5-3 .0)

data sets of small sizes (e .g ., n < 10) the bootstrap-t method performs better than other (adjuste d

gamma UCL, or Chebyshev inequality UCL) UCL computation methods . It is noted that fo r
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gamma distribution, the performances (coverages provided by the respective UCLs) of bootstrap-

t and Hall's bootstrap methods are very similar . It is also noted that for larger samples, these two

methods (bootstrap-t and Hall's bootstrap) approximately provide the specified 95% coverage to

the mean, k6, of the gamma distribution . For gamma distributed data sets, the coverage provide d

by a bootstrap-t: (and Hall's bootstrap UCL) 95% UCL approaches 95% as sample size increase s

for all values of k considered (k = 0 .05-5.0) in Singh and Singh (2003) . However, it is noted that

the coverage provided by these two bootstrap methods is slightly lower than 0 .95 for samples of

smaller sizes .

For lognormally distributed data sets, the coverage provided by bootstrap-t 95% UCL is a

little bit lower than the coverage provided by the 95% UCL based upon Hall's bootstrap method .

However, it should be noted that for lognormally distributed data sets, for samples of all sizes ,

the coverage provided by these two methods (bootstrap-t and Hall's bootstrap) is significantl y

lower than the specified 0.95 coverage . This is especially true for moderately skewed to highl y

skewed (e .g ., o>1 .0) lognormally distributed data sets . This can be seen from the graphs

presented in Appendix C .

It should be pointed out that the bootstrap-t and Hall's bootstrap methods sometimes result i n

unstable, erratic, and unreasonably inflated UCL values especially in the presence of outlier s

(Efron and Tibshirani, 1993) . Therefore, these two methods should be used with caution . In case

these two methods result in erratic and inflated UCL values, then an appropriate Chebyshev

inequality based UCL may be used to estimate the EPC term for non-parametric skewed dat a

sets .

4.9.6 (1-a) 100% UCL of the Mean Based Upon Hall's Bootstrap Metho d

Hall (1992) proposed a bootstrap method which adjusts for bias as well as skewness . This
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method has been included in UCL guidance document (EPA 2002) . For highly skewed data set s

(e .g., LN(5,4)), it performs slightly better (higher coverage) than the bootstrap-t method . In this

method, L , , .9 ,1 and k31 , the sample mean, sample standard deviation, and sample skewnes s

are computed from the ith resampling (I = 1, 2, . . ., N) of the original data . Let x be the sample

mean, sx be the sample standard deviation, and k3 be the sample skewness (as given by

equation (43)) computed from the original data . The quantities W, and Q, given as follows are

computed for each of the N bootstrap samples, wher e

W. = (. , — x)/sX ; ,and

	

Q(W,.)=W,+k3i W,, 2 /3+k3W,. 3 /27+k31 /(6n) .

The quantities QI (W,.) given above are arranged in ascending order . For a specified (1-a )

confidence coefficient, compute the (aN) th ordered value, qa of quantities Q1 (W,) . Next,

compute W(qa ) using the inverse function, which is given as follows :

1/ 3
W(qa ) = 3((l+ lc"3 (qa —k3 /(6n))) -1 /k3•

	

(64)

In equation (64), k3 is computed using equation (43) . Finally, the (1-a) 100% UCL of the

population mean based upon Hall's bootstrap method (Manly, 1997) is given as follows :

UCL =

	

W (qa ) * sX .

	

(65)

For gamma distribution, Singh and Singh (2003) observed that the coverage probabilitie s

provided by the 95% UCLs based upon bootstrap-t and Hall's bootstrap methods are in clos e

agreement. For larger samples these two methods approximately provide the specified 95 %

coverage to the population mean, k8 of a gamma distribution . For smaller sample sizes (from

gamma distribution), the coverage provided by these two methods is slightly lower than the

specified level of 0 .95 . For both lognormal and gamma distributions, these two method s
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(bootstrap-t and Hall's bootstrap) perform better than the other bootstrap methods, namely, the

standard bootstrap method, simple percentile, and bootstrap BCA percentile methods . This can

be seen from graphs presented in Appendix C .

Just like the gamma distribution, for lognormally distributed data sets, it is noted that Hall' s

UCL and bootstrap-t UCL provide similar coverages . However, for highly skewed lognormal

data sets, the coverages based upon Hall's method and bootstrap-t method are significantly lowe r

than the specified 0 .95 coverage (Singh and Singh ( 2003)) . This is true even in samples o f

larger sizes(e .g., n=100) . For lognormal data sets, the coverages provided by Hall's bootstra p

and bootstrap-t methods do not increase much with the sample size, n . For highly skewed (e .g . ,

> 2.0) data sets of small sizes (e .g., n < 15), Hall's bootstrap method (and also bootstrap- t

method) performs better than Chebyshev UCL, and for larger samples, Chebyshev UCL performs

better than Hall's bootstrap method . Similar to the bootstrap-t method, it should be noted that

Hall's bootstrap method sometimes results in unstable, inflated, and erratic values especially i n

the presence of outliers (Efron and Tibshirani, 1993) . Therefore, these two methods should b e

used with caution. If outliers are present in a data set, then a 95% UCL of the mean should be

computed using alternative UCL computation methods .

5. Recommendations and Summary

This section describes the recommendations and summary on the computation of a 95% UCL

of the unknown population arithmetic mean, of a contaminant data distribution without

censoring . These recommendations are based upon the findings of Singh, Singh, and

Engelhardt (1997, 1999) ; Singh et al . (2002a); Singh, Singh, and Iasi (2002b) ; and Singh an d

Singh (2003) . Recommendations have been summarized for : 1) normally distributed data sets ,

2) gamma distributed data sets, 3) lognormally distributed data sets, and 4) data sets which ar e

non-parametric and do not follow any of the three distributions included in ProUCL .

A-45



For skewed parametric as well as non-parametric data sets, there is no simple solution t o

compute a 95% UCL of the population mean, A . Singh et al . (2002a), Singh, Singh, and Iac i

(2002b), and Singh and Singh (2003) noted that the UCLs based upon the skewness adjuste d

methods, such as the Johnson's modified-t and Chen's adjusted-CLTdo not provide the specifie d

coverage (e .g., 95%) to the population mean even for mildly to moderately skewed (e .g., 6 in

interval [0 .5, 1 .0)) data sets for samples of size as large as 100. The coverage of the population

mean by these skewness-adjusted UCLs gets poorer (much smaller than the specified coverag e

of 0.95) for highly skewed data sets, where the skewness levels are defined in Section 3 .2 .2 as a

function of a or 6 (standard deviation of log-transformed data) .

5.1 Recommendations to Compute a 95% UCL of the Unknown Population Mean, p, Using

Symmetric and Positively Skewed Data Sets

Some graphs from Singh and Singh (2003) showing coverage comparisons for normal ,

gamma, and lognormal distributions for the various methods considered are given in Appendi x

C . The user may want to consult those graphs for a better understanding of the summary an d

recommendations made in this section .

5.1 .1 Normally or Approximately Normally Distributed Data sets

As expected, for a normal distribution, N(61 2 ), Student's-t statistic, modified- t statistic ,

and bootstrap-t 95% UCL computation methods result in UCLs which provide coverage

probabilities close to the nominal level, 0 .95 . Contrary to the general conjecture, the bootstrap ,

BCA method does not perform better than the other bootstrap methods (e .g ., bootstrap-t) .

Actually, for normally distributed data sets, the coverages for the population mean, ,u, provide d

by the UCLs based upon the BCA method and Hall's bootstrap method are lower than the

specified 95% coverage. This is especially true when the sample size, n is less than 30 . For
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details refer to Singh and Singh (2003) .

• For normally distributed data sets, a UCL based upon the Student's-t statistic as given by

equation (32) provides the optimal UCL of the population mean . Therefore, for normally

distributed data sets, one should always use a 95% UCL based upon the Student's-t statistic .

• The 95% UCL of the mean given by equation (32) based upon Student's-t statistic may als o

be used when the Sd, sy of the log-transformed data is less than 0 .5, or when the data set

approximately follows a normal distribution . A data set is approximately normal when the

normal Q-Q plot displays a linear pattern (without outliers and jumps) and the resulting

correlation coefficient is high (e .g ., 0 .95 or higher) .

• Student's-t UCL may also be used when the data set is symmetric (but possibly not normally

distributed) . A measure of symmetry (or skewness) is k3 which is given by equation (43) .

A value of k3 close to zero (e .g., if absolute value of skewness is roughly less than 0 .2 or

0 .3) suggests approximate symmetry . The approximate symmetry of a data distribution can

also be judged by looking at the histogram of the data set.

5.1.2 Gamma Distributed Skewed Data Sets

In practice, many skewed data sets can be modeled both by a lognormal distribution and a

gamma distribution especially when the sample size is smaller than 70-100 . As well known, the

95% H-UCL of the mean based upon a lognormal model often results in unjustifiably large and

impractical 95% UCL value. In such cases, a gamma model, G(k,O) may be used to compute a

reliable 95% UCL of the unknown population mean, p, .

• Many skewed data sets follow a lognormal as well as a gamma distribution . It should be
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noted that the population means based upon the two models can differ significantly .

Lognormal model based upon a highly skewed (e .g ., 6 25 )data set will have an

unjustifiably large and impractical population mean, p, and its associated UCL . The gamma

distribution is better suited to model positively skewed environmental data sets .

One should always first check if a given skewed data set follows a gamma distribution . Ifa

data set does follow a gamma distribution or an approximate gamma distribution, one should

compute a 95% UCL based upon a gamma distribution. Use of highly skewed (e .g ., 6 2.5 -

3 .0) lognormal distributions should be avoided. For such highly skewed lognormall y

distributed data sets which can not be modeled by a gamma or an approximate gamm a

distribution, non-parametric UCL computation methods based upon the Chebyshe v

inequality may be used.

• The five bootstrap methods do not perform better than the two gamma UCL computation

methods . It is noted that the performances (in terms of coverage probabilities) of bootstrap-t

and Hall's bootstrap methods are very similar . Out of the five bootstrap methods, bootstrap- t

and Hall's bootstrap methods perform the best (with coverage probabilities for the population

mean closer to the nominal level of O . 95) . This is especially true when skewness is quit e

high (e .g., k < 0 .1) and sample size is small (e .g ., n < 10-15) . This can be seen from graph s

given in Appendix C .

• The bootstrap BCA method does not perform better than the Hall's method or the bootstrap- t

method. The coverage for the population mean, f1, provided by the BCA method is much

lower than the specified 95% coverage. This is especially true when the skewness is high

(e .g ., k <1) and sample size is small (Singh and Singh (2003)) .

• From the results presented in Singh, Singh, and Iaci (2002b) and in Singh and Singh (2003) ,
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it is concluded that for data sets which follow a gamma distribution, a 95% UCL of the mean

should be computed using the adjusted gamma UCL when the shape parameter, k is : 0 .1 k

< 0.5, and for values ofk 0.5, a 95% UCL can be computed using an approximate gamma

UCL of the mean, p, .

• For highly skewed gamma distributed data sets with k < 0 .1, bootstrap-t UCL or Hall' s

bootstrap (Singh and Singh (2003)) may be used when the sample size is smaller than 15, and

the adjusted gamma UCL should be used when sample size starts approaching and exceedin g

15 . The small sample size requirement increases as skewness increases (that is as k

decreases, the required sample size, n increases) .

• The bootstrap-t and Hall's bootstrap methods should be used with caution as some times

these methods yield erratic, unreasonably inflated, and unstable UCL values especially in the

presence of outliers . In case Hall's bootstrap and bootstrap-t methods yield inflated an d

erratic UCL results, the 95% UCL of the mean should be computed based upon the adjusted

gamma 95% UCL . ProUCL prints out a warning message associated with the recommende d

use of the UCLs based upon the bootstrap-t method or Hall's bootstrap method .

These recommendations for the use of gamma distribution are summarized in Table Al .

Table Al .

Summary Table for the Computation of a 95% UCL of the Unknown Mean, pi

of a Gamma Distribution

k Sample Size, n Recommendation

k

	

05 For all n Approximate Gamma 95%UCL

0.1 5 k < 0.5 For all n Adjusted Gamma 95% UCL
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k< 0.1 n<15
95% UCL Based Upon Bootstrap-t

or Hall's Bootstrap Method *

k<0.1 n15
Adjusted Gamma 95% UCL if available ,

otherwise use Approximate Gamma 95% UCL

* In case bootstrap-t or Hall's bootstrap methods yield erratic, inflated, and unstable UCL values ,

the UCL of the mean should be computed using adjusted gamma UCL .

5.1.3 Lognormally Distributed Skewed Data Sets

For lognormally, LN(,u, a2) distributed data sets, the H-statistic based UCL does provide the

specified 0 .95 coverage for the population mean for all values of a . However, the H-statisti c

often results in unjustifiably large UCL values which do not occur in practice . This is especially

true when skewness is high (e .g ., a > 2.0) . The use of a lognormal model unjustifiably

accommodates large and impractical values of the mean concentration and its UCLs. The

problem associated with the use of a lognormal distribution is that the population mean, ,u„ of a

lognormal model becomes impractically large for larger values of a which in turn results i n

inflated H-UCL of the population mean, p, . Since the population mean of a lognormal mode l

becomes too large, none of the other methods except for H-UCL provides the specified 95 %

coverage for that inflated population mean, ,u, . This is especially true when the sample size i s

small and skewness is high . For extremely highly skewed data sets (with a > 2 .5-3 .0) of smalle r

sizes (e .g., < 70-100), the use of a lognormal distribution based H-UCL should be avoided (e .g . ,

see Singh et al . (2002a), Singh and Singh (2003)) . Therefore, alternative UCL computation

methods such as the use of a gamma distribution or use of a UCL based upon non-parametric

bootstrap methods or Chebyshev inequality based methods are desirable .

As expected for skewed (e .g ., with a (or 6) 0.5) lognormally distributed data sets, th e

Student's-t UCL, modified-t UCL, adjusted -CLT UCL, standard bootstrap method all fail to
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provide the specified 0 .95 coverage for the unknown population mean for samples of all sizes .

Just like the gamma distribution, the performances (in terms of coverage probabilities) o f

bootstrap-t and Hall's bootstrap methods are very similar (Singh and Singh (2003)) . However, it

is noted that the coverage provided by Hall's bootstrap (and also by bootstrap-t) is much lowe r

than the specified 95% coverage for the population mean, p„ for samples of all sizes of varyin g

skewness . Moreover, the coverages provided by Hall's bootstrap or bootstrap-t method do no t

increase much with the sample size .

Also the coverage provided by the BCA method is much lower than the coverage provide d

by Hall's method or bootstrap-t method. Thus the BCA bootstrap method can not be

recommended to compute a 95% UCL of the mean of a lognormal population . For highly

skewed data sets of small sizes (e .g., < 15) with a exceeding 2 .5-3 .0, even the Chebyshe v

inequality based UCLs fail to provide the specified 0 .95 coverage for the population . However,

as the sample size increases, the coverages provided by the chebyshev inequality based UCLs

also increase . For such highly skewed data sets (v > 2.5 ) of sizes less than 10-15, Hall' s

bootstrap or bootstrap-t methods provide larger coverage than the coverage provided by the 99 %

Chebyshev (MVUE) UCL . Therefore, for highly skewed lognormally distributed data sets of

small sizes, one may use Hall's method to compute an estimate of the EPC term . The smal l

sample size requirement increases with a. Graphs from Singh and Singh (2003) showin g

coverage comparisons for normal, gamma, and lognormal distributions for the various method s

are given in Appendix C.

It should be noted that even a small increase in the Sd, a, increases skewness considerably .

For example, for a lognormal distribution, when a = 2 .5, skewness — 11825 .1 ; and when a = 3 ,

skewness - 729555. In practice, the occurrence of such highly skewed data sets (e .g., a 3) is

not very common. Nevertheless, these highly skewed data sets can arise occasionally and ,

therefore, require separate attention . Singh et al . (2002a) observed that when the Sd, a, start s
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approaching 2 .5 (that is, for lognormal data, when CV > 22 .74 and skewness > 11825 .1), even

a 99% Chebyshev (MVUE) UCL fails to provide the desired 95% coverage for the populatio n

mean, ,u, . This is especially true when the sample size, n is smaller than 30 . For such

extremely skewed data sets, the larger of the two UCLs : the 99% Chebyshev (MVUE) UCL and

the non-parametric 99% Chebyshev (Mean, Sd) UCL, may be used as an estimate of the EPC .

It is also noted that, as the sample size increases, the H-UCL starts behaving in a stabl e

manner . Therefore, depending upon the Sd, a (actually its MLE 8), for lognormally

distributed data sets, one can use the H-UCL for samples of larger sizes such as greater than

70-100. This large sample size requirement increases as the Sd, 8, increases, as can be seen i n

Table A2 . ProUCL can compute an H-UCL for samples of sizes up to 1000 . For lognormally

distributed data sets of smaller sizes, some alternative methods to compute a 95% UCL of the

population mean, ,u, are summarized in Table A2.

Furthermore, it is noted that for larger sample sizes (e .g ., n > 150), the H-UCL becomes even

smaller than the Student's-t UCL and various other UCLs . It should be pointed out that the large

sample behavior ofH-UCL has not been investigated rigorously. For confirmation purpose s

(that is H-UCL does provide the 95% coverage for larger samples also), it is desirable to conduc t

such a study for samples of larger sizes .

Since skewness (as defined in Section 3 .2 .2) is a function of a (or & ), the recommendation s

for the computation of the UCL of the population mean are also summarized in Table A2 fo r

various values of the MLE 8 of a and the sample size, n. Here 8 is an MLE of a, and is given

by the Sd of log-transformed data given by equation (2) . Note that Table A2 is applicable to th e

computation of a 95% UCL of the population mean based upon lognormally distributed data sets

without non-detect observations . A method to compute a 95% UCL of the mean of a lognormal

distribution is summarized as follows :
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• Skewed data sets should be first tested for a gamma distribution . For lognormally distributed

data sets (which can not be modeled by a gamma distribution), the method as summarized i n

Table A2 may be used to compute a 95% UCL of the mean .

• Specifically, for highly skewed (e .g ., 1 .5 < c 2.5) data sets of small sizes (e .g., n 50-70),

the EPC term may be estimated by using a 97 .5% or 99% MVUE Chebyshev UCL of the

population mean. For larger samples (e .g., n > 70), H-UCL may be used to estimate the EPC.

• For extremely highly skewed (e .g., a > 2.5) lognormally distributed data sets, the populatio n

mean becomes unrealistically large . Therefore, the use of H-UCL should be avoided

especially when the sample size is less than 100 . For such highly skewed data sets, Hall' s

bootstrap UCL may be used when the sample size is less than 10-15 (Singh and Singh

(2003)) . The small sample size requirement increases with 6 . For example, n = 10 is

considered small when 6 = 3.0, and n = 15 is considered small when 6 = 3.5 .

• Hall's bootstrap methods should be used with caution as some times it yields erratic, inflated ,

and unstable UCL values, especially in the presence of outliers . For these highly skewed

data sets of size, n (e.g., less than 10-15), in case Hall's bootstrap method yields an errati c

and inflated UCL value, the 99% Chebyshev MVUE UCL may be used to estimate the EP C

term. ProUCL displays a warning message associated with the recommended use of Hall' s

bootstrap method.



Table A2. Summary Table for the Computation of a

95% UCL of the Unknown Mean, p~ of a Lognormal Population

Sample Size, n Recommendation

< 0.5 For all n Student's-t, modified-t, or H-UCL

0.5 <_ 8 < 1 .0 For all n H-UCL

1 .0_< d<1 .5
n < 25 95% Chebyshev (MVUE) UCL

n25 H-UCL

1 .5 <_ 8 < 2.0

n<20 99% Chebyshev (MVUE) UCL

20 n < 50 95% Chebyshev (MVUE) UCL

n

	

50 H-UCL

1 .5 <_ 8 < 2 .0

n < 20 99% Chebyshev (MVUE) UCL

20 n < 50 97.5% Chebyshev (MVUE) UCL

50 n < 70 95% Chebyshev (MVUE) UCL

n

	

70 H-UCL

2.5 <_ & < 3 .0

n<30
Larger of (99% Chebyshev (MVUE) UCL or

99% Chebyshev (Mean, Sd))

30 n < 70 97.5% Chebyshev (MVUE) UCL

70 n < 100 95% Chebyshev (MVUE) UCL

n

	

100 H-UCL

3 .0 _< & <_ 3 .5

n < 15 Hall's bootstrap method *

15<_n<50
Larger of (99% Chebyshev (MVUE) UCL ,

99% Chebyshev(Mean, Sd))

50

	

n < 100 97.5% Chebyshev (MVUE) UCL

100 _< n < 150 95% Chebyshev (MVUE) UCL

n150 H-UCL

6 > 3.5 For all n Use non-parametric methods *

* In case Hall's bootstrap method yields an erratic unrealistically large UCL value, then the UC L

of the mean may be computed based upon the Chebyshev inequality.
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5.1.4 Data Sets Without a Discernable Skewed Distribution - Non-parametric Skewe d

Data Sets

The use of gamma and lognormal distributions as discussed here will cover a wide range of

skewed data distributions. For skewed data sets which are neither gamma nor lognormal, one ca n

use a non-parametric Chebyshev UCL or Hall's bootstrap UCL (for small samples) of the mean

to estimate the EPC term.

• For skewed non-parametric data sets with negative and zero values, use a 95% Chebyshev

(Mean, Sd) UCL for the population mean, /u, .

For all other non-parametric data sets with only positive values, the following method may be

used to estimate the EPC term.

• For mildly skewed data sets with 6 _. 0.5, one can use Student's-t statistic or modified-t

statistic to compute a 95% UCL of mean,

• For non-parametric moderately skewed data sets (e .g., o or its estimate, a in the interva l

(0.5, 1]), one may use a 95% Chebyshev (Mean, Sd) UCL of the population mean, 1u1 .

• For non-parametric moderately to highly skewed data sets (e .g ., 8 in the interval (1 .0 ,

2 .0]), one may use a 99% Chebyshev (Mean, Sd) UCL or 97.5% Chebyshev (Mean, Sd) UCL

of the population mean, pi , to obtain an estimate of the EPC term .

• For highly skewed to extremely highly skewed data sets with & in the interval (2 .0, 3 .0], one

may use Hall's UCL or 99% Chebyshev (Mean, Sd) UCL to compute the EPC term .
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• Extremely skewed non-parametric data sets with a exceeding 3 .0, provide poor coverage .

For such highly skewed data distributions, none of the methods considered provide th e

specified 95% coverage for the population mean, ,up The coverages provided by the various

methods decrease as a increases . For such data sets of sizes less than 30, a 95% UCL can be

computed based upon Hall's bootstrap method or bootstrap-t method . Hall's bootstrap

method provides highest coverage (but less than 0 .95) when the sample size is small . It is

noted that the coverage for the population mean provided by Hall's method (and bootstrap- t

method) does not increase much as the sample size, n increases. However, as the sample size

increases, coverage provided by 99% Chebyshev (Mean, Sd) UCL method also increases .

Therefore, for larger samples, a UCL should be computed based upon 99% Chebyshev

(Mean, Sd) method. This large sample size requirement increases as 6 increases . These

recommendations are summarized in Table A3 .



Table A3.

Summary Table for the Computation of a 95% UCL of the Unknown Mean„u, of a

Skewed Non-parametric Distribution with all Positive Values ,

Where 6 is the Sd of Log-transformed Data

6 Sample Size, n Recommendatio n

6S 0.5 For all n 95% UCL based on Student's-t or Modified-t statistic

0.5 < 6 <_ 1 .0 For all n 95% Chebyshev (Mean, Sd) UCL

1.0< 6S 2.0
n<50 99% Chebyshev (Mean, Sd) UCL

n

	

50 97 .5% Chebyshev (Mean, Sd) UCL

2.0<6<_3.0
n <10 Hall's Bootstrap UCL *

n

	

10 99% Chebyshev (Mean, Sd) UCL

3.0<653.5
n < 30 Hall's Bootstrap UCL *

n

	

30 99% Chebyshev (Mean, Sd) UCL

6 > 3.5
n < 100 Hall's Bootstrap UCL *

n

	

100 99% Chebyshev (Mean, Sd) UCL

* IfHall's bootstrap method yields an erratic and unstable UCL value (e .g ., happens when outliers are present), a

UCL of the population mean may be computed based upon the 99% Chebyshev (Mean, Sd) method .

5.2 Summary of the Procedure to Compute a 95% UCL of the Unknown Population

Mean, pl Based Upon Data Sets Without Non-detect Observation s

• The first step in computing a 95% UCL of a population arithmetic mean, p i is to perform

goodness-of-fit tests to test for normality, lognormality, or gamma distribution of the data se t

under study. ProUCL has three methods to test for normality or lognormality : the informal

graphical test based upon a Q-Q plot, the Lilliefors test, and the Shapiro-Wilk W test .

ProUCL also has three methods to test for a gamma distribution : the informal graphical Q- Q

plot based upon gamma quantiles, the Kolmogorov-Smirnov (K-S) EDF test, and the
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Anderson-Darling (A-D) EDF test .

• ProUCL generates a quantile-quantile (Q-Q) plot to graphically test the normality ,

lognormality, or gamma distribution of the data . There is no substitute for graphical display s

of a data set . On this graph, a linear pattern (e .g., with high correlation such as 0 .95 or

higher) displayed by bulk of data suggests approximate normality, lognormality, or gamm a

distribution. On this graph, points well-separated from the majority of data may be potential

outliers requiring special attention . Also, any visible jumps and breaks of significant

magnitudes on a Q-Q plot suggest that more than one population may be present . In that

case, each of the populations should be considered separately. That is a separate EPC term

should be computed for each of the populations . It is, therefore, recommended to always us e

the graphical Q-Q plot as it provides useful information about the presence of multipl e

populations (e.g., site and background data mixed together) and/or outliers . Both graphica l

Q-Q plot and formal goodness-of-fit tests should be used on the same data set .

• A single test statistic such as the Shapiro-Wilk test (or the A-D test etc .) may lead to th e

incorrect conclusion that the data are normally (or gamma) distributed even when there are

more than one population present . Only a graphical display such as an appropriate Q-Q can

provide this information . Obviously, when multiple populations are present, those should b e

separated out and the EPC terms (the UCLs) should be computed separately for each of those

populations . Therefore, it is strongly recommended not to skip the Goodness-of-Fit Tests

Option in ProUCL.Since the computation of an appropriate UCL depends upon data

distribution, it is advisable that the user should take his time (instead of blindly using a

numerical value of a test statistic in an effort to automate the distribution selection process)

to determine the data distribution . Both graphical (e .g ., Q-Q plots) and analytical procedure s

(Shapiro-Wilk test, K-S test etc .) should be used on the same data set to determine the mos t

appropriate distribution of the data set under study .
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• After performing the Goodness-of-Fit test, ProUCL informs the user about the data

distribution : normal, lognormal, gamma distribution, or non-parametric .

• For a normally distributed (or approximately normally distributed) data set, the user i s

advised to use Student's-t distribution based UCL of the mean. Student's-t distribution (or

modified-t statistic) may also be used to compute the EPC term when the data set i s

symmetric (e.g ., ~ k 3 I is smaller than 0 .2-0.3) or mildly skewed, that is when a or 6 is less

than 0.5 .

• For gamma distributed (or approximately gamma distributed) data sets, the user is advised to :

use the approximate gamma UCL for k 0.5; use the adjusted gamma UCL for 0 .1 _< k <

0.5 ; use bootstrap-t method (or Hall's method) when k < 0.1 and the sample size, n < 15 ;

and use the adjusted gamma UCL (if available) for k < 0 .1 and sample size, n >_ 15 . If the

adjusted gamma UCL is not available then use the approximate gamma UCL as an estimate

of the EPC term . In case bootstrap-t method or Hall's bootstrap method yields an errati c

inflated UCL (e .g ., when outliers are present) result, the UCL should be computed using the

adjusted gamma UCL (if available) or the approximate gamma UCL . Some graphs from

Singh and Singh (2003) showing coverage comparisons for normal, gamma, and lognorma l

distributions for the various methods considered are given in Appendix C .

• For lognormal data sets, ProUCL recommends (as summarized in Table A2, Section 5 .1 .3) a

method to estimate the EPC term based upon the sample size and standard deviation of the

log-transformed data, O . ProUCL can compute a H-UCL of the mean for samples of size up

to 1000 .

• Non-parametric UCL computation methods such as the modified-t, CLT method, adjusted-

CLT method, bootstrap and jackknife methods are also included in ProUCL . However, it i s
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noted that non-parametric UCLs based upon most of these methods do not provide adequat e

coverage to the population mean for moderately skewed to highly skewed data sets (e .g. ,

see Singh et al . (2002a), and Singh and Singh (2003)) .

• For data sets which are not normally, lognormally, or gamma distributed, a non-parametric

UCL of the mean based upon the Chebyshev inequality is preferred . The Chebyshev (Mean,

Sd) UCL does not depend upon any distributional assumptions and can be used fo r

moderately to highly skewed data sets which do not follow any of the three dat a

distributions incorporated in ProUCL.

• It should be noted that for extremely skewed data sets (e .g., with 6 exceeding 3 .0), even a

Chebyshev inequality based 99% UCL of the mean fails to provide the desired coverag e

(e.g ., 0 .95) of the population mean . A method to compute the EPC term for non-parametri c

distributions is summarized in Table A3 of Section 5 .1 .4. It should be pointed out that i n

case Hall's bootstrap method appears to yield erratic and inflated results (typically happen s

when outliers are present), the 99% Chebyshev UCL may be used as an estimate of the EPC

term.

5 .3 Should the Maximum Observed Concentration be Used as an Estimate of the EP C

Term ?

• Singh and Singh (2003) also included the Max Test (using the maximum observed value a s

an estimate of the EPC term) in their simulation study . Previous (e .g ., EPA 1992 RAGS

Document) use of the maximum observed value has been recommended as a default value to

estimate the EPC term when a 95% UCL (e .g ., the H-UCL) exceeded the maximum value .

However, in past (e .g., EPA 1992), only two 95% UCL computation methods, namely : the

Student's- t UCL and Land's H-UCL were used to estimate the EPC term . ProUCL, Versio n
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3 .0 can compute a 95% UCL of mean using several methods based upon normal, Gamma ,

lognormal, and non-parametric distributions . Thus, ProUCL, Version 3 .0 has about fifteen

(15) 95% UCL computation methods, one of which (depending upon skewness and data

distribution) can be used to compute an appropriate estimate of the EPC term . Furthermore ,

since the EPC term represents the average exposure contracted by an individual over an

exposure area (EA) during a long period of time, therefore, the EPC term should be estimate d

by using an average value (such as an appropriate 95% UCL of the mean) and not by th e

maximum observed concentration .

• With the availability of so many UCL computation methods (15 of them), the developers of

ProUCL Version 3 .0 do not feel any need to use the maximum observed value as an estimate

of the EPC term . Singh and Singh (2003) also noted that for skewed data sets of small size s

(e.g., <10••20), the Max Test does not provide the specified 95% coverage to the populatio n

mean, and for larger data sets, it overestimates the EPC term. This can also viewed in the

graphs presented in Appendix C . Also, for the distributions considered, the maximum valu e

is not a sufficient statistic for the unknown population mean . The use of the maximum valu e

as an estimate of the EPC term ignores most (except for the maximum value) of the

information contained in a data set . It is not desirable to use the maximum observed value a s

estimate of the EPC term representing average exposure over an EA.

• It should also be noted that for highly skewed data sets, the sample mean indeed can eve n

exceed the upper 90%, 95 % etc . percentiles, and consequently, a 95% UCL of mean can

exceed the maximum observed value of a data set . This is especially true when one is dealing

with lognormally distributed data sets of small sizes . As mentioned before, for such highly

skewed data sets which can not be modeled by a gamma distribution, a 95% UCL of the

mean should be computed using an appropriate non-parametric method . These observation s

are summarized in Tables A 1-A3 of this Appendix A.
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Alternatively, for such highly skewed data sets, other measures of central tendency such a s

the median (or some other upper percentile such as 70% percentile) and its upper confidence

limit may be considered . The EPA and all other interested agencies and parties need to com e

to an agreement upon the use of the median and its UCL to estimate the EPC term for a

contaminant of concern at a polluted site . It should be mentioned that the use of the sampl e

median and/or its UCL as estimates of the EPC term needs further research and investigation .

• It is recommended that the maximum observed value NOT be used as an estimate of

the EPC term. For the sake of interested users, ProUCL displays a warning message whe n

the recommended 95% UCL (e .g., Hall's bootstrap UCL etc.) of the mean exceeds th e

observed maximum concentration . For such cases (when a 95% UCL does exceed th e

maximum observed value), if applicable, an alternative 95% UCL computation method is

recommended by ProUCL .
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APPENDIX B

CRITICAL VALUE S

OF

ANDERSON-DARLING TEST STATISTIC

AND

KOLMOGOROV-SMIRNOV TEST STATISTI C

FOR

GAMMA DISTRIBUTION

WITH UNKNOWN PARAMETERS



Critical Values for Anderson Darling Test - Significance Level of 0 .20

n\k 0 .010 0 .025 0 .050 0 .100 0 .200 0 .300 0 .500 0 .750 1 .000 1 .500 2 .000 3 .000 4 .000 5 .000 10 .000 20 .000 50 .000 100 .00 0

4 0 .6012 0 .5867 0 .5709 0 .5498 0 .5169 0 .5017 0 .4900 0 .4854 0 .4839 0 .4819 0 .4810 0 .4805 0 .4802 0 .4803 0 .4795 0 .4795 0 .4791 0 .4790

5 0 .6366 0 .6085 0 .5796 0 .5590 0 .5322 0 .5166 0 .5049 0 .4996 0 .4969 0 .4949 0 .4930 0 .4926 0 .4914 0 .4919 0 .4908 0 .4903 0 .4899 0 .490 1

6 0 .6851 0 .6362 0 .5915 0 .5682 0 .5431 0 .5264 0 .5117 0 .5055 0 .5026 0 .4996 0 .4981 0 .4969 0 .4964 0 .4960 0 .4955 0 .4950 0 .4948 0 .495 1

7 0 .7349 0 .6671 0 .6037 0 .5745 0 .5491 0 .5318 0 .5172 0 .5102 0 .5064 0 .5036 0 .5007 0 .5002 0 .4988 0 .4991 0 .4984 0 .4975 0 .4973 0 .497 3

8 0 .7856 0 .6966 0 .6150 0 .5784 0 .5545 0 .5372 0 .5210 0 .5134 0 .5092 0 .5058 0 .5039 0 .5025 0 .5016 0 .5017 0 .4998 0 .5000 0 .4992 0 .4990

9 0 .8385 0 .7291 0 .6265 0 .5827 0 .5593 0 .5407 0 .5239 0 .5162 0 .5122 0 .5082 0 .5068 0 .5045 0 .5035 0 .5024 0 .5015 0 .5015 0 .5010 0 .501 4

10 0 .8923 0 .7600 0 .6384 0 .5849 0 .5626 0 .5436 0 .5263 0 .5170 0 .5135 0 .5097 0 .5079 0 .5063 0 .5050 0 .5041 0 .5029 0 .5023 0 .5020 0 .502 0

11 0 .9469 0 .7926 0 .6496 0 .5881 0 .5662 0 .5463 0 .5287 0 .5198 0 .5147 0 .5110 0 .5088 0 .5061 0 .5049 0 .5048 0 .5041 0 .5035 0 .5030 0 .502 4

12 1 .0021 0 .8247 0 .6600 0 .5900 0 .5680 0 .5485 0 .5299 0 .5213 0 .5166 0 .5113 0 .5098 0 .5080 0 .5058 0 .5050 0 .5042 0 .5048 0 .5036 0 .504 1

13 1 .0571 0 .8571 0 .6731 0 .5910 0 .5697 0 .5499 0 .5317 0 .5224 0 .5169 0 .5134 0 .5101 0 .5080 0 .5073 0 .5064 0 .5053 0 .5049 0 .5050 0 .504 7

14 1 .1106 0 .8897 0 .6828 0 .5928 0 .5716 0 .5508 0 .5330 0 .5229 0 .5184 0 .5131 0 .5111 0 .5090 0 .5080 0 .5072 0 .5054 0 .5051 0 .5040 0 .504 5

15 1 .1656 0 .9221 0 .6926 0 .5951 0 .5735 0 .5525 0 .5331 0 .5238 0 .5188 0 .5134 0 .5115 0 .5095 0 .5078 0 .5073 0 .5058 0 .5051 0 .5054 0 .505 1

16 1 .2201 0 .9542 0 .7047 0 .5967 0 .5744 0 .5535 0 .5345 0 .5242 0 .5197 0 .5143 0 .5127 0 .5095 0 .5081 0 .5082 0 .5068 0 .5057 0 .5052 0 .505 4

17 1 .2747 0 .9856 0 .7157 0 .5975 0 .5764 0 .5553 0 .5354 0 .5249 0 .5200 0 .5152 0 .5122 0 .5099 0 .5086 0 .5085 0 .5066 0 .5063 0 .5053 0 .505 5

18 1 .3270 1 .0187 0 .7261 0 .5994 0 .5761 0 .5556 0 .5357 0 .5247 0 .5203 0 .5151 0 .5132 0 .5107 0 .5097 0 .5090 0 .5067 0 .5066 0 .5058 0 .5063

19 1 .3799 1 .0502 0 .7376 0 .6000 0 .5775 0 .5563 0 .5367 0 .5257 0 .5208 0 .5155 0 .5127 0 .5107 0 .5090 0 .5080 0 .5074 0 .5069 0 .5067 0 .5057

20 1 .4316 1 .0812 0 .7470 0 .6016 0 .5779 0 .5567 0 .5369 0 .5264 0 .5210 0 .5159 0 .5135 0 .5103 0 .5091 0 .5090 0 .5082 0 .5066 0 .5069 0 .506 9

21 1 .4859 1 .1119 0 .7574 0 .6022 0 .5788 0 .5569 0 .5386 0 .5271 0 .5209 0 .5160 0 .5137 0 .5112 0 .5098 0 .5092 0 .5081 0 .5077 0 .5071 0 .507 1

22 1 .5373 1 .1433 0 .7681 0 .6037 0 .5793 0 .5584 0 .5377 0 .5277 0 .5220 0 .5160 0 .5135 0 .5116 0 .5101 0 .5093 0 .5083 0 .5069 0 .5072 0 .506 4

23 1 .5882 1 .1774 0 .7794 0 .6042 0 .5803 0 .5589 0 .5380 0 .5275 0 .5213 0 .5166 0 .5134 0 .5110 0 .5108 0 .5097 0 .5081 0 .5069 0 .5069 0 .507 0

24 1 .6410 1 .2064 0 .7890 0 .6046 0 .5807 0 .5595 0 .5386 0 .5272 0 .5225 0 .5173 0 .5139 0 .5117 0 .5097 0 .5093 0 .5082 0 .5076 0 .5074 0 .507 2

25 1 .6915 1 .2376 0 .8002 0 .6057 0 .5806 0 .5601 0 .5391 0 .5278 0 .5229 0 .5169 0 .5144 0 .5119 0 .5104 0 .5095 0 .5082 0 .5074 0 .5070 0 .507 1

26 1 .7433 1 .2691 0 .8100 0 .6069 0 .5809 0 .5601 0 .5395 0 .5279 0 .5223 0 .5170 0 .5140 0 .5113 0 .5099 0 .5098 0 .5082 0 .5073 0 .5072 0 .507 6

27 1 .7932 1 .2981 0 .8228 0 .6081 0 .5816 0 .5608 0 .5390 0 .5287 0 .5233 0 .5171 0 .5150 0 .5120 0 .5106 0 .5097 0 .5077 0 .5080 0 .5077 0 .507 3

28 1 .8431 1 .3284 0 .8319 0 .6088 0 .5818 0 .5610 0 .5397 0 .5283 0 .5228 0 .5170 0 .5153 0 .5118 0 .5112 0 .5100 0 .5081 0 .5085 0 .5078 0 .507 3

29 1 .8948 1 .3600 0 .8424 0 .6099 0 .5818 0 .5613 0 .5402 0 .5287 0 .5235 0 .5175 0 .5149 0 .5124 0 .5110 0 .5097 0 .5082 0 .5076 0 .5075 0 .507 4

30 1 .9433 1 .3895 0 .8532 0 .6110 0 .5825 0 .5617 0 .5397 0 .5292 0 .5230 0 .5176 0 .5151 0 .5126 0 .5099 0 .5097 0 .5089 0 .5079 0 .5072 0 .508 1

35 2 .1902 1 .5371 0 .9057 0 .6147 0 .5843 0 .5626 0 .5414 0 .5300 0 .5237 0 .5178 0 .5156 0 .5126 0 .5123 0 .5105 0 .5090 0 .5087 0 .5082 0 .507 4

40 2 .4320 1 .6829 0 .9551 0 .6174 0 .5848 0 .5630 0 .5418 0 .5299 0 .5246 0 .5183 0 .5153 0 .5128 0 .5110 0 .5108 0 .5094 0 .5083 0 .5075 0 .508 3

45 2 .6734 1 .8275 1 .0046 0 .6211 0 .5857 0 .5646 0 .5418 0 .5301 0 .5244 0 .5191 0 .5160 0 .5130 0 .5111 0 .5110 0 .5094 0 .5085 0 .5084 0 .508 3

50 2 .9056 1 .9669 1 .0536 0 .6238 0 .5872 0 .5651 0 .5413 0 .5313 0 .5251 0 .5192 0 .5162 0 .5132 0 .5116 0 .5111 0 .5095 0 .5088 0 .5087 0 .508 9

60 3 .3680 2 .2458 1 .1502 0 .6309 0 .5878 0 .5655 0 .5430 0 .5311 0 .5248 0 .5189 0 .5165 0 .5141 0 .5113 0 .5112 0 .5099 0 .5084 0 .5089 0 .508 9

70 3 .8261 2 .5178 1 .2478 0 .6361 0 .5882 0 .5667 0 .5433 0 .5310 0 .5252 0 .5194 0 .5165 0 .5132 0 .5122 0 .5112 0 .5098 0 .5091 0 .5090 0 .508 1

80 4 .2729 2 .7850 1 .3430 0 .6424 0 .5889 0 .5669 0 .5439 0 .5314 0 .5258 0 .5201 0 .5173 0 .5130 0 .5131 0 .5110 0 .5100 0 .5087 0 .5089 0 .508 6

90 4 .7189 3 .0528 1 .4370 0 .6474 0 .5883 0 .5670 0 .5438 0 .5321 0 .5256 0 .5203 0 .5174 0 .5139 0 .5124 0 .5109 0 .5101 0 .5088 0 .5087 0 .509 1

100 5 .1658 3 .3136 1 .5320 0 .6516 0 .5886 0 .5681 0 .5438 0 .5318 0 .5260 0 .5200 0 .5174 0 .5140 0 .5117 0 .5115 0 .5101 0 .5090 0 .5092 0 .508 9

200 9 .4620 5 .8551 2 .4199 0 .7059 0 .5910 0 .5675 0 .5452 0 .5325 0 .5264 0 .5199 0 .5172 0 .5140 0 .5122 0 .5115 0 .5095 0 .5095 0 .5090 0 .509 3

300 13 .6454 8 .3200 3 .2731 0 .7595 0 .5915 0 .5688 0 .5448 0 .5328 0 .5260 0 .5205 0 .5174 0 .5134 0 .5126 0 .5120 0 .5107 0 .5091 0 .5092 0 .509 2

400 17 .7759 10 .7341 4 .1071 0 .8119 0 .5902 0 .5688 0 .5448 0 .5331 0 .5266 0 .5200 0 .5168 0 .5143 0 .5127 0 .5125 0 .5107 0 .5095 0 .5090 0 .509 3

500 21 .8687 13 .1245 4 .9232 0 .8646 0 .5910 0 .5685 0 .5450 0 .5332 0 .5267 0 .5203 0 .5173 0 .5145 0 .5129 0 .5123 0 .5102 0 .5092 0 .5094 0 .509 7

1000 42 .0423 24 .8700 8 .9004 1 .1234 0 .5917 0 .5687 0 .5457 0 .5327 0 .5265 0 .5204 0 .5174 0 .5143 0 .5126 0 .5118 0 .5098 0 .5098 0 .5091 0 .509 6

2500 101 .548 59 .3470 20 .4324 1 .8628 0 .5930 0 .5698 0 .5460 0 .5336 0 .5268 0 .5206 0 .5178 0 .5143 0 .5155 0 .5129 0 .5102 0 .5093 0 .5087 0 .5095
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Critical Values for Kolmogorov Smirnov Test - Significance Level of 0 .20

n\k 0 .010 0 .025 0 .050 0 .100 0 .200 0 .300 0 .500 0 .750 1 .000 1 .500 2 .000 3 .000 4 .000 5 .000 10 .000 20 .000 50 .000 100 .00 0

4 0 .3745 0 .3681 0 .3610 0 .3538 0 .3419 0 .3360 0 .3314 0 .3293 0 .3285 0 .3275 0 .3270 0 .3266 0 .3263 0 .3263 0 .3258 0 .3258 0 .3257 0 .325 6

5 0 .3495 0 .3407 0 .3315 0 .3276 0 .3228 0 .3179 0 .3128 0 .3093 0 .3074 0 .3055 0 .3043 0 .3036 0 .3029 0 .3026 0 .3019 0 .3015 0 .3014 0 .301 4

6 0 .3350 0 .3220 0 .3102 0 .3048 0 .2990 0 .2942 0 .2889 0 .2856 0 .2839 0 .2822 0 .2812 0 .2804 0 .2800 0 .2795 0 .2792 0 .2788 0 .2788 0 .278 7

7 0 .3207 0 .3062 0 .2918 0 .2848 0 .2792 0 .2745 0 .2695 0 .2666 0 .2649 0 .2631 0 .2620 0 .2613 0 .2608 0 .2606 0 .2601 0 .2598 0 .2597 0 .259 6

8 0 .3105 0 .2932 0 .2759 0 .2683 0 .2641 0 .2598 0 .2547 0 .2516 0 .2498 0 .2480 0 .2471 0 .2462 0 .2458 0 .2456 0 .2449 0 .2446 0 .2444 0 .244 4

9 0 .3014 0 .2831 0 .2641 0 .2553 0 .2510 0 .2468 0 .2419 0 .2389 0 .2372 0 .2354 0 .2346 0 .2336 0 .2332 0 .2327 0 .2323 0 .2321 0 .2319 0 .231 9

10 0 .2937 0 .2738 0 .2533 0 .2436 0 .2394 0 .2352 0 .2307 0 .2276 0 .2262 0 .2244 0 .2236 0 .2228 0 .2223 0 .2220 0 .2214 0 .2211 0 .2211 0 .220 9

11 0 .2869 0 .2660 0 .2440 0 .2333 0 .2296 0 .2255 0 .2209 0 .2182 0 .2165 0 .2149 0 .2141 0 .2132 0 .2126 0 .2124 0 .2120 0 .2117 0 .2115 0 .211 5

12 0 .2811 0 .2592 0 .2355 0 .2243 0 .2206 0 .2168 0 .2123 0 .2097 0 .2082 0 .2064 0 .2057 0 .2048 0 .2042 0 .2040 0 .2036 0 .2035 0 .2032 0 .203 3

13 0 .2757 0 .2531 0 .2285 0 .2162 0 .2127 0 .2091 0 .2047 0 .2022 0 .2006 0 .1991 0 .1981 0 .1973 0 .1970 0 .1967 0 .1961 0 .1960 0 .1959 0 .195 8

14 0 .2710 0 .2478 0 .2220 0 .2091 0 .2056 0 .2020 0 .1980 0 .1954 0 .1940 0 .1922 0 .1915 0 .1907 0 .1903 0 .1900 0 .1895 0 .1893 0 .1891 0 .189 1

15 0 .2665 0 .2427 0 .2159 0 .2026 0 .1993 0 .1958 0 .1916 0 .1893 0 .1877 0 .1862 0 .1854 0 .1847 0 .1842 0 .1840 0 .1834 0 .1832 0 .1832 0 .183 1

16 0 .2625 0 .2383 0 .2107 0 .1966 0 .1933 0 .1900 0 .1862 0 .1836 0 .1822 0 .1807 0 .1800 0 .1792 0 .1787 0 .1785 0 .1782 0 .1779 0 .1777 0 .1777

17 0 .2587 0 .2341 0 .2059 0 .1912 0 .1881 0 .1850 0 .1810 0 .1785 0 .1772 0 .1756 0 .1749 0 .1741 0 .1738 0 .1736 0 .1731 0 .1729 0 .1727 0 .1727

18 0 .2553 0 .2304 0 .2014 0 .1863 0 .1831 0 .1799 0 .1762 0 .1737 0 .1724 0 .1710 0 .1704 0 .1696 0 .1692 0 .1690 0 .1684 0 .1683 0 .1681 0 .168 1

19 0 .2519 0 .2267 0 .1975 0 .1816 0 .1786 0 .1754 0 .1719 0 .1694 0 .1681 0 .1668 0 .1659 0 .1653 0 .1649 0 .1646 0 .1643 0 .1641 0 .1640 0 .163 9

20 0 .2489 0 .2236 0 .1935 0 .1774 0 .1743 0 .1713 0 .1677 0 .1654 0 .1641 0 .1628 0 .1621 0 .1613 0 .1609 0 .1608 0 .1603 0 .1601 0 .1600 0 .160 0

21 0 .2463 0 .2205 0 .1899 0 .1734 0 .1704 0 .1673 0 .1639 0 .1617 0 .1604 0 .1590 0 .1584 0 .1576 0 .1573 0 .1571 0 .1568 0 .1565 0 .1564 0 .1564

22 0 .2437 0 .2176 0 .1867 0 .1697 0 .1667 0 .1639 0 .1604 0 .1582 0 .1569 0 .1555 0 .1550 0 .1543 0 .1539 0 .1537 0 .1532 0 .1531 0 .1530 0 .152 9

23 0 .2412 0 .2151 0 .1837 0 .1661 0 .1634 0 .1604 0 .1570 0 .1549 0 .1536 0 .1524 0 .1517 0 .1509 0 .1507 0 .1505 0 .1502 0 .1498 0 .1498 0 .149 8

24 0 .2389 0 .2124 0 .1808 0 .1629 0 .1600 0 .1573 0 .1539 0 .1518 0 .1506 0 .1494 0 .1487 0 .1480 0 .1477 0 .1475 0 .1470 0 .1469 0 .1468 0 .146 7

25 0 .2366 0 .2101 0 .1782 0 .1598 0 .1570 0 .1542 0 .1510 0 .1488 0 .1478 0 .1465 0 .1459 0 .1452 0 .1449 0 .1446 0 .1443 0 .1441 0 .1440 0 .143 9

26 0 .2346 0 .2080 0 .1756 0 .1569 0 .1541 0 .1513 0 .1482 0 .1462 0 .1449 0 .1437 0 .1432 0 .1424 0 .1422 0 .1419 0 .1416 0 .1414 0 .1413 0 .141 2

27 0 .2325 0 .2058 0 .1735 0 .1542 0 .1513 0 .1487 0 .1455 0 .1436 0 .1425 0 .1412 0 .1406 0 .1400 0 .1395 0 .1394 0 .1390 0 .1389 0 .1388 0 .138 8

28 0 .2308 0 .2038 0 .1710 0 .1515 0 .1488 0 .1462 0 .1431 0 .1411 0 .1399 0 .1388 0 .1382 0 .1376 0 .1373 0 .1371 0 .1367 0 .1366 0 .1365 0 .136 4

29 0 .2289 0 .2018 0 .1689 0 .1491 0 .1462 0 .1439 0 .1407 0 .1388 0 .1377 0 .1365 0 .1359 0 .1353 0 .1349 0 .1347 0 .1343 0 .1342 0 .1341 0 .134 1

30 0 .2272 0 .2000 0 .1669 0 .1468 0 .1439 0 .1414 0 .1384 0 .1364 0 .1355 0 .1343 0 .1337 0 .1331 0 .1328 0 .1325 0 .1323 0 .1321 0 .1320 0 .132 0

35 0 .2197 0 .1921 0 .1581 0 .1366 0 .1337 0 .1314 0 .1286 0 .1268 0 .1258 0 .1248 0 .1243 0 .1236 0 .1234 0 .1231 0 .1228 0 .1228 0 .1226 0 .122 6

40 0 .2136 0 .1857 0 .1509 0 .1282 0 .1255 0 .1232 0 .1206 0 .1190 0 .1181 0 .1170 0 .1165 0 .1160 0 .1156 0 .1155 0 .1152 0 .1151 0 .1150 0 .115 0

45 0 .2084 0 .1803 0 .1449 0 .1214 0 .1185 0 .1166 0 .1140 0 .1125 0 .1116 0 .1106 0 .1101 0 .1096 0 .1093 0 .1091 0 .1089 0 .1087 0 .1087 0 .108 6

50 0 .2040 0 .1756 0 .1400 0 .1155 0 .1128 0 .1108 0 .1083 0 .1070 0 .1060 0 .1051 0 .1047 0 .1042 0 .1039 0 .1038 0 .1035 0 .1033 0 .1032 0 .103 3

60 0 .1970 0 .1682 0 .1319 0 .1060 0 .1032 0 .1014 0 .0992 0 .0979 0 .0971 0 .0962 0 .0958 0 .0954 0 .0951 0 .0950 0 .0948 0 .0946 0 .0945 0 .094 5

70 0 .1915 0 .1623 0 .1257 0 .0987 0 .0958 0 .0942 0 .0921 0 .0908 0 .0901 0 .0893 0 .0889 0 .0885 0 .0883 0 .0882 0 .0879 0 .0878 0 .0877 0 .087 7

80 0 .1870 0 .1576 0 .1207 0 .0927 0 .0898 0 .0882 0 .0863 0 .0851 0 .0844 0 .0837 0 .0833 0 .0829 0 .0827 0 .0826 0 .0824 0 .0822 0 .0822 0 .082 2

90 0 .1832 0 .1538 0 .1166 0 .0877 0 .0847 0 .0833 0 .0815 0 .0804 0 .0797 0 .0790 0 .0787 0 .0783 0 .0781 0 .0780 0 .0778 0 .0777 0 .0776 0 .077 6

100 0 .1801 0 .1504 0 .1131 0 .0835 0 .0805 0 .0792 0 .0774 0 .0763 0 .0758 0 .0751 0 .0748 0 .0744 0 .0741 0 .0741 0 .0739 0 .0738 0 .0737 0 .073 7

200 0 .1630 0 .1325 0 .0940 0 .0611 0 .0573 0 .0563 0 .0551 0 .0544 0 .0539 0 .0534 0 .0532 0 .0529 0 .0528 0 .0527 0 .0526 0 .0525 0 .0525 0 .052 5

300 0 .1554 0 .1247 0 .0857 0 .0513 0 .0469 0 .0461 0 .0451 0 .0445 0 .0442 0 .0438 0 .0435 0 .0433 0 .0433 0 .0432 0 .0431 0 .0430 0 .0430 0 .043 0

400 0 .1510 0 .1200 0 .0807 0 .0455 0 .0407 0 .0400 0 .0392 0 .0386 0 .0383 0 .0379 0 .0378 0 .0376 0 .0375 0 .0375 0 .0374 0 .0373 0 .0373 0 .037 3

500 0 .1480 0 .1169 0 .0773 0 .0416 0 .0364 0 .035B 0 .0351 0 .0346 0 .0343 0 .0340 0 .0338 0 .0337 0 .0336 0 .0336 0 .0335 0 .0334 0 .0334 0 .033 4

1000 0 .1407 0 .1093 0 .0692 0 .0323 0 .0258 0 .0254 0 .0249 0 .0245 0 .0243 0 .0241 0 .0240 0 .0239 0 .0238 0 .0238 0 .0237 0 .0237 0 .0237 0 .023 7

2500 0 .1344 0 .1027 0 .0621 0 .0242 0 .0164 0 .0161 0 .0158 0 .0156 0 .0154 0 .0153 0 .0152 0 .0151 0 .0151 0 .0151 0 .0151 0 .0150 0 .0150 0 .0150

B-2



Critical Values for Anderson Darling Test - Significance Level of 0.15

n\k 0 .010 0 .025 0 .050 0 .100 0 .200 0 .300 0 .500 0 .750 1 .000 1 .500 2 .000 3 .000 4 .000 5 .000 10 .000 20 .000 50 .000 100 .000

4 0 .6495 0 .6354 0 .6212 0 .5995 0 .5626 0 .5456 0 .5321 0 .5268 0 .5252 0 .5226 0 .5217 0 .5206 0 .5203 0 .5208 0 .5202 0 .5197 0 .5193 0 .519 0

5 0 .6893 0 .6597 0 .6317 0 .6137 0 .5836 0 .5649 0 .5505 0 .5436 0 .5404 0 .5377 0 .5357 0 .5352 0 .5339 0 .5341 0 .5328 0 .5321 0 .5319 0 .532 0

6 0 .7453 0 .6944 0 .6484 0 .6262 0 .5967 0 .5765 0 .5591 0 .5509 0 .5476 0 .5441 0 .5419 0 .5406 0 .5401 0 .5394 0 .5391 0 .5382 0 .5380 0 .538 2

7 0 .8015 0 .7290 0 .6625 0 .6337 0 .6049 0 .5838 0 .5667 0 .5581 0 .5530 0 .5496 0 .5460 0 .5460 0 .5441 0 .5443 0 .5436 0 .5427 0 .5422 0 .542 1

8 0 .8594 0 .7632 0 .6757 0 .6393 0 .6124 0 .5912 0 .5711 0 .5622 0 .5574 0 .5532 0 .5504 0 .5490 0 .5477 0 .5480 0 .5460 0 .5456 0 .5450 0 .545 2

9 0 .9189 0 .8002 0 .6896 0 .6442 0 .6176 0 .5950 0 .5754 0 .5658 0 .5608 0 .5561 0 .5542 0 .5517 0 .5505 0 .5493 0 .5478 0 .5480 0 .5473 0 .548 0

10 0 .9786 0 .8354 0 .7026 0 .6475 0 .6222 0 .5995 0 .5786 0 .5673 0 .5629 0 .5578 0 .5559 0 .5538 0 .5524 0 .5517 0 .5498 0 .5492 0 .5486 0 .548 9

11 1 .0392 0 .8719 0 .7163 0 .6508 0 .6266 0 .6025 0 .5813 0 .5709 0 .5644 0 .5597 0 .5574 0 .5544 0 .5530 0 .5525 0 .5515 0 .5511 0 .5505 0 .5498

12 1 .0998 0 .9079 0 .7288 0 .6534 0 .6290 0 .6050 0 .5826 0 .5726 0 .5673 0 .5605 0 .5587 0 .5568 0 .5545 0 .5531 0 .5523 0 .5527 0 .5515 0 .552 0

13 1 .1601 0 .9445 0 .7437 0 .6556 0 .6309 0 .6077 0 .5850 0 .5742 0 .5674 0 .5631 0 .5590 0 .5564 0 .5559 0 .5548 0 .5534 0 .5531 0 .5529 0 .552 6

14 1 .2198 0 .9815 0 .7543 0 .6579 0 .6332 0 .6084 0 .5870 0 .5746 0 .5693 0 .5630 0 .5602 0 .5580 0 .5565 0 .5558 0 .5535 0 .5533 0 .5521 0 .552 6

15 1 .2789 1 .0165 0 .7658 0 .6600 0 .6354 0 .6105 0 .5870 0 .5759 0 .5699 0 .5637 0 .5609 0 .5586 0 .5567 0 .5562 0 .5547 0 .5540 0 .5540 0 .5534

16 1 .3374 1 .0527 0 .7796 0 .6618 0 .6364 0 .6118 0 .5892 0 .5762 0 .5707 0 .5642 0 .5625 0 .5584 0 .5571 0 .5573 0 .5557 0 .5545 0 .5535 0 .553 9

17 1 .3967 1 .0875 0 .7922 0 .6631 0 .6388 0 .6140 0 .5898 0 .5770 0 .5712 0 .5658 0 .5621 0 .5592 0 .5578 0 .5576 0 .5554 0 .5550 0 .5540 0 .554 2

18 1 .4533 1 .1240 0 .8037 0 .6659 0 .6392 0 .6142 0 .5905 0 .5773 0 .5715 0 .5657 0 .5635 0 .5599 0 .5588 0 .5578 0 .5555 0 .5554 0 .5547 0 .554 9

19 1 .5098 1 .1576 0 .8169 0 .6665 0 .6405 0 .6155 0 .5919 0 .5783 0 .5726 0 .5660 0 .5626 0 .5605 0 .5584 0 .5573 0 .5567 0 .5562 0 .5555 0 .554 6

20 1 .5661 1 .1928 0 .8279 0 .6685 0 .6413 0 .6161 0 .5921 0 .5790 0 .5732 0 .5668 0 .5635 0 .5604 0 .5588 0 .5585 0 .5570 0 .5559 0 .5556 0 .555 7

21 1 .6235 1 .2257 0 .8396 0 .6691 0 .6420 0 .6160 0 .5937 0 .5804 0 .5728 0 .5668 0 .5641 0 .5611 0 .5594 0 .5584 0 .5573 0 .5570 0 .5560 0 .556 0

22 1 .6779 1 .2584 0 .8514 0 .6704 0 .6431 0 .6175 0 .5932 0 .580E 0 .5735 0 .5669 0 .5646 0 .5614 0 .5598 0 .5594 0 .5577 0 .5561 0 .5565 0 .555 7

23 1 .7323 1 .2970 0 .8644 0 .6716 0 .6440 0 .6186 0 .5935 0 .5807 0 .5731 0 .5676 0 .5637 0 .5611 0 .5608 0 .5592 0 .5575 0 .5562 0 .5561 0 .556 0

24 1 .7885 1 .3279 0 .8745 0 .6727 0 .6444 0 .6192 0 .5944 0 .5806 0 .5739 0 .5683 0 .5643 0 .5618 0 .5596 0 .5590 0 .5582 0 .5569 0 .5562 0 .556 5

25 1 .8422 1 .3607 0 .8871 0 .6737 0 .6453 0 .6196 0 .5948 0 .5813 0 .5751 0 .5677 0 .5652 0 .5619 0 .5605 0 .5595 0 .5581 0 .5568 0 .5565 0 .556 5

26 1 .8963 1 .3958 0 .8982 0 .6745 0 .6449 0 .6193 0 .5950 0 .5817 0 .5744 0 .5681 0 .5649 0 .5614 0 .5598 0 .5596 0 .5575 0 .5568 0 .5567 0 .556 7

27 1 .9503 1 .4261 0 .9129 0 .6765 0 .6455 0 .6208 0 .5944 0 .5816 0 .5756 0 .5684 0 .5656 0 .5623 0 .5602 0 .5591 0 .5575 0 .5574 0 .5564 0 .556 8

28 2 .0036 1 .4603 0 .9224 0 .6766 0 .6461 0 .6213 0 .5955 0 .5817 0 .5751 0 .5681 0 .5663 0 .5623 0 .5613 0 .5601 0 .5579 0 .5576 0 .5570 0 .556 3

29 2 .0588 1 .4943 0 .9338 0 .6782 0 .6457 0 .6217 0 .5965 0 .5818 0 .5755 0 .5690 0 .5653 0 .5629 0 .5607 0 .5597 0 .5575 0 .5569 0 .5566 0 .556 9

30 2 .1110 1 .5255 0 .9463 0 .6801 0 .6465 0 .6216 0 .5955 0 .5826 0 .5758 0 .5689 0 .5661 0 .5629 0 .5599 0 .5593 0 .5584 0 .5578 0 .5566 0 .557 4

35 2 .3678 1 .6835 1 .0038 0 .6836 0 .6483 0 .6230 0 .5974 0 .5835 0 .5764 0 .5696 0 .5667 0 .5633 0 .5625 0 .5606 0 .5591 0 .5584 0 .5576 0 .557 6

40 2 .6243 1 .8376 1 .0582 0 .6870 0 .6498 0 .6232 0 .5979 0 .5837 0 .5773 0 .5701 0 .5662 0 .5636 0 .5612 0 .5608 0 .5593 0 .5579 0 .5575 0 .558 0

45 2 .8741 1 .9901 1 .1118 0 .6917 0 .6505 0 .6253 0 .5979 0 .5839 0 .5768 0 .5706 0 .5669 0 .5637 0 .5621 0 .5612 0 .5599 0 .5586 0 .5585 0 .558 4

50 3 .1177 2 .1386 1 .1654 0 .6950 0 .6527 0 .6258 0 .5976 0 .5860 0 .5778 0 .5710 0 .5676 0 .5641 0 .5619 0 .5616 0 .5599 0 .5588 0 .5588 0 .558 6

60 3 .5997 2 .4304 1 .2695 0 .7029 0 .6530 0 .6262 0 .5995 0 .5851 0 .5780 0 .5709 0 .5673 0 .5645 0 .5618 0 .5616 0 .5605 0 .5589 0 .5589 0 .558 9

70 4 .0720 2 .7155 1 .3751 0 .7081 0 .6538 0 .6281 0 .5996 0 .5850 0 .5781 0 .5716 0 .5684 0 .5643 0 .5629 0 .5615 0 .5600 0 .5592 0 .5593 0 .558 8

80 4 .5375 2 .9941 1 .4768 0 .7162 0 .6539 0 .6273 0 .6005 0 .5856 0 .5786 0 .5726 0 .5690 0 .5641 0 .5637 0 .5616 0 .5602 0 .5589 0 .5588 0 .558 9

90 4 .9957 3 .2729 1 .5758 0 .7212 0 .6536 0 .6283 0 .6001 0 .5863 0 .5789 0 .5724 0 .5691 0 .5651 0 .5631 0 .5618 0 .5602 0 .5590 0 .5594 0 .5593

100 5 .4567 3 .5445 1 .6772 0 .7269 0 .6549 0 .6299 0 .6005 0 .5865 0 .5793 0 .5723 0 .5693 0 .5651 0 .5628 0 .5622 0 .5608 0 .5595 0 .5590 0 .559 2

200 9 .8591 6 .1657 2 .6088 0 .7864 0 .6568 0 .6291 0 .6020 0 .5870 0 .5796 0 .5720 0 .5690 0 .5656 0 .5634 0 .5622 0 .5600 0 .5598 0 .5591 0 .559 7

300 14 .1248 8 .6896 3 .4931 0 .8459 0 .6577 0 .6301 0 .6019 0 .5873 0 .5795 0 .5729 0 .5685 0 .5646 0 .5637 0 .5632 0 .5616 0 .5593 0 .5599 0 .560 2

400 18 .3207 11 .1508 4 .3546 0 .9029 0 .6562 0 .6306 0 .6017 0 .5880 0 .5798 0 .5725 0 .5684 0 .5657 0 .5638 0 .5636 0 .5615 0 .5601 0 .5596 0 .560 2

500 22 .4788 13 .5882 5 .1945 0 .9597 0 .6575 0 .6301 0 .6021 0 .5878 0 .5804 0 .5729 0 .5698 0 .5660 0 .5642 0 .5632 0 .5611 0 .5601 0 .5600 0 .560 2

1000 42 .8884 25 .5062 9 .2649 1 .2387 0 .6576 0 .6303 0 .6032 0 .5874 0 .5798 0 .5726 0 .5696 0 .5652 0 .5642 0 .5631 0 .5607 0 .5604 0 .5597 0 .560 3

2500 102 .850 60 .3279 20 .9754 2 .0188 0 .6594 0 .6314 0 .6028 0 .5884 0 .5806 0 .5726 0 .5697 0 .5658 0 .5674 0 .5643 0 .5613 0 .5597 0 .5593 0 .5605

B-3



Critical Values for Kolmogorov Smirnov Test - Significance Level of 0 .1 5

n\k 0 .010 0 .025 0 .050 0 .100 0 .200 0 .300 0 .500 0 .750 1 .000 1 .500 2 .000 3 .000 4 .000 5 .000 10 .000 20 .000 50 .000 100 .00 0

4 0 .3901 0 .3832 0 .3761 0 .3698 0 .3599 0 .3533 0 .3462 0 .3417 0 .3401 0 .3385 0 .3379 0 .3373 0 .3369 0 .3369 0 .3364 0 .3363 0 .3362 0 .336 2

5 0 .3646 0 .3559 0 .3475 0 .3445 0 .3389 0 .3336 0 .3279 0 .3240 0 .3220 0 .3200 0 .3188 0 .3180 0 .3172 0 .3171 0 .3163 0 .3159 0 .3158 0 .315 6

6 0 .3507 0 .3378 0 .3254 0 .3199 0 .3133 0 .3078 0 .3018 0 .2983 0 .2964 0 .2948 0 .2936 0 .2928 0 .2922 0 .2917 0 .2914 0 .2910 0 .2909 0 .290 9

7 0 .3358 0 .3203 0 .3055 0 .2988 0 .2934 0 .2884 0 .2828 0 .2794 0 .2773 0 .2753 0 .2742 0 .2733 0 .2728 0 .2726 0 .2719 0 .2716 0 .2715 0 .2713

8 0 .3254 0 .3078 0 .2899 0 .2825 0 .2781 0 .2732 0 .2673 0 .2639 0 .2620 0 .2599 0 .2588 0 .2579 0 .2574 0 .2571 0 .2564 0 .2560 0 .2557 0 .255 8

9 0 .3158 0 .2969 0 .2773 0 .2686 0 .2639 0 .2592 0 .2539 0 .2504 0 .2486 0 .2467 0 .2458 0 .2447 0 .2442 0 .2436 0 .2432 0 .2429 0 .2428 0 .242 8

10 0 .3077 0 .2873 0 .2659 0 .2561 0 .2518 0 .2472 0 .2421 0 .2386 0 .2371 0 .2351 0 .2343 0 .2334 0 .2329 0 .2325 0 .2318 0 .2315 0 .2314 0 .231 3

11 0 .3006 0 .2792 0 .2564 0 .2453 0 .2415 0 .2371 0 .2320 0 .2290 0 .2270 0 .2251 0 .2244 0 .2234 0 .2227 0 .2225 0 .2220 0 .2218 0 .2215 0 .2215

12 0 .2944 0 .2721 0 .2475 0 .2360 0 .2322 0 .2280 0 .2229 0 .2201 0 .2183 0 .2163 0 .2155 0 .2147 0 .2140 0 .2137 0 .2131 0 .2132 0 .2128 0 .212 9

13 0 .2887 0 .2657 0 .2402 0 .2276 0 .2239 0 .2198 0 .2151 0 .2121 0 .2104 0 .2087 0 .2077 0 .2067 0 .2064 0 .2061 0 .2054 0 .2052 0 .2052 0 .205 0

14 0 .2835 0 .2600 0 .2333 0 .2200 0 .2163 0 .2124 0 .2080 0 .2050 0 .2034 0 .2015 0 .2006 0 .1998 0 .1994 0 .1991 0 .1985 0 .1983 0 .1981 0 .198 0

15 0 .2787 0 .2547 0 .2270 0 .2132 0 .2097 0 .2058 0 .2013 0 .1987 0 .1969 0 .1951 0 .1943 0 .1936 0 .1930 0 .1928 0 .1922 0 .1919 0 .1919 0 .191 8

16 0 .2745 0 .2501 0 .2216 0 .2070 0 .2035 0 .1998 0 .1955 0 .1926 0 .1912 0 .1895 0 .1887 0 .1877 0 .1873 0 .1871 0 .1867 0 .1863 0 .1861 0 .186 1

17 0 .2704 0 .2455 0 .2165 0 .2012 0 .1980 0 .1945 0 .1901 0 .1874 0 .1859 0 .1841 0 .1834 0 .1825 0 .1821 0 .1820 0 .1814 0 .1811 0 .1809 0 .180 9

18 0 .2667 0 .2416 0 .2118 0 .1961 0 .1926 0 .1892 0 .1850 0 .1824 0 .1809 0 .1793 0 .1786 0 .1778 0 .1774 0 .1771 0 .1764 0 .1763 0 .1762 0 .176 2

19 0 .2632 0 .2376 0 .2077 0 .1912 0 .1880 0 .1844 0 .1806 0 .1778 0 .1764 0 .1748 0 .1739 0 .1733 0 .1728 0 .1725 0 .1721 0 .1719 0 .1718 0 .171 7

20 0 .2599 0 .2344 0 .2036 0 .1868 0 .1834 0 .1802 0 .1761 0 .1736 0 .1722 0 .1707 0 .1699 0 .1691 0 .1686 0 .1685 0 .1680 0 .1678 0 .1678 0 .1677

21 0 .2570 0 .2309 0 .1998 0 .1825 0 .1794 0 .1759 0 .1723 0 .1698 0 .1683 0 .1668 0 .1661 0 .1653 0 .1649 0 .1646 0 .1643 0 .1640 0 .1638 0 .163 9

22 0 .2542 0 .2279 0 .1964 0 .1786 0 .1756 0 .1724 0 .1685 0 .1661 0 .1647 0 .1631 0 .1625 0 .1618 0 .1613 0 .1611 0 .1605 0 .1604 0 .1603 0 .160 1

23 0 .2516 0 .2253 0 .1933 0 .1749 0 .1719 0 .1687 0 .1650 0 .1626 0 .1612 0 .1598 0 .1591 0 .1583 0 .1580 0 .1577 0 .1574 0 .1570 0 .1569 0 .1569

24 0 .2491 0 .2225 0 .1901 0 .1715 0 .1685 0 .1654 0 .1617 0 .1593 0 .1580 0 .1566 0 .1559 0 .1552 0 .1548 0 .1545 0 .1541 0 .1539 0 .1538 0 .153 7

25 0 .2466 0 .2200 0 .1873 0 .1683 0 .1652 0 .1623 0 .1586 0 .1563 0 .1551 0 .1537 0 .1529 0 .1522 0 .1518 0 .1516 0 .1512 0 .1510 0 .1509 0 .150 9

26 0 .2445 0 .2177 0 .1846 0 .1652 0 .1622 0 .1591 0 .1557 0 .1534 0 .1521 0 .1507 0 .1501 0 .1493 0 .1490 0 .1487 0 .1484 0 .1482 0 .1480 0 .148 0

27 0 .2423 0 .2152 0 .1824 0 .1624 0 .1593 0 .1565 0 .1528 0 .1507 0 .1495 0 .1482 0 .1474 0 .1467 0 .1462 0 .1462 0 .1457 0 .1455 0 .1454 0 .145 4

28 0 .2404 0 .2132 0 .1798 0 .1596 0 .1566 0 .1538 0 .1504 0 .1481 0 .1469 0 .1455 0 .1449 0 .1442 0 .1439 0 .1436 0 .1432 0 .1431 0 .1430 0 .142 9

29 0 .2383 0 .2111 0 .1776 0 .1570 0 .1539 0 .1514 0 .1479 0 .1456 0 .1446 0 .1431 0 .1425 0 .1418 0 .1414 0 .1412 0 .1407 0 .1407 0 .1406 0 .1405

30 0 .2365 0 .2092 0 .1755 0 .1545 0 .1515 0 .1488 0 .1454 0 .1433 0 .1421 0 .1408 0 .1402 0 .1396 0 .1391 0 .1389 0 .1386 0 .1384 0 .1383 0 .138 3

35 0 .2284 0 .2007 0 .1661 0 .1438 0 .1408 0 .1382 0 .1352 0 .1332 0 .1321 0 .1309 0 .1303 0 .1295 0 .1294 0 .1291 0 .1287 0 .1286 0 .1285 0 .128 4

40 0 .2219 0 .1936 0 .1585 0 .1350 0 .1321 0 .1296 0 .1268 0 .1249 0 .1240 0 .1227 0 .1221 0 .1216 0 .1212 0 .1211 0 .1208 0 .1206 0 .1205 0 .120 5

45 0 .2163 0 .1879 0 .1521 0 .1278 0 .1248 0 .1226 0 .1197 0 .1180 0 .1171 0 .1159 0 .1154 0 .1148 0 .1146 0 .1144 0 .1141 0 .1139 0 .1139 0 .113 8

50 0 .2115 0 .1829 0 .1469 0 .1216 0 .1187 0 .1165 0 .1138 0 .1123 0 .1113 0 .1102 0 .1098 0 .1092 0 .1089 0 .1088 0 .1085 0 .1083 0 .1082 0 .108 2

60 0 .2039 0 .1749 0 .1383 0 .1117 0 .1087 0 .1067 0 .1043 0 .1027 0 .1019 0 .1009 0 .1005 0 .1000 0 .0997 0 .0996 0 .0993 0 .0991 0 .0990 0 .099 0

70 0 .1978 0 .1686 0 .1317 0 .1039 0 .1008 0 .0991 0 .0967 0 .0953 0 .0945 0 .0937 0 .0932 0 .0927 0 .0925 0 .0924 0 .0922 0 .0920 0 .0919 0 .091 9

80 0 .1930 0 .1635 0 .1263 0 .0977 0 .0945 0 .0928 0 .0906 0 .0893 0 .0886 0 .0878 0 .0874 0 .0869 0 .0867 0 .0865 0 .0863 0 .0862 0 .0862 0 .086 1

90 0 .1889 0 .1593 0 .1219 0 .0924 0 .0891 0 .0876 0 .0856 0 .0844 0 .0836 0 .0829 0 .0825 0 .0821 0 .0818 0 .0817 0 .0815 0 .0814 0 .0813 0 .081 3

100 0 .1855 0 .1557 0 .1182 0 .0880 0 .0847 0 .0832 0 .0813 0 .0801 0 .0795 0 .0788 0 .0784 0 .0780 0 .0777 0 .0776 0 .0774 0 .0773 0 .0773 0 .077 2

200 0 .1669 0 .1364 0 .0977 0 .0643 0 .0603 0 .0592 0 .0579 0 .0571 0 .0565 0 .0560 0 .0558 0 .0555 0 .0553 0 .0552 0 .0551 0 .0550 0 .0550 0 .055 0

300 0 .1587 0 .1279 0 .0887 0 .0540 0 .0494 0 .0485 0 .0474 0 .0467 0 .0463 0 .0459 0 .0456 0 .0454 0 .0453 0 .0452 0 .0451 0 .0450 0 .0450 0 .045 0

400 0 .1538 0 .1228 0 .0834 0 .0479 0 .0428 0 .0421 0 .0411 0 .0405 0 .0402 0 .0398 0 .0396 0 .0394 0 .0393 0 .0393 0 .0392 0 .0391 0 .0391 0 .039 1

500 0 .1506 0 .1194 0 .0797 0 .0438 0 .0384 0 .0376 0 .0368 0 .0363 0 .0360 0 .0357 0 .0355 0 .0353 0 .0352 0 .0352 0 .0350 0 .0350 0 .0350 0 .035 0

1000 0 .1425 0 .1111 0 .0709 0 .0338 0 .0272 0 .0267 0 .0261 0 .0257 0 .0255 0 .0253 0 .0252 0 .0250 0 .0250 0 .0249 0 .0249 0 .0248 0 .0248 0 .024 8

2500 0 .1356 0 .1039 0 .0632 0 .0252 0 .0173 0 .0169 0 .0165 0 .0163 0 .0162 0 .0160 0 .0159 0 .0159 0 .0159 0 .0158 0 .0158 0 .0157 0 .0157 0 .0157

B-4



Critical Values for Anderson Darling Test - Significance Level of 0 .1 0

n\k 0 .010 0 .025 0 .050 0 .100 0 .200 0 .300 0 .500 0 .750 1 .000 1 .500 2 .000 3 .000 4 .000 5 .000 10 .000 20 .000 50 .000 100 .00 0

4 0 .7088 0 .6976 0 .6855 0 .6661 0 .6259 0 .6057 0 .5899 0 .5829 0 .5809 0 .5777 0 .5764 0 .5748 0 .5747 0 .5750 0 .5744 0 .5738 0 .5733 0 .573 3

5 0 .7611 0 .7307 0 .7050 0 .6915 0 .6540 0 .6303 0 .6122 0 .6035 0 .5988 0 .5957 0 .5937 0 .5926 0 .5907 0 .5913 0 .5895 0 .5891 0 .5883 0 .588 2

6 0 .8243 0 .7721 0 .7260 0 .7074 0 .6719 0 .6466 0 .6246 0 .6138 0 .6099 0 .6056 0 .6031 0 .6009 0 .6001 0 .5995 0 .5987 0 .5977 0 .5979 0 .597 8

7 0 .8907 0 .8132 0 .7424 0 .7162 0 .6838 0 .6573 0 .6353 0 .6245 0 .6180 0 .6138 0 .6092 0 .6085 0 .6065 0 .6066 0 .6057 0 .6041 0 .6045 0 .604 1

8 0 .9573 0 .8541 0 .7599 0 .7250 0 .6944 0 .6670 0 .6415 0 .6303 0 .6236 0 .6185 0 .6155 0 .6133 0 .6120 0 .6120 0 .6099 0 .6091 0 .6081 0 .608 7

9 1 .0261 0 .8963 0 .7772 0 .7312 0 .7009 0 .6724 0 .6478 0 .6346 0 .6289 0 .6227 0 .6198 0 .6174 0 .6158 0 .6140 0 .6125 0 .6125 0 .6118 0 .612 8

10 1 .0941 0 .9378 0 .7920 0 .7359 0 .7070 0 .6776 0 .6516 0 .6375 0 .6315 0 .6252 0 .6229 0 .6199 0 .6186 0 .6176 0 .6157 0 .6148 0 .6138 0 .613 8

11 1 .1631 0 .9805 0 .8091 0 .7407 0 .7121 0 .6823 0 .6552 0 .6420 0 .6339 0 .6275 0 .6250 0 .6217 0 .6195 0 .6189 0 .6178 0 .6170 0 .6164 0 .615 6

12 1 .2308 1 .0222 0 .8239 0 .7436 0 .7156 0 .6855 0 .6573 0 .6445 0 .6378 0 .6291 0 .6267 0 .6244 0 .6214 0 .6198 0 .6187 0 .6196 0 .6178 0 .618 3

13 1 .2985 1 .0649 0 .8408 0 .7479 0 .7175 0 .6887 0 .6603 0 .6466 0 .6376 0 .6330 0 .6276 0 .6237 0 .6230 0 .6222 0 .6208 0 .6197 0 .6195 0 .619 4

14 1 .3637 1 .1060 0 .8544 0 .7493 0 .7210 0 .6903 0 .6627 0 .6473 0 .6399 0 .6326 0 .6291 0 .6264 0 .6243 0 .6237 0 .6212 0 .6203 0 .6189 0 .619 7

15 1 .4305 1 .1465 0 .8679 0 .7521 0 .7238 0 .6927 0 .6629 0 .6497 0 .6416 0 .6342 0 .6299 0 .6277 0 .6242 0 .6237 0 .6222 0 .6215 0 .6210 0 .6204

16 1 .4956 1 .1879 0 .8847 0 .7551 0 .7246 0 .6943 0 .6655 0 .6493 0 .6424 0 .6343 0 .6319 0 .6272 0 .6259 0 .6255 0 .6236 0 .6220 0 .6209 0 .621 8

17 1 .5594 1 .2263 0 .8989 0 .7571 0 .7272 0 .6971 0 .6664 0 .6506 0 .6438 0 .6362 0 .6318 0 .6281 0 .6265 0 .6264 0 .6234 0 .6226 0 .6217 0 .621 7

18 1 .6219 1 .2670 0 .9131 0 .7597 0 .7286 0 .6976 0 .6675 0 .6512 0 .6433 0 .6361 0 .6337 0 .6292 0 .6279 0 .6264 0 .6234 0 .6237 0 .6229 0 .622 9

19 1 .6831 1 .3041 0 .9283 0 .7613 0 .7302 0 .6989 0 .6699 0 .6516 0 .6453 0 .6372 0 .6333 0 .6300 0 .6271 0 .6259 0 .6251 0 .6244 0 .6239 0 .623 0

20 1 .7445 1 .3440 0 .9407 0 .7629 0 .7316 0 .7004 0 .6688 0 .6527 0 .6451 0 .6377 0 .6333 0 .6299 0 .6282 0 .6274 0 .6258 0 .6244 0 .6244 0 .624 3

21 1 .8079 1 .3798 0 .9536 0 .7648 0 .7323 0 .6994 0 .6713 0 .6549 0 .6458 0 .6374 0 .6341 0 .6308 0 .6288 0 .6278 0 .6264 0 .6257 0 .6243 0 .624 0

22 1 .8649 1 .4173 0 .9679 0 .7666 0 .7337 0 .7020 0 .6705 0 .6552 0 .6462 0 .6377 0 .6355 0 .6315 0 .6295 0 .6284 0 .6266 0 .6249 0 .6254 0 .624 3

23 1 .9250 1 .4589 0 .9827 0 .7679 0 .7349 0 .7032 0 .6711 0 .6551 0 .6451 0 .6388 0 .6346 0 .6307 0 .6306 0 .6287 0 .6269 0 .6249 0 .6247 0 .624 4

24 1 .9846 1 .4938 0 .9951 0 .7700 0 .7356 0 .7039 0 .6719 0 .6543 0 .6468 0 .6397 0 .6347 0 .6318 0 .6298 0 .6281 0 .6271 0 .6256 0 .6254 0 .625 4

25 2 .0426 1 .5281 1 .0090 0 .7703 0 .7364 0 .7044 0 .6727 0 .6560 0 .6484 0 .6393 0 .6355 0 .6322 0 .6299 0 .6294 0 .6274 0 .6257 0 .6251 0 .624 8

26 2 .1022 1 .5681 1 .0213 0 .7705 0 .7353 0 .7044 0 .6729 0 .6564 0 .6484 0 .6397 0 .6355 0 .6314 0 .6294 0 .6291 0 .6268 0 .6265 0 .6260 0 .625 6

27 2 .1572 1 .6005 1 .0378 0 .7732 0 .7370 0 .7063 0 .6730 0 .6562 0 .6486 0 .6404 0 .6360 0 .6323 0 .6297 0 .6288 0 .6271 0 .6268 0 .6260 0 .6262

28 2 .2173 1 .6381 1 .0486 0 .7741 0 .7372 0 .7061 0 .6742 0 .6563 0 .6486 0 .6401 0 .6374 0 .6330 0 .6311 0 .6299 0 .6272 0 .6274 0 .6261 0 .625 5

29 2 .2750 1 .6749 1 .0620 0 .7755 0 .7369 0 .7073 0 .6753 0 .6561 0 .6488 0 .6407 0 .6371 0 .6330 0 .6311 0 .6296 0 .6270 0 .6262 0 .6260 0 .625 5

30 2 .3305 1 .7089 1 .0763 0 .7781 0 .7378 0 .7064 0 .6744 0 .6581 0 .6496 0 .6408 0 .6374 0 .6334 0 .6307 0 .6289 0 .6279 0 .6269 0 .6261 0 .6267

35 2 .6059 1 .8806 1 .1413 0 .7832 0 .7395 0 .7082 0 .6765 0 .6588 0 .6502 0 .6424 0 .6382 0 .6334 0 .6332 0 .6306 0 .6293 0 .6280 0 .6270 0 .627 3

40 2 .8792 2 .0456 1 .2022 0 .7872 0 .7421 0 .7090 0 .6768 0 .6597 0 .6514 0 .6426 0 .6370 0 .6343 0 .6320 0 .6309 0 .6287 0 .6277 0 .6276 0 .627 9

45 3 .1396 2 .2085 1 .2601 0 .7927 0 .7430 0 .7115 0 .6768 0 .6605 0 .6507 0 .6433 0 .6387 0 .6342 0 .6321 0 .6319 0 .6304 0 .6281 0 .6289 0 .628 6

50 3 .3978 2 .3668 1 .3201 0 .7966 0 .7457 0 .7124 0 .6772 0 .6622 0 .6518 0 .6429 0 .6398 0 .6354 0 .6326 0 .6322 0 .6302 0 .6286 0 .6285 0 .6287

60 3 .9028 2 .6768 1 .4351 0 .8062 0 .7470 0 .7129 0 .6785 0 .6609 0 .6518 0 .6441 0 .6395 0 .6360 0 .6333 0 .6324 0 .6313 0 .6290 0 .6291 0 .629 2

70 4 .3942 2 .9790 1 .5495 0 .8114 0 .7472 0 .7152 0 .6789 0 .6615 0 .6531 0 .6454 0 .6408 0 .6357 0 .6339 0 .6327 0 .6302 0 .6296 0 .6295 0 .629 3

80 4 .8817 3 .2693 1 .6602 0 .8202 0 .7471 0 .7141 0 .6801 0 .6625 0 .6535 0 .6458 0 .6412 0 .6362 0 .6352 0 .6326 0 .6312 0 .6299 0 .6291 0 .628 8

90 5 .3579 3 .5630 1 .7658 0 .8266 0 .7481 0 .7155 0 .6801 0 .6633 0 .6537 0 .6457 0 .6417 0 .6366 0 .6339 0 .6337 0 .6310 0 .6289 0 .6303 0 .629 8

100 5 .8377 3 .8476 1 .8740 0 .8334 0 .7487 0 .7170 0 .6807 0 .6634 0 .6538 0 .6457 0 .6422 0 .6370 0 .6341 0 .6335 0 .6315 0 .6300 0 .6296 0 .629 1

200 10 .3750 6 .5699 2 .8606 0 .9021 0 .7513 0 .7163 0 .6820 0 .6641 0 .6545 0 .6458 0 .6418 0 .6380 0 .6351 0 .6339 0 .6311 0 .6305 0 .6302 0 .630 7

300 14 .7424 9 .1683 3 .7864 0 .9692 0 .7517 0 .7178 0 .6822 0 .6641 0 .6549 0 .6466 0 .6411 0 .6363 0 .6359 0 .6341 0 .6334 0 .6305 0 .6302 0 .631 1

400 19 .0253 11 .6939 4 .6787 1 .0324 0 .7510 0 .7180 0 .6826 0 .6649 0 .6554 0 .6460 0 .6413 0 .6372 0 .6358 0 .6349 0 .6329 0 .6312 0 .6306 0 .631 3

500 23 .2588 14 .1892 5 .5513 1 .0949 0 .7520 0 .7179 0 .6825 0 .6644 0 .6554 0 .6465 0 .6426 0 .6382 0 .6356 0 .6349 0 .6320 0 .6308 0 .6305 0 .631 5

1000 43 .9612 26 .3237 9 .7366 1 .3989 0 .7522 0 .7183 0 .6844 0 .6645 0 .6549 0 .6460 0 .6429 0 .6373 0 .6363 0 .6348 0 .6321 0 .6310 0 .6300 0 .631 1

2500 104 .511 61 .5654 21 .6770 2 .2303 0 .7537 0 .7193 0 .6835 0 .6645 0 .6563 0 .6462 0 .6424 0 .6375 0 .6403 0 .6357 0 .6322 0 .6302 0 .6307 0 .6316

B-5



Critical Values for Kolmogorov Smirnov Test - Significance Level of 0 .1 0

n\k 0 .010 0 .025 0 .050 0 .100 0 .200 0 .300 0 .500 0 .750 1 .000 1 .500 2 .000 3 .000 4 .000 5 .000 10 .000 20 .000 50 .000 100 .00 0

4 0 .4102 0 .4026 0 .3956 0 .3925 0 .3872 0 .3817 0 .3746 0 .3699 0 .3677 0 .3647 0 .3633 0 .3622 0 .3615 0 .3616 0 .3605 0 .3601 0 .3599 0 .359 6

5 0 .3856 0 .3761 0 .3680 0 .3655 0 .3586 0 .3524 0 .3459 0 .3416 0 .3395 0 .3373 0 .3361 0 .3351 0 .3344 0 .3343 0 .3334 0 .3331 0 .3330 0 .332 8

6 0 .3694 0 .3570 0 .3448 0 .3393 0 .3324 0 .3261 0 .3192 0 .3151 0 .3130 0 .3110 0 .3096 0 .3087 0 .3080 0 .3075 0 .3073 0 .3068 0 .3066 0 .306 6

7 0 .3558 0 .3394 0 .3234 0 .3175 0 .3128 0 .3071 0 .3006 0 .2968 0 .2941 0 .2919 0 .2903 0 .2893 0 .2886 0 .2885 0 .2877 0 .2872 0 .2871 0 .2870

8 0 .3441 0 .3265 0 .3083 0 .3010 0 .2959 0 .2903 0 .2837 0 .2799 0 .2776 0 .2754 0 .2741 0 .2731 0 .2725 0 .2722 0 .2714 0 .2710 0 .2707 0 .2709

9 0 .3343 0 .3148 0 .2947 0 .2856 0 .2808 0 .2754 0 .2695 0 .2656 0 .2635 0 .2612 0 .2602 0 .2590 0 .2585 0 .2578 0 .2574 0 .2571 0 .2569 0 .257 0

10 0 .3255 0 .3048 0 .2824 0 .2726 0 .2682 0 .2630 0 .2572 0 .2533 0 .2514 0 .2492 0 .2483 0 .2471 0 .2465 0 .2463 0 .2454 0 .2451 0 .2448 0 .244 8

11 0 .3182 0 .2962 0 .2726 0 .2613 0 .2574 0 .2523 0 .2465 0 .2430 0 .2408 0 .2386 0 .2378 0 .2365 0 .2360 0 .2356 0 .2351 0 .2348 0 .2346 0 .234 5

12 0 .3113 0 .2887 0 .2633 0 .2515 0 .2473 0 .2425 0 .2368 0 .2337 0 .2316 0 .2293 0 .2284 0 .2274 0 .2267 0 .2263 0 .2256 0 .2257 0 .2255 0 .225 4

13 0 .3051 0 .2817 0 .2554 0 .2425 0 .2385 0 .2340 0 .2287 0 .2253 0 .2232 0 .2214 0 .2202 0 .2191 0 .2187 0 .2183 0 .2177 0 .2174 0 .2173 0 .217 2

14 0 .2995 0 .2758 0 .2482 0 .2344 0 .2306 0 .2262 0 .2211 0 .2177 0 .2158 0 .2137 0 .2127 0 .2119 0 .2113 0 .2111 0 .2104 0 .2101 0 .2098 0 .209 6

15 0 .2943 0 .2702 0 .2414 0 .2271 0 .2235 0 .2192 0 .2139 0 .2110 0 .2091 0 .2070 0 .2061 0 .2052 0 .2046 0 .2043 0 .2037 0 .2034 0 .2034 0 .203 2

16 0 .2898 0 .2651 0 .2358 0 .2207 0 .2168 0 .2127 0 .2078 0 .2047 0 .2028 0 .2009 0 .2001 0 .1990 0 .1985 0 .1983 0 .1978 0 .1974 0 .1972 0 .197 3

17 0 .2854 0 .2602 0 .2304 0 .2145 0 .2110 0 .2071 0 .2021 0 .1990 0 .1973 0 .1954 0 .1944 0 .1935 0 .1930 0 .1928 0 .1921 0 .1919 0 .1917 0 .1917

18 0 .2814 0 .2559 0 .2253 0 .2091 0 .2054 0 .2014 0 .1967 0 .1938 0 .1920 0 .1903 0 .1894 0 .1884 0 .1880 0 .1876 0 .1870 0 .1868 0 .1867 0 .1867

19 0 .2776 0 .2518 0 .2210 0 .2038 0 .2004 0 .1965 0 .1920 0 .1888 0 .1873 0 .1854 0 .1845 0 .1838 0 .1832 0 .1828 0 .1824 0 .1822 0 .1820 0 .182 0

20 0 .2740 0 .2480 0 .2166 0 .1991 0 .1956 0 .1919 0 .1873 0 .1844 0 .1828 0 .1812 0 .1801 0 .1793 0 .1788 0 .1786 0 .1781 0 .1779 0 .1778 0 .177 7

21 0 .2708 0 .2445 0 .2125 0 .1945 0 .1912 0 .1873 0 .1832 0 .1804 0 .1787 0 .1770 0 .1761 0 .1753 0 .1747 0 .1745 0 .1741 0 .1738 0 .1737 0 .173 6

22 0 .2677 0 .2412 0 .2090 0 .1904 0 .1872 0 .1835 0 .1792 0 .1764 0 .1749 0 .1730 0 .1724 0 .1715 0 .1710 0 .1708 0 .1701 0 .1700 0 .1699 0 .169 8

23 0 .2648 0 .2383 0 .2056 0 .1865 0 .1834 0 .1797 0 .1755 0 .1728 0 .1712 0 .1696 0 .1686 0 .1678 0 .1674 0 .1673 0 .1668 0 .1663 0 .1663 0 .166 2

24 0 .2620 0 .2354 0 .2023 0 .1829 0 .1797 0 .1762 0 .1720 0 .1693 0 .1678 0 .1662 0 .1654 0 .1646 0 .1641 0 .1639 0 .1633 0 .1631 0 .1630 0 .162 9

25 0 .2595 0 .2325 0 .1993 0 .1794 0 .1762 0 .1729 0 .1686 0 .1660 0 .1647 0 .1630 0 .1622 0 .1614 0 .1611 0 .1608 0 .1603 0 .1601 0 .1599 0 .159 9

26 0 .2570 0 .2299 0 .1964 0 .1762 0 .1729 0 .1695 0 .1657 0 .1630 0 .1616 0 .1599 0 .1592 0 .1583 0 .1579 0 .1576 0 .1573 0 .1570 0 .1569 0 .156 9

27 0 .2547 0 .2274 0 .1941 0 .1731 0 .1699 0 .1667 0 .1626 0 .1602 0 .1588 0 .1572 0 .1564 0 .1556 0 .1551 0 .1549 0 .1544 0 .1543 0 .1541 0 .154 1

28 0 .2526 0 .2253 0 .1912 0 .1701 0 .1669 0 .1638 0 .1599 0 .1573 0 .1560 0 .1544 0 .1537 0 .1529 0 .1526 0 .1523 0 .1518 0 .1517 0 .1515 0 .1515

29 0 .2503 0 .2230 0 .1888 0 .1674 0 .1641 0 .1612 0 .1573 0 .1547 0 .1535 0 .1518 0 .1512 0 .1505 0 .1501 0 .1497 0 .1492 0 .1491 0 .1490 0 .148 9

30 0 .2484 0 .2208 0 .1866 0 .1648 0 .1615 0 .1585 0 .1547 0 .1523 0 .1509 0 .1495 0 .1488 0 .1480 0 .1475 0 .1473 0 .1469 0 .1467 0 .1466 0 .1466

35 0 .2395 0 .2115 0 .1766 0 .1534 0 .1500 0 .1472 0 .1437 0 .1415 0 .1402 0 .1389 0 .1383 0 .1374 0 .1372 0 .1368 0 .1365 0 .1363 0 .1361 0 .136 1

40 0 .2324 0 .2039 0 .1684 0 .1441 0 .1407 0 .1381 0 .1348 0 .1327 0 .1316 0 .1302 0 .1295 0 .1290 0 .1286 0 .1284 0 .1280 0 .1278 0 .1277 0 .127 8

45 0 .2262 0 .1976 0 .1614 0 .1363 0 .1331 0 .1306 0 .1273 0 .1255 0 .1243 0 .1230 0 .1224 0 .1218 0 .1215 0 .1213 0 .1210 0 .1208 0 .1207 0 .120 6

50 0 .2210 0 .1922 0 .1558 0 .1297 0 .1265 0 .1241 0 .1210 0 .1193 0 .1182 0 .1170 0 .1165 0 .1158 0 .1155 0 .1153 0 .1150 0 .1147 0 .1147 0 .114 7

60 0 .2126 0 .1835 0 .1466 0 .1191 0 .1159 0 .1136 0 .1109 0 .1091 0 .1082 0 .1071 0 .1066 0 .1061 0 .1057 0 .1056 0 .1053 0 .1051 0 .1049 0 .105 0

70 0 .2060 0 .1766 0 .1394 0 .1108 0 .1075 0 .1056 0 .1028 0 .1013 0 .1004 0 .0994 0 .0989 0 .0983 0 .0981 0 .0979 0 .0977 0 .0975 0 .0974 0 .097 4

80 0 .2007 0 .1710 0 .1336 0 .1042 0 .1008 0 .0988 0 .0964 0 .0949 0 .0941 0 .0932 0 .0927 0 .0922 0 .0920 0 .0918 0 .0916 0 .0913 0 .0913 0 .091 3

90 0 .1962 0 .1665 0 .1288 0 .0985 0 .0950 0 .0933 0 .0910 0 .0896 0 .0888 0 .0880 0 .0876 0 .0870 0 .0868 0 .0866 0 .0864 0 .0863 0 .0862 0 .086 1

100 0 .1925 0 .1625 0 .1248 0 .0938 0 .0902 0 .0886 0 .0865 0 .0851 0 .0844 0 .0835 0 .0831 0 .0826 0 .0824 0 .0823 0 .0820 0 .0819 0 .0819 0 .081 9

200 0 .1719 0 .1413 0 .1024 0 .0686 0 .0643 0 .0631 0 .0616 0 .0606 0 .0600 0 .0594 0 .0592 0 .0588 0 .0587 0 .0586 0 .0583 0 .0583 0 .0583 0 .058 3

300 0 .1629 0 .1320 0 .0926 0 .0576 0 .0526 0 .0516 0 .0504 0 .0496 0 .0492 0 .0487 0 .0484 0 .0482 0 .0481 0 .0480 0 .0478 0 .0477 0 .0477 0 .047 7

400 0 .1575 0 .1263 0 .0868 0 .0510 0 .0456 0 .0448 0 .0437 0 .0430 0 .0426 0 .0422 0 .0420 0 .0418 0 .0417 0 .0416 0 .0415 0 .0414 0 .0414 0 .041 4

500 0 .1538 0 .1226 0 .0828 0 .0466 0 .0409 0 .0401 0 .0391 0 .0385 0 .0382 0 .0378 0 .0376 0 .0374 0 .0373 0 .0373 0 .0372 0 .0371 0 .0371 0 .037 1

1000 0 .1449 0 .1134 0 .0731 0 .0359 0 .0290 0 .0284 0 .0278 0 .0273 0 .0271 0 .0268 0 .0267 0 .0265 0 .0265 0 .0264 0 .0263 0 .0263 0 .0263 0 .026 3

2500 0 .1371 0 .1054 0 .0647 0 .0266 0 .0184 0 .0180 0 .0176 0 .0173 0 .0172 0 .0170 0 .0169 0 .0168 0 .0168 0 .0168 0 .0167 0 .0167 0 .0167 0 .0167

B-6



Critical Values for Anderson Darling Test - Significance Level of 0 .05

n\k 0 .010 0 .025 0 .050 0 .100 0 .200 0 .300 0 .500 0 .750 1 .000 1 .500 2 .000 3 .000 4 .000 5 .000 10 .000 20 .000 50 .000 100 .00 0

4 0 .7933 0 .7883 0 .7863 0 .7785 0 .7325 0 .7041 0 .6809 0 .6703 0 .6666 0 .6624 0 .6605 0 .6594 0 .6589 0 .6590 0 .6571 0 .6571 0 .6559 0 .656 5

5 0 .8730 0 .8462 0 .8304 0 .8264 0 .7753 0 .7392 0 .7110 0 .6983 0 .6913 0 .6864 0 .6845 0 .6826 0 .6812 0 .6807 0 .6789 0 .6787 0 .6783 0 .678 1

6 0 .9490 0 .8965 0 .8535 0 .8446 0 .8025 0 .7667 0 .7359 0 .7210 0 .7151 0 .7078 0 .7042 0 .7013 0 .7000 0 .6980 0 .6983 0 .6971 0 .6969 0 .6962

7 1 .0305 0 .9476 0 .8762 0 .8598 0 .8211 0 .7841 0 .7515 0 .7361 0 .7275 0 .7212 0 .7149 0 .7122 0 .7097 0 .7099 0 .7085 0 .7067 0 .7077 0 .707 7

8 1 .1136 1 .0006 0 .8986 0 .8720 0 .8359 0 .7973 0 .7624 0 .7451 0 .7355 0 .7284 0 .7240 0 .7215 0 .7186 0 .7191 0 .7150 0 .7162 0 .7148 0 .714 7

9 1 .1971 1 .0535 0 .9227 0 .8810 0 .8451 0 .8073 0 .7707 0 .7515 0 .7435 0 .7344 0 .7298 0 .7268 0 .7250 0 .7228 0 .7218 0 .7210 0 .7205 0 .720 0

10 1 .2792 1 .1063 0 .9420 0 .8881 0 .8539 0 .8136 0 .7770 0 .7570 0 .7483 0 .7392 0 .7356 0 .7322 0 .7294 0 .7295 0 .7251 0 .7246 0 .7244 0 .723 8

11 1 .3623 1 .1586 0 .9637 0 .8950 0 .8601 0 .8201 0 .7811 0 .7625 0 .7516 0 .7422 0 .7389 0 .7335 0 .7326 0 .7314 0 .7294 0 .7287 0 .7284 0 .725 7

12 1 .4414 1 .2089 0 .9834 0 .8989 0 .8656 0 .8239 0 .7849 0 .7656 0 .7567 0 .7455 0 .7415 0 .7390 0 .7358 0 .7320 0 .7303 0 .7319 0 .7296 0 .731 2

13 1 .5200 1 .2605 1 .0039 0 .9049 0 .8682 0 .8298 0 .7900 0 .7703 0 .7574 0 .7503 0 .7431 0 .7392 0 .7372 0 .7359 0 .7337 0 .7333 0 .7325 0 .732 3

14 1 .5958 1 .3106 1 .0234 0 .9072 0 .8735 0 .8320 0 .7933 0 .7706 0 .7600 0 .7507 0 .7459 0 .7425 0 .7401 0 .7380 0 .7345 0 .7340 0 .7330 0 .733 4

15 1 .6732 1 .3605 1 .0405 0 .9113 0 .8768 0 .8355 0 .7930 0 .7751 0 .7630 0 .7538 0 .7468 0 .7445 0 .7400 0 .7386 0 .7374 0 .7347 0 .7345 0 .734 1

16 1 .7482 1 .4088 1 .0618 0 .9164 0 .8783 0 .8378 0 .7963 0 .7745 0 .7633 0 .7547 0 .7503 0 .7443 0 .7419 0 .7413 0 .7390 0 .7365 0 .7354 0 .7360

17 1 .8194 1 .4552 1 .0796 0 .9205 0 .8827 0 .8418 0 .7979 0 .7764 0 .7660 0 .7557 0 .7494 0 .7454 0 .7428 0 .7416 0 .7388 0 .7378 0 .7367 0 .7362

18 1 .8905 1 .4995 1 .0965 0 .9229 0 .8842 0 .8421 0 .8001 0 .7780 0 .7666 0 .7562 0 .7526 0 .7458 0 .7426 0 .7430 0 .7392 0 .7395 0 .7383 0 .7372

19 1 .9614 1 .5452 1 .1162 0 .9250 0 .8877 0 .8428 0 .8028 0 .7788 0 .7692 0 .7569 0 .7518 0 .7481 0 .7451 0 .7424 0 .7412 0 .7403 0 .7404 0 .737 9

20 2 .0284 1 .5917 1 .1322 0 .9289 0 .8880 0 .8447 0 .8025 0 .7795 0 .7679 0 .7578 0 .7524 0 .7475 0 .7455 0 .7452 0 .7418 0 .7407 0 .7394 0 .740 5

21 2 .0984 1 .6336 1 .1480 0 .9288 0 .8903 0 .8458 0 .8053 0 .7828 0 .7696 0 .7582 0 .7538 0 .7494 0 .7473 0 .7453 0 .7426 0 .7425 0 .7412 0 .739 5

22 2 .1639 1 .6751 1 .1669 0 .9334 0 .8918 0 .8476 0 .8043 0 .7830 0 .7708 0 .7587 0 .7561 0 .7494 0 .7466 0 .7464 0 .7436 0 .7403 0 .7429 0 .740 6

23 2 .2329 1 .7214 1 .1839 0 .9338 0 .8939 0 .8488 0 .8051 0 .7822 0 .7693 0 .7601 0 .7547 0 .7503 0 .7491 0 .7465 0 .7441 0 .7419 0 .7414 0 .740 4

24 2 .2974 1 .7630 1 .2009 0 .9377 0 .8938 0 .8512 0 .8063 0 .7825 0 .7719 0 .7615 0 .7551 0 .7511 0 .7487 0 .7462 0 .7443 0 .7423 0 .7421 0 .741 8

25 2 .3601 1 .8028 1 .2161 0 .9394 0 .8955 0 .8518 0 .8069 0 .7835 0 .7731 0 .7615 0 .7565 0 .7513 0 .7487 0 .7470 0 .7448 0 .7432 0 .7423 0 .741 8

26 2 .4252 1 .8483 1 .2315 0 .9393 0 .8936 0 .8516 0 .8085 0 .7842 0 .7734 0 .7616 0 .7573 0 .7505 0 .7478 0 .7463 0 .7441 0 .7438 0 .7428 0 .742 2

27 2 .4909 1 .8820 1 .2531 0 .9437 0 .8957 0 .8531 0 .8074 0 .7839 0 .7733 0 .7630 0 .7566 0 .7517 0 .7490 0 .7474 0 .7436 0 .7440 0 .7433 0 .743 9

28 2 .5562 1 .9280 1 .2634 0 .9432 0 .8971 0 .8543 0 .8103 0 .7847 0 .7738 0 .7627 0 .7580 0 .7537 0 .7497 0 .7485 0 .7453 0 .7446 0 .7431 0 .743 1

29 2 .6160 1 .9685 1 .2809 0 .9478 0 .8976 0 .8562 0 .8115 0 .7837 0 .7742 0 .7627 0 .7573 0 .7527 0 .7503 0 .7475 0 .7457 0 .7442 0 .7439 0 .742 3

30 2 .6778 2 .0063 1 .2983 0 .9482 0 .8976 0 .8538 0 .8092 0 .7878 0 .7755 0 .7630 0 .7585 0 .7524 0 .7495 0 .7465 0 .7455 0 .7443 0 .7441 0 .745 1

35 2 .9819 2 .1959 1 .3736 0 .9546 0 .8995 0 .8565 0 .8122 0 .7877 0 .7757 0 .7666 0 .7597 0 .7537 0 .7526 0 .7497 0 .7483 0 .7467 0 .7447 0 .745 9

40 3 .2742 2 .3805 1 .4435 0 .9625 0 .9028 0 .8577 0 .8131 0 .7891 0 .7787 0 .7658 0 .7590 0 .7547 0 .7525 0 .7515 0 .7480 0 .7467 0 .7458 0 .7468

45 3 .5595 2 .5587 1 .5106 0 .9690 0 .9054 0 .8619 0 .8134 0 .7897 0 .7769 0 .7679 0 .7605 0 .7556 0 .7529 0 .7532 0 .7484 0 .7482 0 .7473 0 .747 1

50 3 .8334 2 .7329 1 .5791 0 .9737 0 .9074 0 .8624 0 .8143 0 .7934 0 .7800 0 .7672 0 .7629 0 .7569 0 .7535 0 .7537 0 .7496 0 .7482 0 .7476 0 .748 1

60 4 .3789 3 .0659 1 .7118 0 .9844 0 .9099 0 .8633 0 .8160 0 .7921 0 .7791 0 .7689 0 .7629 0 .7580 0 .7536 0 .7533 0 .7512 0 .7489 0 .7476 0 .748 4

70 4 .9012 3 .3923 1 .8398 0 .9917 0 .9096 0 .8657 0 .8167 0 .7926 0 .7805 0 .7689 0 .7634 0 .7575 0 .7557 0 .7542 0 .7507 0 .7492 0 .7486 0 .7490

80 5 .4154 3 .7091 1 .9620 1 .0021 0 .9104 0 .8649 0 .8189 0 .7931 0 .7820 0 .7703 0 .7631 0 .7589 0 .7563 0 .7545 0 .7505 0 .7508 0 .7484 0 .7488

90 5 .9167 4 .0188 2 .0787 1 .0111 0 .9113 0 .8679 0 .8184 0 .7936 0 .7828 0 .7715 0 .7651 0 .7592 0 .7554 0 .7548 0 .7521 0 .7495 0 .7513 0 .7502

100 6 .4255 4 .3222 2 .1954 1 .0194 0 .9123 0 .8676 0 .8184 0 .7950 0 .7830 0 .7698 0 .7650 0 .7585 0 .7564 0 .7543 0 .7522 0 .7495 0 .7504 0 .7500

200 11 .1598 7 .1943 3 .2677 1 .1031 0 .9142 0 .8692 0 .8209 0 .7962 0 .7839 0 .7713 0 .7664 0 .7604 0 .7564 0 .7561 0 .7512 0 .7513 0 .7503 0 .7506

300 15 .6877 9 .9089 4 .2544 1 .1798 0 .9166 0 .8707 0 .8217 0 .7969 0 .7840 0 .7720 0 .7659 0 .7594 0 .7588 0 .7568 0 .7552 0 .7509 0 .7516 0 .7523

400 20 .0982 12 .5299 5 .1940 1 .2564 0 .9170 0 .8713 0 .8230 0 .7977 0 .7846 0 .7728 0 .7660 0 .7602 0 .7586 0 .7572 0 .7542 0 .7515 0 .7523 0 .751 1

500 24 .4270 15 .1069 6 .1097 1 .3280 0 .9178 0 .8716 0 .8223 0 .7971 0 .7851 0 .7721 0 .7671 0 .7615 0 .7590 0 .7563 0 .7534 0 .7522 0 .7515 0 .7530

1000 45 .5811 27 .5755 10 .4679 1 .6707 0 .9188 0 .8707 0 .8244 0 .7966 0 .7846 0 .7713 0 .7679 0 .7603 0 .7597 0 .7573 0 .7527 0 .7519 0 .7497 0 .752 0

2500 107 .018 63 .4597 22 .7439 2 .5739 0 .9200 0 .8732 0 .8223 0 .7969 0 .7860 0 .7722 0 .7666 0 .7603 0 .7641 0 .7572 0 .7527 0 .7513 0 .7522 0 .7525
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Critical Values for Kolmogorov Smirnov Test - Significance Level of 0 .05

n\k 0 .010 0 .025 0 .050 0 .100 0 .200 0 .300 0 .500 0 .750 1 .000 1 .500 2 .000 3 .000 4 .000 5 .000 10 .000 20 .000 50 .000 100 .00 0

4 0 .4371 0 .4323 0 .4289 0 .4296 0 .4244 0 .4181 0 .4103 0 .4050 0 .4024 0 .3995 0 .3979 0 .3966 0 .3962 0 .3959 0 .3949 0 .3942 0 .3938 0 .394 0

5 0 .4191 0 .4093 0 .4009 0 .3982 0 .3885 0 .3799 0 .3716 0 .3667 0 .3644 0 .3617 0 .3605 0 .3594 0 .3584 0 .3583 0 .3576 0 .3572 0 .3569 0 .356 8

6 0 .3971 0 .3844 0 .3726 0 .3688 0 .3637 0 .3568 0 .3486 0 .3434 0 .3408 0 .3375 0 .3358 0 .3346 0 .3335 0 .3328 0 .3325 0 .3317 0 .3318 0 .331 5

7 0 .3849 0 .3688 0 .3528 0 .3478 0 .3419 0 .3351 0 .3272 0 .3227 0 .3196 0 .3170 0 .3151 0 .3137 0 .3129 0 .3130 0 .3119 0 .3115 0 .3114 0 .311 3

8 0 .3724 0 .3541 0 .3356 0 .3287 0 .3233 0 .3170 0 .3090 0 .3041 0 .3015 0 .2989 0 .2975 0 .2963 0 .2953 0 .2952 0 .2943 0 .2939 0 .2934 0 .293 6

9 0 .3617 0 .3418 0 .3208 0 .3123 0 .3075 0 .3015 0 .2941 0 .2893 0 .2869 0 .2840 0 .2825 0 .2813 0 .2804 0 .2798 0 .2793 0 .2788 0 .2787 0 .278 8

10 0 .3523 0 .3314 0 .3081 0 .2984 0 .2941 0 .2878 0 .2808 0 .2760 0 .2737 0 .2711 0 .2698 0 .2685 0 .2678 0 .2674 0 .2666 0 .2662 0 .2659 0 .265 8

11 0 .3440 0 .3221 0 .2976 0 .2862 0 .2819 0 .2759 0 .2691 0 .2649 0 .2624 0 .2597 0 .2585 0 .2570 0 .2565 0 .2560 0 .2554 0 .2550 0 .2546 0 .254 4

12 0 .3368 0 .3137 0 .2873 0 .2753 0 .2710 0 .2653 0 .2587 0 .2548 0 .2524 0 .2495 0 .2485 0 .2474 0 .2464 0 .2459 0 .2454 0 .2452 0 .2450 0 .245 0

13 0 .3297 0 .3064 0 .2789 0 .2659 0 .2613 0 .2563 0 .2498 0 .2459 0 .2430 0 .2409 0 .2394 0 .2382 0 .2377 0 .2374 0 .2367 0 .2361 0 .2362 0 .236 0

14 0 .3234 0 .2996 0 .2711 0 .2568 0 .2530 0 .2478 0 .2416 0 .2376 0 .2351 0 .2327 0 .2316 0 .2305 0 .2298 0 .2293 0 .2287 0 .2283 0 .2280 0 .227 9

15 0 .3178 0 .2934 0 .2638 0 .2489 0 .2451 0 .2400 0 .2338 0 .2302 0 .2279 0 .2255 0 .2244 0 .2233 0 .2226 0 .2221 0 .2215 0 .2212 0 .2210 0 .220 9

16 0 .3127 0 .2878 0 .2577 0 .2419 0 .2376 0 .2329 0 .2272 0 .2232 0 .2212 0 .2189 0 .2179 0 .2167 0 .2161 0 .2158 0 .2152 0 .2146 0 .2144 0 .214 4

17 0 .3078 0 .2826 0 .2519 0 .2352 0 .2315 0 .2268 0 .2209 0 .2173 0 .2151 0 .2129 0 .2117 0 .2106 0 .2100 0 .2097 0 .2089 0 .2087 0 .2085 0 .208 4

18 0 .3033 0 .2776 0 .2464 0 .2292 0 .2253 0 .2208 0 .2151 0 .2114 0 .2094 0 .2072 0 .2063 0 .2050 0 .2046 0 .2041 0 .2034 0 .2033 0 .2031 0 .203 1

19 0 .2990 0 .2731 0 .2415 0 .2236 0 .2198 0 .2151 0 .2100 0 .2061 0 .2043 0 .2021 0 .2008 0 .2000 0 .1992 0 .1990 0 .1986 0 .1981 0 .1981 0 .197 9

20 0 .2949 0 .2691 0 .2366 0 .2185 0 .2145 0 .2101 0 .2049 0 .2014 0 .1994 0 .1974 0 .1961 0 .1950 0 .1946 0 .1945 0 .1938 0 .1935 0 .1934 0 .193 4

21 0 .2915 0 .2649 0 .2323 0 .2132 0 .2097 0 .2054 0 .2004 0 .1969 0 .1949 0 .1928 0 .1918 0 .1909 0 .1903 0 .1900 0 .1894 0 .1892 0 .1889 0 .1889

22 0 .2879 0 .2612 0 .2283 0 .2090 0 .2055 0 .2011 0 .1959 0 .1927 0 .1908 0 .1885 0 .1879 0 .1867 0 .1862 0 .1859 0 .1853 0 .1849 0 .1851 0 .184 8

23 0 .2847 0 .2580 0 .2247 0 .2046 0 .2013 0 .1969 0 .1919 0 .1886 0 .1867 0 .1849 0 .1838 0 .1827 0 .1824 0 .1821 0 .1815 0 .1810 0 .1809 0 .180 9

24 0 .2813 0 .2546 0 .2211 0 .2007 0 .1971 0 .1932 0 .1881 0 .1849 0 .1830 0 .1812 0 .1802 0 .1792 0 .1787 0 .1783 0 .1777 0 .1775 0 .1774 0 .177 2

25 0 .2786 0 .2516 0 .2179 0 .1969 0 .1933 0 .1895 0 .1845 0 .1813 0 .1796 0 .1777 0 .1767 0 .1759 0 .1753 0 .1749 0 .1745 0 .1742 0 .1739 0 .173 9

26 0 .2759 0 .2486 0 .2146 0 .1933 0 .1896 0 .1858 0 .1812 0 .1780 0 .1764 0 .1742 0 .1734 0 .1724 0 .1719 0 .1716 0 .1712 0 .1708 0 .1707 0 .1707

27 0 .2732 0 .2459 0 .2118 0 .1899 0 .1863 0 .1827 0 .1779 0 .1750 0 .1730 0 .1714 0 .1705 0 .1694 0 .1689 0 .1686 0 .1681 0 .1678 0 .1676 0 .167 7

28 0 .2709 0 .2434 0 .2088 0 .1867 0 .1832 0 .1795 0 .1749 0 .1719 0 .1702 0 .1684 0 .1676 0 .1666 0 .1661 0 .1659 0 .1652 0 .1652 0 .1649 0 .164 8

29 0 .2683 0 .2409 0 .2062 0 .1837 0 .1802 0 .1767 0 .1721 0 .1690 0 .1675 0 .1655 0 .1647 0 .1639 0 .1634 0 .1630 0 .1625 0 .1623 0 .1622 0 .162 0

30 0 .2663 0 .2386 0 .2037 0 .1809 0 .1772 0 .1736 0 .1692 0 .1663 0 .1648 0 .1629 0 .1621 0 .1611 0 .1607 0 .1603 0 .1600 0 .1597 0 .1595 0 .159 6

35 0 .2561 0 .2281 0 .1927 0 .1683 0 .1647 0 .1613 0 .1571 0 .1545 0 .1530 0 .1515 0 .1507 0 .1497 0 .1494 0 .1490 0 .1486 0 .1484 0 .1482 0 .148 1

40 0 .2482 0 .2196 0 .1835 0 .1581 0 .1544 0 .1514 0 .1476 0 .1449 0 .1437 0 .1420 0 .1412 0 .1404 0 .1401 0 .1399 0 .1394 0 .1391 0 .1390 0 .1390

45 0 .2412 0 .2124 0 .1759 0 .1496 0 .1461 0 .1432 0 .1393 0 .1370 0 .1356 0 .1342 0 .1334 0 .1327 0 .1323 0 .1322 0 .1317 0 .1315 0 .1314 0 .131 3

50 0 .2353 0 .2063 0 .1695 0 .1425 0 .1389 0 .1361 0 .1324 0 .1304 0 .1289 0 .1275 0 .1269 0 .1262 0 .1257 0 .1256 0 .1252 0 .1249 0 .1249 0 .124 9

60 0 .2258 0 .1963 0 .1592 0 .1308 0 .1272 0 .1245 0 .1214 0 .1192 0 .1180 0 .1168 0 .1161 0 .1156 0 .1151 0 .1150 0 .1147 0 .1144 0 .1143 0 .114 3

70 0 .2183 0 .1886 0 .1513 0 .1216 0 .1179 0 .1157 0 .1126 0 .1107 0 .1095 0 .1084 0 .1078 0 .1071 0 .1069 0 .1067 0 .1064 0 .1061 0 .1061 0 .106 1

80 0 .2122 0 .1823 0 .1447 0 .1143 0 .1105 0 .1083 0 .1055 0 .1037 0 .1027 0 .1016 0 .1011 0 .1005 0 .1002 0 .0999 0 .0997 0 .0995 0 .0993 0 .099 4

90 0 .2071 0 .1771 0 .1392 0 .1082 0 .1044 0 .1023 0 .0996 0 .0979 0 .0970 0 .0959 0 .0954 0 .0949 0 .0945 0 .0944 0 .0941 0 .0939 0 .0939 0 .0938

100 0 .2029 0 .1727 0 .1347 0 .1031 0 .0991 0 .0971 0 .0946 0 .0929 0 .0921 0 .0911 0 .0906 0 .0901 0 .0898 0 .0896 0 .0894 0 .0892 0 .0892 0 .089 2

200 0 .1794 0 .1487 0 .1096 0 .0753 0 .0705 0 .0691 0 .0673 0 .0662 0 .0655 0 .0648 0 .0645 0 .0641 0 .0639 0 .0638 0 .0635 0 .0635 0 .0635 0 .063 4

300 0 .1691 0 .1380 0 .0985 0 .0631 0 .0577 0 .0566 0 .0551 0 .0542 0 .0537 0 .0531 0 .0528 0 .0524 0 .0523 0 .0522 0 .0521 0 .0520 0 .0519 0 .052 0

400 0 .1629 0 .1316 0 .0919 0 .0559 0 .0501 0 .0491 0 .0478 0 .0470 0 .0465 0 .0460 0 .0457 0 .0455 0 .0454 0 .0453 0 .0452 0 .0451 0 .0451 0 .045 1

500 0 .1587 0 .1274 0 .0874 0 .0510 0 .0448 0 .0439 0 .0428 0 .0421 0 .0417 0 .0412 0 .0410 0 .0408 0 .0406 0 .0406 0 .0404 0 .0404 0 .0403 0 .040 4

1000 0 .1484 0 .1168 0 .0764 0 .0390 0 .0318 0 .0311 0 .0303 0 .0298 0 .0295 0 .0292 0 .0291 0 .0289 0 .0288 0 .0288 0 .0286 0 .0286 0 .0286 0 .028 6

2500 0 .1394 0 .1076 0 .0668 0 .0286 0 .0202 0 .0197 0 .0192 0 .0189 0 .0187 0 .0185 0 .0184 0 .0183 0 .0183 0 .0182 0 .0182 0 .0181 0 .0181 0 .0181
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Critical Values for Anderson Darling Test - Significance Level of 0 .025

n\k 0 .010 0 .025 0 .050 0 .100 0 .200 0 .300 0 .500 0 .750 1 .000 1 .500 2 .000 3 .000 4 .000 5 .000 10 .000 20 .000 50 .000 100 .00 0

4 0 .8615 0 .8677 0 .8863 0 .9039 0 .8378 0 .7984 0 .7665 0 .7511 0 .7460 0 .7399 0 .7369 0 .7355 0 .7346 0 .7346 0 .7325 0 .7317 0 .7305 0 .731 1

5 0 .9689 0 .9509 0 .9503 0 .9609 0 .8987 0 .8497 0 .8119 0 .7925 0 .7854 0 .7759 0 .7730 0 .7718 0 .7693 0 .7693 0 .7678 0 .7662 0 .7659 0 .764 3

6 1 .0630 1 .0130 0 .9765 0 .9863 0 .9370 0 .8879 0 .8446 0 .8255 0 .8160 0 .8059 0 .8026 0 .7993 0 .7961 0 .7948 0 .7943 0 .7932 0 .7922 0 .791 8

7 1 .1594 1 .0729 1 .0070 1 .0066 0 .9620 0 .9114 0 .8676 0 .8467 0 .8348 0 .8258 0 .8170 0 .8144 0 .8106 0 .8106 0 .8089 0 .8067 0 .8072 0 .807 0

8 1 .2574 1 .1392 1 .0345 1 .0216 0 .9817 0 .9290 0 .8842 0 .8577 0 .8457 0 .8353 0 .8304 0 .8278 0 .8236 0 .8235 0 .8187 0 .8195 0 .8182 0 .818 5

9 1 .3550 1 .2024 1 .0646 1 .0334 0 .9943 0 .9451 0 .8930 0 .8689 0 .8564 0 .8441 0 .8394 0 .8360 0 .8325 0 .8298 0 .8294 0 .8278 0 .8270 0 .827 3

10 1 .4495 1 .2659 1 .0902 1 .0433 1 .0063 0 .9536 0 .9025 0 .8758 0 .8651 0 .8524 0 .8468 0 .8419 0 .8389 0 .8396 0 .8344 0 .8330 0 .8324 0 .8317

11 1 .5453 1 .3293 1 .1162 1 .0521 1 .0135 0 .9598 0 .9087 0 .8832 0 .8700 0 .8571 0 .8514 0 .8445 0 .8443 0 .8416 0 .8400 0 .8385 0 .8389 0 .834 9

12 1 .6379 1 .3875 1 .1414 1 .0568 1 .0220 0 .9648 0 .9143 0 .8900 0 .8752 0 .8611 0 .8557 0 .8507 0 .8475 0 .8447 0 .8405 0 .8420 0 .8406 0 .843 0

13 1 .7256 1 .4490 1 .1649 1 .0652 1 .0232 0 .9720 0 .9209 0 .8944 0 .8772 0 .8665 0 .8592 0 .8539 0 .8501 0 .8486 0 .8458 0 .8445 0 .8426 0 .843 3

14 1 .8117 1 .5045 1 .1897 1 .0698 1 .0315 0 .9777 0 .9247 0 .8944 0 .8811 0 .8688 0 .8634 0 .8573 0 .8538 0 .8515 0 .8473 0 .8463 0 .8456 0 .845 4

15 1 .8988 1 .5637 1 .2102 1 .0738 1 .0342 0 .9816 0 .9236 0 .8986 0 .8847 0 .8708 0 .8649 0 .8601 0 .8556 0 .8527 0 .8497 0 .8478 0 .8481 0 .848 1

16 1 .9814 1 .6174 1 .2393 1 .0815 1 .0363 0 .9840 0 .9318 0 .9015 0 .8852 0 .8745 0 .8678 0 .8610 0 .8572 0 .8564 0 .8521 0 .8506 0 .8489 0 .850 7

17 2 .0598 1 .6722 1 .2611 1 .0865 1 .0428 0 .9892 0 .9315 0 .9020 0 .8879 0 .8750 0 .8685 0 .8619 0 .8596 0 .8565 0 .8536 0 .8520 0 .8505 0 .850 3

18 2 .1409 1 .7231 1 .2808 1 .0905 1 .0435 0 .9902 0 .9336 0 .9056 0 .8892 0 .8751 0 .8701 0 .8626 0 .8581 0 .8589 0 .8551 0 .8555 0 .8532 0 .851 9

19 2 .2162 1 .7764 1 .3033 1 .0927 1 .0480 0 .9919 0 .9357 0 .9069 0 .8932 0 .8776 0 .8713 0 .8662 0 .8630 0 .8583 0 .8566 0 .8552 0 .8555 0 .8534

20 2 .2915 1 .8258 1 .3244 1 .0978 1 .0493 0 .9941 0 .9375 0 .9060 0 .8917 0 .8789 0 .8712 0 .8637 0 .8626 0 .8621 0 .8580 0 .8561 0 .8538 0 .855 9

21 2 .3715 1 .8738 1 .3396 1 .0962 1 .0515 0 .9951 0 .9410 0 .9105 0 .8939 0 .8793 0 .8727 0 .8681 0 .8644 0 .8614 0 .8589 0 .8591 0 .8572 0 .855 2

22 2 .4415 1 .9185 1 .3632 1 .1035 1 .0557 0 .9968 0 .9391 0 .9107 0 .8948 0 .8791 0 .8763 0 .8668 0 .8644 0 .8644 0 .8612 0 .8572 0 .8609 0 .856 8

23 2 .5164 1 .9742 1 .3839 1 .1023 1 .0576 0 .9990 0 .9418 0 .9103 0 .8927 0 .8811 0 .8757 0 .8706 0 .8680 0 .8627 0 .8620 0 .8566 0 .8586 0 .856 9

24 2 .5831 2 .0197 1 .4035 1 .1105 1 .0566 1 .0019 0 .9417 0 .9126 0 .8978 0 .8822 0 .8761 0 .8710 0 .8658 0 .8640 0 .8615 0 .8595 0 .8569 0 .857 7

25 2 .6565 2 .0644 1 .4219 1 .1114 1 .0614 1 .0024 0 .9430 0 .9131 0 .8991 0 .8836 0 .8768 0 .8705 0 .8671 0 .8651 0 .8643 0 .8602 0 .8585 0 .857 9

26 2 .7258 2 .1088 1 .4384 1 .1131 1 .0567 1 .0018 0 .9462 0 .9143 0 .8994 0 .8838 0 .8765 0 .8708 0 .8666 0 .8637 0 .8619 0 .8617 0 .8609 0 .859 4

27 2 .7952 2 .1511 1 .4646 1 .1156 1 .0600 1 .0060 0 .9440 0 .9154 0 .8986 0 .8861 0 .8779 0 .8717 0 .8674 0 .8649 0 .8604 0 .8612 0 .8603 0 .859 9

28 2 .8692 2 .1998 1 .4766 1 .1174 1 .0627 1 .0042 0 .9485 0 .9158 0 .8990 0 .8850 0 .8797 0 .8739 0 .8680 0 .8672 0 .8644 0 .8627 0 .8613 0 .860 2

29 2 .9301 2 .2438 1 .4940 1 .1235 1 .0606 1 .0077 0 .9508 0 .9147 0 .9008 0 .8857 0 .8789 0 .8743 0 .8698 0 .8665 0 .8637 0 .8625 0 .8609 0 .858 8

30 3 .0015 2 .2866 1 .5156 1 .1243 1 .0611 1 .0049 0 .9456 0 .9170 0 .9021 0 .8860 0 .8795 0 .8727 0 .8688 0 .8650 0 .8647 0 .8625 0 .8611 0 .862 4

35 3 .3266 2 .4946 1 .6032 1 .1307 1 .0635 1 .0088 0 .9494 0 .9187 0 .9017 0 .8905 0 .8828 0 .8730 0 .8718 0 .8686 0 .8671 0 .8647 0 .8611 0 .864 3

40 3 .6396 2 .6943 1 .6803 1 .1409 1 .0679 1 .0105 0 .9513 0 .9198 0 .9068 0 .8895 0 .8814 0 .8759 0 .8730 0 .8689 0 .8677 0 .8658 0 .8635 0 .866 5

45 3 .9425 2 .8877 1 .7545 1 .1477 1 .0716 1 .0157 0 .9507 0 .9215 0 .9049 0 .8916 0 .8834 0 .8760 0 .8734 0 .8741 0 .8687 0 .8689 0 .8664 0 .865 3

50 4 .2378 3 .0745 1 .8299 1 .1563 1 .0756 1 .0154 0 .9541 0 .9252 0 .9081 0 .8919 0 .8869 0 .8786 0 .8753 0 .8741 0 .8690 0 .8668 0 .8677 0 .868 7

60 4 .8100 3 .4320 1 .9809 1 .1694 1 .0776 1 .0157 0 .9548 0 .9248 0 .9065 0 .8932 0 .8870 0 .8805 0 .8760 0 .8744 0 .8718 0 .8699 0 .8685 0 .867 0

70 5 .3566 3 .7754 2 .1204 1 .1781 1 .0761 1 .0204 0 .9572 0 .9257 0 .9083 0 .8935 0 .8881 0 .8801 0 .8774 0 .8766 0 .8704 0 .8702 0 .8686 0 .869 4

80 5 .9031 4 .1163 2 .2521 1 .1918 1 .0787 1 .0207 0 .9602 0 .9257 0 .9116 0 .8949 0 .8880 0 .8805 0 .8771 0 .8753 0 .8713 0 .8702 0 .8689 0 .868 7

90 6 .4293 4 .4397 2 .3772 1 .2011 1 .0823 1 .0220 0 .9579 0 .9271 0 .9135 0 .8981 0 .8894 0 .8815 0 .8766 0 .8763 0 .8731 0 .8688 0 .8728 0 .8708

100 6 .9592 4 .7648 2 .5055 1 .2102 1 .0801 1 .0215 0 .9593 0 .9267 0 .9118 0 .8948 0 .8885 0 .8808 0 .8782 0 .8778 0 .8727 0 .8702 0 .8719 0 .870 5

200 11 .8779 7 .7654 3 .651E 1 .3093 1 .0827 1 .0257 0 .9641 0 .9305 0 .9142 0 .8985 0 .8923 0 .8845 0 .8789 0 .8789 0 .8719 0 .8727 0 .8714 0 .871 6

300 16 .5240 10 .5806 4 .6843 1 .3997 1 .0856 1 .0260 0 .9631 0 .9310 0 .9155 0 .8988 0 .8914 0 .8824 0 .8824 0 .8801 0 .8772 0 .8727 0 .8721 0 .873 2

400 21 .0493 13 .2831 5 .6635 1 .4844 1 .0867 1 .0286 0 .9643 0 .9331 0 .9148 0 .8989 0 .8918 0 .8843 0 .8815 0 .8801 0 .8761 0 .8729 0 .8733 0 .872 5

500 25 .4819 15 .9306 6 .6237 1 .5670 1 .0880 1 .0277 0 .9645 0 .9305 0 .9155 0 .8992 0 .8921 0 .8843 0 .8820 0 .8790 0 .8774 0 .8738 0 .8721 0 .875 1

1000 47 .0169 28 .6841 11 .1336 1 .9413 1 .0900 1 .0281 0 .9665 0 .9295 0 .9142 0 .8976 0 .8946 0 .8845 0 .8834 0 .8791 0 .8744 0 .8742 0 .8703 0 .871 9

2500 109 .217 65 .1297 23 .698E 2 .9078 1 .0895 1 .0304 0 .9647 0 .9295 0 .9171 0 .8991 0 .8932 0 .8854 0 .8877 0 .8812 0 .8755 0 .8720 0 .8748 0 .8732
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Critical Values for Kolmogorov Smirnov Test - Significance Level of 0 .025

n\k 0 .010 0 .025 0 .050 0 .100 0 .200 0 .300 0 .500 0 .750 1 .000 1 .500 2 .000 3 .000 4 .000 5 .000 10 .000 20 .000 50 .000 100 .00 0

4 0 .4542 0 .4526 0 .4535 0 .4577 0 .4505 0 .4430 0 .4343 0 .4287 0 .4258 0 .4229 0 .4211 0 .4198 0 .4192 0 .4190 0 .4176 0 .4174 0 .4167 0 .416 9

5 0 .4429 0 .4346 0 .4277 0 .4258 0 .4171 0 .4075 0 .3974 0 .3908 0 .3877 0 .3838 0 .3823 0 .3810 0 .3798 0 .3796 0 .3786 0 .3783 0 .3779 0 .377 7

6 0 .4240 0 .4103 0 .3981 0 .3971 0 .3912 0 .3830 0 .3737 0 .3681 0 .3651 0 .3612 0 .3596 0 .3579 0 .3570 0 .3563 0 .3556 0 .3550 0 .3550 0 .354 9

7 0 .4086 0 .3933 0 .3784 0 .3743 0 .3680 0 .3600 0 .3509 0 .3454 0 .3419 0 .3389 0 .3365 0 .3348 0 .3339 0 .3342 0 .3329 0 .3325 0 .3323 0 .332 4

8 0 .3968 0 .3786 0 .3595 0 .3537 0 .3484 0 .3414 0 .3324 0 .3267 0 .3233 0 .3204 0 .3185 0 .3173 0 .3161 0 .3160 0 .3146 0 .3144 0 .3138 0 .314 0

9 0 .3852 0 .3655 0 .3447 0 .3366 0 .3315 0 .3251 0 .3160 0 .3108 0 .3080 0 .3044 0 .3027 0 .3014 0 .3006 0 .2998 0 .2993 0 .2986 0 .2986 0 .298 5

10 0 .3752 0 .3547 0 .3310 0 .3217 0 .3172 0 .3103 0 .3020 0 .2964 0 .2941 0 .2910 0 .2893 0 .2878 0 .2868 0 .2866 0.2854 0 .2852 0 .2848 0 .284 8

11 0 .3665 0 .3448 0 .3199 0 .3088 0 .3043 0 .2977 0 .2897 0 .2847 0 .2819 0 .2787 0 .2773 0 .2755 0 .2749 0 .2744 0 .2737 0 .2733 0 .2730 0 .272 6

12 0 .3588 0 .3358 0 .3090 0 .2972 0 .2926 0 .2861 0 .2785 0 .2740 0 .2712 0 .2678 0 .2666 0 .2655 0 .2642 0 .2637 0 .2630 0 .2629 0 .2626 0 .262 6

13 0 .3513 0 .3278 0 .2999 0 .2871 0 .2820 0 .2763 0 .2692 0 .2645 0 .2613 0 .2588 0 .2570 0 .2558 0 .2550 0 .2547 0 .2537 0 .2532 0 .2532 0 .253 0

14 0 .3441 0 .3205 0 .2915 0 .2773 0 .2732 0 .2674 0 .2604 0 .2553 0 .2528 0 .2500 0 .2488 0 .2473 0 .2466 0 .2460 0 .2452 0 .2448 0 .2445 0 .244 5

15 0 .3383 0 .3138 0 .2839 0 .2686 0 .2647 0 .2591 0 .2519 0 .2478 0 .2451 0 .2423 0 .2408 0 .2397 0 .2389 0 .2383 0 .2375 0 .2372 0 .2370 0 .237 1

16 0 .3324 0 .3077 0 .2774 0 .2614 0 .2567 0 .2514 0 .2448 0 .2403 0 .2376 0 .2351 0 .2341 0 .2327 0 .2319 0 .2317 0 .2309 0 .2303 0 .2302 0 .230 1

17 0 .3272 0 .3022 0 .2712 0 .2539 0 .2502 0 .2449 0 .2381 0 .2339 0 .2312 0 .2289 0 .2275 0 .2261 0 .2256 0 .2251 0 .2242 0 .2238 0 .2238 0 .223 6

18 0 .3227 0 .2968 0 .2653 0 .2475 0 .2435 0 .2384 0 .2319 0 .2278 0 .2253 0 .2228 0 .2217 0 .2203 0 .2196 0 .2191 0 .2182 0 .2183 0 .2178 0 .217 9

19 0 .3180 0 .2919 0 .2599 0 .2415 0 .2377 0 .2325 0 .2265 0 .2220 0 .2198 0 .2171 0 .2158 0 .2147 0 .2142 0 .2136 0 .2132 0 .2128 0 .2126 0 .212 5

20 0 .3135 0 .2875 0 .2548 0 .2360 0 .2318 0 .2270 0 .2207 0 .2167 0 .2144 0 .2123 0 .2107 0 .2094 0 .2090 0 .2088 0 .2081 0 .2077 0 .2076 0 .207 7

21 0 .3096 0 .2829 0 .2500 0 .2303 0 .2266 0 .2219 0 .2162 0 .2120 0 .2099 0 .2072 0 .2061 0 .2053 0 .2044 0 .2042 0 .2033 0 .2031 0 .2027 0 .202 8

22 0 .3055 0 .2789 0 .2457 0 .2260 0 .2221 0 .2172 0 .2113 0 .2075 0 .2054 0 .2026 0 .2020 0 .2008 0 .1998 0 .1997 0 .1989 0 .1986 0 .1987 0 .198 4

23 0 .3022 0 .2754 0 .2417 0 .2211 0 .2175 0 .2126 0 .2069 0 .2032 0 .2008 0 .1988 0 .1977 0 .1964 0 .1960 0 .1956 0 .1949 0 .1944 0 .1942 0 .194 2

24 0 .2984 0 .2718 0 .2378 0 .2169 0 .2131 0 .2087 0 .2029 0 .1991 0 .1971 0 .1948 0 .1937 0 .1926 0 .1919 0 .1916 0 .1909 0 .1906 0 .1904 0 .190 4

25 0 .2954 0 .2684 0 .2345 0 .2128 0 .2091 0 .2046 0 .1988 0 .1954 0 .1932 0 .1910 0 .1901 0 .1890 0 .1883 0 .1880 0 .1874 0 .1871 0 .1867 0 .1867

26 0 .2927 0 .2654 0 .2308 0 .2089 0 .2050 0 .2005 0 .1954 0 .1918 0 .1900 0 .1874 0 .1862 0 .1853 0 .1847 0 .1844 0 .1839 0 .1835 0 .1834 0 .183 4

27 0 .2895 0 .2622 0 .2278 0 .2054 0 .2015 0 .1974 0 .1919 0 .1884 0 .1863 0 .1842 0 .1832 0 .1820 0 .1816 0 .1811 0 .1805 0 .1802 0 .1802 0 .180 1

28 0 .2870 0 .2593 0 .2246 0 .2018 0 .1980 0 .1940 0 .1888 0 .1851 0 .1832 0 .1811 0 .1803 0 .1790 0 .1785 0 .1782 0 .1774 0 .1775 0 .1772 0 .176 9

29 0 .2841 0 .2566 0 .2218 0 .1986 0 .1948 0 .1908 0 .1857 0 .1820 0 .1801 0 .1781 0 .1771 0 .1761 0 .1756 0 .1752 0 .1746 0 .1742 0 .1742 0 .174 1

30 0 .2819 0 .2540 0 .2191 0 .1955 0 .1916 0 .1875 0 .1826 0 .1791 0 .1775 0 .1752 0 .1743 0 .1733 0 .1726 0 .1722 0 .1719 0 .1715 0 .1714 0 .171 4

35 0 .2708 0 .2426 0 .2072 0 .1819 0 .1779 0 .1743 0 .1696 0 .1666 0 .1647 0 .1629 0 .1620 0 .1609 0 .1605 0 .1602 0 .1596 0 .1594 0 .1592 0 .159 1

40 0 .2618 0 .2333 0 .1969 0 .1710 0 .1669 0 .1635 0 .1591 0 .1563 0 .1548 0 .1528 0 .1519 0 .1510 0 .1505 0 .1503 0 .1497 0 .1495 0 .1493 0 .149 5

45 0 .2543 0 .2254 0 .1887 0 .1619 0 .1579 0 .1548 0 .1503 0 .1476 0 .1459 0 .1444 0 .1435 0 .1426 0 .1421 0 .1420 0 .1416 0 .1413 0 .1412 0 .141 1

50 0 .2479 0 .2187 0 .1818 0 .1542 0 .1502 0 .1470 0 .1428 0 .1405 0 .1388 0 .1372 0 .1365 0 .1357 0 .1352 0 .1350 0 .1346 0 .1343 0 .1341 0 .134 3

60 0 .2373 0 .2078 0 .1706 0 .1414 0 .1374 0 .1345 0 .1309 0 .1286 0 .1270 0 .1257 0 .1249 0 .1242 0 .1237 0 .1236 0 .1232 0 .1229 0 .1228 0 .122 9

70 0 .2290 0 .1992 0 .1618 0 .1316 0 .1276 0 .1250 0 .1214 0 .1193 0 .1178 0 .1167 0 .1159 0 .1152 0 .1148 0 .1147 0 .1143 0 .1141 0 .1140 0 .114 0

80 0 .2223 0 .1924 0 .1546 0 .1237 0 .1195 0 .1170 0 .1138 0 .1118 0 .1107 0 .1093 0 .1087 0 .1080 0 .1076 0 .1074 0 .1071 0 .1069 0 .1068 0 .106 8

90 0 .2165 0 .1866 0 .1486 0 .1170 0 .1129 0 .1105 0 .1075 0 .1055 0 .1045 0 .1033 0 .1027 0 .1020 0 .1015 0 .1015 0 .1011 0 .1009 0 .1009 0 .100 8

100 0 .2120 0 .1817 0 .1436 0 .1114 0 .1072 0 .1048 0 .1021 0 .1002 0 .0992 0 .0980 0 .0974 0 .0968 0 .0966 0 .0964 0 .0960 0 .0959 0 .0958 0 .095 8

200 0 .1860 0 .1552 0 .1159 0 .0814 0 .0762 0 .0747 0 .0726 0 .0714 0 .0705 0 .0698 0 .0694 0 .0689 0 .0687 0 .0686 0 .0682 0 .0682 0 .0682 0 .068 2

300 0 .1745 0 .1434 0 .1037 0 .0682 0 .0624 0 .0611 0 .0595 0 .0584 0 .0578 0 .0571 0 .0567 0 .0564 0 .0563 0 .0561 0 .0560 0 .0558 0 .0557 0 .055 8

400 0 .1676 0 .1363 0 .0964 0 .0603 0 .0541 0 .0531 0 .0515 0 .0507 0 .0501 0 .0495 0 .0492 0 .0489 0 .0488 0 .0487 0 .0486 0 .0485 0 .0484 0 .048 4

500 0 .1630 0 .1316 0 .0915 0 .0550 0 .0485 0 .0474 0 .0462 0 .0453 0 .0449 0 .0444 0 .0441 0 .0438 0 .0437 0 .0436 0 .0434 0 .0433 0 .0433 0 .043 4

1000 0 .1514 0 .1198 0 .0792 0 .0419 0 .0343 0 .0336 0 .0327 0 .0321 0 .0318 0 .0314 0 .0313 0 .0310 0 .0310 0 .0309 0 .0308 0 .0308 0 .0307 0 .030 7

2500 0 .1413 0 .1095 0 .0686 0 .0304 0 .0218 0 .0213 0 .0207 0 .0203 0 .0202 0 .0199 0 .0198 0 .0197 0 .0197 0 .0196 0 .0195 0 .0195 0 .0195 0 .0195

B-1 0



Critical Values for Anderson Darling Test - Significance Level of 0.0 1

n\k 0 .010 0 .025 0 .050 0 .100 0 .200 0 .300 0 .500 0 .750 1 .000 1 .500 2 .000 3 .000 4 .000 5 .000 10 .000 20 .000 50 .000 100 .00 0

4 0 .9603 1 .0073 1 .0852 1 .1154 0 .9876 0 .9047 0 .8544 0 .8345 0 .8262 0 .8197 0 .8164 0 .8153 0 .8135 0 .8137 0 .8112 0 .8106 0 .8099 0 .8097

5 1 .0754 1 .0772 1 .1053 1 .1446 1 .0682 1 .0000 0 .9453 0 .9167 0 .9054 0 .8930 0 .8897 0 .8878 0 .8822 0 .8831 0 .8817 0 .8791 0 .8791 0 .8767

6 1 .1951 1 .1556 1 .1420 1 .1831 1 .1214 1 .0533 0 .9896 0 .9580 0 .9461 0 .9314 0 .9275 0 .9211 0 .9173 0 .9182 0 .9159 0 .9113 0 .9119 0 .915 3

7 1 .3145 1 .2298 1 .1755 1 .2066 1 .1562 1 .0841 1 .0186 0 .9924 0 .9785 0 .9630 0 .9510 0 .9460 0 .9414 0 .9438 0 .9383 0 .9354 0 .9377 0 .938 9

8 1 .4299 1 .3111 1 .2089 1 .2256 1 .1807 1 .1087 1 .0439 1 .0086 0 .9905 0 .9787 0 .9699 0 .9646 0 .9602 0 .9612 0 .9553 0 .9558 0 .9527 0 .955 0

9 1 .5478 1 .3855 1 .2502 1 .2415 1 .1959 1 .1293 1 .0584 1 .0232 1 .0075 0 .9908 0 .9844 0 .9778 0 .9739 0 .9674 0 .9685 0 .9685 0 .9669 0 .965 5

10 1 .6581 1 .4643 1 .2809 1 .2490 1 .2139 1 .1420 1 .0707 1 .0339 1 .0181 1 .0012 0 .9944 0 .9873 0 .9829 0 .9812 0 .9769 0 .9755 0 .9732 0 .972 1

11 1 .7667 1 .5444 1 .3164 1 .2615 1 .2233 1 .1525 1 .0789 1 .0445 1 .0271 1 .0098 1 .0031 0 .9895 0 .9878 0 .9864 0 .9840 0 .9827 0 .9812 0 .976 2

12 1 .8736 1 .6117 1 .3464 1 .2700 1 .2310 1 .1546 1 .0876 1 .0515 1 .0327 1 .0140 1 .0061 1 .0013 0 .9955 0 .9940 0 .9883 0 .9894 0 .9860 0 .987 9

13 1 .9804 1 .6847 1 .3763 1 .2796 1 .2370 1 .1672 1 .0983 1 .0603 1 .0358 1 .0233 1 .0115 1 .0065 0 .9999 0 .9984 0 .9939 0 .9917 0 .9891 0 .990 2

14 2 .0727 1 .7510 1 .4057 1 .2913 1 .2452 1 .1756 1 .1010 1 .0607 1 .0403 1 .0245 1 .0157 1 .0084 1 .0054 1 .0010 0 .9959 0 .9939 0 .9918 0 .993 2

15 2 .1736 1 .8182 1 .4338 1 .2899 1 .2476 1 .1814 1 .0996 1 .0655 1 .0480 1 .0281 1 .0184 1 .0119 1 .0065 1 .0024 0 .9990 0 .9967 0 .9986 0 .998 4

16 2 .2603 1 .8791 1 .4693 1 .3039 1 .2534 1 .1827 1 .1117 1 .0683 1 .0470 1 .0316 1 .0186 1 .0171 1 .0104 1 .0070 1 .0043 0 .9996 0 .9986 1 .000 4

17 2 .3532 1 .9419 1 .4945 1 .3074 1 .2604 1 .1911 1 .1104 1 .0710 1 .0526 1 .0331 1 .0230 1 .0158 1 .0109 1 .0078 1 .0045 1 .0032 1 .0005 1 .000 1

18 2 .4406 2 .0044 1 .5210 1 .3165 1 .2604 1 .1921 1 .1158 1 .0729 1 .0536 1 .0341 1 .0270 1 .0146 1 .0150 1 .0152 1 .0061 1 .0050 1 .0033 1 .005 7

19 2 .5322 2 .0686 1 .5482 1 .3187 1 .2670 1 .1909 1 .1153 1 .0762 1 .0592 1 .0379 1 .0259 1 .0216 1 .0180 1 .0130 1 .0096 1 .0064 1 .0080 1 .006 3

20 2 .6114 2 .1235 1 .5704 1 .3288 1 .2680 1 .1960 1 .1178 1 .0770 1 .0563 1 .0416 1 .0311 1 .0181 1 .0193 1 .0163 1 .0121 1 .0049 1 .0091 1 .011 3

21 2 .7041 2 .1723 1 .5955 1 .3235 1 .2697 1 .1993 1 .1264 1 .0811 1 .0572 1 .0410 1 .0310 1 .0271 1 .0200 1 .0166 1 .0127 1 .0130 1 .0081 1 .010 0

22 2 .7796 2 .2262 1 .6194 1 .3388 1 .2791 1 .2002 1 .1191 1 .0822 1 .0621 1 .0404 1 .0359 1 .0244 1 .0199 1 .0227 1 .0141 1 .0111 1 .0125 1 .010 7

23 2 .8617 2 .2902 1 .6460 1 .3343 1 .2809 1 .2001 1 .1249 1 .0831 1 .0589 1 .0430 1 .0342 1 .0286 1 .0243 1 .0171 1 .0196 1 .0117 1 .0127 1 .010 0

24 2 .9336 2 .3402 1 .6668 1 .3413 1 .2767 1 .2057 1 .1257 1 .0856 1 .0648 1 .0453 1 .0346 1 .0291 1 .0194 1 .0200 1 .0155 1 .0122 1 .0127 1 .013 2

25 3 .0189 2 .3833 1 .6899 1 .3424 1 .2808 1 .2078 1 .1272 1 .0862 1 .0643 1 .0451 1 .0376 1 .0294 1 .0256 1 .0212 1 .0171 1 .0140 1 .0127 1 .011 8

26 3 .1002 2 .4393 1 .7106 1 .3444 1 .2777 1 .2050 1 .1302 1 .0887 1 .0669 1 .0460 1 .0369 1 .0306 1 .0248 1 .0196 1 .0152 1 .0168 1 .0158 1 .012 9

27 3 .1672 2 .4875 1 .7364 1 .3482 1 .2853 1 .2104 1 .1299 1 .0878 1 .0661 1 .0475 1 .0393 1 .0310 1 .0257 1 .0214 1 .0160 1 .0169 1 .0125 1 .015 3

28 3 .2487 2 .5418 1 .7524 1 .3541 1 .2839 1 .2107 1 .1342 1 .0886 1 .0667 1 .0512 1 .0406 1 .0345 1 .0266 1 .0251 1 .0200 1 .0208 1 .0194 1 .014 9

29 3 .3187 2 .5865 1 .7783 1 .3557 1 .2859 1 .2176 1 .1353 1 .0879 1 .0670 1 .0498 1 .0410 1 .0336 1 .0267 1 .0268 1 .0194 1 .0180 1 .0171 1 .017 1

30 3 .3926 2 .6336 1 .8001 1 .3651 1 .2861 1 .2121 1 .1326 1 .0908 1 .0724 1 .0500 1 .0438 1 .0336 1 .0261 1 .0227 1 .0231 1 .0192 1 .0179 1 .018 3

35 3 .7444 2 .8654 1 .9035 1 .3711 1 .2858 1 .2174 1 .1360 1 .0951 1 .0715 1 .0529 1 .0450 1 .0302 1 .0290 1 .0267 1 .0246 1 .0211 1 .0180 1 .019 9

40 4 .0854 3 .0880 1 .9882 1 .3819 1 .2938 1 .2179 1 .1375 1 .0964 1 .0760 1 .0551 1 .0457 1 .0352 1 .0324 1 .0295 1 .0272 1 .0229 1 .0221 1 .024 1

45 4 .4084 3 .2993 2 .0772 1 .3883 1 .2976 1 .2210 1 .1413 1 .0994 1 .0744 1 .0590 1 .0476 1 .0368 1 .0340 1 .0361 1 .0300 1 .0263 1 .0245 1 .021 2

50 4 .7335 3 .4996 2 .1620 1 .4067 1 .3038 1 .2232 1 .1419 1 .1011 1 .0786 1 .0595 1 .0526 1 .0403 1 .0381 1 .0338 1 .0295 1 .0277 1 .0248 1 .025 2

60 5 .3343 3 .8894 2 .3298 1 .4187 1 .3079 1 .2229 1 .1435 1 .1034 1 .0790 1 .0619 1 .0540 1 .0426 1 .0381 1 .0323 1 .0317 1 .0291 1 .0302 1 .024 4

70 5 .9151 4 .2582 2 .4835 1 .4298 1 .3071 1 .2296 1 .1446 1 .1041 1 .0785 1 .0604 1 .0549 1 .0438 1 .0382 1 .0376 1 .0311 1 .0311 1 .0280 1 .027 6

80 6 .5032 4 .6205 2 .6216 1 .4453 1 .3016 1 .2303 1 .1499 1 .1044 1 .0849 1 .0641 1 .0550 1 .0452 1 .0372 1 .0360 1 .0328 1 .0316 1 .0294 1 .028 7

90 7 .0504 4 .9602 2 .7593 1 .4575 1 .3124 1 .2311 1 .1486 1 .1077 1 .0861 1 .0660 1 .0558 1 .0455 1 .0374 1 .0381 1 .0345 1 .0311 1 .0326 1 .031 0

100 7 .6095 5 .3024 2 .8954 1 .4713 1 .3083 1 .2288 1 .1492 1 .1072 1 .0851 1 .0648 1 .0542 1 .0464 1 .0417 1 .0421 1 .0353 1 .0330 1 .0325 1 .031 6

200 12 .7383 8 .4639 4 .1296 1 .5840 1 .3097 1 .2364 1 .1565 1 .1103 1 .0885 1 .0668 1 .0587 1 .0507 1 .0450 1 .0412 1 .0314 1 .0322 1 .0329 1 .032 3

300 17 .5414 11 .3900 5 .2242 1 .6967 1 .3138 1 .2409 1 .1535 1 .1113 1 .0898 1 .0679 1 .0582 1 .0489 1 .0468 1 .0431 1 .0376 1 .0328 1 .0313 1 .035 2

400 22 .1764 14 .1813 6 .2523 1 .7932 1 .3205 1 .2404 1 .1579 1 .1151 1 .0928 1 .0677 1 .0573 1 .0480 1 .0424 1 .0433 1 .0390 1 .0350 1 .0336 1 .032 9

500 26 .7379 16 .9148 7 .2528 1 .8846 1 .3188 1 .2395 1 .1552 1 .1139 1 .0886 1 .0695 1 .0570 1 .0498 1 .0484 1 .0466 1 .0402 1 .0339 1 .0337 1 .038 2

1000 48 .7347 30 .0039 11 .9358 2 .2962 1 .3248 1 .2438 1 .1570 1 .1103 1 .0923 1 .0676 1 .0601 1 .0480 1 .0496 1 .0430 1 .0347 1 .0358 1 .0309 1 .032 9

2500 111 .798 67 .1014 24 .8571 3 .3313 1 .3247 1 .2420 1 .1559 1 .1102 1 .0900 1 .0683 1 .0606 1 .0495 1 .0552 1 .0476 1 .0351 1 .0345 1 .0383 1 .0364

B-1 1



Critical Values for Kolmogorov Smirnov Test - Significance Level of 0 .0 1

n\k 0 .010 0 .025 0 .050 0 .100 0 .200 0 .300 0 .500 0 .750 1 .000 1 .500 2 .000 3 .000 4 .000 5 .000 10 .000 20 .000 50 .000 100 .00 0

4 0 .4698 0 .4724 0 .4853 0 .4961 0 .4783 0 .4662 0 .4552 0 .4491 0 .4458 0 .4426 0 .4409 0 .4394 0 .4387 0 .4384 0 .4373 0 .4368 0 .4365 0 .436 5

5 0 .4641 0 .4581 0 .4536 0 .4559 0 .4509 0 .4415 0 .4314 0 .4244 0 .4207 0 .4157 0 .4139 0 .4121 0 .4103 0 .4104 0 .4097 0 .4083 0 .4080 0 .407 7

6 0 .4528 0 .4411 0 .4306 0 .4314 0 .4234 0 .4137 0 .4022 0 .3947 0 .3912 0 .3873 0 .3852 0 .3833 0 .3821 0 .3819 0 .3808 0 .3801 0 .3797 0 .380 5

7 0 .4367 0 .4207 0 .4065 0 .4041 0 .3989 0 .3902 0 .3800 0 .3738 0 .3694 0 .3651 0 .3624 0 .3604 0 .3593 0 .3599 0 .3576 0 .3568 0 .3571 0 .357 5

8 0 .4235 0 .4066 0 .3879 0 .3843 0 .3789 0 .3700 0 .3604 0 .3535 0 .3493 0 .3456 0 .3436 0 .3420 0 .3408 0 .3403 0 .3393 0 .3388 0 .3383 0 .338 5

9 0 .4122 0 .3928 0 .3726 0 .3655 0 .3603 0 .3530 0 .3427 0 .3362 0 .3330 0 .3289 0 .3269 0 .3253 0 .3240 0 .3233 0 .3227 0 .3222 0 .3219 0 .321 8

10 0 .4019 0 .3816 0 .3580 0 .3497 0 .3450 0 .3378 0 .3279 0 .3212 0 .3184 0 .3143 0 .3125 0 .3107 0 .3101 0 .3095 0 .3081 0 .3076 0 .3074 0 .307 1

11 0 .3925 0 .3713 0 .3461 0 .3355 0 .3314 0 .3238 0 .3144 0 .3085 0 .3053 0 .3018 0 .2999 0 .2976 0 .2971 0 .2965 0 .2954 0 .2949 0 .2953 0 .294 2

12 0 .3844 0 .3613 0 .3348 0 .3231 0 .3186 0 .3110 0 .3024 0 .2974 0 .2936 0 .2898 0 .2880 0 .2871 0 .2857 0 .2853 0 .2843 0 .2841 0 .2837 0 .283 5

13 0 .3762 0 .3530 0 .3248 0 .3121 0 .3071 0 .3008 0 .2927 0 .2868 0 .2833 0 .2803 0 .2783 0 .2764 0 .2758 0 .2755 0 .2740 0 .2738 0 .2737 0 .273 6

14 0 .3685 0 .3447 0 .3160 0 .3019 0 .2976 0 .2910 0 .2833 0 .2768 0 .2741 0 .2709 0 .2694 0 .2674 0 .2670 0 .2662 0 .2651 0 .2645 0 .2643 0 .264 6

15 0 .3622 0 .3379 0 .3076 0 .2921 0 .2884 0 .2820 0 .2736 0 .2689 0 .2657 0 .2626 0 .2606 0 .2596 0 .2585 0 .2577 0 .2572 0 .2566 0 .2563 0 .256 4

16 0 .3556 0 .3310 0 .3009 0 .2845 0 .2798 0 .2738 0 .2663 0 .2609 0 .2578 0 .2547 0 .2535 0 .2520 0 .2510 0 .2507 0 .2499 0 .2491 0 .2486 0 .248 9

17 0 .3502 0 .3250 0 .2939 0 .2767 0 .2725 0 .2669 0 .2592 0 .2538 0 .2508 0 .2480 0 .2463 0 .2448 0 .2442 0 .2436 0 .2428 0 .2424 0 .2422 0 .241 9

18 0 .3448 0 .3192 0 .2879 0 .2696 0 .2655 0 .2597 0 .2524 0 .2472 0 .2445 0 .2415 0 .2403 0 .2383 0 .2376 0 .2374 0 .2363 0 .2362 0 .2359 0 .235 7

19 0 .3399 0 .3139 0 .2819 0 .2632 0 .2592 0 .2534 0 .2461 0 .2410 0 .2383 0 .2353 0 .2337 0 .2325 0 .2322 0 .2315 0 .2307 0 .2302 0 .2301 0 .229 9

20 0 .3350 0 .3093 0 .2764 0 .2572 0 .2529 0 .2475 0 .2403 0 .2356 0 .2328 0 .2301 0 .2285 0 .2267 0 .2265 0 .2262 0 .2254 0 .2247 0 .2248 0 .224 7

21 0 .3308 0 .3041 0 .2709 0 .2510 0 .2474 0 .2416 0 .2352 0 .2303 0 .2277 0 .2248 0 .2235 0 .2223 0 .2214 0 .2211 0 .2204 0 .2199 0 .2195 0 .219 5

22 0 .3265 0 .2998 0 .2666 0 .2460 0 .2423 0 .2363 0 .2297 0 .2256 0 .2229 0 .2198 0 .2190 0 .2175 0 .2163 0 .2161 0 .2156 0 .2150 0 .2152 0 .214 8

23 0 .3226 0 .2960 0 .2621 0 .2411 0 .2372 0 .2313 0 .2250 0 .2208 0 .2180 0 .2155 0 .2145 0 .2130 0 .2124 0 .2117 0 .2112 0 .2105 0 .2103 0 .210 3

24 0 .3183 0 .2923 0 .2580 0 .2365 0 .2323 0 .2271 0 .2208 0 .2161 0 .2140 0 .2114 0 .2098 0 .2087 0 .2077 0 .2076 0 .2067 0 .2065 0 .2062 0 .2064

25 0 .3153 0 .2880 0 .2540 0 .2317 0 .2284 0 .2229 0 .2164 0 .2121 0 .2099 0 .2073 0 .2059 0 .2047 0 .2039 0 .2035 0 .2031 0 .2027 0 .2025 0 .2023

26 0 .3120 0 .2848 0 .2501 0 .2279 0 .2235 0 .2188 0 .2126 0 .2085 0 .2061 0 .2033 0 .2022 0 .2009 0 .2002 0 .1997 0 .1990 0 .1988 0 .1987 0 .198 6

27 0 .3087 0 .2813 0 .2471 0 .2241 0 .2199 0 .2150 0 .2088 0 .2048 0 .2022 0 .1997 0 .1986 0 .1972 0 .1967 0 .1964 0 .1955 0 .1952 0 .1952 0 .1950

28 0 .3058 0 .2783 0 .2434 0 .2203 0 .2158 0 .2115 0 .2055 0 .2012 0 .1989 0 .1966 0 .1955 0 .1941 0 .1934 0 .1930 0 .1924 0 .1925 0 .1921 0 .1917

29 0 .3027 0 .2749 0 .2404 0 .2166 0 .2125 0 .2082 0 .2021 0 .1976 0 .1955 0 .1931 0 .1923 0 .1909 0 .1904 0 .1899 0 .1892 0 .1887 0 .1889 0 .188 6

30 0 .3000 0 .2723 0 .2374 0 .2132 0 .2092 0 .2047 0 .1987 0 .1946 0 .1926 0 .1902 0 .1890 0 .1878 0 .1870 0 .1865 0 .1862 0 .1860 0 .1854 0 .185 6

35 0 .2878 0 .2597 0 .2242 0 .1984 0 .1941 0 .1901 0 .1847 0 .1812 0 .1788 0 .1769 0 .1757 0 .1742 0 .1741 0 .1737 0 .1730 0 .1728 0 .1724 0 .172 4

40 0 .2780 0 .2495 0 .2128 0 .1865 0 .1822 0 .1782 0 .1733 0 .1699 0 .1682 0 .1661 0 .1649 0 .1638 0 .1635 0 .1628 0 .1622 0 .1620 0 .1620 0 .162 0

45 0 .2695 0 .2408 0 .2041 0 .1765 0 .1721 0 .1688 0 .1637 0 .1605 0 .1584 0 .1570 0 .1559 0 .1547 0 .1542 0 .1541 0 .1536 0 .1533 0 .1531 0 .152 9

50 0 .2626 0 .2332 0 .1964 0 .1683 0 .1641 0 .1604 0 .1557 0 .1528 0 .1511 0 .1490 0 .1483 0 .1471 0 .1470 0 .1463 0 .1460 0 .1456 0 .1455 0 .145 5

60 0 .2509 0 .2213 0 .1840 0 .1544 0 .1501 0 .1466 0 .1425 0 .1399 0 .1380 0 .1364 0 .1357 0 .1349 0 .1343 0 .1340 0 .1336 0 .1333 0 .1333 0 .133 1

70 0 .2416 0 .2118 0 .1743 0 .1435 0 .1395 0 .1362 0 .1322 0 .1298 0 .1281 0 .1268 0 .1259 0 .1250 0 .1248 0 .1244 0 .1240 0 .1238 0 .1236 0 .123 5

80 0 .2343 0 .2043 0 .1662 0 .1350 0 .1303 0 .1276 0 .1240 0 .1216 0 .1203 0 .1189 0 .1180 0 .1172 0 .1167 0 .1166 0 .1162 0 .1161 0 .1157 0 .115 8

90 0 .2277 0 .1978 0 .1594 0 .1278 0 .1232 0 .1207 0 .1170 0 .1148 0 .1135 0 .1122 0 .1114 0 .1107 0 .1102 0 .1101 0 .1098 0 .1094 0 .1096 0 .1093

100 0 .2228 0 .1923 0 .1541 0 .1216 0 .1169 0 .1143 0 .1112 0 .1090 0 .1078 0 .1065 0 .1058 0 .1052 0 .1049 0 .1046 0 .1043 0 .1041 0 .1038 0 .103 9

200 0 .1938 0 .1628 0 .1235 0 .0888 0 .0831 0 .0815 0 .0791 0 .0776 0 .0767 0 .0758 0 .0753 0 .0748 0 .0746 0 .0744 0 .0741 0 .0740 0 .0739 0 .073 9

300 0 .1808 0 .1496 0 .1101 0 .0742 0 .0680 0 .0667 0 .0648 0 .0635 0 .0628 0 .0621 0 .0616 0 .0612 0 .0611 0 .0609 0 .0607 0 .0606 0 .0604 0 .060 6

400 0 .1731 0 .1418 0 .1019 0 .0657 0 .0591 0 .0579 0 .0562 0 .0551 0 .0545 0 .0537 0 .0534 0 .0531 0 .0529 0 .0528 0 .0526 0 .0526 0 .0525 0 .052 5

500 0 .1680 0 .1365 0 .0963 0 .0598 0 .0529 0 .0517 0 .0503 0 .0493 0 .0487 0 .0482 0 .0478 0 .0476 0 .0474 0 .0473 0 .0471 0 .0470 0 .0470 0 .047 1

1000 0 .1549 0 .1234 0 .0827 0 .0452 0 .0375 0 .0367 0 .0356 0 .0349 0 .0345 0 .0341 0 .0340 0 .0337 0 .0336 0 .0336 0 .0333 0 .0333 0 .0333 0 .033 3

2500 0 .1436 0 .1118 0 .0708 0 .0325 0 .0238 0 .0233 0 .0226 0 .0221 0 .0219 0 .0216 0 .0215 0 .0213 0 .0213 0 .0213 0 .0211 0 .0211 0 .0211 0 .0211

B-1 2



APPENDIX C

GRAPHS

OF

COVERAGE COMPARISON S

FOR THE VARIOUS METHOD S

FOR

NORMAL, GAMMA, AND LOGNORMAL

DISTRIBUTIONS



Figure 1 . Graphs of Coverage Probabilities by 95% UCLs of the Mean of N(p,=50,cr=20 )
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Figure 2 . Graphs of Coverage Probabilities by 95% UCLs of Mean of G(k=0 .05,0=50)
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Figure 3 . Graphs of Coverage Probabilities by 95% UCLs of the Mean of G(k=0 .10,8=50)
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Figure 4. Graphs of Coverage Probabilities by 95% UCLs of Mean of G(k=0 .15,0=50)
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Figure 5 . Graphs of Coverage Probabilities by 95% UCLs of the Mean of G(k=0 .20,6=50)
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Figure 6. Graphs of Coverage Probabilities by 95% UCLs of Mean of G(lc=0 .50,0=50)
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Figure 7. Graphs of Coverage Probabilities by 95% UCLs of the Mean of G(k=1 .00,6=50)
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Figure 8 . Graphs of Coverage Probabilities by 95% UCLs of the Mean of G(k=2.00,6=50)
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Figure 9 . Graphs of Coverage Probabilities by 95% UCLs of the Mean of G(k=5 .00,0=50)
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Figure 10. Graphs of Coverage Probabilities by UCLs of the Mean of LN(µ=5,a=0 .5)
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Figure 11 . Graphs of Coverage Probabilities by UCLs of the Mean of LN(I.L=5,a=1 .0)
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Figure 12 . Graphs of Coverage Probabilities by UCLs of the Mean of LN(p,=5,a=1 .5)
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Figure 13 . Graphs of Coverage Probabilities by UCLs of the Mean of LN(µ=5,u=2 .0 )
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Figure 14. Graphs ofCoverage Probabilities by UCLs of the Mean of LN(ii,=5,0=2.5 )

100 -

90 -

80 -

70 -

Max Test

- 95% MVUE Chebyshev

97 .5% MVUE Chebyshev
99% MVUE Chebyshev

--A— Hall's Bootstrap
—e— Bootstrap BC A

- H-Statistic UCL

60 -

50

40 -

30

0

	

10 40

	

50

	

60
Sample Size

3 020 80 10070 90



Figure 15. Graphs of Coverage Probabilities by UCLs of the Mean of LN(µ=5,o=3 .0)
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