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Abstract. We present a theory fof (he mouon of water vapor at depth ina dxscrc(ely fmctu:cd  per-

meable medium induced by P icp pumping’.
‘The theory involves multiphase mass and energy inaft /matri system ithdi
representation of the fracture system. Thc b: ic p i i as
periodic in time, with 1 2 10 vatues. To snmphfy the analysis, a

*single-horizon approximation is npphed in whxh the nme-mcan gmdlem is used to evaln:m. lhe
vertical advective flux in the Time-periodic sol are

the calculation of the aet efflux of moisture per cycle. The mode! is applied 1o material rcpn.scmalwe
of the Yucca M in region of Nevada. The results indicate that the efflux of
moisture carried upward fmm significant depths by barometric pumping is much less than the near
surface efflux that isc ly esti dby ing that air enters the medium dry and is ceturned
10 the atmosphere fully saturnted with water vapor. This near surface emux consists primarily of
moisture discharged from the upper layer which is fi I hed by ipitation. Of
greater interest 10 nuclear waste itory design and of net infiltration in arid regions
is the fraction of the total mmsmre efftux that comes from significant depths. This deep transpornt
is ified by the fi ix port model described here. Although the transpert by
barometric purnping from depeh is small compared 10 the total moisture expelled from the surface
layer. it is an order of magnitude greater than the venical moisture flux carried from depih by
diffusion.

Key words: barometric pumping. iwo-phase flow. fraciured sock.

1. Introduction

We present a theory for the motion of water vapor at depth in a fractured permeable
medium induced by atmospheric barometric pressure fluctuations, or ‘barometric
pumping’. This hanism may be of some importance to subsurface water vapor
transport in fractured rock sitvated in arid regions where annual moisture infiltration
is exceedingly low. This study. though motivated by the Yucca Mountain Project. is
applicable to other similar sites involving fractured rock.

In such material, the fracture system is presumed to provide the primary per-
meability. However, the capacity of the system lies with the intact matrix. Because
capillary forces will be stronger in the smatler pores of the matrix, resident liquid
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moisture will prefer to reside in the matrix. with the exception perhaps. of asperities
or other small features of the fracture system. On the other hand. the gas. a mixture
of air and water vapor, will prefer the fracture system. although it does share the
void space of the matrix with liquid water. The idea behind barometric pumping.
hereafter referred to as BP. is that rising barometric pressure will force ambient gas
into the matrix which is drier than the resident soil gas. The latter is in thermodynamic
equilibrium with resident liquid water. and is probably nearly saturated (in the ther-
modynamic sense) with water vapor at the prevailing temperasure. The incoming dry
gas will come to thermodynamic equilibrium with the soil gas. thereby humidifying
the former. When the b: ic p d gas will be respired from the
fractured medium, thereby discharging gas with a higher humidity than the ambient.
There are two such barometric cycles of interest, the diumal cycle and that associated
with weather patterns. Typically. a weather-related barometric cycle has an average
period of roughly five days (Nilson er al.. 1991).

1.1, A SHALLOW SUBSURFACE CONTROL VOLUME MODEL

A control volume model, which is only sensible in the shallow subsurface, can be
developed to quantify the surface efflux of moisture driven mainly by barometric
pressure fluctuations, but which is also influenced by several other unsteady sur-
face processes including evapotranspiration, localized topography-induced surface
pressure variations due to the ‘Bernoulli* effect. and especially the episodic nature
of precipitation. Collectively, these coupled processes preclude a detailed model
description for the surface layer. Following the description of this control volume
model. we explain why it is incapable of describing the extraction of moisture from
depth due to BP. We then present the conceptual model for a theory which can relate
the effects of barometric fluctuations at depth in the presence of a water vapor gradient
(due to the geothermal gradient) to the upward transport of water vapor towards the
shallow subsurface, where the gross extmcuon of mmsmrc may be described by the
control volume model. Due to the af phi g processes active at
the subsurface/atmosphere interface. the net extraction of soif moisture at the surface
may be different from the value calculated by the fracture/matrix theory which applies
at depth. However, the fraction of the net moisture efflux due to BP from depths
greater than the shatlow subsurface can be quantified by the theory presented in the
following.

A control volume model to estimate the amount of moisture transport by BP was
derived by Tsang and Pruess {1989). They begin by using the ideal gas aw to estimate
the volume of gas. AV . that flows into or out of a porous medium during a pressure
change of amplitude A P,,
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This differential volume is the product of the fractional pressure change and the
subsurface air volume, Vy. with the fattes writien in terms of the depth to the water
table. /. the volumctric gas content. 8;. and the plan area. A, of the medium. If this
gas enters (the medium with a mass fraction of water vapor. Xy s, and leaves with
X \.ou- then the net outflow of water vapor is given by

m, AP,
* = pyfly T:txv.m. - X

i) @

where p, is thc mean, or nominal, gas density. By summing all such conuibutions
from dinrnal cycles of amplitude 5 mbars over a years time, Tsang and Pruess esti-
mated. for Yucca Mountain, a net moisture discharge of 0.3 mmyyear. expressed as
an equivalent liquid water flux. This estimate is an upper bound because it assumes
that all of the gas in the medium (of depth L) experiences the full amplitude of the
barometric pressure change.

The control volume maodet can only account for moisture cxtraction occusring at
or near the surface. To establish this. we first need to show that the moisture concent
of the gas flowing through a fracture cannot differ greatly from that of the gas residing
in the adjacent permicable matrix at the same elevation. Since the fracture width. w.
is o more than onc or two millisaeters. the transit time €or diffusion of moisture from
the fracture wall to the fracture center is of the order of At = {u/2)2/D ~ 0.1 s for
atypical gas phase diffusivity (D) of 10 * m?/s. The time for complete equilibration
of water vapas concentration across the fracture should be no more than 10 times that
great. or roughty one second. Now the speed of the gas in the fracture is approximately
given by

1 AP,
= ———|6,8L—2
YT Tw [““ Pe ]
0.04(2m)(600m) 2kPa
432005(0.001 m) 100kPa
= 0.03m/s. 3}

It

where the quantity in square brackets is the volumetric inflow/outflow that occurs by
BP during cach half-cycle from a slab of porous matrix having a width equal to the
fracture spacing. B. and a depth, L. equal to that of the porous medium (we used the
largest pressure change supported by the data analysis of Tsang and Prucss). Roughty
that much gas flows through a typical fracture of width w in a half-period T/2, here
taken as a half-day in the above estimate {or a diurnal baromeltric cycle.
Combining the above cstimates of speed and equilibration time. we conclude
that the dry air entering a fracture in a partially saturaied medium should travel 8
distance no greater than vAr = 0.03m, certainly no more than a meter, before the
waler vapor concentration in the incoming gas reaches equilibrium with that in the
wall rock. Thus, the incoming gas should be fully humidified within less than a
meter. Although the incoming air may then travel deeper into the formation before it
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returns to the surface and is finatly expelled. any significant net moisture loss from
the formation will have come from the surface layer where the incoming dry air was
initially humidified.

So tong as the surface layer of the formation remains at least partially sawrated.
the gas expelled from fractures will have a relative humidity of nearty 100%. and the
net rate of extraction will be consistent with the upper bound proposed by Tsang
and Pruess. However. consider that in the absence of recharge. repeated cycles
of BP (reinforced by surface evaporation but opposed by capillary suction) will
eventually dry our the upper layer to the extent that liquid water is no longer present
acar the surface. The relative humidity of the air in this upper liquid-free layer
would then vary from 100% ar its lower surface to nearly zero at the upper sorface.
Under these ci the simple model outlined earlicr would
suggest that there is no net efflux of water vapor. since X\ o would then be equal 1o
Xy.in. both nearly zero. These ahservations illustrate that the surface moisiure Aux
is strongly dependent on the frequency and magnitude of recharge events as well as
the Jocal balance between BP. surface evaporation. and capiflary suction. The surface
region is in a constantly changing state. Hence, the origin of the moisture expelled at
the surface is due 1o many factors in addition to B, and the amount contributed from
depth by BP cannot be calculated via Equation (2). Rather than focusing on these
near-surface processes. we turn our attention to greater depths, where we can propose
a rational theory able to describe the contribution to the net efflux of moistre due
solely to BP.

1.2, BAROMETRIC PUMPING OF MOISTURE FROM DEPTH

At every elevation between the water table and the earth’s surface there is a vertical
gradient in the concentration (or partial pressure) of the water vapor contained within
the pores of a geologic formation. In partially saturated regions, the presence of liquid
water ensures thai the relative humidity will be 100% and that the Jocal vapor pressure
will be identically equal ta the ic * ion' pressure i
(0 the local temperatuse. Poy(T). In these regions the vertical gradient in the water
vapor ion is by the gradient, so that Py, and X,
will both decrease toward the surface. This gradient will drive a diffusive vapor flux
toward the surface.

In 2 medium containing verticat fractures, the oscillatory gas flow induced by
barometric pumping will also carry with it a net vertical vapor flux at alt elevations
as a direct consequence of the vertical concentration gradient. This flux occurs
because the gas in the fracture at any elevation has a slightly higher vapor content
during the exhalation phase (when it is coming from a lower elevation of higher
vapor concentration) than it does during inhalation (when it is coming from a higher
clevation of lower concentration). The net efflux at the surface can still be expressed
by the equation suggested by Tsang and Pruess. our Equation (2). but the difference
in vapor content between inflow and outflow. Xy g — Xy.in. is Row contralled not
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only by the surface processes described earlier, but also by the competition between
vertical advection of moisture in the fracture and the horizoatal exchange of moisture
between the gas in the fracture and that in the adjacent porous matrix.

Another possible transport mechanism is cellular natural convection induced by
vertical variations in emperaiure and water vapor content. Although such motons
could marginally occur in open feactures isotated from their surroundings. they will
be strongly suppressed by lateral coupling with the matrix matenial in which the
permeability is far 100 small to permit such motions. Given the smalt apenure of
fractures and small heat capacity of the flowing gas. the 1emperature in the fracture
ata given elevation cannot be 100 different from the surrourding matrix emperatuse:
this would also suppress the thermal driving potential for convection.

The et f heat or a chemical species by thi y flow
has been previously studied by Kunwcg { l985) Nilson ef af. (I%I) and Zlmo and
Cheng (1996). Kurzweg origi both anal. and

tally, thm a very large axial hem fux can be obuincd by inducing an mc:llamry
fiow in a fluid bounded by closely-spaced heat-conducting walls, He showed that the
axial heat transfer may be orders of magniwde greater than that by heat conduction,
even though there is no net mass transport along the channel. Zhao and Cheng find
similar behavior and provide a corretation equation for Nusselt number. Nilson later
extended Kurzweg's analysis to situations in which a gas phase contaminant species
is transported through i fractured permeable medium by BP: that model was more
recently used by Nilson and Martinez to estimate the vertical transport of inert gas
phase contaminants at Yucca Mountain {Chapter 21 of Wilsan er al.. 1994).

The remainder of this paper investigates the transport of water vapor through a
vertical gradient by this same oscillatory flow mechanism. Although this process
resembles the transport of an incrt gas specics. the coupling between the fracmrc

flow and the matrix wansport is qualitati altered by the of
and condensation within the matrix and at the fracture/matrix interface. To descnbc
these p we i solve the equati ing mass and energy con-

servation for two-phase. two-component flow of air \md water in the fracture/matrix
system. To simplify the analysis, we use a ‘single-horizon® approximation in which
the time-mean gradient is used to evaluate the vertical adveciive Aux. This approach
is explained in some detail and is verified for contaminant wansport by comparison
with fully two-dimensional simulations.

The paper is arranged in the following way. For completeness, the general model
of two-phase airfwater transport in a fractured rock system is presented first. The
single-horizon approximation to the model is presented next. This discussion cul-
minales with a detiled account of the exact equations that are solved. and explains
the coupling berween fractures and matrix. The numerical method applied is then
presented. ln this part of the paper. some specml attention is paid to the derivation
and i of ical boundary ate (0 the ph:
fracture/matsix system. The model is applied to materials characteristic of the Yucca
Mountain region of southwestern Nevada, a site under study for possible placement
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of a high-fevel radioactive waste rcpository. We find that the net vertical flow of
moisture coming from significant depths via BP is no more than 3% of the upper-
bound near-surface estimate suggested by Tsang and Pruess (1989). Even so, our
estimales are still about one order of magnitude greater than the vertical diffusion flux
{in the absence of BP) and may represent a significant fraction of the net infitoation.
a quantity of great interest but even greater uncerainty.

2. Problem Formulation

In this section we present the mathematical modet describing the transport of mass
and energy in the fractured system. This is a necessary prelude to the discussion of the
single-horizon model, which sumphﬁcs me cqunuons to be solved. and is presenled
in the next section. In our jon we write

the transport in the fractures and matrix scpamlely However, the equanons conmm
terms which describe the transfer of material and energy between the fracture and
matrix systems. We neglect the flow in the matrix moving paralle] to the fractures,
since the associated mass flow is smalier by the ratio of matrix permeability 10 bulk
formation permeability {< 1079).

The connectivity and topology of fractured formations is highly complex. Some
regions of the fracrures may contain deposits and fillings. Nevertheless. experimental
data shows the fracture systems are connected over lcugc depths and provide signif-
icant bulk ility for the of laden gases (Nilson et al..
1991, 1992). Our represemation. shown in Figure 1. is perhaps the simplest model
which retains the essential features of fractured media. The bulk permeability for the
two-dimensional fractured porous material model is expressed as

w -w
ky = kl— + k,,. 4
where k; is the fracture permeability. w is an effective fracre apenure. B is the
fracture spacing. and kg is the matrix ility. The fracture y is
Bsrumetsic Preenims Puctustion
eease wnger P oty
‘.._—!— —_——
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Fignre 1. Conceptual model of the fractured permeable modium.
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related to the effective hydravlic aperture by the formula for flow in a slot {planar
Hagen—Poiscuille flow),

|I7:
ke = -, S
=13 )
For material properties typical of fractured rock sysiems {e.g. Yucca Mountain).
ke > &kpand w < B,suchtharthe ility due to the fracture i
resulting in the approxi pression for the bulk i
1
ur
= e 6
b= ®

2.1. FRACTURE MODEL

In the fractures, we assume thal only gas is present. The (ractures are characterized
by such large pores that capillary forces are negligible. relative to the matrix. Any
liquid water condensed from the gas sircam would be absorbed by the high capillary
suction in the matrix before traveling any appreciable distance along the fracture.
Similarly, appreciable amounis of film water are assumed not to accumulate, as they
would be imbibed by the matrix. The equations are averaged over the width of the
fractures and so quantities of interest vary only along the path of the fracture. In
this particular application, the fractures are assumed vertical, and the coordinatc y
(positive upward) measures distance along the fracture. The gas flow in the fracture
is governed by a mass balance equation which applies to the mixture of air and water
vapor that is transported vertically up and down the fracture. The horizontal mass
flux contributed from the adjoining matrix is included. The statement of this balance
allows evaporation and condensaton of moisture at the fracture/matrix interface 1o
convert liquid into vapor or vice versa, as required 1o satisfy the imposed condition
of negligible liquid in the fractures. The balance equation for the gas in the fractures
s

g D

& + EX
where py is the density of the gaseous mixture composed of air and water vapor. gg,
is the (vertical) flux of gas. and F3 and 7, denote the mass fluxes of liquid and gas
leaving (entering) the fracture to (from) the matrix. In the cemainder of this work,
subscript g refers to gas. v 1o water vapor, a 1o air. | to liguid and m to moisture (liquid
and vapor). A balance equation for the water vapor in the fracture is also specified
in order to compute the mass fraction of gas attributable to water vapor:

Xy ax, 2
Loy Pelde T

2,
{Pxdlar) = ‘l—[‘("l + £ [0}

[FA(l = X + 41 @)

w

where
P

= —— 9,
Pt @
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is the mass fraction of water vapor in the gas, and J, denotes the horizontal diffusive
fux of water vapor through air in the matrix. The overall gas balance equation (7)
has been used in arriving at this form, and continuity between the mass fraction of
water vapor in the fracture and matrix was imposed.

An energy balance is derived in a similar manner to account for energy transparted
along the fracture and between the matrix and fracrure:

@ 3 2
arloe(Xaus + Xoun)l + alp,(x.ha + Xohggd = —— (g, (10

where 1 denotes internal energy and & enthalpy, X, is mass fraction of air in the gas.
and gy, is the net heat flux from the matrix.

In order to determine the exchange terms in the foregoing equations (the quantities
in brackets on the right-hand-sides), the matrix model musit be specified.

2.2. MATRIX MODEL

A balance cquarion for matrix water. including liguid and vapor phases is given by

)
= (06 + p)+V Fiy = (1)
M ®

where & is the volumetric liquid moisture content. 6, the volumetric gas content. and
& + 6, = ¢. where ¢ is the porosity. The flux of moisture is
Fu = pqy + Xvpege + Jv. 12)

Starting from (he left, (he terms on the RHS represent the mass flux of liquid, the
advective mass Nux of water vapor and the diffusive flux of wazer vapor, respectively.
A balance cquation for air reads

%(ﬂ,ﬂ,)+V~F, 0. amn
where
Fy = Xapag + Ja. 14
An energy balance takes the form
%([(I = & Cy + PO+ PG (T ~ T} + V- qy = @, s
where
Cy = Cy X + CueXy. (16)

Ce is the constant volume specific heat of component a. T is a reference tempera-
ture, and ) is an extraneous heat source.
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2.2.1. Constitutive Refations

The advective fluxes are described by the extended Darcy law. in which relative
permeabilities are introduced 1o account for the multiphase motion of fluids. Thus,
the mass flux of liquid is

Ihmﬂ

aq=F= (VP + meVy), {an

and the mass flux of gas is

Pekmkre
It

Py = (9P, + 0,2 V¥), i)
where P is pressure. g is the gravitationa) acceleration, and j is dynamic viscosity.
The diffusive flux of water vapor in air is given by

Jo = =p DV X, 19

where D, is the binary diffusion coefficient (see Appendix A). In accordance with
mass conservation for the binary mixwre. J, = —J..

“The capillary pressure provides the relationship between the liquid and gas phase
pressures: :

Pe= Py Pi= Pulth). 0

which. as indicated. is assumed to be empirically specified as a function of liquid
moisture conlent in the matnix. It is welt-ki that, under ic equi-
librium. the vapor-pressure across a curved interface is lower than that across a flat
interface. The vapor pressure is specified according to Kelvin's equation of vapor
pressure lowering (Edlefsen and Anderson, 1943):

P
= PV\(T)exp(vMR"T). 1)
where P,, denotes the ﬁal—mlcrhce saturation vapar pressure.
The beat flux includes and
gy = -AVT + &,F, + b,F, + &Fy [¢23)

where A is an effective thermal and we have i the
notation for mass fluxes: Fy = X,Fy .and F, = X,Fy + J,. The enthalpies are
defined by i, = Cpa(T — Ty), witha = aor ). and by = Aheg + Cu(T — Ty). where
Ahg is the latent heat of water vnpor at reference temperature To.

The ining ther y ions of state and itutive relations for
transport p ies are di d further in the applications section and are given in
Appendix A,
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2.3 FRACTURE-MATRIX COUPLING

The coupling of the fracture equations to the matrix equations is explicit in balance
cquations set forth in Section 2.1. each of which includes a mass or energy contri-
bution from the matrix, The matsix equ s are coupled to the fracture system via

ix interface ditions requiring inuity of pressure, temperature,
and vapor pressure; the fracture equations serve as Dirichler boundary conditions
on the matrix equations. The capillary pressure in the mawrix at the fracture/maix
interface is specified from the Kelvin equation (21). However, the fracture is assumed
0 be characterized by such large pores that capillary pressure is negligible. To
close the system of equations. we require that the mass fractions of air and water
vapor (hence the vapor pressure] must be continuous at the fracture/matrix interface.
The Kelvin equation couples the vapor pressure. temperature and matrix capillary
pressure.

A The Single-Horizon Approximation
3.1. MOTIVATION AND APPLICATION TO CONTAMINANT TRANSPORT

Direct numerical simulation of the highly nonlinear coupled fracture/matrix transient
madel is 2 computationally intensive task. Indeed. simulations of the analog problem
for coneaminant transport (Nilson e al.. 1991; Appendix B), which is governed by a
linear wanspon equation, requued several days of computing time for cach parame-
ter variation. The single-h pproximati grcally imp the

problem and reduces the i of a full
simulation. Yet, this method has proved b 10 the

of similar oscillatory tmnspon prohlcms (Kurzweg, 1985: Nilson er al.. 1991), The

essence of the single-h ion is that the ion term in the fracture
equations is evaluated using lh: time average of the veniical concentration gradient,
while the matrix transpont is esti d based on a i ional analysis of

horizontal wansport into the mawix. In Appendix B, we further demonsirate the
efficacy of the single-horizon approximation as applied to contaminant transport.
an apalog to the subject problem. That study compares numerical solutions of the
full wo-dimensional transport problcm in whlch both the fractures and matrix are

ized. with the single-h ion. The single-horizon solutions
reproduce the full simulation results over a large parameter range. and at greatly
reduced computer processing time. These results and the previously mentioned
studies demonstrate the effectivencss of the single-horizon approximation for these
time-periodic problems. because. on average. the advective transport terms in the frac-
tires are well-approximated by replacing the vertical gradients with the time-mean
background values.
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3.2, SINGLE-HORIZON APPROXIMATION FOR MOISTURE TRANSPORT

The firsi step in applying the single-horizon approach is to derive a depth averaged
mass balance in the fracture. Integrating the balance of gas in the fracture (Equa-
tion (7)) over the depth L resulis in

2L
Peey = ——;U‘"x + Fyly=nr [e2}]

This equation relates the flux of gas in the fracture at the inlet to the fractured system.
i-¢.. at the elevation L, 10 the flux of material contributed from the marrix over the
length of the fracture. This integral over the tength of the fracture is represented by the
product of L and the quantity in brackets. The ‘- superscript denotes the interface
as approached from the matrix. In this form. the matrix fluxes of liquid and gas
now represent depth-averaged quantities. In addition. we have neglected the slight
temporal change in gas density over the length of the fracture, d(f p,dy) /d¢. and
its effect in modulating the flux a1 elevation L above the lower boundary. Note that.
this statement of gas balance incledes the ibility of ionfconds ion of
water at the fracture/matrix interface. A balance equation for the water vapor in the
fracture in she single-horizon approximation is given by (cf. Equation (8))
axX, (n’JX.,
oy
where the depth-averaged vertical gradient of water vapor ({0 X,/3y)}) has replaced
the focal gradient in the advective term. Similarly, the energy equation in the single-
horizon approximatibn is given by

2
)=—_[Fl“ =X+ Lhopr (29)
e

aT ar ax,
ng,.,—aT + Dyly [C,., (x) +{Cpv — Cal(T — To)(-a';')] -
P aXy
- G G = CT = T
2 ar
=-= [—A— — Fithg = ) + Jhy — h.)] . 25}
w | ax ot

where Ay = Xyhy + Xyha. The venical gradients in the fracture are approximated
by the average background gradicnts discussed earlier.

The B itule the batance equati ions (23)25)) for the frac-
ture system in the single-hort imation. The balance ions in the matrix
are the one-dimensional version (i.e. replace V- ( ) with 8( }/9x. etc.) of the equations
given in Section 2.2, Boundary conditions for the matrix equations are provided
by the requirement of continuity of total pressure, 1emperature, vapor pressure at
the ix interface. i the fracture i Equations (23}~
(25)). via continuity requirements. impose Dirichlet boundary conditions for the
matrix equations a1 the fracture/matrix interface. No-Row conditions arc imposed
on the matrix cquations at the mid-plane of the matrix blocks depicted in Figure 1.
Section 4.1 discusses the solution procedure expliciily.
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4. Numerical Treatment

The foregoing ing equati itute a coupled set of highly nonlinear partial
differential equations (PDEs), The numerical method applied for solving the coupled
system of parabolic PDEs is the so-called Method-of-Lines (MOL) (Hyman. 1979).
‘The MOL technique is a semi-discretization method wherein the spatial derivatives
are first approximated by some appropriate method (in this case. centered finite
differences). resulting in a system of coupled ordinary differential equations (ODEs)
describing the temporal variation of the state variables a1 a number of discrete points.
The resulting system of ODE:s is integrated forward in time by the variable-order.
variable-step backward-difference code DEBDF (Shampine and Watts. 1980). The
backward-difference formulae result in systems of nonlinear algebraic equations to
be solved for nodal quantities. These equations are sobved as part of the DEBDF
package via a Newton-type algorithm.

I the presentapplication. we will assume the matrix always contains some liguid
water. Hence. we choose as primary variables the capillary pressure, the gas pressure
and pproximating the spatial diverg in Equations (11}.{13) and
(15) by centered differences. the system of discrete ODEs describing the temporal
variation of primary variables at node points takes the form

G 0 Cur ][5
Cow Cp Cor Py

Cry Cre Cr |, T
\ Faisiz = Fricin 0
= e | Finip = Fajeiz [+ 0 (26)
v = Xi-if2
it172 = Yni-172 ¢

i
for a mesh of nodes with node poiats at x;. Each fiux is also expressed as a centered
difference (on a staggered mesh). for example.

Prkenk Privi — P
Rivp=-— ( = n) DLl @n
S S =
The capacitance matrix is given by
]
Cy 0 Cyr " | 3R
F)
Cow Cp Cpr | = 57 [(méh + 046y) (0a0p) w1, 28)
dFy
Cry Cre Cr a
3T

where « denotes the bulk internal energy. After evaluating the fluxes and capacitance
matrix, the 3 x 3 system of Equations (26) that apply at each grid point are inverted
to obtain the time detivatives needed by the ODE solver.
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of this t phase code is di: d in Martinez
(1995).

4.1. BOUNDARY COUPLING FSINCTIONS

The Equations (23)-(25) describe the transport of gas. water vapor and energy in
the fracwure for the single-horizon model and itute the boundary i
applied to the matrix equations. as explained next, The objective is to solve the
discrete matrix equations (Equation (26)) in order to determine the net efflux of
moisture at a represeniative horizon. Specifically. the fracture equations in the single-
horizon approximation are used to prescribe boundary conditions on the equations
for P,, P., and T (dw dot denotes a time derivative) which appear in the discrete
matrix equations. Equation (26). The barometsic pressure is modeled with a sinusoid.
Pyir) = Po+ AP sin(2r1/T). and therefore Py is also a circular function. T is
given by Equation (25). This expression involves P!, X,. which is determined by
differentiation of Equation (9), and the convective and diffusive fluxes of heat from
the matrix, the quantities in brackets on the righi-hand-side of Equation (25).

The boundary condition for P 10 be applied to Equation (26) is derived by
enforcing the continuity of vapor pressure at the fracture/matrix interface. This is
accomplished by first deriving an expression for the time derivative (denoted by
over-dot) of the vapor pressure. which can be related to time derivatives of the state
variables according 10

(X Py + X Py = XRuPYM M, + X, P, 1
i+ Xu(Ma /M)

This equation is derived from the definition of the vapor mass fraction. Equation (9).

and the equations of siate given in Appendix A. Now. using the Kelvin equation. the

time rate of change of the capillary pressure is given by

b= 9)

N o . R T (dPy Pe

fo=Sp 4 | B0 7. 30

- nee PR () 2 oo
inwhich P, is given by the precedi ion. thereby completing the

of coupling functions at the fracture/matrix interface.

‘To summarize. the numerical solution in the single-horizon approximatien in-
volves solving the three discrete matrix equations given in Equation (26) subject to
the fracture/matrix interface conditions. which serve as bonndary conditions. At the
fracture/matrix interface. P; is given by Equation (30). T given by Equation (25}
(after substituting for P, from Equation (29)}. and 2, is given by differentiating the
sinusoid specifying the gas pressure in the fracture, For the BP simulations the ‘unit
cell” includes only half the matrix block. No-flow boundary conditions are imposed
for moisture, air and encrgy af the center of these blocks. Once a time-periodic
solution is obtained, Equation {23) is used 1o compute the net effilux of moisture
from depth.
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5. Barometric Pumping of Water Vapor
5.1. THE BACKGROUND GRADIENT

In order to establish a *nominal® state of the fractured medium in the preseace of the

gradient. we ider a problem di: by Tsang and Pruess (1989,
1990) in a study of gas flow at Yucca We consider dil i two-
phase flow of air and water along a 600 m depth of unfractured medium over whicha
terperature gradient is imposed. This cum:sponds to the depth to the water table a1
Yucca M in. and material prope ive of the Topopah Springs unit.
which is being considered for placemem of ahigh-level nuclear waste repository, are
specified over the entire depth. The lower boundary is assumed saturated with liquid
water. and at a temperature of 30.85°C and pressure of 1 bar. The upper boundary.
which represents the top of Yucca Mountain and therefore the interface with the
ambient, is at 12.85°C and 0.9334 bar. see Tsang and Pruess (1989). We note that.
this is a gross over-simplification of the geology of Yucca Mountain, however the
intent is 1o compute a in-scale water vapor gradient on which to
superimpose the barometric pressure fluctuation,

Beginning with arbitrary initial conditions, we march the ODEs forward in time
until a steady state is achieved. The liquid saturation and mass Rux profiles computed
in this manner agree well with those given by Tsang and Pruess (1989. 1990).
The simulation csuhhshes un average vapor mnss fraction gradient. (dX,/dy} =
—1.24x 10" m~"! owingtothe imposed gradien: (d7'/dy
—0.03°C/m. These values will be used for lhe background gradients upon which
will be superposed a periodic variation in pressure. As an aside. it is of interest
to note that the net flux of water vapor imptlied by these gradients is of the order
of 0.5 x 10~ mm/yr. This is the flux implicd by the geothermal gradient in an
unfractured rock mass composed entirely of intact matrix rock: it is quite a bit
smaller than the theoretical upper bound described by the control volume model
and also smalter than the contribution from depth due to BP. to be presented shortly.

5.2. FIGURES OF MERIT

In order to quantify the transport of water vapor by BP. we define here several
quantities characterizing the motion. The distance traveled by the gas in a half-period
of outflow (hence. the absolute value), is defined by

1+
AL :f max(ggy. 0) dir. 31
)

where T denotes the time period of the barometric pressure fluctuation, Th: msp:red
mass Rux of moisture per fracture per iceycle is ©,

+T
AM, =/ Poggyedt. 32)
g




RAROMETRIC PEIMPING OF MOISTURE 9

The amount of moisture mass removed during & cycie is AM, w per fracture, and the
annual net moisture respired per unit surface area by the periodic BP is

o= AMVNT%. fE)

where Ny is the number of cycles per year.

5.3, GENERAL FEATURES OF THE MOTION

1 is instructive to consider the general features of the motion induced by the peri-
odic variation in barometric pressure. We discuss the solution of a ‘base case’ for
which the equations of state and transport models are described in Appendix A,
and the corresponding parameters are specified in Table |. Included in this 1able are
the parameters which enter into the characteristic matrix material functions which
are representatives of the Topopah Springs unit of Yucca Mountain (Wilson ef af..
1994). The values of aperture and fracture spacing in Table | commespond to a bulk
permenbility of ky = 10 D,

The i of the ic pressure fi d AP in Table I, was de-
termined by Tsang and Pruess (1989} by analysis of the data collected at Yucca
Mountain by Church er of. (1985, 1986). The initial state of the system is taken from

Table 1. Standand problem parameters, &y = 013

Parameter Symhol  Value

Formation depth L £00m

Fracture aperture w 621 xm

Fracture spacing B 2m

Matrix permeatility km 104D

Tornuosity * 2

Paromerric time penod T 5 days

Pressure amplitude AP 1kPa
Temperusure gradicnt WT/dy)  ~DOYC/m
Mass fraction geadient Xy} ~328% W 3mt
Binary diffusion cocfticient S, 214 % 10 S mlss
Binary diffusion parameter (App. A} v 2334

Rock density ”n 2580kg/m>

Rock heat capacity (A 8401 /kg’C
¥iflective conductivity (dry) o 174W /¢
Fifective conductivity (wet) X 234 W/m'C
Porvsity '3 on

Residual moisture eoment By 00088
van-Genuchten parameter av 0,0057m~!
van-Genuchien parameter B 179
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P (PE)

Gas Prassurs,

Figure 2. Profiles of gas pressure in the matrix during a S-day harometric cycle.

the stendy solution for the background gradients (discussed above) at the mid-height
of the 600 m model. Specifically. the initial gas pressure is. £, = 0.955 x 10% Pa,
the initial temperature is, Ty = 22.2°C. and the initial moisture content is & = 0.066
(60% liquid-saturated).

Figure 2 shows the profiles of gas pressure, relative to the initial {(and average)
value. in the matrix at i-day intervals during the 3-day cycle, The gas pressure in the
fracture, which drives the motion, varies over 1 kPa and the damped pressure wave
extends fully into the centerline of the matrix block for the chosen values of B and k.
By contrast. the comesponding capillary pressure wave (not shown) extends to about
25cm into the block and its variation is only about +0.02 kPa at the fracture/matrix
interface. The temperature in the mawrix undergoes very minute fluctuations and is
not shown. The BP process for this magnitude of barometric pressure fluctuations is
essentiatly isothermal.

Profiles of the vapor mass fraction are shown in Figure 3. They resemble a
“mirror image" of the gas pressure profiles. that is. high gas pressure at the fracture

Vapor Mass Fraction, X,

3 LY 0.4

LR .0
Distance, x (m}

Figure 3. Profiles of vapor mass fraction in the matrix during a S-day barometric cycle,
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Figure 4. Vrofiles of gas mass fux in the matrix during a 5-day harometric cycle.
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Figure 5. Profiles of liquid mass flux in the matrix during 8 $-d3y barometric cycle.

corresponds to low vapor mass fraction at the same location, etc. The vapor mass
fraction can be expressed as

M,

T PM (P,

X .
) VM,

(34)

therefore. increasing the gas pressure at the fracture decreases the mass fraction of
water vapar {or (nearly} constant vagor pressure. This setsup o difTusive flux of water
vapor towards the fracture. to equilibrate the water vapor gradient,

Profiles of the mass flux of gas and liquid are shown in Figures 4 and 5. The
average mass flux of the gascous mixture is driven only by the gas pressure gradient,
and the flux profiles are readily understood by comparing with Figure 2. Note that
either mass flux can be in both directions at the same time owing to the time lag
of points decper into the block with respect to Jocations closer to the fracture wall.
Beyond about 20 cm inta the block. the liquid flux profiles resemble the gas fux
profiles. In this region. the capillary pressure gradient is negligible and the liquid
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Figure 6. Profiles of vapor mass flux in the matrix during a S-day harometric cycle.
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Figure 7. Profiles of moistore (liquid and vapor) mass flux in the mairix during u S-day
barometric cycle.

and gas pressure gradients are similar. The mass flux of liquid is about an order-
of-magnitude Icss than the gas flux. The flux of water vapor is shown in Figure 6.
Note that the ftux is in a direction opposite 10 the average gas flux. for the reasons
discussed earlier. This mechanism enables transport of water vapor from the matrix
to the fracture (and vice versa) in the presence of an opposing gas pressure gradient.

The net mass flux of moisture {including liquid water and water vapor) is shown
in Figure 7. The fracture mode! balances the mass flux of material flowing out of the
matrix with the transport up and dowa the fracture. thereby acting as a throitle to
control the amount of moisture which can be extracted from the matrix and carried
by the frucure. Although the matrix liquid and vapor fluxes are of comparable
magnitude to the air flux at the fracture. they sum to yield a much smaller net flux of
moisture into of out of the fracture. Apparently. the net extraction of matrix moisture
is determined by the amount the {racture can wanspon with the prevailing gas flux
and thermodynamic conditions consistent with the adjoining matrix conditions.
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For the base case problem just described. the gas displacement over a cycle was
determined to be AL = 556.5 m. while the net efflux of water vapor evaluated from
Eqguation (32) was AM, = 0.130kg/m? percycle. Thus. according to Equation (33).
the net moisture respired is go = 0.0029 mm/yr. expressed as an equivalent annual
liquid flux of water. This flux can be compared to the estimates of net infiltration
discussed in Chapier 8 of Wilson ef al. (1994). which ranges from 0.003 10 0.5 mmy/yr.
Thus, for the lower esti asigni fraction of the esti d ion could
be extracted from deep in the formation and returned 1o the ambient by BP. for
the present parameter vatues. Furthermore. this estimate for barometric transport
represents only about 1% of the theoretical maximum estimated earlier by the control
volume model, 0.3 mm/yr.

5.4 INFLUENCE OF MATRIX PERMEABILITY

Matrix permeability data available for Yucca Mountain (Wilson ef al.. 1994) suggests
values in the range of a few microdarcies for the welded units. In order to illustrate
the role of matrix permeabiity. an uncertain quantity in geologic media. we consider
matrix permeabilities in the range of micro- to millidarcies.

Figure 8 shows the displacement of gas in the fracture and the netefMux of moisture
as a function of matrix permeability. with all other parameters as specified for the
standard case. The displacement initially increases with matrix permeability. how-
ever. an asymptoie is evenmually attained. roughly for &y, greater than about 0.5mD.
As the permeability increases. the pressure wave is able to more easily peneirate
the full extent of the marix. ultimately resulting in equilibration between fractures
and matrix for very permeable matrix material. The moisture transport exhibits a
maximum for a matrix permeability of about S0 ;1D (for present parameters). Just
as in the related problems of oscillatory heat and mass transfer. this value corre-
sponds to a Womersly number (see Appendix B) of unity which optimizes the time
scale for matrix moisture transport relative to the time period for advective fracture

2400 r0.006

£ 2000}

= . <
4 e} 0.00¢ T
E E
E 1200 - 5
g 00} o002 ¥
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ul 300
o R 107

Mattix Parmienbity, ko ()

Figure 8, Gas displacement and et anmual outflow as function of matrix permeability
Symbols indicate numerical values.
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transport. Note that, this maximum will depend on the other problem parameters
as well.

5.5. INFLUENCE OF APERTURE AND FRACTURE SPACING

The bulk permeability depends on the ratio of aperture cubed over the fracture spac-
ing. While variation of w. for fixed B. changes the displacement. AL. and the amount
of moisture extracted per fracture, per cycle, (A M, ). the net outflow of moisture is
independent of . The aperture mainty infruences the gas disptacement because the
single-horizon model assumes that the gas Aow in the fracture is unaffected by w. as
appropriate when w is large enough that the vertical resistance to gas flow becomes
wnimportant. In this regard. our results should be viewed as an upper bound on the
vertical sransport.

The net respiration of moisture is dependent on B. Figure 9 shows the displace-
ment of gas and the bulk transport of water as a function of fracture spacing. The
apertures for these results were varied according to w ~ 8'/ in order to maintain
the bulk permeability constant at 10 Darcies as the fracture spacing was increased.
The figure shows that both the displacement and outflow are maximized for a frac-
ture spacing near 1 m. As the block thickness becomes large, the amount of water
vapor that is extracted per fracture approaches an asympiotic value. AM,w ~
constant; for spacings greater than about 3m the blocks act as though they were
semi-infinite in extent (perpendicular to the fractures). and the water vapor exiracted
per fracture becomes independent of B, Therefore, in this regime gnB — const..
as indicated in Figure 9. The displacement. the respiration flux per fracture. and the
net efffux of water vapor also decrease as the spacing becomes small. The smaller
the spacing. the more accessible is the resident moisture to be extracted. resulting
in equilibration between fracture and matrix, As in the aforementioned problems of

oscillatory heat and mass transfer. these itions reduce the time-ph:
900 T T v
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Figure 9. Gas displacement and annual net oullow as a function of fracture spacing for
constant bulk permeability (1D D).
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berween fraciere and matrix. and lead 1o a minimal net transport over the cycle
(see Appendix B).

5.6, THE DJURNAL AND COMBINED BAROMETRIC CYCLES

In the foregoing analysis, we have only considered the 5-day barometric cycle. The
simulations indicate that this cycle is more effective in extracting moisture than the
diurnal cycle. for which measured variations in barometric pressure are about 8 mil-
libars peak-to-peak. This is less lhan half the 20 millibars {peak-to-peak) used for Lhe
S-day cycle, and the ions show (hc iration varies

with the pressure i other g fixed. Indeed. we sxmu!mcd
the base case for the diurnal cycle and computed a net oulllow. go = 0.001 mm/yr,
which is about one-third the outflow for the 5-day cycle (the reduction is not simply
(8/20)? because we've alsa shortened the period of the fluctuation by one-fifth). The
displacement for the one-day cycle was AL =98.24m.

Thus. we have i pi y the two major ic cycles (a 5-day
weather-related cycle and the dlurm\l cycte) which drive the BP process. in seality,
these two effects are not separate, but are active simultaneously. To approximate their
joint effect. we will simply superpose the two cycles, resulting in

Py = Pyo+ APy sin (Zn L) £ APyysin (Z:r;) . @5)
T/ - Tsay
where the subscripts 1dy and 5dv refer 10 the diunal and 5-day cycles. The effect
of this superposition {without time-phase lag) is to enhance the peak barometric
Auctuations by about 40%.

For the base case set of p but using the ic Auctua-
tion. the displacement is 677 4 m and the outflow 0. 004mm/yr These represent 20%
and 33% increase in di and outflow. res . when to the

5-day cycle. Figure 10 shows the displacement and outflow as a function of matrix
permeability. The trends are similar to the results in Figure 8 for the S-day cycle

Outfiow, g, tmmiyr)

Displacement, Al (m)

10" 10" 107
Matrix Permeability, ky, (m?)
Figure 10. Gas displacerent and annual net outfluw s & function of matrix permeahility for
the combined barometsic cycks.
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A maximum in outflow of about 0.008 mm/yc is found for 75 uD), roughly a 40%
increase over the outflow from the S-day cycie.

6. Conclusions

We have presented a theory for the motion of air and water at depth in an unsaturated
fractured permeable medium driven by fluctuations in barometric pressure. The
model is of the multiple-continuum type where scparate equations represcnt the
fracture and matrix. The separate continua are coupled by transfer terms involving
exchange of mass and energy between the fractures and matrix. The barometric fluc-
tuations are appmxlma(:d by a sine wave in time, with an amplitude correspanding
© ions at Yucca in. and with periods of one and
five days. Although the mode! includes an energy balance. results indicate the moded
could be simplified by assuming isothermal conditions at the outset. To simplify the
analysis. a ‘single-horizon’ approximation is applied in which the time-mean gradient
is used 1o evaluate the vertical advective flux. Time-periodic numerical solutions to
the governing equations are computed to estimate the moisture extraction per cycle.

Estimates of the annual net outflow of moisture from depth by BP range between
0.001 and 0,008 mm/yr. expressed as an equivalent liquid flux. This cepresents at
most about 3% of the theoretical maximum, of 0.3 mm/yr, given by the control

volume shalluw subsurfuce mode di inthei ion. This also
asigni i estimates of pet i ion into Yucca in (0.003-
0.5 mm/yr, Wilson er af.. 1994). that is. 3 large p ge of th i i il

could be respired back inte the atmosphere by BP. Qur estimates should be viewed
as upper bounds in view of the nssumpuons made in applying the single-horizon
Yucca i of ing layers of fractured tuff
and partly to nonwelded and bedded wifs, such that the bulk permeability may vary
substantially with depth, whereas our model assumes a uniform bulk permeability.
Owing to the uncermmy in material propcmcs for geologic media in g:neml
and Yucca N in ions of matrix p bility and
fracture spacing were conducted. Maxima in the estimated outflow of moisture were
found for variations of each of these parameters. The maxima are related 10 the
lime-phase lag between matrix Auxcs and the barometric Auctuations driving the
mouon,

Appeadix A. Equations of State and Transport Models

Ider! gas equations of state and mixing rules are used to approximate the thermody-
namics of the system

Po=p RT.  Po=pRT.
=pv+ pa. Po= P+ Py
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with R, = %/M,.fore = vora. R isthe gas constant and M, denotes the molecular
weight. Over the range of temperatures considered in the BP problem. a function in
the form of a Clapyron equation describes the fat-interface vapor pressure as a
function of temperature:

A
Prs = p«.m,exp[T"(r,;,' - r")] = Ae T, an
N

with A = 7.055 x 10°kg/m’. B = 5137.46 K. and P = pvoR.T
The binary diffusion coefficient between water vapor and air is (Pruess. 1987).

Oy g P [T\
oa=2005 () (38)

where 7 is tortuosity and DY, is the diffusivity in free space at temperature Tr.q and
pressure Prs. The satwration-dependent effective heat conductivity was specified
according 1o Somerton er af. (1974):

A:hﬂ»%(l. ~ X}, (9)

Moisture retention and refative permeability to the tiquid are described by the
so-called van Genuchten functions (van Genuchten. 1978):
2

y PN
ARG k=gt "(T%,Tf) . @

where p. = ay Pe/mg and Xy = (8 — 1)/f. The relative permeability 1o the gas is
approximated by the retation (Bixler. 1985: Pruess. 1987). &y + kg = 1

Appendix B. Single-Horizon Analysis of B ic Pumping of C
Gases Through Fractured Permeable Medium

The primary purpose of this appendix is to the use of an app
technique for analysis of quasi-steady transport induced by oscillatory gas flow in a
fractured permeable medium. In panicular, we will address vertical transport of an
inert gas species resulting from barometric pressure variations at the earth's surface.
The iated gas displ can camy inated gascs through hundreds
of meters of fractured rock in a few months time (Nilson ef of.. 1991. 1992), Such
rapid transport has been cxperimentally observed at the Nevada Test Site (NTS)
in volcanic rock formations which are similar to those at Yucca Mountain (YM).
suggesting that the same processes will be operative at the proposed YM nuclear waste
repository.

We first present i ictions of ically driven transport of an
inert species at YM where the bulk permeability is believed to be an order of mag-
situde smaller than that at the NTS. Then. since direct numericat simulations like

108 M. J. MARTINEZ AND R, 1§, NLSON

these may require days of computer time, it will be shown that quasi-sieady transport
ratcs can be obtained wsing a single-horizon analyses which reduce computer times
10 minutes or seconds. The present discussion will be very brief. as further details are
availabie in a YM publication (Nilson and Martinez. in Chapter 21 of Wilson er al..
1994).

Al phases of our analysis are based on a dual-porosity. dual-pesmeability modet
(Figure 1) in which identical. equally spaced fractures are separated by slabs of
matrix material having uniform permeability and porosity. Flow and transport occur
one-dimensionally along the fractures and one-dimensionally in and out of the matrix
smaterial. We neglect the flow moving through the matrix parallel to the fractures,
since the associated mass flow is smaller by the ratio of matrix permeabifity 10 bulk
formation permeability (< 10~

B.1. TRANSIENT SIMULATIONS

Direct simulation of the barometric transport process requires time marching in-
tegration of the i i i describing variations in pressure and

i atong a ive fracture and within the adjacent
matrix material. The finite difference procedure described by Nilson and Lie (1990)

« is used 10 solve those equations on a rectangular mesh having 120 zones along the

fracture and 40 zones into the matrix. Typically 150-300 time-steps are needed to
resolve each daily barometric cycle, such that 1~ 10 million time-steps are executed in
a simulation covering 10-100 years. These runs require 5-50 b on a Silicon Graphics
R8000 computer operating at 75 MHz.
The purpose of these transient simulations is to predict the rate of release to the
of a ive puff of i which initially resides at mass
fraction Xq within the porosity of u 20 m thick repository layer located 400 m below
the crest of YM. For the sake of simplicity and conservatism we will ignore the 30-m
layer of low permeability nonwelded tuff near the crest of YM and presume that
the 600 m depth of unsaturated rock containing the repository consists of a heavily
fractured welded tuff having a bulk fracture permeability (k, = w?/12B) of the order
of 107" m? (10D} which we account for through a single set of identicat vertical
fractures having aperture, w. and spacing, 8, of 0.783 mm and 4 m, respectively. The
gas filled porosity ¢m and gas permeability km of the matrix material are taken as
0.04 and 0.1 mD, while the binary diffusion coefficient Dp and diffusion strength
£ = ém/T are prescribed as 2 x 1075 m?/s and 0.004, The wansport calculation is
driven by barometric pressure varialions having a period and peak-10-peak amplitude
of 24 h and 8 millibars, respectively.

After 40 years of pumping. the vertical variation of the normalized contami-
nant concentration, X* = X/Xp shown in Figure 11 has acquired a Gaussian
shape spreading 200m above and 150 m below the repository. Within 80 years.
the peak concentration has fallen to roughly 10% of the initial value. while the
mean holds almost steady at 3%. The profiles in Figure It represent concentra-
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Figure 1]. Concentration profiles for ypical Yucca Mountain parameters.
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Figure 12. Normalired outllows for typical Yucca Mountain pararmeters.

tions at slab centers: they vary slowly in time despite daily perturbations in fracture
concentrations

The time history of gas exchange and i release to the p is
presented in Figure 12. The uppermost solid line, labeled V. indicates the rate of
cxchange of gas between the porous ion and the phere. ftis i
by integrating the outflow velocity g, > 0 from a typical fracture over the most
recent barometric cycle of period 7, thereafter normalizing by the total gas volume
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within the corresponding unit celt (Vo = L(w + ¢ B)) and. finally. multiplying by
the number A of baromeiric cycles occurring in a year's time:

. N '
V* = fractional outflow of gas per year = va f max(ggy. 0)dr. 1)
o Jier

The calculated value of V* = 0.3 in Figure 12 indicates that the volume of gas which
breathes out 1o the atmosphere and back into the medium over a year's time is 30%
of the pore volume.

The rate of i release to the isalso in Figure 12.
Ttis by i ion of the i dvective outflow at the earth’s
surface. Xpgqyy. over the most recent barometric cycle

T
M* = fractional owtflow of contaminant per year = % f Xppags 01, (42)
0 Ji-T

In analogy with the earlier normatization of volumetri¢ outflow. N is the number
of cycles per year and Mo = XopgoSL,(w + ¢ B) is the amount of contaminan
initially present in the repository layer having thickness 8L, =~ 20m and initia}
mass fraction Xo. Unlike the bulk flow of gas which produces no net flux over a full
cycle, there is a net flux of contaminant into the atmosphere. During periods of rising
barometer. ¢, < 0 and X* = 0 since the incoming gas contains only a negligible
amount of contaminant. During a falling barometer. gg, > 0 and X* > 0 since the
gas at the surface is coming up from below where the concentration is nonzero. Thus,
the integral increases monotonicatly. It is seen in Figure 12 that contaminant outflow
approaches a constant rate of ~107>, indicating that 0.1% of the initial contaminant
inventory is being released each year.

Within 100 years, the amount of contaminant released is ~ 10%. as indicated by
the integrated outflow M* shown in Figure 12. Although the numerical simulation
ends at |50 years, it is possible to extrapolate into the future based on the expectation
that the process will remain quasi-steady. The yearly i outflow should
then remain a nearly constant fraction. M*. of the currem contaminant inventory.
(1 — M*). Accordingly. d{1 = M*}/dr = —(I — M*)M* which implies that the
inventory decreases exponentially as exp(—M*t) and that

M* =1 = exp{~M*1). 43)

In writing this last equation we have taken the liberty of. applying this quasi-steady
solution for the entire time period. rather than beginning the integration at the time
(~150 years) when steady state is achicved and about 10% of the contaminant has
already left the medium. This adjustment is easy to make or. alternatively. the expo-
nential solution may be viewed as a late-time complement to the early-time numerical
solution. This exponential approximation avoids the need for unning computations
several times longer than the 40 h runs presented here.
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Finally, the dotted line shown in Figure 12 indicates the average concentration of
contarninant in the effuent stream

(X*) = (M* |V} Mo/ pg, Vo). (44)

Itis seen to approach a nearly constant value of ~10~* which is 300 times smaller
than the average subsurface concentration of ~3%. This is to be expected because the
contaminant concentration of the gases rising slowly through fractures cannot differ
greatly from the local concentration in the adjacent rock. Furthermore, the time-mean
concentration in the wall rock must approach zero near the surface. as seen carlier
in the profiles of Figurc 12. Thus, it is only the slight disequilibrium between the

fracture ion and the 1 watl ion which
permits a net outflow of contaminant. That is why any prediction of baromelric
transport requires a double porosity model which properly accounts for the disparity
between fracture and wall concentrations.

B.2. QUASI-STEADY CALCULATIONS

The p i ion showed that ically driven transport approa

a quasi- slcndy regime in which the fractional release is neasly the same for each
successive cycle. This gencrally occurs by the time 10% of the contaminant has
been expelled. suggesting that roughly 90% of the outfiow can be predicted from a
knowledge of the outflow M* . which is the recip of the time constant
for the exponential decay process of Equation (43).

Thus. the purpose of a quasi-steady analysis is to rpidly determine the fractional
outflow rate M* by performing a brief simulation which is begun with a linear
contaminant profile. This choice of initial profile is based on the preceding simu-
Iation and others like them (Nilson er al.. 1991} which ail appear to tend toward a
relatively linear gradicnt as time progresses. The dotted line in Figure | | depicts the
finear distribution having the same contaminant inventory as the calculated profile
corresponding to 160 years.

Quasi-steady calculations are executed with the same model as the earlicr transicnt
simulations except that: (1) the initia) profite is now lincar and. (2) the concentration
at the floor of the medium is now held fixed at unity rather than prescribing that there
be no contaminant flux through the floor. By fixing the concentration ai the floor
we prevent the gradual drift of the linear profile that would otherwise occur during
depl Thi the i period of 20 ic cycles there is only
a shight shift in the near-surface region of the linear conceatration profile. reaffirming
the connection between linear profiles and quasi-steady behavior. Much fonger runs
confirm the same behavior. )

Figure 13 indicates that the cffluent flux, M*, becomes quasi-steady within just
a few days. Moreover. the predicted value of M* = 0.003 in Figure I3 is quite

consistent with the corresponding value of M* = 0.002 near the end of the full ~

simulation in Figure 12. The difference is attributed to the fact that lincarity was
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Figure 13. Normalized oiflows far quasisicady analysis with typicat YM parameters.

never fully established in the complete simulation. In this context it is notcd that
the M* associated with a linear profile is insensitive to the choice of unit con-
centration at the fioor of the medium, since the outfiow. M*, is normalized by
the total amount of contaminant present and the transport equations are linear in
concentration. However, the mean concentration in the medivm is reflected in the
average concentration of the effluent (X*} which differs by more than an order of
magnitude between Figures 12 and 13 because the ratio of mean concentrations
150.5/0.03 ~ 170,
Th ge of quasi-steady analysesis that, ies can be p

with a thousand-fold savings of computer time since the required calculations span
several days rather than 15150 years. This approach is particularly beneficial in cases
with weak transport and large retardation factors which would otherwise require 10~
100 times more computation than the 50 h run whxch gcncraled Figure 12. The same
savings cannot be realized by simply i the of the i
time step. because it is constrained by the time scale of barometric cycles and by the
Courant limitation imposed by vmually all nondiffusive advection algorithms. The
only ing of the quasi-s ions is that they do not explicitly revea)
the time required for the profile to spread across the medium. However. this can be
estimated after the fact since the quasi-sicady calculations do indicate the strength
of the transport and this, together with a knowledge of the capacitance. can be used
to estimate the time required to reach quasi-steady state.

B.3. SINGLE-HORIZON MODELS

Having seen that the BP process evolves toward quasi-steady transpori through a
linear gradient, we will now briefly explore the usc of analytical and numerical models
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which seek the rate of quasi-steady transport by sotving
transporteguations in asingle, lyplcal honzomal planc The kcy supposition is that the
vertical gradient: ingin laced by their time-
mean values. This reduces the dimensionality of the prablem fmm rwa (o one. The
i reduction in i effortis i in
the more complex i flow thar cnnuol i ion of
water vapor, The single-horizon model also helps to illuminate physical m:chamsms
and parametric dependencics.

To illustrate the nature and validity of a single-horizon model. we will consider a
simplificd version of the BP process in which the fracture walls are porous (¢m # 0)
but impermeable (km = 0) so that horizontal contaminant transport occurs pusely by
molecular diffusion: there is no bulk flow in the horizontal direction. Conversely. the
vertical transpont in the fracture is presumed 1o be advection dominated. as expected
in most icati Under these simplificati the transport is governed by the

pair of ions which respectively apply to the fracture and the matrix.
Here, we introduce a modified diffusivity D* = DoB/dm to simplify subsequent
equations;

ax o oax 2ax
_ =, 45
Aty T e “s
ax 02X
&2 L2 4
P m b D T (46)

These can be solved analytically if it is fusther assumed that the vertical velacity in the
fracture is hammonic, i.¢. gp. = go'Rlexp(iwr)). and that the vertical concentration
gradient is uniform. Both of these suppositions are consistent with the behavior

observed in the earlier i jons. Under these simpli Equation
(45) describing specics conservation within the fracture may now be viewed as a
boundary condition on the single-horizon problem for the time-d variatien

of species concentration across the matrix material. To complete the single-horizon
probtem statemen. it is also required that there be no fluxes across the center plane
of the matrix slab since this is a plane of symmetry.

The exact solution to this prototype problem is the real part of the following
complex {unction {Kurzweg. 1985: Nilson er al.. 1991):

X = ply +balnd™], @n

in which y = dX/dv is the vertical concentration gradient. b is the half frcture
spacing, and g is acomplex function of the normalized depth into the wall x* = x/b:

. ﬂ< wii )cush Wi -

(a8)
Wi +aanh Wi cosh W/

“Two dimensionless parameters appearing here are the Womersley number, W =
bJw/D*. and the ratio of pore volume to fracture volume. @ = B¢y/w. Fram
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Equation (47). it is seen that the time mean concentration varies linearly with height.
v, but is independent of depth into the wall. x. Further. the vasiation of concentration
is sinusoidal at alt locations with the amplitude and phase modulated by the depth
into the wall. as embodied through the complex function g(x*).

The volume of fluid. AV = wyyT /4, and corresponding mass of contaminant,
AM. which pass through any horizontal plane during a single cycle of period T can
be evaluated by time integration. As before, the ratio of these two imtegrals is used to
define an effective mean ion (X} which i izes the net
of contaminant:

(xy= M =yALY(Wy. a). (49}

This mean ion is of primary i because itis linearly related to the
ventical mass transport M* in accordance with Equation (44). It depends upon the
vertical gradient. y = d.X /dy. the amplitde of the vertical motion. AL = AV/w =
4oT /4. and a dimensionless function ¥({ W, ) of a modified Womersley number.
W, = W/e.andthe valume ratioar = B¢y, /w asindicated in the following equation:

Wavi
Wa /i + tanh(a W, Vi)

YW, o) = ‘%}){c [ 50)
As seenn Figure 14, there is a maximum rate of transport which depends somewhat
on o but usually occurs for W, near unity. For W, > |. the period T is too short 1o
allow asignificamt diffusive interaction between the fracture and the wail. Conversely.
for W, « L. the period is so long that the fracture and the wall are always nearly
equilibrated in concentration: this also leads 10 a minimal net transport over a full
cycle of motion. Thus. the transport is greatest when the period 7" is comparable 10 the

10°

B

]
%

Etfactive Diftuswity. ¥II¥,..a)

s
(0‘ -

[d
Womersly Number, W,,
Figure 14. Comparison of the ically computed single-hori imation (sym-
bols) to 1he aralytical solution given by Fiquation (S0) for quasi-sicady comiaminant iransport
through a uniform gradient in a semi-infinitie medium.
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time required for molecular diffusion 10 access a pore volume which is comparable
ta the fracture votume.

Also included in Figuse 14 are a series of symbols represcating the results of
numerical simulations performed by the computer code used in the main body of
this paper 10 calculate water vapor Lranspont. Since these calculations are in excellent
agreement with the analytical solutions indicated by solid lines. we are confident
that the numerical approach has been properly implemented. for this test problem at
least.

A fund; ! ion of any such single-horizon modeling. analytical or
numerical, is that the vertical concentration gradient, y = dX/dy. can be wken
as a constant. One might. however. expect that the flow along the fracture would
perturb the gradient in an oscillatory fashion. F itis implict
that the domain is of infinite extent in the direction of the concentration gradient.
[n the present application this implies infinite depth. so there is no opportunity to
apply boundary conditions at the floor and the surface of the medium. This precludes
the specification that there be no contaminant in the fresh air which flows into the
fracture at the earth’s surface. Instead. the concentration at every elevation. including
the surface. oscillates sinusoidally about a mean value which increases linearly with
depth. Although these simplifications of the model would appear to be well justified
if the amplitude. AL. of the vertical motion were small compared to the depth, L.
of the medium, they become il in the present ication where AL/L
sometimes exceeds unily. as apparent in Figure 8 where AL has a maximum value
of about 1800 m for a layer having a depth of 600m.

The validity of the single-horizon model was by ing the above
analytical solations with two-dimensional numerical solutions which were posed on
a domain of finite depth. In conformance with the analytical solutions. the vertical
velocity was prescribed as sinusoidal in time and of equal amplitude at all elevations.
However. in contrast to the analytical solutions, the numerical solutions satisfied more
realistic boundary itions with X = 0 for from the upper surface and
X =1 for upfiows from the bottom of the medium. Thus. the boundary condition
at the earth’s surface is identical to that used in the YM simolations where the
atmosphere is idealized as an infinite reservoir of fresh air. For symmetry. the lower
boundary is now idealized as an infinite reservoir of fully contaminated gas. Our goal
i$ 10 d ine whether the single-horizon model remains valid in cases where the
vertical gradient is substantially perturbed from linearity and the gas displacements
are as large as the vertical exient of the medium.

A series of numerical solutions were calculated for different vatues of the parame-
ter AL /L with the other parameters held fixedat W, = 1.0.0 = 1.0and AX = 1.0.
Using these choices and the fact that y = AX/L. Equation (49) can be rewritten
as {X) = W1, 1)AL/L. This analylical expression is plotted in Figure 15 atong
with the numerical results obtained in five different simulations, In each. the value of
{X) was ined by time i ion of the ities defined in Equations (41)
and (44). followed by substitution into Equation (44). It is seen that the pumerical
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Figure 15. Comparison of single-horizon model wilh numerical calculations that take
account of finite height and nonuniform gradienss.
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Figure 16. Concentration tistorics at three clevations for AL/L = 1/2.

results are extremely close to the analytical solutions for AL/L < 2. Even for
displacements twice that large. the error in the single-horizon modet is still tess than
20% which is small compared to a number of other uncerlaiatics involved in defining
the problem of interest and the associated geologic parameters.

To better understand the success of the single-horizon model it is useful to further
explore the details of the numerical solutions, Figures 16 and 17 show the numerical
results for AL/L = 1/2. The first of these indicates that the time variation at
midheight follows a smooth sinusoidat path. in keeping with the analytical solution
for an infinite domain. However. as expected. the time histories of concentration at
the ends of the domain are far from sinusoidal, owing to the application of boundary
conditions. In spite of this. the net Aux is the same through all three elevalions
and it is nearly identical to the analytical prediction of Equation {49). Part of the
explanation for this agreement is apparent in Figuse 17 which shows that the slope of
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Figure 17. Concentration profiles a1 various times during rypical cycle with AL/L = /2,
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Figure 18, Concentration histories al three elevations for AL/L = 2.

the concentration profile remains nearly constant despite significant displacements
to the right and the left. If this slope were always to remain uniform and constant, we
waould be fully justified in replacing the vertical derivatives in the transport equations.
with their time mean values. as assurned in the single-horizon modet. Thus, the results
for moderate displacements are. in all respects. quise consistent with the analytical
solutions. as expected.

However, what is ising is that the single-horizon model closely
predicts the numerical results shown in Figures 18 and 19for AL/L = 2. Here, there
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Figure 19. Concentration profiles at various times during typical cycte with AL/L = 2

are very significant departutes from the mean gradient of y = AX/L = | which
is p ppli in the anatytical model. In spite of this. the singie-horizon
model provides an excellent prediction. Since the displacements of interest rarely
exceed twice the layer depth, we have gained confidence in the use of this approach
in modcling the more complex problem of moisture transport by BP. as discussed in
the main body of this paper.

References

Bixler, N. E.: 198S. NORIA - A finite eloment computer program for unulyzing water. vapac. ait.
and cnergy Iransport in porous media. Sandia National Luboratories Report, SANDS4.2057,
115

Church, B, W.. Freeman. 0. ... Boro. K_and Eigami. K. T:: 1985. Metcorological tower data Yucca

Ridge (YR) site. Sandia National §.ahoratories Report, SANDES- 1057,

Church, H. W., Freeman, D. L., Bora. K. and Egami. R. T2 1986, Metcorulogical tower data for
the Yicca Alluvial (YA) site, Sandia National | aboratorics Repor, SANLIB6-2533,

Edlefsen, N. £, und Anderson. B. C.: 1943, Thermodynamics of soil moisture. Hilgardia 15(2).
31-298,

Hyman. 3. M.: 1979, A method of Tines approach to the mumerical saluiion of conservation laws,
fa: R. Vichnevetsky and R. S. Stepleman (cds), Advances in Compater Meitiods for Partial
Differential Equations 111, IMACS publications.

Kurzweg, U. H.: 1985, Enhanced heu conduction in ascillating viscous flow within parallet plate
chatnels, J. Fluid Mech. 156, 291-300.

Martincz, M. J.: 1995, Formulation and aumerical analysis of notisothermal muftiphase flaw in
porous media, Sandia National Laboratoties Repon. SANDS4-0379, Albugueryue. NM, June.
p.28.




BAROMETRIC PUMPING OF MOISTURE 19

Nilson, R. H. and Lie, K. I1.: 1990, Double-porosity madeling of oscillatory gas motion and
conlarinant transport in a fracturcd poraus medium. far. J. Numer. Anal. Meth. Geomech.
14, 565-585

Nifsen, R. H., Peterson, E. W, Lie, K. H., Burkhard. N. R. and Hearst. J. R.: 1991, Atmospheric
pumping: a mechanism causing vertical transpast of contaminated gases through fractured
permeable media, /. Geophys. Res. 96(B13), 21933-21948.

Nilson, R H.. Lagus. P L., Mckinnis. W. B.. Hearst, J. R., Burkhard, N. R. amd Smith, C. F.0 1992,
Field measurements of 1racer gas Iransport induced by barometric pumping, In: Froc. 1992
High Level Radioactive Waste Management Conference. Las Vegas, Nevada (April 1992).

Praess. K.: 1987, TOUGH user's guide. Lawrence Berkeley Lahoratory Repon. 1.B1.-20700
(NURGGICR-4645), August. p. 78,

Tsang. Y. W. any Prucss, K.: 1989, Preliminary siudics of gas phase flow cffects and moisture
migration at Yucea Mountain, Nevada, Tawrence Berkeley aboratory Repon. LBLL-28819.
.42

Vsang. Y. W. and Pruess. K.. 1990, Further modeling studies of gas movement and moisture
migration at Yucca Mouniain. Nevada, l.awrence Berkeley [aboeatory Repon, 1.H1.-29127.
p S

Shampine 1.. . and Watts. H. A.: 1980 DEPAC — Design of a user oriented package of ODF solvers.
SANDT9-2374, Sandia Nuional Laboratories, Albuquerque. NM.

Somenon. W. 11, Keese, ). A. and Chu, 8. 1. - 1974, Thermal hehavior of unconsolidated oil sands,
SPEJ, 14(5).

Van Genuchien, R.: 1978, Calculaging the unsaturated hydraulic conductivity with a new closed-
Torm analytical model, In: Water Resources Dulerin, Princeton University Press, Princeton
University, Princeton, N)

Wilsan, M. L. Gauthier. §. H.. Bamand, R. W., Barr. G, 2., Dackery, H. A.. Dunn. E
Guerin, . C.. Lu. N., Maninez, M. J.. Nilsom, Rautman. C. A., Robey.
Ryder, 15 E, Schenker, A, R, Shannon, 8. A, Skinner. 1. H.. Halsey, W, G.. Gansemer, §., [ ewis,
1.C., Lamont, A, 1., Trigy. I. R.. Meijer, A. and Morvis. 12, F5.: 1994, Total-system performance
assessment for Yueea Moumain — SNI. second iteration (TSPA-1993), SAND93-2675, Sandia
National Laboratories, Albugquerque, NM.

7hao, T. $. and Cheng, P 1996, Oscillatory heas-transfer in a pipe subjecied 10 a laminar
reciprocating flow, J. Hear Transfer 118(3). $92-597.






