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Abstract. We present a theory for the mo1ion of Wiler vapor 81 depth in a discretely fructured per· 
mcable medium induced by aamospheric barometric pressure Ouctua1ionS. or 'barometric pumping'. 
1be lheory involves mulliphase rna's and energy U'3llSpOI1 in a fracturelmatrix system. with discrete 
representation of the fracture system. 1br barometric pressure ftoctuarions are approxirnaled as 
pt..Tiodic in time, wilh amplitude corresponding to mra'\ured values. To simplify lbe analysis. a 
'single-horizon' approximation is applied in which the lime-mean gradient is used to evaluate the 
venical advective Ow: in the fractures. Time-periodic solutions are obtained numerically. enabling 
the calculation of the Rei efflux of mois1ure per cycle. The model is applied ro material rcpn:sentative 
of the Yucca Mounlain region of southweslrm Nevada. 1be results indicwe that the emux of 
moisture carried upward from sigoiflcant depths by baromcuic p.tmping is much less than 1be near 
surfaceemux that is commonly estimated by assuming that air enters the medium dry and is returned 
10 the atmosphere fully satW"'lled with water YaJXH'· This near surface efflux consists primarily of 
moisture discharged from the upper layer which is frequently repleni'ihed by precipilation. Of 
greater interesllo nuclear wasre repository design and estimations of ner infiltration in arid regions 
i'l the frolCtion of the rocal moistWl: efflux that comes from significaru depths. This deep transport 
is quanlified by lhe froclur<lmatrix Innspon model de<Cribed here. Allhough 1he ltaiiSpon by 
barometric pumping from depth is small compared to the total moisture expelled from the surface 
layer. il is an order of magniludc greater tban lhc venical moisture flux carried from depth by 
diffusion. 

Key words: barometric pumping. two-phase flow. fl'al1ured rock. 

I. Introduction 

We present a theory for the motion of water vapor at depth in a fractured permeable 
medium induced by atmospheric barometric pressure fluctuations. or 'barometric 
pumping'. This mechanism may be of some importimce to subsurface water vapor 
transport in fractured rock situated in arid regions where annual moisture infiltration 
is exceedingly low. This study. though motivated by the Yucca Mountain Project. is 
applicable to other similar sites involving fractured rock . 

In such material. the fracture system is presumed to provide the primary per­
meability. However. the capacity of the system lies with the intact matrix. Because 
capillary forces will be stronger in the smaller pores of the matrix. resident liquid 
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moisture will prefer to reside in the matrix. with the exception perhaps. of asperities 
or other small features of the fracture system. On the other hand. the gas. a mixture 
of air and water vapor. will prefer the fracture system. although it does share the 
void space of the matrix with liquid water. The idea behind barometric pumping. 
hereafter referred to as BP. is that rising barometric pressure will force ambient gas 
into the matrix which is drier than the resident soil gas. The latter is in thermodynamic 
equilibrium with resident liquid water. and is probably nearly saturated (in the ther­
modynamic sense) with water vapor at the prevailing temperature. The incoming dry 
gas will come to thermodynamic equilibrium with the soil gas. thereby humidifying 
the former. When the barometric pressure decreases. gas will be respired from the 
fractured medium, thereby discharging gas with a higher humidity than the ambient. 
There are two such barometric cycles of interes~ the diurnal cycle and that associated 
with weather patterns. Typically. a weather-related barometric cycle has an average 
period of roughly five days (Nilson eta/.. 1991). 

1.1. A SHALLOW SUBSURFACE CONTROL VOLUME MODEL 

A control volume model. which is only sensible in the shallow subsurface. can be 
developed to quantify the surface efflux of moisture driven mainly by barometric 
pressure fluctuations. but which is also influenced by severn! other unsteady sur­
face processes including evapotranspiration, localized topography-induced surface 
pressure variations due to the 'Bernoulli' effect. and especially the episodic nature 
of precipitation. Collectively. these coupled processes preclude a detailed model 
description for the surface layer. Following the description of this control volume 
model. we explain why it is incapable of describing the extraction of moisture from 
depth due to BP. We then present the conceptual model for a theory which can relate 
the effects ofbarometric fluctuations at depth in the presence of a water vapor gradient 
(due to the geothermal gradient) to the upward transport of water vapor towards the 
shallow subsurface. where the gross extraction of moisture may be described by the 
control volume model. Due to the aforementioned complicating processes active at 
the subsurface/atmosphere interface. the net extraction of soil moisture at the surface 
may be different from the value calculated by the fracture/matrix theory which applies 
at depth. However, the fmction of the net moisture efflux due to BP from depths 
greater than the shallow subsurface can be quantified by the theory presented in the 
following. 

A control volume model to estimate the amount of moisture transport by BP was 
derived by Tsang and Pruess ( 1989). They begin by using the ideal gas law to estimate 
the volume of gas. 1:;. V. that flows into or out of a porous medium during a pressure 
change of amplitude t;. P,. 

t;.V = Vo ll.Pg = IJ,LA ll>P,, 
Pg P, 

(I) 
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Th1s differential volume IS Lhe product of the fractiOnal pressure change and the 
subsurface air volume. v,... with the latter wrinen in tenns of the depth to the wnter 
table. L the volumetric ga~ contenL 81 • and the plan area. A. of the medium. If lhis 
gas enters 1he medium with a mass fraction of water vapor. x~. 1 n, and leaves w1th 
X , ..... ,11 • then the net oulf!ow of water vapor is given by 

(2) 

where Pg is the mean, or nominal. gas density. By summing nil such cornributions 
from diurnal cycles of amplitudeS mbars over a years time, Tsang and Pruess esu­
matcd. for Yucca Mountain. a net moisrure discharge of0.3 mm/yen.r. expressed as 
an equivalent liquid water flux. This estimate is an upper bound becau~ it assumes 
that all of the gas in the medium (of depth L) ellperiences the full amplitude of the 
barometric pressure change. 

Thf" control volume model cnn only account for moisture extraction occurring at 
or near the surfat-e To establish this. we fi~t need to show that the moisture conrent 
of the gas ftowtng through a fracture cannot differ greatly from that of the gas residing 
in the adjacent permeable matrix ;~t the same elevatiOn. Smce the fracture wtdlh. w. 
is no more than one or two mtllimeters. the transit time for diffusion of moi<~turc from 
the fracture wall to the frac!Ure center is of the order of I'J.r = (u•/2) 2/D ....... 0.1 s for 
a typtcal gas phasediffusivity (Dl of I{) 1 m1 /~.The ttme forcompleteequtlibration 
of water vapor concentration across the fracture should be no more than 10 ttmc~ that 
great. or roughly one second. Now the speed of the gas in the fracture is approximately 
given by 

v = (7"/~)UJ [11~01_ 1:1~1 ] 
0.04(2m)(600m) HPa 
43200s(0.001 m) IOOkPa 

= 0.03m/s. (3) 

whcre the quantity in square brackets is the volumetric inflow/outflow that occurs by 
BP dming each half-cycle froin a slab of porous matriJt having a width equal to the 
fracture spacing. B. and a depth. L. equal to that of the porous medium (we used the 
largest pressure change supported by the data analysis ofT sang and Pruess}. Roughly 
that much gas ftows through a typical fracture of width u1 in a half-period T {2, here 
taken as a half-day in the above estimate for a diurnal barometric cycle. 

Combining the above estimates of speed and equilibration time. we conclude 
that the dry air entering a fracture in a panially saturated medium should travel a 
distance no greater than ul:lt = 0.03 m, certainly no more than a meter. before the 
water vapor concentrauon in lhe incoming gas reotches equilibrium with that in the 
wall rock Thu.~. the incoming gas should be fully humidified within less thotn 11 
meter. Although the incoming air may then travel deeper into the formottion before it 
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retums to lhe surface and is finally expelled. any signiticam net moisture Joss from 
the fonnation will have come from the surface layer where the incoming dry air was 
initially humidifiKI 

So long ns the surface layer of the formation remains Ill least partially saturated. 
the gas expelled from fractures will have a relauve humidity of nearly 100%, and the 
net rate of extraction will be consistena with the upper bound proposed by Tsang 
and Pruess. However. consider that in the absence of recharge. repeated cycles 
of BP (reinforced by surface evapor.uion but opposed by capill!ll)' suction) will 
eventually dry out the upper layer to lhe extent that liquid water is no longer present 
ncar the surface. The relative humidity of the air in this upper liquid-free layer 
would then vary from 100% at iL~ lower surface to nearly zero at the upper surface. 
Under these circumstances. the simple conceptual model outlined earlier would 
suggest lhat there is no net efflux of water vapor. since Xv ...... would then be equal to 
Xv_;11 • both nearly zero. These ob~rvations illustrate that the surface moisture Hux 
is strongly dependent on the frequency ttnd magnitude of recharge events as well as 
the local balance between BP. surface evaporation. and capillnry suction. The surface 
region is in a constantly changing st.ate. Hence, the origin of the moisture expelled at 
the surface is due to many factors in addition to HP. and the amount conrnbuted from 
depth by BP cann01 be cnlculated vta Equatton (2). Rather tha.n focusing on these 
near-surface processes. we turn our attention to greatf"r depth~. where we can propose 
a rational theory able 10 describe the contribution to the net efflux of moisture due 
solely to BP. 

1.2. BARO~ETRIC PUMPING Of MOISTURE fROM DEPTH 

At every elevation between the water table and the earth's ~urfnce there JS a vertical 
gradtent in the concentration (or partial pressure) of the water vapor contained withtn 
the pores of a geologic formation. In panially saturated regions. the presence of liquid 
water ensures that the relative humidity will be 1 00% and that the local vapor pressure 
will be identically equal to the thermodynamic 'saturation' pressure corresponding 
to the local temperature. P.:.1(T), In these regions the vertical gradient in the water 
vapor concentration is controlled by the geothennal gradient. so that P,a, and Xv 
will both decrease toward the surface. This gradient will drive a diffusive vnpor flux 
toward lhe surface. 

In a medium containing vertical fractures. the oscillmory gas ftow induced by 
barometric pumping will also carry with it a net vertical vapor flux at all elevations 
as a direct consequence of the vertical concentrntion gradient. This flux occurs 
because lhe gas in the fracture at any elevation has a slightly higher vapor content 
during the exhalation phase (when it is coming from a lower elevation of higher 
vapor concentration) than it does during inhalation (when it iseoming from a higher 
elevation of lower concentration). The net efflux at the surface can still be expressed 
by the equation suggested by Tsang and Pruess, our Equation (2). but the difference 
in vapor content between inflow and outflow, X •.oo1 - Xv m• is now controlled not 
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only by !he !>urface processes de~ribed earlier, but a1so by the competirion between 
venical advection of moisture in the fraciUrC' and lhe horizontal eJt.change of moislUre 
between the gas in the fracmre and lhal in lhe adjacC"nt porous matriJt.. 

Anolher possible u-anspon mC"chanism is cellular natural convection induced by 
VC'Oical varimions in lempernlurt" and water vapor content. Although such motions 
could margmally occur in open fractures isol:ued from their surroundings. !hey will 
be strongly suppressed by lateral coupling wilh rhc matrix malenal in which lhc 
penneab1lity is far 100 small to permit such monons. Given the small apenure of 
fractures and small heat capacity of the flowing gas. the temperarure in the fracture 
at a g1ven elevation cannot be too dtffen-m from the ~urrounding matrix temperaiUre: 
this would also suppress the thC"rmal driving potential for convection. 

The IJC'Itransponofheat or a chemical species by th1s oscillarory How phenomenon 
has been previously studied by Kurzweg ( 1985). Nilson eta/. ( 1991). and Zhao and 
Cheng ( 1996). Kurzweg originally demonstmed, both analytically and experimen­
tally, that il very large axial heat flux can be obtained by inducing an oscillatory 
flow in a ftuid bounded by doc;ely-spaced heat-conducting walls. He showed thatlhC' 
axial heat tnmsfC'r may be ordcr5 of magnitude greau:r than that by heat conduction. 
even though there is no net mass transpon along the channel. Zhao and Cheng find 
similar behavior and provide a correlauon equation for Nussell number. Nilson latC"r 
e11.tended Kurzweg"s analysis to situations in which a gas phase contaminant species 
ts transported through a fractured permeable medium by BP: thai model was more 
recently use<! by Nilson and Martinez to estimate the vertical transpon of inert gas 
phase contaminants at Yucca Mountain (Chapter 21 of Wtlson et al .. 1994) 

The remainder of this paper investigates the trans)X!n of water vapor through a 
vertical gradient by this ..arne o~cillatory flow mechanism. Although this process 
rC"scmbles the transpon of an incn gas species. the coupling between the fracture 
flow and thC' matrix u-ansJX!n is qualitatively altered by the" occurrence or evaporation 
and condensation within the matrix and at lhe fracrure/matriJt. interface. To describe 
these processes we numerically solve the equations governing ma~s and energy con­
servation for lwo-phac;e, two-compoi1C'nt flow of air and water in the fracture/matrix 

system. To simplify the analy~is, we use a 'single-horizon' approximation in which 
the time-mean gradient is used to evaluate the vertical advectivC" flux. This approach 
is e:r.plained m some demil and is veri !led for cooL'UTlinant transport by comparison 
with fully rwo-dimens10nal stmulation~ 

The paper is arrangC"d in the following way. For completeness. the general model 
of two-phase air/waler tran~pon in a fractured rock <;ystC'm i~ presented fir~t. The 
single-horizon approximation to the model i<1 presented ncJt.t. This discussion cul­
minates with a detailed account of the exact equations that are solved. and C"xplains 
the coupling between fracture'S and matrix. The numerical method applied is then 
presented. In this pan of the paper. some specinl attention is paid to thC' derivation 
and application of numerical boundary conditions appropriate 10 the two-pha~e. 
fracture/matrix ~y~tC'm The model i~ applied to materials characteri<;tic of the Yucca 
Mountain region of southwestem Nevada. a site undC"r s1udy for poss1ble placement 
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of a high-level radioactive waste repository We find that the net venical flow of 
moisture coming from significant depths vm BP is no more than 3% of the upper­
bound ncar-surface estimate suggested by Tsang and Pmess (1989). Even so. our 
esumatcs are still about one order of magnitude grenter than the vertical diffusion ftux 
(in the absence of BP) and may represent a significam fraction oflhe net infihrntion. 
a quanuty of great interest but even grC"ater uncertainty. 

2. Problem t'onnulation 

In th1s sccrion we present the mathematical model describing the transport of ma<;s 
and energy in the frncrured system. This is a necessary prelude to the discussion of the 
single-horizon model, which simplifies the equations to be <;olved. and is presented 
in lhe next section. In our mathematical description we write equarions governing 
lhe tmnspon in the fracture's and matrix separately. However. the equations contain 
terms which describe the transfer of material and energy between the fracture and 
matrix systems. We neglect the flow in the matnx moving parallel to the fractures, 
since the associated mass flow is smaller by the ratio of matrix penneability to bulk 
fonnation permeability ( < w-'). 

The connectivity and topology of fractured formations is highly complex. Some 
regionsofthe fracrures may contain deposits and fillings. Ncverthele~s. experimental 
data shows the fracture systems are connected over large depths and provide signif­
icam bulk permeability for the movement of contaminant-laden gases (Nilson e/ at.. 
1991. 1992). Our represenmtion. shown in Figure I, is perhaps the simplest model 
which rcta.ins the essential features of fractured media, The bulk permeability for the 
two-dimensional fractured porous material model is expressed as 

!II 8- UJ 

kh = krli + km-
8
-. (4) 

where lc 1 is the fracture permeability. w is an effective fracrure apenure. 8 is the 
fracture spacing. and km is the matriJt. penneability. The fracture permeability is 
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related to the effective hydraulic aperture by the fonnula for flow in a slot (planar 
Hngen-Poiseuille II ow), 

(51 

For material properties typical of fractured rock systems (e.g. Yucxa Mountain), 
kr » km and w « 8, such that the permeability due to the fracture system dominates. 
resulting in the approximate expression for 1hc bulk pcrmcabtlity 

(6) 

2.1. t"RACTUHEMODEL 

In the fractures, we assume lhal only gas is present. The fractures are characteri1.ed 
~y such large pores thai capillary focces are negligible, relative to the mauix. Any 
liquid water condensed from lhc gas 'itrcam would be absorbed by the high capillary 
suction in the matrix before traveling any appreciable dis1ance along the fracture 
Similarly. appreciable amount<; of film water are assumed not to accumulate. as they 
would be imbibed by the matrix. The equations are averaged over the width of !he 
fractures and so quantities of interest vary only along the path of the fracture. In 
this particular application, the fractures nre assumed vertical. and the coordinate y 
(positive upward) measures distance along the fracture. The gas flow in the fracture 
is governed by a mass balance equation whtch applies to the mixture of air and water 
vapor that is transported vertically up and down the fracture. The horizontal mass 
flux contributed from 1he adjoining matrh: 1'> included. The statement ofthi~ ~alance 
allows evaporation and condensation of moisture at the fracturelmatnx interface to 
convcn liquid into vapor or vice versa. a<; required to satisfy the imposed condition 
of negligible liquid in the fractures. The balance cquauon for the gas in the fractures 

iJ) 

where p~ is the density of the gaseous mixture composed of air and water vapor.qg, 
is the (vertit·al) Ou,.; of gas. and hand/~ denote the mass flu.leS of liquid and gas 
leaving (entering) the fracture to (from) the matrix. In the remainder of thi~ work. 
~ubscript g rcfe~ to g(lS. v to water vapor. a to air.ltoliquidand m to moisture (liquid 
and vapor). A balance equation for the water vapor in the fracture is also specified 
in order to compute the mass fmct!Un of gas attributable to water vapor 

(8) 

where 

(9) 
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is !he muss fraction of water vapor in the gas, and Jv denotes the horizontal diffusive 
flux of water vapor through air in the matrix. The overall gas balance t:quation (7) 
has been used in arriving at this fonn. and continuity between the mass fraction of 
water vapor in the fracrure and matrix was imposed. 

An energy balance is derived in a similar manner toaccoum for energy transported 
along the frncture and between the mabix and fracture: 

a a 2 
a,LPR(X~u• + X,u,.)] + ayl~(X.ha + Xvhv)qs.,] = -w(qh), (10) 

where 11 dcnoles internal energy and h enthalpy. X a is mass fraction of air in the gas. 
and% is the net heat flux from the matrix. 

In order to determine theeJtchange tenns in the foregoing equations (the quantities 
in brackc1s on the right-hand-sides), the matrh model must be specified. 

2.2. MATRIX MODEL 

A balance equation for matrix water. including liquid and vapor phases is given by 

(II) 

where Ht i<; the volumetric liquid moislure contenl. He the volumt:tric gas content. and 
H.+ Bg =¢'.where¢ is the porosity. The Oux ofmoisrure is 

(12) 

SE.arting from the left. the tenns on the RHS repre!>ent the mass fluJt of liquid, the 
advective mass flux of water vapor and !he diffusive flux of water vapor. respectively 
A balance equation for air reads 

(1~) 

where 

F.= XaPglfs + J,. (14) 

An energy balance takes the fonn 

(15) 

where 

(16) 

c~" i<; the constant volume specific heat of component a. To is a reference tempera­
ture, and Q is an eJttraneous heat source 
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2.2 I Cmutit/ltit't' RtdatimH 

The advcctivc fluxes are described by the extended Darcy law. in which relative 
permeab1lities are inltoduced to account for the muhiphase motion of fluid~. Thus. 
tht' mas~ llu;~t or liquid is 

(17) 

and the mass flux of gas is 

(18) 

where P is pressure. g is the gravitational acceleration. and 11 is dynamic viscosity 
The diffusive flux of water vapor m air is given by 

(19) 

where D, .. is the binary d1ffusion coefficient (see Appendh A). In accordance with 
mass conservation for the binary mixture, J, = -J •. 

The capillary pressure provideS the relationship between the ltquid and gas phas.e 
pressur<"~: 

(20) 

which. as indicated. •s assumed to be empirically specified as a function of liquid 
moisture content in the matri11. II i~ well·known that, under thermodynamic eqm· 
librium. the vapor-pressure across a curved interface is lower than that across a flat 
interface. The vapor pressure is specified according to Kelvin's equation of vapor 
pressure lowering (Edlefsen and Anderson, 1943): 

(21) 

where P~, denotes the flat~interface sarurntion vapor pressure. 
The heat flux includes conduction and convective contributions, 

(22) 

where).. is an effective thennal conductivity and we have introduced the shonhand 
notation for mass fluxes: F~ = X~F1 + J~. and F.= XaF1 +Ja. The enthalpies are 
defined by hu = CP<.(T- To). with tz =a or I. and h, = ll.hrr + Cpl(T- To). where 
ll.hr, is the la•em heat of water vapor at reference temperature: T0 . 

The remaining thermodynamic equations of stale and conslitutive relations for 
transpon propenies are discu<;sed further in the applications section and are given in 
Appendi;~t A. 
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2.3. FRACTURE-MATRIX COUPLING 

The coupling of the fracture equations to the malrix equatiOns IS explicit in balance 
equations set fonh in Section 2.1. each of which includes n mns'l or energy contri­
bution from the matrix. The matrix equations are coupled to the fracture system via 
fracture/matrix interfnce conditions requiring continuity of pressure, temperature, 
and vnpor pressun:; the fmctun: equations serve as Dirichlel boundary condnions 
on the matrix equations. The capillary pressure in the matrix at !he fracture/malri;~~ 
inu:rface is specified from the Kelvin equnlion (21 ). However. the fracrure is assumed 
to be chnracteri7.td by such large pores that capillary pressure is negligible. To 
close the system of equations. we require that rhe mass fractions of air and water 
vapor (hence the vapor pressure) mus1 be continuous at the fracture/matrix in!erfnce. 
The Kelvin equauon couple\ the vapor pressure. temperature and matrix capillary 
prel.sure 

.l The Single-Horizon Approximation 

).I. MOTIVATION AND APPLICATION TO CONTAMINANT TRANSPORT 

Direct numerical Simulation of the highly nonlinear coupled fracturc/matri;~~ transient 
model i~ a computattonally intensive task. Indeed. simulations of the analog problem 
for contaminant transpon (Nilson e1 al.. 1991; Appendix B). which is governed by a 
linear transpon equation, required several days of computing time for each parame· 
ter varimion. The single-horizon approximation greatly simplifies the mathematical 
problem and ~duces the computational requiremenLS of a full multidimensional 
simulation. Yet. this method has proved extTemely beneficial to the understanding 
of similar oscillatory transpon problems (Kurzweg. 1985: Nilson t'l al.. 1991 ). The 
es:sem;c of the single-horizon approximation is that the advection tenn in the fracture 
equations IS evaluated using the time average of the vertical concentration gradient. 
while the marrix uanspon i~ estimated based on a ont=-dimensional analysis of 
honzontal transpon into the mauix. In Appendix B. we further demonstrnte the 
efficacy of the single-horizon approximation as applied to contaminant transpon. 
an analog to the subject problem. That study compares numerical solutions of the 
full two-dimensional transport problem. in which both the frnctures and matrix are 
discretized. with the single-horizon approximation. The single-horizon solutions 
reproduce the full simulation results over a large parameter range. and at grently 
reduced computer processing time. These results and the previously mentioned 
studies demonsttale the effectiveness of the single· horizon approximarion for these 
time-periodic problems. because. on average. the advective transpon terms in the frac­
tures are well-approximated by replacing the vcnical gradients with the time-mean 
background values 
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3.2. ~INGLE-IiOkiZON APPROXIMATION FOR MOISTURE TRANSPORT 

The firsl ~tep in applying the single-horizon approach Js to derive a depth averaged 
mass balance m the fracture. Integrating the balance of gas in the fracture (Equa­
tion (7)) over the deplh L results in 

p~qll-, = -~( F, + F~l~=~~+ (23) 

This equation relates the flm. of gas in the fracture at lhe inlel to the fnictured system. 
i.e .. at the elevation 1., to the flull of malerial contributed from the m1nrix over the 
length of the fraciUrc. This integral over the length of the fracture is represented by the 
product of Land the quantity in brackets. The '+ · superscript denotes the interface 
as approached from the matri:~~:. In thts form. the matrix fluxes of liquid and gas 
now represent depth-averaged quantiues. In addition. we have neglected the '>light 
tempoml change in gas density over the length of the fracture, d(/ f.lgdy)Jdt, and 
1ts effect in modulating the flux at elevation L above the lower boundary. Note that. 
this statement of g:~.s balance includes the pos~ibility of evaponuion/condensation of 
water at the fmcturelmatrix intc."fface. A balance equation for the water vajX'lr in the 
fracture in the single-horizon approximation is given by (cf. Equation (8)) 

(24) 

when: the dcpth·nveragcd venical gradient of water vapor ( (IJX v/•1.Y)) has replaced 
the local gradient in the advective term. Similarly. the energy equation in the single­
horizon npproJ~:imatitm is given by 

(25) 

where h, ""Xvhv + X3h~. The venicnl grndientc; in the frncture are approximated 
by the average background gradient~ discussed earlier. 

The foregomg constitute lhe balance equations (Equations (23 )-{25)) for the frac­
ture system in the single-horiwn approximation. The balance eqm:nions m the matrix 
arc the one-dimensional version (i.e. replace V · ()with il( )/iJ.r .etc.) of the equations 
given in Se<.:tion 2.2. Boundary conditions for the matrix equations are provided 
by the requirement of continuity of total pressure, temperature. vapor pressure at 
the fracture/matrix interface. Specifically. the fracture equations (F.quation~ {2:\).­
(25)). via continuity requirements. impose Dirichlet boundruy conditions for the 
motrix equotions 01 the fraciUrelmatrix interface. No-Ftow condinons are imposed 
on the matrix equations at the mid-plane of the matrix blocks depicted in Figure I. 
Section 4.1 discus..es the solution procedure explici1ly 
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4. Numerical Treatment 

The foregoing governing equations constitute a coupled set of highly nonlinear pan.ial 
differential equations (PDEs). The numerical method applied for solving the coupled 
system of parabolic PDEs is the S()-Called Method-of-Unes (MOL) (Hyman. 1979). 
The MOL technique is a semi-discretization method wherein the spatial derivatives 
nre first approximated by some appropriate method (in this case. centered finite 
differences). resulting in a system of coupled ordinary differential equations (ODEs) 
describmg the temporal variation of the state variables at a number of discrete pmnt<;. 
The resulting system of ODEs IS integrated forward in time by the variable-order. 
variable-step backward-difference code DEBDF (Shampine and Waus. 1980). The 
backward-difference formulae result in systems of nonlinear algebraic equations to 
be solved for nodaJ quantities. These equations are solved as pan of the DEBDF 
package via a Newton-type algorithm. 

In the present application. we will assume the matrix always contains some liquid 
water. Hence. we choose as primary vnriables the capillary pressure, the gas pressure 
and temperature. Approximating the spatittl divergences in Equations (II). ( 13) and 
(15J by centered differences. the ~ystem of discrete ODEs describing the temporal 
variation of primary variables 111 node points tilkes the form 

[c. o c.,] [i>'] 
Cr~ Cp CPr ~' 
Cry C1 p Cr , T , 

-_I - [ ::::,~' ~ ::~;;:'] + [ ~ ] 
.fi+l/2- X•-112 

lfb.•+l/2- '/h.i-1{1 Q ; 

(26) 

for a meshnfnodcs with node pomts a1 x;. Each !lux is also expres<;cd as a centered 
difference (on a staggered mesh). for eKample. 

r (Pikmkr1) Pl.•+l - Pl.i q_i+l/l =- -- ----
Ill •+1/2 ·'i+l -x; 

(27) 

The capacitance matrix is given by 

[ 
c¥ o c"'r }T [ k l 
c,, Cp Crr - ~ [(!'>~ + p.,81) (p,01) •1. 

CH Crp Cr 8 

IT 

(28) 

where u denotes the bulk internal energy. After evaluating the flu:~~:es and capacitance 
matrix. 1he 3 x 3 system of Equations (26) that apply at each grid point are inverted 
to obtain the time derivatives needed by the ODE solver. 
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Verification of th1s two-componem, two-phase code is discus~d in Martinez 
(1995). 

4.). BOUNDARY COUPt.IN{; RJNr.rtONS 

The Equations (23H25) describe the trnnspon of gas. water vapor and energy in 
1he fracture for the single~horizon model and constirute the boundary condiuons 
applied to the matrix equations. as explained neJI.I. The objective is to solve the 

discrete matrix equations (Equation (26)) in order to detennine the net efflux of 
moisture at a representative horizon. Specifically. the fracture equations in the single" 
hori1.on approximation are used to prescribe boundnry conditions on the equations 
for P~, P(, and t (the over-dot denotes a time derivative) which appear in the discrete 

matri.11 equations. Equation (26). The barometric pressure is modeled with a sinusoid. 
P1 (t) = Po+ 6-P sin(2rr r/T). and therefore P8 i<> also a circular function. tis 

given by Equation (25). This expression involves f>g. X~. which is detem1med by 
d1fferemiation of Equation (9), and the convective and diffusive fluxes of heat from 
the matrix, the quantities in hracketc; on the right-nand-side of Equation (25) 

The boundary condition for Pc to be applied to Equation (26) 1s derived by 
enforcing the continuity of vapor pressure at the frnl·turr/matrix interface. This is 
accomplished by first deriving an e:~~pression for the time derivative (denoted by 

over-dot) of the vapor pressure. wh1ch can be related to time derivatives of the state 
variable«: according to 

[(X,P1 + X.P!- X.P.)Ma/M.+ k.P.] 
P. ~ I+ X.(M,/M.) . (291 

This equation is derived from the definition of the vapor mass frnction. Equation (9). 
and the equations of state given in Appendi"' A. Now. using the Kelvin equation. the 

time rate of change of the capillary prt<i.SUrt is given by 

f>c = ~P~ + [PIR~T (dP~') + ~] T. (30) 
Pv P._ dT T 

in whkh P~ is given by the preceding expression. thereby completing the specification 
of coupling functions at the fracture/matrix interface 

To summori1.e. the numencal solution in the single-horizon approximation m­
volves solvmg the three discrete matrJ.'( equations g1ven in Equauon (26} ~ubjt:Ctto 
the fracture/matrix interface conditions. which seiVe as boundtrry conditions At the 
fracture/matrix interface. Pc is given by Equation (30), T is given by Equation (25) 

(after substituting for P~ from Equation (29)). and P~ is given by differentiating the 
sinusoid specifying lhe gas pre~~ure in the fracture. For the BP simulations the 'unit 
cell' includes only half the matrix block. No-flow boundary conditions are imposed 
for nwi<;~ure. air nnd e-.nergy at the center of these blocks. Once a time-periodic 

~olution i" obtained. Equation (23) is used to compute the net efflux of molsture 
from depth. 
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5. Barometric Pumping or Water Vapor 

5.!. THE BACKCiROUND GRADIENT 

M.I.MAKll~li.Z ANDR. H.l>m~'iON 

In order to establish a 'nominal' state of the fractured medium in the presence of the 
geo1hermal gradient. we reconsider a problem discussed by Tsang and Pruess ( 1989, 
1990) in a study of gas flow at Yucca Mountam. We consider one-dimensional two­
phase flow of air and water along a 600mdepth of unfractured medium ovcrwhicha 
temperature gradient is imposed. Th1s corresponds to the depth to the wa1er table 0.1 
Yucca Mountain. and material propenies representative of the Topopah Springs unit. 
which is bcing considered for placement of a high-level nuclear waste repo<;itory, are 
specified over lhe entire deplh. The lower boundary is assumed S<llUnlted with liquid 
water. and at a temperature of 30.85°C and pressure of 1 bar. The upper boundary. 
which represents the top of Yucca Mountain and therefore lhe interface with lhe 

ambient, is at 12.85°C and 0.9334 bar. see Tsang and PJ:uess (1989). We note that. 
this is a gross over-simplification of lhe geology of Yucca Mountain. however the 

intenl is to compute a mountain-scale water vapor background gradient on which to 
superimpose the barometric pressure fluctuation. 

Beginning with arbhrary initial conditions. we march the OOEs forward in time 
until II steady state is achieved. The liquidsnturnl.ion and mnss flux profiles computed 
in this manner agree well with dmse given by Tsang and Pruess (1989. 1990). 
The simulation establishes an average vapor mass fraction gradient. (dX~/dy} = 
-3.24x w-~ m· 1 owing totheimposedbackgroundgeothermal gradiem (dT fdy} = 
-0.03°C/m. These values will be used for the background gradients upon which 
will be superposed a periodic variation in pressure. As an aside. it is of interest 

to note that the net flu.\ of water vapor implied by thc.<ie gradients is of the order 
of 0.5 x 10-~ mm/yr. This is the ftux implit:d by the geothcnnal gradient in an 
unfra~:tured rock mass composed entirely of intact matri:~~ rock; it is quite a bit 

~maHer than the theoretical upper bound described by the control volume model 
and also smalter than the contribution from depth due to BP. to be presented shoJtly. 

5.2. FIGURES OF MERIT 

In order to quantify the transpon of water vapor by BP. we define here several 

quamitiescharactcrizing the motion. The distance traveled by the gas in a half-period 
of outflow (hence. the absolute value), is defined by 

1'" 6-L= 
1 

max(q1_,.0)dt. (31) 

where T denotes the time period of the barometric pressure fluctuation. The respired 
mass Rux of moisture per fracture per barometric cycle is computed according to, 

(32) 
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The amount of moisture mass removed during a cycle is llM,w per fracture, and the 
annual net mmsrure respired per unit ~urface area by the periodic BP is 

(33) 

where N1 is the number of cycles per year. 

5.) GENERAL FEATURES OF THF. MOTION 

II is instructive to consider the generaJ features of the motion induced by the peri· 
odic variation in barometric pressure. We discuss the solution of a 'base case' for 
which the equations of state and tronspon models are described in Appendix A. 
and the corresponding parameter~ are specified in Table I Included in this tnble are 
the parameters which enter into the characteristic matrix material function~ which 
are representatives of the Topopah Springs unit of Yucca Mountain {WilSOn('( al.. 
1994). The values of aperture and fracture spacing in Table I correspond 10 a bulk 
~rmeabilny of kt. = 10 D. 

The magnitude of the barometric pressure Huctualions, llP in Table I. was de­
termined by Tsang and Prues.~ (1989) by analysis of the data collected at Yucca 
Mountam hy Church n tJ!. (198S, 1986). The initial state of the sys1em •staken from 
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Fracturcspad11g 2m 
Malnx permeabihty .. 101'0 
"lonuo~uy 2 

llarometnc time pcnod 5days 
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1-'igul"l' Z. Protilc~ of gas pressure m lhc ma1rix llunng a .'i..Jay haromt.'lric cycle 

the stendy solution for the background gradients (discussed above) at the mid· height 
of the 000 m model. Specifically. the miuaJ gas pressure is. P~ = 0.955 x IIY Pa, 
lhc in1tial temperature is, To = 22.2~c. and the initial moisture contenl is l~ = 0.066 
(60% liqmd-saturated). 

Figure: 2 show!i the profiles of gas pre:<>sure, relauve to the initial (and average) 
value. in the matrix at 1-day imervalsduring the 5-day cycle. The gas pressure in the 
fmcwre, which drives the motion. vwies over ±I klla and the damped pressure wave 
extends fully into the cenrerline of the matrix block for the ch~n \'a lues of 8 and km 
By contrnst. the corresponding capillary pressure wa\'e (not shown) extends 10 about 
25 em into the block and its variation is only about ±0.02 kPa at the fracture/matrix 
interface. The temperature in the matrix undergoes very minute Huctuations and is 
not shown. The BP process for 1his magnirudc of barometric pressure flucrumions is 
essentially is01hermal. 

Profiles of the vapor mass fraction are shown in Figure 3. They re~mble a 
'mirror image· of the gas pressure profiles. that is. high gas pressure at the fracture 

-,_ 

f :::: ;:,;~y~~=:~~~;;; 
~ ,, //,,_----- rn 

G.• 0.11 
Dislanl».•(m} 

Hgurt J. l'rofiles of vapor mas~ fraction in the matrix duri11g a !\-day harmuetric '-'YdC. 
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l·iRUJl' 4. l'rofile~or ga~ m~~s nux m •h~ •nalri.\ during .a 5-day hammetril: cycle-

corresponds to low vapor mass fraction at th~ same location, ~lc:. The vapor mass 
fraclion can be expressed as 

(34) 

lherefor~. increasing the gas pressure al the frac1ure decreases the ma."s f111.ction of 
wntcr vapor for(n~arly)constamvapor pressure. This sets up a diffusive flu,.; of water 
vapor towards the frac1ure. to cquilibra1e 1hc walcr vapor gradient. 

Profile~ of the mass tlu,.; of gas and liquid are shown in Figures 4 and 5. The 
average mass flux oflh~ gaseous mix.!Ure i~ driven only by th~ gas pressure gradient. 
and the flux. profiles are readily understood by comparing with Figure 2. Nole !hat 
eith~r mass flux can he in both directions at the same time owing to the timt: lag 
of points deeper into 1hc block with respect to Jocalions closer to the fracture waiL 
Beyond about 20 em into rhe block, the liquid flux profiks resembl~ th~ gas flux 
profiles. In thi" region, !he capillary pressure gradient is negligible and th~ liquid 
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FiR"" li. Profile~ uf v-o~ror mass Oux in the matrix during a 5-day hatome~ric cycle 

.,o• 
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fi~u,.,. 7. Profile~ of mumurc (liquid and vapm) ma's flux tn !he" flllllnx during ~ 5-day 
barome-tril:rydt•. 

and gas pres~ure gradients are similar. The mm.s flux of liquid il'> about an order­
of-magnitude less !han the gas !lux. The flux of water vapor is shown in Figure 6. 
Note thai the ftux is in a direction opposire 10 the average gas flux. for the r~asoos 
discussed earlier. This mechanism enables transpon of wa1er vapor from the matrix 
10 the fracture (and vice versa) in the presence of an opposing gas pressure gradiem. 

The n~t mass flux of moislure (including liquid water and water vapor) is shown 
in Figure 7. The fractur~ mcxl~l balances th~ mass flux of material flowing out of the 
matrix with the ttanspon up and down the frac1ure. thereby acting as a throltle to 
control the amount of moisture which can be extracted from the matrix and carried 
by the fmcture. Although the matrix liquid and vapor fluxes are of comparable 
magnitude to the air Aux. al the fracture. they sum lo yield a much smaller net f\u,.; of 
moislure into or oul of I he fracll!re. Apparently. th~ o~r exlraction of matrix moistur~ 
is determined by the amoum the fracture can transpon wnh the prevailing gas flux 
and th~rmodynamic condi1ions consistent with the adjoining matrix condilions. 
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For the base case problem just described. the gas displ.acemem over a cycle was 
delennined 10 be !J.L = 5~6.5 m. while lhe net effiu11. of water vapor evaluated from 
Efjuation (32) was AM~ = 0.130 kgjm2 per cycle. Thus. according to Equation (33). 
the nel moisiUre respired is lkJ = 0.0029 mm/yr. expressed as an equivalent annual 
liquid flu11. of waler. This flux can be compared IO the estimates of ncl infiltration 
discussed in Chapter 8 of Wilson et ul. ( 1994). which ranges from 0.00] lo 0.5 mm/yr. 
Thus, lor the lower estimmes. a signiflcant fraction of the eslimated mfiltrabon could 
be e11.tracted from deep in the formation and returned 10 the ambiem by BP. for 
the presen1 parameter values. Furthermore. lhis estimate for barometric transport 
represents only about I% of !he theoretical ma11.imum es1ima1ed earlier by !he control 
volume model. 0.3 mrnlyr. 

;'L4 INFLUENCE OF MATRIX PERMEABILITY 

Matrix permeability data available for Yucca Mountain (Wilson l!tal .. 1994) sugges1s 
value~ in the range of a few microdarcies for the welded units. In order to illustrate 
the role of matrix penneability. an uncertain quantity in geologic media. we con.~ider 
matrix permeabilitics in the range of micro· to millidardes. 

Figure 8 shows !he displacemenl of gas in the fracture and the net effiu11. of moisture 
as a function of matrix permeability. with all other parameters as specified for the 
standard ca..e. The dic;placemenf initially increa~s with matrix permeability. how· 
ever. an a~ymptme is eventually attained, roughly for km greater than about O.SmD. 
As the permeability increases. the pressure wave is able to more ea.c;ily penetrate 
the full extent of the matrix. ullima1ely resulting in equilibration between fractures 
and matrix for very permeable matrix material. The moisture transport exhibits a 
maximum for a matrix permeability of aboul 50 ltD (for present parameters). Just 
a~ in the related problems of oc;cillatory hear and mac;s transfer. lhi~ value corre" 
~pond~ to a Womersly number (see Appendix BJ of unity which optimizes the time 
scak for matrix moisture transpon relauve to the time penod for ndvective fracture 
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transport. Note that. lhis m;uimum will depend on the other problem parameters 
as well. 

5.5. INFLUENCE OF APERTURE AND FRAcrURE SPACING 

The bulk penneability depends on the ratio of apertufl! cubed over the fracture spac· 
in g. While variation of w. for fixed 8. changes the displacement. tJ. L. and the amoun1 
of moisture extracted per fracture, per cycle. (!1M~). the net Otltflow ofmoisiUre is 
independent of w. The aperture mainly influences the gas displacemem hecause the 
single-horizon model assumes that the gas flow in the fracture is unaffected by w. a~ 
appropriate when w is large enough that the vertical resistance to gas flow becomes 
unimportant. In this regard. our resuils should be viewed as an upper bound on Lhe 
venicaltmnsport. 

The net respiration of moisture is dependent on 8. Figure 9 shows the displace· 
mem of gas and !he bulk transport of water as a function of fraciUre spacing. The 
apenures for these results were varied according to u• ..... 8 113 in order to maint.ain 
the bulk permeability constant at 10 Darcies as the fracture spacing was increased. 
The figure shows that both the displacement and omflow ace maximized for a frac­
ture spacing near I m. As the block thickness becomes large, the llmOUnt of water 
vapor that is extrncted per fracture approaches an asymptotic value. AMvw -
con.c;tant: for spacings greater than about 3m the blocks act as though they were 
semi-infinite in extent (perpendiculnr to !he fractures). nnd the water vapor extracted 
per frncture becomes independent of B. Therefore, in this regime qnB - const .. 
as indicated in Figure 9. The di~placcmenl the respiration flux per fracture. and the 
ncl efflux of water vapor also decrease as the spacing becomes small. The smaller 
the spacing. the more accessible is 1he resident motsture to be e11.tracted. resulting 
in equilibration hctween fracture and matrix. As in the aforementioned problems of 
osCillatory heat and ma~s transfer.these conditions reduce the time-phase difference 
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between fracture and matrix. and lead to a mirumal net tra.nsp:m over the cycle 
(see Appendix 8). 

5.6. THE DIURNAL AND COMBINED BAROMETRIC' CYCLES 

In the foregoing anlllysis, we have only considered the 5-<lay barometric cycle. The 

simulations indica1e lhmlhis cycle is more effective in extracting moisture than the 
diurnal cycle. for which measured variations in barometric pressure are about 8 mil­
libars peak-to-peak. This is less than half the 20 millibm(peak-lo-peak) used for the 
5-day cycle. and the numerical simula1ions show the respiration varies qundratically 
with the pressure amplilude. other p<trameters remaining fixed. Indeed. we simulated 
the ba'iC ca.o;e for the diurnal cycle and computed a net outflow. q0 = 0.001 mm/yr, 
which is about one-third the outflow for the 5·day cycle (the rcductJOn i~ no1 <;imply 
(8/20)2 tx:cause we've also shortened lhe period of the fiuctualion by one-fifth). The 
displacement for the one·day cycle wa.'i A L = 98.24 m. 

Thus. we have considered separately lhe two major barometric cycles (a 5-day 
weather.related cycle nnd the diurnal cycle) which drive the BP process. In reality, 
these two effec1s are not separate. but are ac1ive simultaneously. To approJ.imate their 
joint effect. we will simply superpose the two cycles. re~ulting in 

P~ = Pg0 + llP~oJy sin (21r_!_)-+ .1.PSdy sin (2lf_!_). (J:'i) 
T1dy · ~dy 

where the subscripts ldy and 5dy refer to the diurnal and 5-<lay cycles. The effect 
of this superposition (without time-phase lag) is to enhance the peak barometric 
fluctuations by aboul40%. 

For the base case set of parameters. but usmg !he superposed barometric flucrua­
tion. the displncement is 677.4 m and the outflow 0.004 mm/yr. These represent 20% 
and 3:\'lb increase m displacement and outflow. respectively. when compared to the 
5-day cycle. Figure 10 shows the displacement and outAow as .a function of mntrix 
permeability. The trends are similar to the result.~ in Figure 8 for the 5-d:ly cycle 
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Figrm• 10. Ga~drsplaccmcnt and annual ncl ou1Huw a~ a fuD~:Iion or malrix penneatulny fur 
thecomhinedbaromelriccycles. 
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A maximum in outflow of about 0.008 mm/yr is found for 15 Jl D, roughly a 40% 
increase over lhe outflow from the 5-day cycle. 

6. Conclusions 

We have presented nlheory for the motion of air nnd water at depth in an unliatumted 
fractured permeable medium driven by fluctuations in barometric pressure. The 
model is of lhe mulliple-continuum type where separate equations represent !he 
fracture and matrix. The separate continua rue coupled by transfer terms involving 
exchange of mass and energy be! ween the fractures and matrix. The barometric fluc­
tuations are approximated by a sine wave in time. with an amplitude corresponding 
to mea.~ured baromeuic Huctuations at Yucca Mountain. and wilh periods of one and 
five days. Although the model includes an energy balance. resul1s indicate the model 
could be simplified by assuming isothermal condition~ at 1he ourset. To simplify the 
analysis. a 'smgle-horizon' approximation is applied in which the time-mean gradient 
is used to evaluate the verticalndvective 8ux. Time·periodic numerical ~olutions 10 
the governing equations are computed to est1mate the moisture extraction per cycle. 

Estimates of the annual net outflow of moisture from depth by DP range be1ween 
0.()()1 and 0.008 mm/yr. expressed as an equivalent liquid flux. This represents at 
most about 1% of the theoretical maximum, of O.J mm/yr. given by the control 
volume shallow subsurface model di~cusscd in the introduction. This also represents 
a significant fraction of some cstimntes of net infiltration into Yucca Mountnin (0.003-
0.5 mm/yr. Wilson et ul .. 1994 ). that is. a huge percenr.age of lhc estimated infiltrotion 
could be respired back into the aunosphere by BP. Our estimates should he viewed 
as upper bounds in view of the assumptions made in applying the single-horizon 
approximation. Yucca Mountain is composed of alternating layers of fractured tuff 
and panty to nonwelded and bedded tuffs. such that the bulk permeability may vary 
substantially w11h depth. whereas our model assumes a uniform bulk permeability. 

Owing to the uncertainty in materinl properties for geologic media in geneml 
and Yucca Mountain in paniculnr. parnmeter variations of matrix permeability nnd 

fracture spacing were conducted. Mllllima in the estimated outflow of moisrure were 
found for variations of ench of these parameters. The mllllima are related to the 
time-phase lng between matrix 8uxes and the barometric 8uctuat1ons drivmg the 
motion. 

Appendix A. Equations or State and Transport Models 

Ideal gas equatiOns of slate and mixing rules nrc used 10 approximale lhe thcrmcx:ly­
no.mic~ of the system 

Pv = p,R,T, P, = p~R~T. 

P~ = Pv + Pa. Pc = Pv + Pa. 
(36) 
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with Ra = !H/Mu.fora = vora.!H islhegasconstantnnd M,. denotes the molecular 
weight Over the range of lempcratures considered in the BP problem. a funwon m 
1he fonn of a Clapyron equation describes the flal-interface vapor pressure as a 
function of tempcramre: 

Pv = Pv exp[llhr~(r-1- r-1)] = Ae- R/T (37) 
' .<d Rv rrf · 

with A= 7.055 x ID-~kg/m3 , 8 = 5137.46K. and P,... = p.,,R~T 
The binary d1ffu<oion coefficiem be1ween wa1er vapor and air is (Pn1ess. 1987). 

D = f!!oo ~ (~)'' (38) 
"' r , .. Pg T"'r · 

where r is tortuosity and D~ is the diffusivity in free spaee at temperature T..,r and 
pressure Pff:f· The saturation-dependent r-ffective heat conductmty was specified 
according to Somerton eta f. ( 1974 ): 

A= Ao +~(AI- :0.0). (39) 

Moisture retention and relative permeability to the liquid are described by the 
so--called van Genuchten functions (van Genuchten. 1978): 

:=~=(I +P~)-''. k,, =(I+ Ph·'·f' [I-(,~~'!" rr (40) 
where Pc = avPdf'IR and Av = (flv- 1)/flv. The relative permeability to the gas is 
approximated by the relation (Oi~ler. 1Q85: Pruess. 1987). ko~ + k" = I 

Appendix B. Single-Horizon Analysis of Barometric PumpinR of Contaminant 
Gases Through l'ractured Permeable Medium 

The primary purpose of thi~ appendix is to demonstrate the use of an approximate 
technique for analysis of quasi-steady transport induced by oscillatory gas flow in a 
frnctun.'d permeable medium. In particular. we will address vertical transport of an 
inert gas species resulting from baromcuic pressure variations at the earth's surface. 
The associated gas displacement<> can carry contaminated gases through hundreds 
of meter~ of fractured rock in a few months time (Nilson et al .. 1991. 1992). Such 
rapid transport has been experimentally observed m the Nevada Test Site (NTS) 
m volcanic rock formalions which are similar to thO'iC at Yucca Mountain (YM). 
suggesting that the same processes will be operative at the propost:d YM nuclear wa~te 
repoSitOry. 

We first pre~nJ numerical predictions of barometrically driven transport of an 
mert species at YM where the bulk penneabi\ity is believed to be an order of mag· 
nitude ~muller lhan that at the NTS_ Then. smce direct numerical Simulations like 
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these may require days of compukrtime, i1 will be shown thai quasi-steady lranspon 
rates can be obtained u~ing a single-horizon analyses which reduce computer times 
tominules or seconds. The present discussion w1ll be very brief. as further details nre 
available in a YM publication (Nilson and Martinez. in Chapler 21 of Wilson eta/ .. 
1994). 

All phases of our analysis are based on a dual-porosity. dual-permeability model 
(Figure I) in which identical. equally spaced fraciUres are separated by slabs of 
mauix material having unifonn permeability and porosity. Aow and transport occur 
one-dimensionally along the fractun=s and one-dimensionally in and out oftht matrix 
material. We neglec1 the flow moving through the matrix parallel to the fractures. 
since the as~ociated ma~s flow is ~maller by the rntio of matrix permeability to bulk 
formation permeability ( < w-s). 

8.1 TRANSIF.NT SIMULATIONS 

Dire<:t simulation of the barometric trnnspon process requires time marching in­
tegration of the two-dimensional equntions describing variations in pre~sure and 
contaminant concenuatton along a representati~ fracture and within the adjacent 
matrix mnJCrial. The finite difference procedure described by Nilson and Lie ( 1990) 
is used to ~olve those equations on a re<:t:~ngular mesh having 120 zones along the 
fracmre and 40 zones imo the mauix. Typically 150-300 time-steps are needed to 
resolveeachdailybnrometric cycle. such !hat 1-lOmillion time·slep!> are executed in 
a simulation covering 10-100 years. These runs require 5-50h on a Silicon Graphic~ 
R8000 computer operating at 75 MHz. 

The purpose of these transient simulations is to predic1 the rate of release to the 
atmosphere of a representative puff of contaminant which initially rco;;ides at mass 
fraction Xn within the porosity of u 20m thick repository layer located 400 m below 
the cre~tof YM. For the sake of simplicity and conservatism we will i&nore the 30-m 
layer of low permeability nonwe1ded ruff near the cres1 of YM and presume that 
the 600m depth of unsaturated rock containing the repository consists of a heavily 
fractured welded tuff having a bulk fracture permeability (kb = ur'fi2B)ofthe order 
of 10-u m2 (100) which we account for through a single set of identical vertical 
fracrures having aperture, u1. and spacing. 8, of0.783 mm and 4 m, respectively. The 
gas filled porosity 1/Jm and gas permeability km of the matrix material are taken as 
0.04 and 0.1 mO. while the binary diffusion coefficient Do and diffusion strength 
{1 = 4Jmfr are prescribed as 2 x w-s m2 /s and 0.004. The transport calculation is 
driven by bammeuic pressure variations having n period and penk·IO·peak amplitude 
of24h and 8 millibars. respectively. 

After 40 years of pumping. the vertical variation of the nonnaHzed contami· 
nant concentmtion. x• = X/ Xo. shown in Figure 11 has acquired a Gaussian 
shape spreading 200m above and 150m below the repository. Within 80 years. 
the peak concentration has fallen to roughly 10% of the initial value. while the 
mean holds almosl steady at 3%. The profiles in Figure 11 represent concentra-
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tions at slab centers: they vary slowly in time despite daily penurbations in fracture 
concentcations 

The time history of gas exchange and contaminant releac;e to the atmosphen: is 
presentl'd in Figure 12. The uppermost solid line, labeled V·. indicates the rate of 
exchange of gas between the porou.~ formation and the atmosphere. It is calculated 
by integrating the outflow velocity qg·' ;?: 0 from a typical fracture over the rnrn.t 
recent barometric cycle of period T, thereafter nonnalizing by the total gas volume 
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within the corresponding unit cell ( V0 = L(w + ¢-m 8)) and. finally. multiplying by 
the number N of barometric cycles occurring in a year's time: 

li =fractional outflow of gas per year=- max(q1 ,, O)dt. , Nwf' 
Vn 1-T 

(41) 

The calculated value of v• = 0.3 in Figure 12 indicates that the volume of gas which 
breathes out to the atmosphere and back into the medium over a year's time is 30% 
of the pore volume. 

The rate of contaminant relea~ to the atmosphere is also presented m Figure 12. 
It is calculated by integmtion of the instantaneous advective outHow at the earth's 
surface, XP,q1 ,, over the most rttent barometric cycle 

r 
M• =fractional outHowofcontaminant per year= Nw J Xp~q1,.dt. (42) 

Mo 1-T 

In analogy with the earlier normali7..alion of volumetric outflow. N is the number 
of cycles per year and Mo = XnP,o8L,(w + tPmB) is the QmOunt of contaminant 
inilially present in the repository layer having thickness liL, =:: 20m nnd initial 
mass fraction X11 • Unlike the bulk flow of gas which produces no net flux over n full 
cycle, there is a net flux of contaminant into the atmosphere. During periods of rising 
barometer. q8,,. < 0 and x• = 0 since the incomins gas contains only a negligible 
amount of contaminant. During a falling baromeler, q1, > 0 and x• > 0 since the 
gas at the surface is coming up from below where the conctntr.uion is nonzero. Thus, 
the integral increases monotonically. It is seen in Figure 12 that contaminant outHow 
approaches a constant rnte of -10-3. indicating that 0.1% of the initial contaminnnt 
invemory is being released each year. 

Within 100 years, the amount of contaminant released is ..... [0%, as indicated by 
the integrated outflow M• shown in figure 12. Although the numerical simulation 
ends at l."iO years, it is possible to extrapolate mto the future based on the expectation 
that the process will remain qua~i-steady. The yearly contaminant outflow should 
then remain a nearly consumt fraction. M". of the curTenl contaminant inventory. 
(! ~ M•). Accordingly. d( I - M")/dt = -( 1 - M•)M• which implies that the 
inventory decrease!'i exponentially as exp( -M"t) and that 

(43) 

In writing this last equation we have taken the libeny of applying this quasi-steady 
solution for the entire t1me period, rnther than beginning the intcgmtion at the time 
( ..... 150 years) when steady state is achieved and ahout 10% of the contaminant has 
already left the medium. This adjustment is easy to make or. altematively. the expo· 
nential solution may be viewed a<;. a late-time complement to the early-time numerical 
solution. This exponential approxtmation avoids the need for runmng computations 
severn I times longer than the 40 h runs presented here. 
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Finally. the dotted line shown in Figure 12 indicates the avemge concentrat•on of 
conlaminant .n the diluent s1ream 

(44) 

It is seen to approach a nearly constant value of -10-4 which is 300 times smaller 
than the average subsurface concentrntion of-3%. This is to be expected because the 
contaminant concentration of the gases rising slowly lhrough fractures cannot differ 
greatly from the local concentrauon in theadj;teent rock. Furthermore, the time-mean 
concentral.ion in the wall rock must approach zero near the surface. as seen earlier 
in the profiles of Figure 12. Thus. it is only the slight disequilibrium between the 
insltlntaneous fraciUrc concentr:uion and the time-mean wall concentration wh1ch 
pennit~ a net oudlow of contaminant. That is why nny prediction of barometric 
transport requires a double porosity model which properly accoums for the d1sparity 
between fr.Kture and wall concentrations 

8.2. QUASHiTEADY CALCULATIONS 

The preceding simulation showed that barometrically driven transport approaches 
a qua-:;i·'lteady regime in which the fractional release i<i nearly the ~arne for each 
successive cycle. This generally occurs by the time 10%> of the rontaminant has 
been expelled. suggesting that roughly 90% of the outflow can be predicted from a 
knowledge of the outflow parameter, M•. which is the reciprocal of the time constant 
for the exponential decay process of Equation (43). 

Thus. t:he purpose of a quasi-steady analysis is to rapidly determine lhe fractional 
outflow rate M• by performing a brtef simulation which is begun with a liiK'ar 
contaminant profile. This choice of initial profile is bao;ed on the preceding simu­
lation and others likr them (Nilson n a/.. 1991) which all appear to tend toward a 
relatively linear gradient as time progres~es. The dotted line an Figure II depicts lhe 
linear distribution having the same contaminant inventory a<; thr calculated profile 
corrc!iponding to 160 years. 

Quasi-steady calculations are exec !!led with the same model as the earliertrrmsLent 
simulations except that: (I) t:he imttal profile is now linear and, (2) the concentration 
at the floor of the medium i~ now held fixed at unity rather than prescribing that there 
be no contammant Aux through the floor. By fixing the concemration at the floor 
we prevent the gradual drift of the linear profile that would otherwise occur during 
depleuon Throughout the calculational period of 20 barometric cycles there is only 
a shght shtft in the near-surface region of the linear concentration profile. reaffirming 
the connection between lmear profiles and quasi-steady behavior. Much longer runs 
confinn the same behav1or 

Figure 13 indicates th:u the effluent flux, M•: becomes qua\i-steady within just 
a few days ~ortover. the pre~ictcd value o~ M" ::::: 0.003 in Figure 13 i~ quite 
consistent wtlh the corresjXlndmg value of M• :=:::: 0.002 near the end of the full · 
simulation in Figure 12. The difference is attributed to the fact that linearity was 
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never fully established in dtc complete simulation In this context it is noted that 
the M• associated with a linear profile is insensitive to the choice of unit con· 
centration at the floor of the medium. ~ince the outflow. M•, is normalized by 
the total amount of contaminant pre!'ltnt nnd the transport equations are lmear in 
concenrratron. However. the mean concentration in the medium is reflected in the 
average concentration of the effluent (X"} which differs by more than an order of 
magnitude between Figures 12 and 13 because the ratio of mean con~ntrations 
isO.S/0.03-.. 170. 

The advanlage of quasi-steady analyses is that. pammeter studies can be performed 
with a thousand-fold savings of computer lime since the required calculations span 
several days rather than 15-150years. This appro.-1ch is particularly beneficial in cases 
with weak 1ranspon and large rerardation factors which would otherwise require 10-
100 times more comput..1tion than the 50 h run which generated Figure 12. The same 
savings cannot be realized by simply increasing the magnitude of t:hc calculational 
time step. because it is constrained by the time ~ale of barometric cycles nnd by the 
Courant limitation imposed by virtua\ly all nondiffusive advection algorithms. The 
only shortcoming of the quasi-steady simulations is thmthey do nO! explicitly reveal 
the time required for the profile to spread across the medium. However. this can be 
estimated after the fact since the quasi-steady calculations do indicate the strength 
of the transport and this, together with a knowledge of the capacitance. can be used 
to estimate the time required to reach quasi-steady state. 

8.3. Slro!Ot.E·IIORIZON MODELS 

Having seen thnt the BP process evolves toward quasi-steady transport through a 
linear gradient. we will now briefly explore the usc of analytical and numerical models 
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which ~k to evaluate t~ rate of qua~i-sleady transport by solving the time dependent 
transport equations in a single,typical honzonral plane. The key supposition is that I he 
venical gradienls appearing in the differemial equa1ions can be replaced by their time· 
mean value-.. This reduces the dimensionality of the problem from two to one. The 
associated reduclion in compU!ational effoR is panicularly beneficial in addressing 
the more comple"' muhiphase flow processeo; that control barometric respiration of 
water vapor. The smgle·horizon model also helps to illuminate physrcal mechanisms 
and parametric dcpcndcncie~. 

To illusrra1e the nature and validity of a smglc-horizon model. we will consider a 
simplified ver.>ion of the BPprocess in which the fracture walls are porous (¢m # 0) 

but impenneable (km = 0) so that horizontal contaminant trnnspon occurs purely by 
molecular diffusion; there is no bulk flow in the horizonral direction. Conversely. the 
venical transpon in the fracture is presumed to be advectmn dominated. ao; e"'pected 
in most application~. Under these simplifications. the tnUlSpon i~ gov~med by the 
following prur of equations which respectively apply to the fracture and the matrix 
Here, we imroduce a modi !led diffus1vity o• = DofJ/¢m to simplify o;ub~equent 
equations 

(45) 

(46) 

These can be solved annlyucally if it is funhcr ~sumed that the venical veloctly in the 
fracture is harmonic, i.e. q,_,. = q0~llle1tp(iwt)J. and that the vmic3.1 concentration 
gradient is unifonn. Both of these suppositions arc conststent with the behavior 
observed in the earlier numerical simulations. Under these simplificnttons, Equation 
(45) describing species conservation within the fracture may now be viewed as a 
boundary condition on the single-horizon problem for the time-dependent variation 
of species concentration across the m.urix material. To complete the single-horizon 
problem sta!ement. it is also required that there be no flu,.es across the center plane 
of the matrix slab since this is a plane of symmetry. 

The exact solution to this prototype problem is the real part of the following 
complex function (Kurzweg. 1985: Nilson et ol .. 1991 ): 

(47) 

in which y = dX/dv is the venical concentration gradient. his the halffrncrure 
spacing, and R is a complex function of the nonnalized depth into the wall x• = xfh: 

iqu( W../i )co<>hW./i(l-.r•) 
8 = b:; w.Ji +a tanh W./i cosh w.JT · (48) 

Two dimenstonless parameters appearing here are the Womersley number. W = 
h.j""W"!"!F. and the ratio of port: volume to fracture volume. o- = B¢mfw From 
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Equation (47). it is seen that the time mean concentration varies linearly with height. 
y, but is independent of depth into the wall. x. Funher. the variation of concentration 
is sinusoidal at all locations with the amplitude and phase modulated by the depth 
into tht: wall. as embodied through the compte"' function g(x*). 

The volume of fluid. !J. V = wqo T /4rr, and correspondJng ma~s of contaminant 
t:.M. which pass through any horizontal plane during a single cycle of period T can 
he evaluated by time integration. As before, the mtioofthese two integrals is used to 
define an effective mean concentration (X} which characterizes the net throughout 
of contaminant· 

(X)= ~~ = yL\LIJ.I(W0 , cr). (49) 

This mean concentration is of primary importnnce because it is linearly related tO the 
vertical mass transport M• in accordance with Equation (44). It depends upon the 
vcrticalgradiem. y = dXfdy. the amplitude of the vertical motion.ll.L = L1 V fw = 
qoT f4rr. and a dimensionless function IJ.I(W ... cr) of a modified Womersley number. 
w .. = Wfa,andthcvolumeratioa = B¢m/wasmdtcatedinthefollowingequation: 

(50) 

As seen m Figure 14, there is a maximum rate of transport which depends somewhat 
on o- but usually occurs for w .. near unity. For W,. » I. the period Tis too shonto 
allow a significnnt diffusive interaction between the fracture and the wall. Conversely. 
for W, « I. the period is so long that the fracture and the wall are always nearly 
cquilibraled in concentrntion: this also leads to a minimal nettrunspon over a full 
cycle ofmmion. Thus. the trnn.o;pon is greatest when the period Tis comparable to the 
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Figul'l' 14. Cnmpari~ or the- numtt"kally cnmJ"IUted singlc-hori1on approximation {~ym-
001~) tolheualytkal MJ!uuon given hy Equation (50) forqua~i-~teadycrnuaminanttmnspon 
lhrot.1gh a unifontl gradient in a ~emi·infinite met.lium 
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time required for molecular diffusion to access a pore volume which is comparable 
to the fracture volume. 

Also included in Figure 14 are a series of symbols representing the results of 
numerical simulation5 perfonned by the computer code used in the ma.m body of 
lhis papertocalculale wmrr vapor trnnspon. Since these calculations are in excellent 
agreement with 1he analytical solutions indica1ed by solid lines. we are confidem 
thntthr: numerical :tpp1oach h:ts been properly implemented. for this leSI problem at 
least. 

A fundamental assumption of any such single-horizon modeling. analytical or 
numerical, is that the vertical concentration gradient. y = dX /dy, can be taken 
as a constant. One might. however. expect that the flow along the fracrure would 
perturb the gradient in nn o~cillatory fa.~hion. Funhcrrnorc, II is implicitly presumed 
that 1he domain is of infinite extent in the direction of lhe concentration gradient. 
In the present npplicauon this implies infinite depth. so there is no opportuniry to 
apply boundary conditions at the floor and the surface of the medium. This precludes 
the specification that there be no contaminant in the fresh air which flows into the 
fracture nt the earth's surface. Instead. the concentrntion at every elevation. including 
the surface. oscillates sinusoidally about a mean value which.incrca...c~ linearly with 
depth. Although these simplifications of the model would appear to be well justified 
if the amplitude. t::.L. of the vertical motion were small compared to the depth, L. 
of the medium, they become questionable in the present application where l::.L/L 
sometimes exceeds unity. as appillt'nt in Figure 8 where llL has a maximum value 
of aboul 1800m for a layer having a depth of600m. 

The validity of the single-horizon model was evaluated by comparing the above 
analytical solutions with two-dimensional numerical solutions which were posed on 
a domain of flrute dt:pth. In conformance with the analytical solutions. the vertical 
velocity wa., pre~ribed as sinusoidal in time and of equal amplitude at all elevations. 
However. in contrast to the analyticnl solutions. the numerical solutions satisfied more 
realistic boundary conditions wilh X ""'0 for downflows from the upper surface and 
X = 1 for upftows from the lxmom of the medmm. Thus. the boundary condition 
at the earth's surface is identical to that used in the YM simulations where the 
atmosphere ts idealized as an infinite reservoir of fresh air. For symmetry. the lower 
boundary is now idealized as an infinite reservoir of fully contaminated gas. Our goal 
•s to determine whether the single-horizon model remains valid in cases where the 
venical gradient is substantially perturbed from linearity and the ga.~ displacements 
are as large as the vertical extent of the ~dium. 

A c;eries of numerical solutions were calculated for different values oft he parame­
ter tJ.LfLwith the other parameters held fixed at W0 = I.O.a = I.Oand !:J.X = 1.0. 
Using these choices and the fact that y = llX/L. Equation (49) can be rewritten 
as (X) = "-'<1. I }AL/L. This analy1ical .expression is plotted in Figure 15 along 
with the numerical resuhs ob1ained in five different simulations. In each. the value of 
{X) was determined by time intr:gration of the quantities defined in Equations (41) 
and (44). followed by substitution into Equation (44). It is seen that the numenc;~l 
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HRUI'r /0. Concentration histories at lhrce clevalion~ for llL/L = 1/2 

results are extremely dose= to the analytical solutions for llL/L ~ 2. Even for 
displacements twice that large. the error in the single-horizon model is still less than 
20% which is small compared to a number of other uncertainties involved in defining 
the problem of interest and the associated geologic parameters. 

To better understand the success of the single-horizon model it is useful to further 
explore the details or the numerical solutrons. Figures 16 and 17 show the numerical 
results for lli./L = 1/2. 'Ille first of these indicmes that the time variation at 
midheight follows a smooth sinusoidal path. in keeping with the analytical solulion 
for an infinite domain. However. a.<> expected. the time histories of concentration at 
the ends of the domain are far from sinusoidal. owing to lhe application of boundary 
conditions. In spite of lhis. the net ftux i~ the ..:arne through all three elevations 
and it is nearly idenncal to the analytical prediction of Equation (49). Part of the 
explanation for this agreement is apparent in Figure 17 which shows that the slope of 
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H~"" 17. C'onc<!rllrafion prolile~ a1 variou.• limes dlll'ing 1ypical cyd<' wi1h t.L/L = 1/2. 
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the concentration profile remains nearly consl:lnt despit~ significa01 displac~ments 
lo the right and the left. If this slope were always to remain uniform and cons1nnt, we 
would be fully justified in replacing the venical derivatives in the transpon equations 
with their time menn values. as assumed ill the single-horizon model. Thus, the results 
for moderate displacements are. in all respects. quite consistent with the analytical 
solutions. as expected. 

llowever. what is somewhat surprising is that the single-horizon model closely 
predicL<othcnumcncal resultsshownm Figures 18nnd 19for ~L/L = 2. Here.there 
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1-i~"" 19. Concenlra!ion pmfil~ at variou\ umc' during IYJIIl"nlcydt wi1h I!:.L/ L = 2 

are very significam depanures from 1he mean gradient of y = 11X/L = I which 
IS presumed applicable in the analytical model. In spite of this. the singk-horizon 
model provides an excellent prediction. Since 1he displacements of interest rarely 
exceed twice the layer depth, we have gained confidence in the use of this approach 
in modeling the more complex problem of moisture transport by BP. as discussed in 
the main body of this paper. 
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