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Abstract A robust classification scheme for partitioning 
water chemistry samples into homogeneous groups is an 
important tool for the characterization of hydrologic sys­
tems. In this paper we test the performance of the many 
available graphical and statistical methodologies used to 
classify water samples including: Collins bar diagram, 
pie diagram, Stiff pattern diagram, Schoeller plot, Piper 
diagram, Q-mode hierarchical cluster analysis, K-means 
clustering, principal components analysis, and fuzzy 
k-means clustering. All the methods are discussed and 
compared as to their ability to cluster, ease of use, and 
ease of interpretation. In addition, several issues related 
to data preparation, database editing, data-gap filling, 
data screening, and data quality assurance are discussed 
and a database construction methodology is presented. 

The use of graphical techniques proved to have limi­
tations compared with the multivariate methods for large 
data sets. Principal components analysis is useful for da­
ta reduction and to assess the continuity/overlap of clus­
ters or clustering/similarities in the data. The most effi­
cient grouping was achieved by statistical clustering 
techniques. However, these techniques do not provide in­
formation on the chemistry of the statistical groups. The 
combination of graphical and statistical techniques pro­
vides a consistent and objective means to classify large 
numbers of samples while retaining the ease of classic 
graphical presentations. 

Resume Un systeme robuste de classification pour re­
partir des echantillons de chimie de l'eau en groupes ho­
mogenes est un outil important pour Ia caracterisation 
des hydrosystemes. Dans ce papier nous testons les per­
formances des nombreuses methodes graphiques et sta­
tistiques disponibles utilisees pour realiser une classifi-
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cation des echantillons d'eau; ces methodes sont les sui­
vantes: les diagrammes en barres de Collins, en camem­
bert, de Stiff, de Schoeller, de Piper, !'analyse hierarchi­
que en grappe en mode Q, le regroupement de moyennes 
K, !'analyse en composantes principales et le regroupe­
ment flou de moyennes K. Toutes ces methodes sont dis­
cutees et comparees quant a leur aptitude a regrouper et 
leur facilite de mise en reuvre et d'interpretation. En ou­
tre, plusieurs points relatifs a la preparation des donnees, 
a !'edition des bases de donnees, a la reconstitution de 
donnees manquantes, a l'examen des donnees et au con­
trole de validite des donnees sont discutes et une metho­
dologie d'elaboration d'une base de donnees est propo­
see. 

L'utilisation de techniques graphiques a demontre 
qu'elle presente des limites par rapport aux methodes 
multidimensionnelles, pour les jeux importants de don­
nees. L'analyse en composantes principales est utile 
pour reduire les donnees et pour evaluer Ia continuite/ 
recouvrement des groupes ou le groupement/similitude 
dans les donnees. Le groupement le plus efficace est as­
sure par les techniques statistiques de regroupement en 
grappes. Cependant, ces techniques ne fournissent pas 
d'information sur le chimisme des groupes statistiques. 
La combinaison de techniques graphiques et statistiques 
donne les moyens solides et objecti£.;; de faire une classi­
fication d'un grand nombre d'echantillons tout en con­
servant Ia facilite des representations graphiques classi­
ques. 

Resumen Disponer de un esquema solido de clasifica­
ci6n quimica de muestras de agua en grupos homogene­
os es una herramienta importante para la caracterizaci6n 
de sistemas hidrol6gicos. En este articulo, contrastamos 
la utilidad de muchas metodologias gnificas y estadisti­
cas disponibles para clasificar muestras de aguas; entre 
elias, hay que citar el diagrama de barras de Collins, 
diagramas de sectores, diagrama de StitT, gnifico de 
Schoeller, diagrama de Piper, analisis jerarquico de con­
glomerados en modo-Q, conglomerados de K-medias, 
analisis de componentes principales, y conglomerados 
difusos de k-medias. Se discute todos los metodos, com­
parandolos en funcion de su capacidad para establecer 
agrupaciones, de su facilidad de uso y de su facilidad de 
interpretacion. Ademas, se discutc varios aspectos rela­
cionados con Ia entrada de datos, edici6n de bases de da-
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tos, extrapolaci6n de datos en series incompletas, visua­
lizaci6n de datos, y garantia de calidad de los datos, y se 
presenta una metodologia para elaborar una base de da­
tos. 

Se demuestra que el uso de tecnicas graticas padece 
limitaciones respecto a los metodos multivariados para 
conjuntos de datos numerosos. El amilisis de componen­
tes principales es uti! para reducir el numero de datos y 
establecer Ia continuidad/superposici6n de grupos o 
agrupaciones/similaridades en los datos. Los resultados 
mas efectivos se logran mediante tecnicas estadisticas de 
agrupamiento; sin embargo, estas no proporcionan infor­
macion sobre Ia quimica de los grupos estadisticos. La 
combinaci6n de tecnicas graficas y estadisticas posibilita 
un enfoque coherente y objetivo para clasificar numeros 
elevados de muestras y, a Ia vez, mantener Ia facilidad de 
las presentaciones graficas convencionales. 

Keywords Classification techniques · Cluster analysis · 
Database construction · Fuzzy k-means clustering · 
Water chemistry 

Introduction 

The chemical composition of surface and groundwater is 
controlled by many factors that include composition of 
precipitation, mineralogy of the watershed and aquifers, 
climate, and topography. These factors combine to create 
diverse water types that change spatially and temporally. 
In our study area, which lies within the south Lahontan 
hydrologic region of southeastern California (Fig. 1 ), 
there is a wide variety of climatic conditions (high alpine 
to desert), hydrologic regimes (alluvial basin-fill aqui­
fers, fractured rock aquifers, and playas) and geologic 
environments (igneous rocks, volcanic rocks, metamor­
phic rocks, sedimentary deposits, evaporites, and miner­
alized zones). Thus, the samples from the area could po­
tentially represent a variety of water types providing an 
opportunity to test the performance of many of the avail­
able graphical and statistical methodologies used to clas­
sify water samples. 

The use of major ions as natural tracers (Back 1966) 
has become a very common method to delineate flow 
paths in aquifers. Generally, the approach is to divide the 
samples into hydrochemical facies (aka water types), that 
is groups of samples with similar chemical characteris­
tics that can then be correlated with location. The spatial 
variability observed in the composition of these natural 
tracers can provide insight into aquifer heterogeneity and 
connectivity, as well as the physical and chemical pro­
cesses controlling water chemistry. Thus, a robust classi­
fication scheme for partitioning water chemistry samples 
into homogeneous groups can be an important tool for 
the successful characterization of hydrogeologic sys­
tems. A variety of graphical and multivariate statistical 
techniques have been devised since the early 1920s in 
order to facilitate the classification of waters, with the 
ultimate goal of dividing a group of samples into similar 
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homogeneous groups (each representing a hydrochemi­
cal facies). Several commonly used graphical methods 
and multivariate statistical techniques are available in­
cluding: Collins bar diagram, pie diagram, Stiff pattern 
diagram, Schoeller semi-logarithmic diagram, Piper 
diagram, Q-mode hierarchical cluster analysis (HCA), 
K-means clustering (KMC), principal components analy­
sis (PCA), and fuzzy k-means clustering (FKM). This 
paper utilizes a relatively large data set to review these 
techniques and compare their ease of use and ability to 
sort water chemistry samples into groups. 

Hydrogeologic Setting 
The study area is part of the Basin and Range Province 
of the southwestern USA and extends from 35-3T of 
latitude north and from 117-118.5° of longitude west 
(Fig. 1). The area comprises a portion of the Sierra Ne­
vada mountain range, which is the recharge area, and ad­
joining alluvial basins, which are arid. Because of the 
modem arid climate, surface water is scarce in the area 
and groundwater is the only source of drinking and 
household use water (Berenbrock and Schroeder 1994). 
Thus, effective management of the groundwater resourc­
es requires an accurate model for the aquifer characteris­
tics, groundwater flow directions, recharge mechanisms, 
discharge mechanisms, and water chemistry processes. 

In the basin and range groundwater system, water 
flows from recharge areas in the mountains to discharge 
areas in the adjacent valleys (Maxey 1968). This local 
flow system is often modified by local geologic, physio-
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graphic, and climatic factors. During the Pleistocene and 
Holocene epochs, the valley floors in the study area were 
periodically occupied by a chain of lakes stretching from 
Mono Lake in the north to Lake Manley in Death Valley 
(Duffield and Smith 1978; Lipinski and Knochenmus 
1981 ). Present-day valley floors are occupied by playas, 
known in different localities as "salt lakes," "soda 
lakes," "alkali marshes," "dry lakes," or "borax lakes", 
where the majority of groundwater discharges by evapo­
transpiration (Lee 1912; Fenneman 1931; Dutcher and 
Moyle 1973 ). Minor discharge also occurs by other ways 
including discharge from springs, seeps, and pumping 
from wells. The groundwater in the area occurs in two 
porosity regimes: (I) intergranular porosity found mostly 
in alluvial basin-fill aquifers, and (2) fracture porosity 
found in the mountain watersheds. The alluvial basin-fill 
aquifers can be further divided into two components: 
a shallow saline aquifer (<!50 m depth), and a deep 
( 610 m), locally confined aquifer that extends throughout 
the area (Dutcher and Moyle 1973 ). 

Methods 

The available major solute data (spring, surface, and 
well water) for the area was compiled for this study in 
order to create a comprehensive database, called SLH­
DATA (south Lahontan hydrochemical database), for the 

Table 1 Data sources used to 
create the SLHDATA database. Code Data sources 
NWIS: US Geological Survey number 
National Water Storage and 
Retrieval System 

I Barnes et a!. ( 1981) 
2 Berenbroek ( 1987) 
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classification of waters into hydrochemical facies repre­
senting "water types". The data were arranged in rows 
(for sampling locations) and in columns (for chemical 
parameters). The entire database consists of chemical an­
alyses of !52 spring samples, 153 surface samples, and 
1,063 well (groundwater) samples, including temporal 
samples (samples collected over a period of time at the 
same location). Sources of the data are presented in 
Table 1. In the case of multiple samples from the same 
location, the more recent and/or the more complete sam­
ple data were included in the statistical analysis unless 
evaluation of temporal effects was desired. Database 
construction procedures and comparison of the results 
from the various statistical and graphical techniques is 
discussed in detail in the following sections. Detailed 
analysis of the graphical and statistical water groups in 
terms of the physical and chemical factors that control 
water chemistry is not the focus of this paper. Instead, 
we are interested here in the ability of available tech­
niques to classify a diverse set of samples into distinct 
groups. 

Of the 39 hydrochemical variables (consisting of ma­
jor ions, minor ions, trace elements, and isotope data) in 
the compiled database, 11 variables (specific conduc­
tance, pH, Ca, Mg, Na, K, Cl, S04, HC03, Si02, and F) 
occur most often and, thus, were used in our evaluation. 
It is usually assumed that adequate quality assurance 
(QA) and quality control (QC) measures were performed 

Number of samples 

Surface Spring Well 

194 
3 Berenbrock and Schroeder ( 1994) 108 
4 8 uono and Packard ( 1982) 3 
5 California State University, Bakersfield, unpublished data 51 38 74 
6 Dockter ( 1980a) I 
7 Dockter ( 1980b) 2 
8 Feth eta!. ( 1964) I 
9 Font ( 1995) 3 18 

10 Fournier and Thompson ( 1980) 8 3 
II Hollett et al. (1991) 5 
12 Houghton (1994) 10 2 25 
13 Hunt et al. (1966) I 
14 Johnson ( 1993) 13 
15 Johnson et al. ( 1991) 6 
16 Lamb ct al. (1986) 42 
17 Lopes ( 198 7) 14 14 
18 Maltby et al. ( 1985) 45 
19 McHugh et al. ( 1981) 70 8 
20 Melack et al. ( 1985) 10 
21 Miller ( 1977) 2 7 2 
22 Moyle ( 1963) I 137 
23 Moyle ( 1969) 24 96 
24 Moyle (1971) 57 
25 Ostdick ( 1997) 6 14 14 
26 Robinson and Beetem ( 1975) I 
27 US Bureau of Reclamation ( 1993) 33 
28 US Geological Survey NWIS QW data 28 154 
29 Whelan et al. ( 1989) I 9 
30 No source information available 3 8 
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at the time of original data collection and analysis; how­
ever, we screened the data to verify that they were usable 
(see below for further discussion). The data collection 
methods, which are similar are described in detail for 
most of the data sources, or documented in US Geologi­
cal Survey's "Techniques of water-resources investiga­
tions" manuals (e.g., Brown eta!. 1970; Wood 1981). 

The Statistica Release 5.0 (StatSoft, Inc. 1995) com­
mercial software package was utilized for the basic sta­
tistical analyses performed. Microsoft Excel 97 (Micro­
soft Corporation 1985) and RockWorks (RockWare, Inc. 
1999) were used for the graphical analyses. Classifica­
tion of the data was also performed using FuzME (Fuzzy 
k-Means with Extragrades; Minasny and McBratney 
1999). The techniques used include cluster analysis 
(HCA and KMC), principle components analysis (PCA), 
fuzzy k-means clustering (FKM), and a variety of graph­
ical methods. Detailed technical descriptions of HCA, 
KMC, and PCA techniques and a description of the 
FKM technique are provided in StatSoft, Inc. ( 1997) and 
Bezdek eta!. ( 1984 ), respectively. 

Database Editing 
Figure 2 is a flow chart that summarizes the methodolo­
gy used for compiling the hydrochemical database. If re­
ported, field measurements of alkalinity and pH were 
used for the construction of the database. Otherwise, lab­
oratory measurements of these variables were used. 
Some of the individual data sets contained the same sam­
ple, or apparent near-duplicate analyses for minor ele­
ments. In general, there were more discrepancies for iron 
than for any other minor element. This was probably be­
cause of the different ways in which iron concentrations 
were expressed, or the convention being used was not 
clearly stated. We have chosen not to use any minor ele­
ment data for our study because of these sorts of prob­
lems. 

Samples with uncertain locations were located using 
reports and maps or eliminated from the database when 
such information was not available. Locations of sites 
that had only the name of the well or spring were deter­
mined as accurately as possible, usually to several 
hundred meters and always within 1 km. Well-water 
samples without sampling depths were retained in the 
database, but eliminated from the multivariate statistical 
analysis. 

Units of measurement were sometimes inconsistent 
between different data sets. All values were converted to 
an internally consistent format (all units are in mg L-1 in 
the SLHDATA database). Common reporting units for 
data sets were weight-per-volume units [milligrams per 
liter (mg L-1) and micrograms per liter (!lg L-1)], equiva­
lent-weight units [milliequivalents per liter (meg L-1) 
and microequivalents per liter (11eq L-1)], or weight-per­
weight units [parts per million (ppm), parts per billion 
(ppb ), and parts per trillion (ppt)]. Conversion factors for 
calculation of a unit from the other units are given by 
Hem (1989). 
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Fig. 2 Methodology used for compiling and editing the SLHDATA 
database 

Censored values 
Water chemistry data are frequently censored, that is, con­
centrations of some elements are reported as non­
detected, less-than or greater-than. These values are created 
by the lower or upper detection limit of the instrument or 
method used. Censored data are not appropriate for many 
multivariate statistical techniques. Therefore, the non-de­
tected, less-than, and greater-than values must be replaced 
with unqualified values (Farnham et a!. 2002). In our dat­
abase there were no censored values for the 11 variables 
used in this study, however, because this is often not the 
case we briefly discuss methods to deal with this situation. 
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A number of techniques have been suggested for re­
placement of a censored value including replacement of 
the less-than values by 3/4 times the lower detection lim­
it and the greater-than values by 4/3 times upper detec­
tion limit (VanTrump and Miesch 1977). An alternative 
is replacement of less-than values by 0.55 times the low­
er detection limit and the greater-than values by 1.7 
times upper detection limit (Sanford et al. 1993). For da­
ta where the proportion of the censored values is > 10%, 
another method that was devised by Sanford eta!. ( 1993) 
can be used. This method estimates the mean of the nor­
mal distribution using a maximum likelihood estimation 
method. Then, this estimated mean is used to derive an 
estimated replacement value. 

Data-gap filling procedures -
estimation of the missing values 
Usually the effective use of many of the methods re­
quires complete water analyses (no missing data values). 
Missing data values may make the use of graphical water 
chemistry techniques impossible, or limit the quality of 
the statistical analysis. During the statistical analysis, 
most statistical software packages replace those missing 
values with means of the variables, or prompt the user 
for case-wise deletion of analytical data, both of which 
are not desirable. This can bias statistical analyses if 
these values represent a significant number of the data 
being analyzed. 

Table 2 Charge balance (CB) 
Code no." Years collected statistics for the individual data 

sources 
I 1981 
2 1977-1984 
3 1987-1989 
4 1968-1980 
5 1994-1998 
6 1978 
7 1978 
8 1959 
9 1989-1994 

10 1974-1979 
II 1945-1978 
12 1993-1994 
13 Unknown 
14 1993 
15 1990 
16 1986-1991 
17 1986 
18 1984-1985 
19 1979 
20 1982 
21 1967-1972 
22 1917-1960 
23 1917-1967 
24 1916-1969 
25 1996 

a Data sources corresponding 26 1965 
to code numbers arc listed in 27 1990-1992 
Table I. The+ and- columns 28 1945-1990 
refer to the number of analyses 29 1976-1987 
from a data source having posi- 30 1989-1996 
tive and negative CB errors 
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There are statistical methods and chemical relationships 
that can be employed to estimate missing data values. 
For instance, missing conductance data can be calculated 
from total dissolved solids (TDS) data by using a simple 
linear regression method. In our database, a significantly 
(p<O.OOl) high correlation coefficient (r-=0.984) was found 
to exist between these two variables. The p-value is the 
significance probability for testing the null hypothesis that 
true correlation in the population is zero. A small value of 
p (e.g., p<O.OO I) indicates that there is a significant corre­
lation. Thus, missing potassium (K) values were estimated 
by utilizing the linear relationship between potassium and 
sodium (Na), which had a significantly (p<O.OOl) high cor­
relation coefficient of0.904. 

Missing bicarbonate (HC03) data can be calculated 
from alkalinity values and pH. Inverting the problem, 
missing pH values can be calculated by using Eq. (1) if 
the C03 and HC03 values were reported: 

[co~ J . w-pH 

K~ = ..>o-----,----"--c;---
~ [HC03 ) 

(1) 

The same relationship can also be used to calculate the 
missing carbonate (C03) values if pH was reported. Fi­
nally, if there were no means of establishing a value, a 
value of "-9,999" was entered for the missing value, in­
dicating that no data were available for that entry. In our 
data set there were very few (3%) samples with censored 
or missing values. 

+ CB error range Median Mean (±I cr) 

I 0 -1.04 -1.04 -1.04 (±0.00) 
82 112 -10.31 7.75 0.35 0.16(±2.87) 
54 54 -9.43 8.66 -0.11 0.24 (±3.95) 

2 I -2.05 0.96 -1.31 -0.80 (±1.57) 
61 102 -9.44 10.04 1.33 1.88 (±3.73) 

0 I 0.32 0.32 0.32 (±0.00) 
I I -0.02 0.52 0.25 0.25 (±0.38) 
I 0 -1.14 -1.14 -1.14(±0.00) 

14 7 -3.70 3.03 -1.25 -0.83 (±2.01) 
7 5 -5.71 9.41 -0.30 0.82 (±4.31) 
I 4 -0.12 5.30 1.69 2.03 (±2.15) 

12 25 -8.39 10.40 0.87 0.90(±4.01) 
0 I 0.34 0.34 0.34 (±0.00) 
9 4 -8.94 8.16 -1.43 -1.04 (±4.34) 
4 2 -3.30 8.33 -0.28 0.56 (±4.34) 

34 8 -5.14 2.05 -2.20 -1.82 (±1.80) 
10 18 -2.65 10.39 0.84 1.35 (±2.92) 
30 15 -6.02 8.51 -0.86 -0.92 (±2.97) 
64 14 -9.45 9.10 -5.00 --4.02 (±4.38) 

7 3 -6.17 4.75 -2.68 -2.01 (±3.56) 
4 7 -2.31 4.67 0.79 0.89 (±2.02) 

28 110 -2.34 10.13 0.13 1.13 (±2.23) 
17 103 -9.55 8.74 1.89 2.00 (±2.28) 
22 35 ~-3.81 8.84 0.20 0.74 (±1.94) 
17 17 -8.70 10.32 0.03 1.14 (±5.32) 

I 0 -().09 -0.09 -0.09 (±0.00) 
8 25 -3.13 6.88 2.38 1.99 (±2.55) 

119 63 -8.10 9.92 -0.94 -0.75 (±2.69) 
I 9 -0.76 9.99 6.54 5.18 (±3.52) 
3 8 -10.04 9.58 2.59 2.35 (±5.63) 
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Fig. 3 Distribution of percent 
charge balance error for a, b 
spring, c, d well, and e. f sur­
face water samples 

Charge balance error 

Surl&:-e Water 

The edited chemical analyses in the SLHDATA database 
were tested for charge balance (Freeze and Cherry 
1979): 

Iz·mc- Iz ·nla 
%Charge Balance (CB) Error= · 100 (2) 

Iz·mc+ Iz·ma 

where z is the absolute value of the ionic valence, me the 
molality of cationic species and ma the molality of the 
anionic species. Conventions and assumptions used in 
balancing the analyses included: 

I. When bicarbonate and carbonate data were not given, 
alkalinity, if available, was used to estimate a bicar­
bonate concentration. 

Hydrogeology Journal (2002) 10:455-4 74 

,····:·.,·,::-····· 

32::' d) 

3C·' 

IS 

~' t6l 
& !4, 

&: 12\ 
w: 
s: 
6' 

4' 

(l 

lli•togrom of l'erc.ml. (%) 
CharS" llillUk'<' FtrM {Spring Water) 

Sample N 152 
Mean :ft612 
l\-ledian : 0.181 
Std Dev. : :UO(, 
SktWIICM! : 0.035 

IH~Wg,ntm of !'ere-em ("'•) 
Charge Balllnue FJTor (Well Water) 

Sample N : 1063 
~kiln · ll.,28 
MediN~ : (l !68 
Sld .. IX'I. : 3.203 
Skcwne~~ : 0.:128 

Hi•1ogram <>fl'crcon1 (~i1) 
Cllarg:e Tl.!llanc< Err<tr (St .. fnce Water) 

.]1 .;., .jf ,(; 4 .: () 

2. In the few cases where the calcium and magnesium 
data were missing, hardness was used to estimate the 
sum of calcium and magnesium concentrations. 

Calculated charge balance errors are less than or equal to 
±10.4% for SLHDATA database, which is an acceptable 
error for the purpose of this study {Table 2). Samples 
with errors greater than ±I 0.4% were not used. For the 
spring-water and well-water (groundwater) data, errors 
are evenly distributed between positive and negative 
values, and, thus, are not systematic (Fig. 3a-d). The 
charge balance errors of the surface water data showed 
a bimodal distribution and had a skewed distribution 
(Fig. 3e, f). Accordingly, the surface water samples were 
further studied. The samples were split into those from 
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Fig. 4 Map view of HCA­
derived subgroup and group 
values for the spring water 
samples 

the Sierra Nevada mountain block and the Indian Wells­
Owens Valley area (see Fig. 4 for locations). The Indian 
Wells-Owens Valley area samples have charge balance 
errors that approach a norn1al distribution and range 
from -6% to+ 10%, whereas the Sierra Nevadan samples 
had a strongly skewed distribution. The Sierra Nevada 
data included 78 samples collected for the Domeland 
Wilderness study (McHugh et al. 1981 ), which were 
identified as the source of the skewed distribution and 
indicates a systematic error in that particular set of ana­
lyses. However, the error is not sufficient to remove the 
data set from the database. 

Data screening 
The purpose of data screening is to evaluate the distri­
bution characteristics of each variable in the database. 
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We used univariate and bivariate statistical methods to 
assess each variable independently, and the relationship 
between variable pairs. The physical and chemical 
properties were evaluated using central tendency 
(mean, median, mode) and dispersion (standard devia­
tion, skewness), and by graphical displays such as his­
tograms, scatter plots, probability plots, and box plots. 
Based on these analyses, decisions were made concern­
ing the need for, and selection of, appropriate transfor­
mations to achieve a better approximation of the nor­
mal distribution. This is important because most of the 
statistical analyses assume that data are normally dis­
tributed. 

The data screening showed that the data used in this 
study were universally skewed positively; the data con­
tained a small number of high values. Most naturally oc­
curring element distributions follow this pattern (Miesch 
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1976). The data were log-transformed (except for pH) so 
that they more closely corresponded to normally distrib­
uted data. Then, all the 11 variables were standardized 
by calculating their standard scores (z-scores) as follows: 

x;-x 
Z.i == 

.1' 
(3) 

where z;= standard score of the sample i; x;= value of 
sample i; i= mean; s= standard deviation. 

Standardization scales the log-transformed data to a 
range of approximately -3 to +3 standard deviations, 
centered about a mean of zero. In this way, each variable 
has equal weight in the statistical analyses. Otherwise, 
the Euclidean distances will be influenced most strongly 
by the variable that has the greatest magnitude (Judd 
1980; Berry 1995). Besides normalizing and reducing 
outliers, these transformations also tend to homogenize 
the variance of the distribution (Rummel 1970). The raw 
data (with data-gaps filled) were used for the graphical 
analyses, whereas the transformed (log-transformed and 
standardized) data were used for the hierarchical cluster 
analysis (HCA), K-means cluster analysis (KMC), prin­
cipal components analysis (PCA), and fuzzy k-means 
clustering (FKM). 

Results 

The fundamental aim of the techniques compared here 
is to identify the chemical relationships between water 
samples. Samples with similar chemical characteristics 
often have similar hydrologic histories, similar recharge 
areas, infiltration pathways, and flow paths in terms of 
climate, mineralogy, and residence time. Table 3 shows 

the various techniques and the required input data. For 
brevity, only the 152 spring water samples are discussed 
in the following text. The other subsets of the complete 
database produced similar results. A preliminary analy­
sis of temporal effects, based on examination of individ­
ual analyses, suggested that relatively little change oc­
curred in the water quality of samples with time. This 
indicates that the spatial variability is the most impor­
tant source of variation in the data, rather than the tem­
poral factor. This conclusion was later tested and con­
firmed as discussed in the statistical methods section. 
For that reason, we did not include samples from tempo­
ral series to statistical analysis. This reduced the total 
number of samples to 118.The fundamental aim of the 
techniques compared here is to identify the chemical re­
lationships between water samples. Samples with simi­
lar chemical characteristics often have similar hydrolog­
ic histories, similar recharge areas, infiltration path­
ways, and flow paths in terms of climate, mineralogy, 
and residence time. Table 3 shows the various tech­
niques and the required input data. For brevity, only the 
152 spring water samples are discussed in the following 
text. The other subsets of the complete database pro­
duced similar results. A preliminary analysis of tempo­
ral effects, based on examination of individual analyses, 
suggested that relatively little change occurred in the 
water quality of samples with time. This indicates that 
the spatial variability is the most important source of 
variation in the data, rather than the temporal factor. 
This conclusion was later tested and confirmed as dis­
cussed in the statistical methods section. For that rea­
son, we did not include samples from temporal series to 
statistical analysis. This reduced the total number of 
samples to 118. 

Table 3 Statistical and graphical techniques evaluated for the classification of water samples 

Method Cations used Anions used 

Cluster analysis All major, minor All major, minor 
(HCA and KMC) and trace elements and trace elements 

Principal All major, minor All major, minor 
components and trace elements and trace elements 
analysis (PCA) 

Fuzzy k-means All major, minor All major, minor 
Clustering (FKM) and trace elements and trace elements 
Piper diagram Na+ K, Ca, Mg Cl, S04, 

HC03 + C03 

Collins bar Na+ K, Ca, Mg Cl, S04, HC03 
diagram (or HC03 + C03) 

Pie diagram Na+ K, Ca, Mg Cl, S04, HC03 

Stiff pattern Na (or Na + K), Cl, S04, 

diagram Ca, Mg Fe HC03 co3 
(optional) (optional) 

Schoeller Na+ K, Ca, Mg CL S04, HC03 
semi-logarithmic 
diagram 

Chernotf faces Up to 20 parameters can be plotted 
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Other parameters 

All applicable parameters 
Yes (I) or no (0) statements, 
discrete variables 

All applicable parameters 
Yes (I) or no (0) statements, 
discrete variables 

Same as above 

n/a 

n/a 

n/a 

n/a 

n/a 

Input data and plotting units 

Input: z-scores of the log-transformed data 
Output: distance matrix (KMC) and 
dendogram (HCA) 

Input: z-scores of the log-transformed data 
Output: PCA scores 

Input: same as above matrix 
Output: membership 
Relative %meq L-1 

Relative %meq L-1 or meq L I 

Relative %meq L -1 

meq L-1 

meq L -I in log-scale 

meq L-1 or mg L-1 
Other parameters in their respective units 
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PIPER DIAGRAM 

Fig. 5 Piper diagram of the 118 spring water samples 

Graphical Methods 
Most of the graphical methods are designed to simulta­
neously represent the total dissolved solid concentration 
and the relative proportions of certain major ionic spe­
cies (Hem 1989). All the graphical methods use a limited 
number of parameters, usually a subset of the available 
data, unlike the statistical methods that can utilize all the 
available parameters. The Piper diagram (Piper 1944; 
Fig. 5) is the most widely used graphical form and it is 
quite similar to the diagram proposed by Hill (1940, 
1942). The diagram displays the relative concentrations 
of the major cations and anions on two separate trilinear 
plots, together with a central diamond plot where the 
points from the two trilinear plots are projected. The 
central diamond-shaped field (quadrilateral field) is used 
to show overall chemical character of the water (Hill 
1940; Piper 1944 ). Back ( 1961) and Back and Hanshaw 
(1965) defined subdivisions of the diamond field, which 
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represent water-type categories that form the basis for 
one common classification scheme for natural waters. 
The mixing of water from different sources or evolution 
pathways can also be illustrated by this diagram (Freeze 
and Cherry 1979). Symbol sizes can be scaled to TDS on 
the diamond-shaped field to add even more information 
(Domenico and Schwartz 1997). 

Figure 5 shows the results of plotting the 118 spring 
samples on the Piper diagram. The data are broadly dis­
tributed rather than forming distinct clusters. Employing 
the water classification scheme of Back and Hanshaw 
( 1965), the samples are classified into a variety of water 
types including Ca-HC03, Ca-Mg-HC03, Ca--Na-HC03, 

Na-HC03, Na-Ca-HC03, Na-Cl and Ca-Mg-S04 types, 
with no dominant type. This diagram provides little in­
formation that allows us to discriminate between sepa­
rate clusters (groups) of samples. 

The Collins bar diagram (Collins 1923) and the pie 
diagram (Fig. 6) are easy to construct and present rela­
tive major ion composition in percent milliequivalents 
per liter (relative %meq L - 1 ). The constituents can also 
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Fig. 6 Plots for a single 
sample using several different 
graphical methods (Collins, 
pic, Schoeller and Stiff) 

Water analysis results for SP118 
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be plotted in meq L-1 with an appropriate scaling. For 
the Collins bar diagram, major cations are plotted on the 
left and major anions are plotted on the right. For the pie 
diagram, the cations are plotted in the upper half and an­
ions are plotted in the lower half of the circle. The pie 
diagram is usually drawn with a radius proportional to 
TDS. 

The Stiff pattern (Fig. 6) is a polygon that is created 
from three (or four) parallel horizontal axes extending on 
either side of a vertical zero axis (Stiff 1951 ). In this dia­
gram, cations are plotted on the left of the axes and an­
ions are plotted on the right, in units of milliequivalents 
per liter (meq L-1). The Stiff diagram is usually plotted 
without the labeled axis and is useful making visual 
comparison of waters with different characteristics. The 
patterns tend to maintain its shape upon concentration or 
dilution, thus visually allowing us to trace the flow paths 
on maps (Stiff 1951 ). 

The Schoeller semi-logarithmic diagram (Schoeller 
1955, 1962; Fig. 6) allows the major ions of many sam­
ples to be represented on a single graph, in which sam­
ples with similar patterns can be easily discriminated. 
The Schoeller diagram shows the total concentration of 
major ions in log-scale. 

As we can see from Fig. 6, the Collins, pie, and Stiff 
methods produce a single diagram for each sample. 
Clearly, it is not practical to produce and manually sort 
118 separate figures (e.g., Stiff diagrams), one for each 
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sample, in order to sort and classify large data sets. The 
choice of similarity would be based on the evaluation of 
the analyst, which is highly subjective. Therefore, we 
suggest that using purely graphical methods to group the 
samples is not efficient and can produce biased results. 
However, these methods are useful for presentation of 
maps showing hydrochemical facies, and software is 
available (e.g., RockWorks) to automatically and rapidly 
prepare such maps. 

Multivariate Statistical Techniques 
Another approach to understanding the chemistry of wa­
ter samples is to investigate statistical relationships 
among their dissolved constituents and environmental 
parameters, such as lithology, using multivariate statis­
tics (Drever 1997). Statistical associations do not neces­
sarily establish cause-and-effect relationships, but do 
present the information in a compact format as the first 
step in the complete analysis of the data and can assist in 
generating hypothesis for the interpretation of hydro­
chemical processes. 

Statistical techniques, such as cluster analysis, can 
provide a powerful tool for analyzing water-chemistry 
data. These methods can be used to test water quality da­
ta and determine if samples can be grouped into distinct 
populations (hydrochemical groups) that may be signifi­
cant in the geologic context, as well as from a statistical 
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Fig. 7 Dendogram from the HCA for the 118 spring water sam­
ples. Line of asterisks defines "phenon line", which is chosen by 
analyst to select number of groups or subgroups 

point of view. Cluster analysis was successfully used, for 
instance, to classify lake samples into geochemical fa­
cies (Jaquet eta!. 1975). Alther (1979), Williams (1982), 
and Farnham et a!. (2000) also applied cluster analysis to 
classify water-chemistry data. 

The assumptions of cluster analysis techniques in­
clude homoscedasticity (equal variance) and normal dis­
tribution of the variables (Alther 1979). Equal weighing 
of all variables requires the log-transformation and stan­
dardization (z-scores) of the data, as discussed above. 
Comparisons based on multiple parameters from differ­
ent samples are made and the samples grouped according 
to their "similarity" to each other. The classification of 
samples according to their parameters is termed Q-mode 
classification. This approach is commonly applied to wa­
ter-chemistry investigations in order to define groups of 
samples that have similar chemical and physical charac­
teristics because rarely is a single parameter sufficient to 
distinguish between different water types. 

Both the hierarchical cluster analysis (HCA) and 
K-means clustering (KMC) were used to classify the 
samples into distinct hydrochemical groups based on 
their similarity. In order to determine the relation be­
tween groups, the rxc data matrix (r samples with c vari­
ables) is imported into a statistics package. The Statistica 
(StatSoft, Inc. 1995) has seven similarity/dissimilarity 
measurements and seven linkage methods and supports 
up to 300 cases for the amalgamation process in the clus­
ter analysis. Individual samples are compared with the 
specified similarity/dissimilarity and linkage methods 
and then grouped into clusters. 

The linkage rule used here is Ward's method (Ward 
1963). Linkage rules iteratively link nearby points (sam-
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pies) by using the similarity matrix. The initial cluster is 
formed by linkage of the two samples with the greatest 
similarity. Ward's method is distinct from all other 
methods because it uses an analysis of variance 
(ANOVA) approach to evaluate the distances between 
clusters. Ward's method calculates the error sum of 
squares, which is the sum of the distances from each in­
dividual to the center of its parent group (Judd 1980) and 
forms smaller distinct clusters than those formed by 
other methods (StatSoft, Inc. 1995). 

Similarity/dissimilarity measurements and linkage 
methods used for clustering greatly affects the outcome 
of the HCA results. After careful examinations of avail­
able combinations of similarity/dissimilarity measure­
ments, it was found that using Euclidean distance 
(straight line distance between two points in c-dimen­
sional space defined by c variables) as similarity mea­
surement, together with Ward's method for linkage, pro­
duced the most distinctive groups where each member 
within the group is more similar to its fellow members 
than to any member from outside the group. The HCA 
technique does not provide a statistical test of group dif­
ferences; however, there are tests that can be applied ex­
ternally for this purpose (e.g., Student's t-test). It is also 
possible in HCA results that one single sample that does 
not belong to any of the groups is placed in a group by 
itself. This unusual sample is considered as residue. 

HCA classifies the data in a relatively simple and di­
rect manner, with the results being presented as a dendo­
gram, an easily understood and familiar diagram (Davis 
1986). In the present case, we selected the number of 
groups based on visual examination of the dendogram 
(Fig. 7). The resulting dendogram was interpreted to 
have classified the 118 spring water samples into three 
major groups (I-III) and nine subgroups (1-9) using 11 
variables; this, however, is a subjective evaluation. 
Greater or fewer groups could be defined by moving the 
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Table 4 Mean water chemistry of the spring water subgroups determined from HCA. pH (standard units); specific conductance 
().!Siemens cml), mean concentrations (mg L I) 

Group Sub- n" pH S. cond. Ca Mg Na 
group 

1 10 7.92 1,657.00 53.99 32.01 261.23 
2 7 7.04 6,264.17 70.69 75.10 1,2R7.00 
3 4 9.12 4,160.00 4.40 3.44 967.75 

II 4 27 7.70 855.10 95.91 29.09 70.76 
5 28 7.92 550.19 62.96 15.20 32.87 
6 I 8.08 400.00 25.43 5.76 44.57 
7 18 7.09 397.79 42.26 8.57 29.28 

111 8 8 8.03 272.57 22.38 1.81 30.99 
9 15 7.24 92.50 11.59 1.21 12.10 

a Number of samples within subgroups 

dashed horizontal line (phenon line) up or down. In addi­
tion, the dendogram does not give information about the 
distribution of the chemical constituents that form each 
group: a distinct limitation when compared with the 
graphical techniques. The differences among subgroups 
defined by the HCA (Fig. 7) were determined to be sta­
tistically significant (p<O.OO 1 ), except the subgroups 2 
and 3 of group I, which were significant only at p<0.05. 

Table 4 shows the means for each of the parameters 
produced by the HCA analysis. These values reveal 
some trends between the major groups. Group I samples 
all have significantly higher TDS than group II or III 
samples. Subgroup 6 has only one member (Table 4, 
Fig. 7), a sample that is distinguished by an abnormally 
low Si02 value. This value is probably an analytical or 
typographic error, and was removed from the database. 
Groups II and III also appear to be separated based on 
TDS. The basis for the division into subgroups is not so 
apparent. For instance, subgroups 1 and 2 appear to be 
distinguished from subgroup 3 by the lower pH values 
and higher Ca and Mg values. However, the differences 
between subgroups 5 and 7 are subtle. 

At this point, it is fair to ask if these clusters of sam­
ples have any physical significance/meaning, or are just 
a statistical result. The relationship of the statistically de­
fined clusters of samples to geographic location was test­
ed by plotting the subgroup value for each sample on a 
site map (Fig. 4). The figure shows that there is a good 
correspondence between spatial locations and the statis­
tical groups as determined by the HCA. For instance, the 
spring samples composing group I are usually found 
close to playa or nearby discharge areas on the basin 
floors and have the highest TDS concentration in the ar­
ea (Table 4). Group II samples are mostly located below 
the 2,000-m contour line in the Sierra Nevada and also 
found at the ranges surrounding the valleys (Fig. 4). 
Group III samples plot above the 2,000-m contour line in 
the high Sierra Nevada and are characterized by low 
TDS concentrations (Table 4). The majority of recharge 
to the basin-fill aquifers occurs from areas where group 
II and III samples are located. It appears that the tech­
nique can provide valuable information to help define 
the hydrologic system. For instance, the high degree of 
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K C1 so4 HC01 Si02 F TDS 

22.01 224.16 175.51 453.39 46.07 2.20 1,063.45 
77.64 1,165.71 433.71 1,541.14 101.83 1.70 4.347.86 
77.25 464.50 336.25 1,122.25 50.50 - 3,206.34 

3.92 46.34 211.92 274.82 36.44 1.24 646.22 
3.20 25.64 68.69 220.58 25.10 0.26 344.17 
5.83 40.90 16.49 155.00 0.61 0.00 200.00 
2.80 15.20 37.96 177.50 37.34 0.59 308.11 

1.03 5.61 19.70 124.37 32.29 2.62 205.18 
0.92 1.23 0.82 70.56 22.23 0.75 70.73 

spatial and statistical coherence in this data set could be 
used to support a model of hydrochemical evolution 
where the changes in water chemistry are a result of in­
creasing rock-water interactions along hydrological flow 
paths. 

K-means clustering (KMC) has also been used to 
classify water samples into distinct hydrochemical 
groups (Johnson and Wichern 1992). This method of 
clustering is different from the HCA because the number 
of clusters is pre-selected at the start of the analysis, pro­
ducing a subjective bias. The KMC method will produce 
exactly K different clusters with the greatest possible 
distinction. Computationally, this method can be thought 
of as an analysis of variance (ANOVA) in reverse. The 
clustering starts with K random clusters, and then moves 
objects between those clusters with the goal to (1) mini­
mize variability within clusters, and (2) maximize vari­
ability between clusters (StatSoft, Inc. 1995). Unlike 
HCA, the results from KMC cannot be presented in a 
dendogram for a quick visual assessment of the results. 
Instead, the results are presented in a large table that 
shows members of clusters and their distances from re­
spective cluster centers. 

As discussed previously, we did not include samples 
from temporal series because the preliminary analysis 
showed that there was little temporal variation. To verify 
that analysis, we included the entire 152 spring samples 
in an hierarchical cluster analysis (HCA) and examined 
the resulting dendogram. The dendogram had the tempo­
ral series samples placed together, suggesting that little 
change occurs in the water quality with time period of 
sampling. This agrees with the preliminary analysis that 
spatial variability is the most important source of varia­
tion in the data. 

Another type of data analysis sometimes used is prin­
cipal components analysis (PCA). This technique reduc­
es the number of dimensions present in data (reducing 11 
variables to 2 variables in our study). The PCA-defined 
new variables can then be displayed in a scatter diagram, 
presenting the individual water samples as points in 
a lower-dimensional (generally 2-D) space. This tech­
nique, strictly speaking, is not a multivariate statistical 
technique, but a mathematical manipulation that may 
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Fig. 8 Plot of the principal 
components analysis showing 
the distribution of HC A­
derived classification of sam­
ples for the spring water 
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provide a certain amount of insight into the structure of 
the data matrix (Davis 1986) by reducing the dimensions 
of the data matrix. Figure 8 shows the results of the prin­
ciple components analysis of the 118 samples. The first 
principal component (PC I) contains 54.5% of the total 
variance and the second component (PC2) represents 
14.5% of the total variance. Although there appears to be 
reasonable statistical discrimination between the three 
major groups as defined by HCA, there is no objective 
means to clearly distinguish boundaries between the 
groups or subgroups, nor does this type of analysis pro­
vide any information about chemical composition. This 
method was used to investigate the degree of continuity 
or clustering of the samples and to determine if over­
lapping water types exist within the data. The scatter 
of points in Fig. 8 suggest that there is continuous varia­
tion of the chemical and physical properties of the sam­
ples. 

The HCA clustering scheme was also repeated using 
just the two principal components scores (reduced two­
dimensional data). The resulting classification differs 
very little from the first HCA classification, suggesting 
that employing PCA has not improved the clustering re­
sults here. However, other data sets may benefit because 
using lower dimensional data (defined by PCA) may im­
prove the clustering results by reducing the redundancy 
in the data. The use of variables that have specific rela­
tionships can cause undesirable redundancies in cluster 
analysis. For instance, TDS (related to total ions present 
and also specific conductance), alkalinity (related to bi­
carbonate), and hardness (related to calcium and magne­
sium) were not used in our cluster analyses (HCA and 
KMC) because they are directly related. 
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Fuzzy k-Means Clustering 
Geological and hydrochemical systems are sometimes 
too complex to analyze easily using conventional graphi­
cal or statistical methods. Often the chemical and physi­
cal properties of the natural system vary continuously, 
rather than abruptly. In other words, these underlying 
physical and chemical processes do not always produce 
discrete outcomes. Because of this continuity, statistical 
clusters may not be well separated and instead may form 
a sequence of overlapping clusters. Therefore, methods 
related to "fuzzy logic" may be useful for modeling and 
classification purposes. 

Application of fuzzy logic in Earth sciences is still in 
its early stages. On this topic, there are only a small 
number of papers published in the areas of geophysics, 
geology, petroleum, and geotechnical engineering. For 
example, McBratney and Moore (1985) applied fuzzy 
sets to climatic classification and, later, McBratney and 
deGruijter (1992) and Odeh et al. (1992) used the Fuzzy 
k-means approach for classification of soils. Nordlund 
( 1996) applied a rule-based Fuzzy logic to model deposi­
tion and erosion processes. 

Traditional Aristotelian logic (binary logic) imposes 
sharp boundaries (Sibigtroth 1998); however, fuzzy logic 
has no sharp boundaries (Fang and Chen 1990). Fuzzy 
logic is basically a multi-valued logic that allows inter­
mediate values to be defined between conventional eval­
uations like yes/no, 0/1, true/false, black/white, and so 
on (Zadeh 1965; McNeill and Freiberger 1993). Fuzzy 
logic also allows for formalization of qualitative state­
ments, which are widely used in Earth sciences. Both 
fuzziness and probability describe uncertainty numeri­
cally; however, probability treats yes/no occurrences and 
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Table 5 First 20 rows of the 
FKM membership matrix for Sample Class" Membership 
the spring water data. Class no. 
memberships are equivalent to 2 3 4 5 6 7 8 9 
HCA subgroups 

SP33 9 0.000 0.002 0.001 0.003 0.033 0.001 0.000 0.004 0.955 
SP35 9 0.000 0.002 0.001 0.003 0.043 0.001 0.000 0.005 0.944 
SP36 9 0.000 0.003 0.001 0.003 0.110 0.001 0.000 0.006 0.875 
SP34 9 0.000 0.001 0.000 0.001 0.020 0.000 0.000 0.002 0.975 
SP52 5 0.001 0.008 0.004 0.015 0.736 0.002 0.001 0.017 0.216 
SP32 5 0.000 0.002 0.001 0.003 0.687 0.001 0.000 0.005 0.300 
SP29 9 0.000 0.002 0.001 0.004 0.203 0.001 0.000 0.005 0.783 
SP31 5 0.001 0.003 0.002 0.004 0.952 0.001 0.000 0.006 0.031 
SP27 9 0.000 0.001 0.000 0.001 0.009 0.000 0.000 0.002 0.987 
SP28 5 0.000 0.002 0.001 0.002 0.948 0.000 0.000 0.003 0.043 
SP37 5 0.000 0.001 0.000 0.001 0.988 0.000 0.000 0.001 0.008 
SP116 9 0.002 0.038 0.016 0.074 0.068 0.005 0.001 0.077 0.718 
SP86 7 0.019 0.021 0.026 0.014 0.004 0.081 0.813 0.018 0.005 
SP47 5 0.000 0.002 0.001 0.003 0.935 0.001 0.000 0.006 0.050 
SP30 5 0.001 0.005 0.002 0.008 0.939 0.001 0.000 0.009 0.034 
SP24 9 0.047 0.074 0.064 0.076 0.113 0.037 0.011 0.110 0.468 
SP38 5 0.003 0.019 0.011 0.021 0.619 0.006 0.002 0.057 0.262 
SP21 9 0.022 0.142 0.151 0.101 0.033 0.050 0.008 0.217 0.274 

a Class memberships on the SP20 8 0.004 0.202 0.183 
basis of which the rows were 

0.060 0.005 0.051 0.004 0.469 0.021 
SP25 9 0.001 0.008 0.004 0.010 0.033 0.002 0.000 0.015 0.928 

selected are in boldface 

is inherently a statistical method. Fuzziness deals with 
degrees and is a non-statistical method (Zadeh I 965). 

One approach to fuzzy classification, and probably 
the best and most commonly used, is fuzzy c-means 
(Bezdek 1981), later renamed to fuzzy k-means (FKM) 
by deGruijter and McBratney (1988). This method mini­
mizes the within-class sum of square errors. In this tech­
nique, samples may not be a 100% member of a group, 
instead the membership of samples are graded (parti­
tioned) between groups. For example, a water sample 
may be mostly a member of a certain group, but it may 
be also a partial member of other groups. The analysis 
produces membership grades for each sample between 0 
and 1. The higher the membership value for a group, the 
more closely the sample resembles the other members of 
this group. The FKM method does not impose any limi­
tations on the number of samples or objects that can be 
clustered in one batch. Some clustering programs limit 
the amount of samples that can be clustered in one batch 
(e.g., MVSP: Kovach 1990, 100 samples; and Statistica: 
StatSoft, Inc. 1995, 300 samples). Others use a two-step 
approach (pre-clustering and clustering) to cluster sam­
ples (SAS Institute Inc. 1988). In this respect, FKM may 
provide a better tool for clustering a larger data set (e.g., 
combination of spring, surface, and well-water data) 
with overlapping or continuous clusters. 

We employed the program FuzME (Minasny and 
McBratney 1999), which uses Brent's algorithm (Press et 
al. I 992), when searching for an optimal value ( deGruijter 
and McBratney 1988). In this method, a parameter called 
"fuzziness exponent" (j) is selected before application of 
the method. It determines the degree of fuzziness of the fi­
nal solution, which is the degree of overlap between 
groups. With the minimum meaningful value off= 1, the 
solution is a hard partition, that is, the result obtained is not 
fuzzy at all. As f approaches infinity ( oo) the solution ap-
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proaches its highest degree of fuzziness (Bezdek 1981 ). 
For most data, 1.5:::; f ::;3.0 produces satisfactory results 
(Bezdek et al. 1984). The fuzzy k-means algorithm is ap­
plied as follows (Minasny and McBratney 1999): 

1. Choose the number of classes K (which is equivalent 
to HCA subgroups), with 1<K<n. 

2. Choose a value for the fuzziness exponent f, with f> 1. 
3. Choose a definition of distance in the variable-space 

(Euclidean, diagonal, or Mahalanobis distance). 
4. Choose a value for the stopping criterion e (e.g., 

e=0.001 gives reasonable convergence). 
5. Initialize with random memberships or with member­

ships from a hard K-means partition (e.g., HCA or 
KMC). 

Odeh et al. (1992) suggested methods for choosing 
fuzziness exponent and number of classes. For our study, 
a value of 1.5 was used for the fuzziness exponent (j) 
and Euclidean distance was chosen as the distance mea­
sure. Like the KMC, the selection of the optimal number 
of groups was based on the results of the HCA technique 
(nine subgroups). 

In the FKM method, the results are strongly influ­
enced by those variables that have large variances. 
Therefore, log-transformed and standardized data matrix 
were used as input data for the FKM analysis. The FKM 
analysis reduced the original 118xll data matrix to a 
9xll matrix of class centers. Table 5 shows the mem­
bership matrix for the first 20 samples (the complete 
table is too large to present). 

Discussion 

A direct comparison of the results of the three types of 
cluster analysis (HCA, KMC, and FKM) is difficult be-
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Fig. 9 Piper diagram of the 
nine subgroup means for the 
clusters defined by the three 
ditlcrent methods 
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Numbers in parenthesis show the number of samples in that particular subgroup, 

cause only the HCA technique produces a graphical out­
put. Therefore, we plotted the HCA-, KMC- and FKM­
defined means for each subgroup on a Piper diagram. 
Figure 9 shows that the HCA-, KMC- and FKM-defined 
means for each group overlap for most of the subgroups, 
showing the similar results obtained for all three 
methods. For instance, the FKM analysis placed 97% of 
the samples within the same three major groups defined 
by HCA method, whereas 79% of the samples are placed 
exactly into same subgroups. However, in both the KMC 
and FKM analysis, we had pre-selected the number of 
groups (in our case that number was based on the nine 
defined by the HCA results). The similarity of the results 
for all three techniques suggests that the pre-selection of 
the number of groups strongly influences the outcome. 
This is a serious limitation that means the investigator is 
required to have performed some type of preliminary 
analysis when employing the KMC and FKM tech­
niques, which could then bias the results of the statistical 
analysis. 

The efficiency and semi-objective nature of the statis­
tical techniques makes these techniques superior to the 
graphical methods in order to group samples based on 
water chemistry data. However, the graphical methods 
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provide valuable information about the chemical nature 
of the groups. By combining the two techniques we can 
gain additional information that neither technique by it­
self can offer. 

Figure I Oa-c shows the mean values for each of the 
nine subgroups (defined by HCA) on Collins bar, pie, 
and Stiff diagrams, respectively. Each graphical tech­
nique shows distinct visual differences between the sub­
groups, while providing information about the chemical 
composition of each group. In Fig. II, all the samples 
are plotted on Schoeller semi-logarithmic diagrams for 
each subgroup. This plot illustrates the difficulty in using 
purely graphical means to cluster samples. The patterns 
of subgroups I and 2 are distinctive, but subgroup 3 does 
not appear related. However, although subgroups 4-7 
show a distinct pattern that differs from the other sub­
groups, it would be difficult to discriminate between 
samples belonging to subgroups 4-7. 

Although previously not utilized in the classification 
of water samples, we have included an example of icon 
plots that can be used to represent and visually discern 
similarities between water samples. The basic idea of 
icon plots is to represent individual water samples as 
graphical objects where values of variables are assigned 
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Fig. 10 Plots of a Collins bar 
diagram, b pie diagram, and 
c Stiff pattern using subgroup 
means defined by HC A 
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to specific features or dimensions of the objects. The as­
signment is such that the overall appearance of the ob­
jects changes as a function of the configuration of val­
ues. Thus, the objects are given visual "identities'' that 
are unique for configurations of values. One of the most 
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elaborate type of icon plot is Chernoff faces (Chernoff 
1973 ), which can be used to plot up to 20 parameters for 
one water sample. Chernoff faces were plotted for the 
subgroup means from the cluster analysis (Fig. 12). This 
technique also provides an effective visualization of a 
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Fig. 11 Plots of all spring water samples by using Schoeller diagram (subgroups and groups defined by HC A) 

Fig. 12 Chernotf faces (sub­
groups and groups defined by 
1-!CA) 
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small number of water samples having different charac­
teristics. The different physical and chemical characteris­
tics of the samples are shown by the changes in facial 
features. Parameter values are represented in schematic 
humanlike faces such that the values for each variable 
are represented by the variations of specific facial fea­
tures (StatSoft, Inc. I 995). Examining such plots may 
help to discover specific clusters of both simple relations 
and interactions between variables. 

Summary and Conclusions 

Each technique that has been discussed in this paper has 
advantages and disadvantages in clustering and display­
ing water samples using typical chemical and physical 
parameters. The graphical techniques can provide valu­
able and rapidly accessible information about the chemi­
cal composition of water samples such as the relative 
proportion of the major ions; however, these techniques 
have some serious limitations when used alone. All the 
graphical techniques use only a portion of the available 
data. Minor constituents (0.01-10 mg L-1; e.g., boron, 
fluoride, iron, nitrate, strontium) and trace constituents 
(<0.1 mg L-1; e.g., aluminum, arsenic, barium, bromide, 
chromium, lead, lithium) are not used. From a water­
quality standpoint, the presence of one of these minor or 
trace elements may be important because small amounts 
can pose threats to human health. Some of these minor 
and trace constituents behave more conservatively in the 
groundwater, thus, they can be used more efficiently to 
classify waters (Farnham et a!. 2000). Some graphical 
techniques can display only one sample (or a mean) per 
diagram (e.g., Collins bar, pie, Stiff), whereas others can 
display multiple samples (e.g., Piper, Schoeller). Neither 
type is particularly useful to produce distinct grouping of 
samples because there is no objective means to discrimi­
nate the groups or to test the degree of similarity be­
tween samples in a group. Collins bar, pie, and Stiff dia­
grams are probably the best to help distinguish between 
small numbers of samples that have distinct chemical 
differences. For a large number of samples these dia­
grams are unwieldy. In this study, neither the Piper nor 
Schoeller diagrams could group all the similar water sam­
ples (based on statistical measures) from our data set. 

Unlike the graphical classification techniques, multivar­
iate statistical techniques can use any combination of 
chemical and physical parameters (e.g., temperature) to 
classify water samples. The HCA technique was judged 
more efficient than the KMC and FKM techniques because 
it offers a semi-objective graphical clustering procedure 
(dendogram), which does not require pre-determining the 
final number of clusters. However, none of the statistical 
techniques offered easily accessible information about 
the chemical composition of the samples in the clusters 
(groups). That is, these methods are very efficient at group­
ing water sample by physical and chemical similarities, but 
the results are not immediately useful for identifying trends 
or processes relevant to hydrogeochemical problems. 
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Combining the two approaches appears to offer a 
methodology that retains the advantages while minimiz­
ing the limitations of either approach. Using the HCA 
analysis to initially cluster the samples (into groups and 
subgroups) provides an efficient means to recognize 
groups of samples that have similar chemical and physi­
cal characteristics. The technique also allows discrimina­
tion of samples that have extreme values for closer eval­
uation. These statistical groups have distinct spatial pat­
terns in the study area, providing the spatial discrimina­
tion desired when determining hydrochemical facies. 
The mean for each of the required chemical parameters 
are then plotted on diagrams, e.g., a Piper diagram, offer­
ing easily accessible information on the chemical differ­
ences between the groups and potential information 
about the physical and chemical processes in the water­
shed. The use of the hierarchical cluster analysis (HCA) 
in conjunction with a multi-sample graphical technique 
such as the Piper plot offers a robust methodology with 
consistent and objective criteria to efficiently classify 
large numbers of water samples based on common 
chemical and physical parameters. 
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