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Abstract 

Principal components analysis (PCA) is used to evaluate similarities in the trace element chemistry of groundwaters. Many 
of the trace clements. however, occur at concentrations below the detection limits (DL), which presents problems for statistical 
analyses. Since the optimal methods for dealing with the '< DL' values require the assumption of nonnality or lognormality, 
which is not the case for these data, simple substitution methods may be preferred. 

In this study, a new approach was developed to detennine the best substitution methods when dealing with the 'DL' values 
for a given data set. Monte Carlo simulation experiments, using a mixture multivariate model. were perfonned to test the effects 
of substitution of the '< DL' values with 0, DL, and DL/2 on the results of PCA. In general, the results showed that substitution 
with DL/2 gave superior results compared to substitution with DL or 0. Deterioration of the performance of all substitution 
methods was observed when the number of '< DL' values exceeded approximately 25%. 

When '< DL' values are present within a data set, use of uncensored data (if available) may be preferred. Use of uncensored 
data requires statistical methodology to take into account varying uncertainties in the measurements. A new approach for the 
selection of variables tor multivariate analysis of the trace clement chemistry data was therefore developed. Selection of 
variables was based on the reproducibility between measurements made on duplicate samples. © 2002 Elsevier Science B.V. 
All rights reserved. 
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1. Introduction 

The trace element chemistry of groundwater may 
be used to assign a fingerprint with which water from 
similar flow paths can be identified [1-6]. The con­
centrations of over 50 trace elements in groundwater 
samples are measured and principal components anal-
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ysis (PCA) is applied for data reduction. Infonnal 
clustering of springs and wells, based on the PCA 
results, is then used to evaluate chemical similarities 
between the groundwaters. Similarities are also exam­
ined using the clustering techniques, k-means cluster­
ing, and hierarchical clustering [61-

Difficulties arise in the application of PCA and 
cluster analysis when the concentration of an element 
is below the detection limit (DL). It is often standard 
laboratory practice to report these data simply as 'DL' 
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values. Such 'censoring' of data, however, can com­
plicate all subsequent statistical analyses. 

The procedures for handling censored data 
depends on the technical application involved. The 
best method to use generally depends on the amount 
of data below the detection limit, the size of the data 
set, and the probability distribution of the measure­
ments. When the number of '< DL' observations is 
small, replacing them with a constant (i.e., DL/2) is 
generally satisfactory [7]. The values that arc com­
monly used to replace the '< DL' values arc 0, DL, or 
DL/2. Distributional methods such as the marginal 
maximum likelihood estimation [8] or more robust 
techniques [9] are often required when a large num­
ber of '< DL' observations are present. Substitution 
of a constant may still be preferred over the more 
complicated methods such as maximum likelihood 
techniques and regression order statistics when the 
data sets are very small (n < 1 0). This is due to the 
inability to accurately infer the distributional proper­
ties from small data sets that are required for these 
methods [10]. Substitution of censored data with a 
constant value has also been shown to give preferred 
results over substitution of missing data using PCA 
[I I]. 

Another approach to deal with data below the 
detection limit is to use the measured value (i.e., 
uncensored data). Numerical values are often pro­
duced from the analytical instrument but are not 
reported by the chemist because the value is judged 
"unreliable" [ 12]. Although such censoring of data 
prevents the misuse of low quality data, it commonly 
leads to a loss of important information [13]. Samples 
taken over time may be censored at different levels as 
changes in the precision of a method occur. This is 
often the case owing to changes in sensitivity of the 
analytical instrumentation over time or when compar­
ing measurements made in different laboratories. This 
can lead to very complicated patterns of censoring 
[14]. Recording only the DL can create an uncorrect­
able bias in determining long-term trends [ 15]. In fact, 
trends are often more effectively detected in uncen­
sored data than censored data even when the censored 
data are highly unreliable [16]. Censoring data is 
therefore not recommended in most cases. Instead, it 
is generally preferred to report the measured value 
along with an estimate of measurement precision 
[14, 15,17]. 

Although censoring data is not the recommended 
practice in most data reporting situations, it is still the 
most common. Techniques are therefore required to 
deal with the '< DL' values when uncensored data is 
not available. As is often the case, the distribution of 
the geochemistry data evaluated in this study is 
neither normal nor lognormal, thus eliminating the 
applicability of the distributional methods. This leaves 
simple substitution with a constant as one viable 
alternative. 

The goal of this study was to develop an approach 
to determine the best constant (0, DL, or DL/2) to 
substitute for values that are below the detection limit 
and also to evaluate the effect of increasing the 
percentage of ' < DL' values on the results of PC A. 
In our approach, which is similar to the parametric 
bootstrap method, the structure of the parent data 
matrix containing the concentrations of trace elements 
in groundwater samples was first simulated. A detec­
tion limit was then applied that resulted in a specified 
number of values below the detection limit (5%, 10%, 
15%, 20%, 30%, 40%, 50%, and 75%). All values 
below this DL were substituted with 0, DL, and DL/2. 
PCA results for these substituted data sets were 
compared to those of the unsubstituted "true" data 
set. The use of constants for substituting values below 
the detection limit was further examined by compar­
ing the PCA results when different detection limits are 
associated with each set of samples. Although, in this 
study, the censoring limit is referred to as the detection 
limit, this approach equally applies to data that is 
censored at the quantitation limit or any other speci­
fied threshold limit. 

In addition to the evaluation of substitution meth­
ods, an approach for the selection of variables was 
developed. It is important that the variables (i.e., trace 
elements) included in the PCA are good descriptors of 
the groundwater systems that are being compared and 
not simply describing noise. Although a high uncer­
tainty may be associated with the measurement of a 
given trace element in a sample, this uncertainty may 
or may not be significant when compared to the 
differences in concentrations between samples from 
different locations. A method was therefore developed 
to select the variables based on the variance between 
duplicate measurements relative to the variance 
observed over all samples within the study area. 
Selection of variables based on this relative variance 
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may become crucial when standardized data are used 
for the PCA. Geochemical data are typically stand­
ardized to unit variance prior to PCA because the 
concentrations of the various chemicals often vary by 
several orders of magnitude. This often scales up the 
influence of the variables that arc relatively constant 
[18] and that may be describing primarily the meas­
urement variability on the PCA. This can severely 
impact the PCA when a significant number of these 
variables are present. This approach for the selection 
of variables also allows for the use of uncensored data 
when available. Although use of uncensored data is 
often desirable, it is important that some measure of 
uncertainty be associated with each of the measure­
ments. Variance between duplicates is generally the 
best measure of uncertainty that is available. 

2. Methods 

2.1. Sample collection and ana~vsis 

Groundwater samples were collected following 
ultra-clean sampling techniques [ 19]. For sampling 
of spring water, precleaned (acid-washed) Teflon® 
tubing was placed near the spring's source and 
groundwater was then pumped, using a peristaltic 
pump, through Gelman Sciences (0.45 ~un) ground­
water filter capsules. Before filling the sample bottles 
(precleaned, acid-washed high-density linear poly­
ethylene) with a particular groundwater sample, the 
bottles were rinsed three times with filtered ground­
water. The samples were immediately acidified to 
pH< 2 with ultra-pure nitric acid (SeaS tar). Sampling 
for well waters was essentially identical to spring 
water sampling, except that prior to sample collection, 
each well was pumped for a number of well volumes 
in order to ensure that the collected sample was 
representative of the actual groundwater and not water 
that had been sitting in the well bore for some time. In 
addition, the well waters were collected only after the 
pH, temperature, and conductivity of the well water 
had stabilized. The sample bottles containing the 
groundwater samples were double bagged in clean 
plastic bags, placed into clean plastic chests on icc, 
and transported to the laboratory where they were 
stored at approximately 4 °C. Samples were then 
analyzed for trace elements using an inductively 

coupled plasma mass spectrometer (ICP-MS) (Perkin 
Elmer Elan 5000), equipped with ultrasonic nebuliza­
tion (Cetac Technologies, Model U-5000AT), which 
increased the sensitivity of the instrument by a factor 
of approximately 30, and greatly reduced oxide for­
mations in the plasma stream that can lead to mass 
interferences during analysis [ 19]. Laboratory blanks 
and field blanks were used to evaluate potential 
contamination of the samples. Many samples were 
collected in duplicate and at multiple times on differ­
ent dates for the evaluation of reproducibility of the 
trace element measurements. 

2.2. Principal components analysis 

There are many reviews of PCA (e.g., Refs. 
[ 18,20,21]) and the reader is referred to these for 
more detailed discussions. PCA is a multivariate 
statistical technique used to reduce the dimensionality 
of a data matrix or to state this more accurately: PCA 
is used to find the "true" dimensionality within a set 
of data. With PCA, a set of correlated measured 
variables is transformed into a set of uncorrelated 
principal components. The principal components are 
described using two lower dimensional data matrices 
(scores and loadings) that capture the underlying 
patterns within the original data [18]. The dominant 
patterns present within the samples and variables are 
illustrated by plotting the columns of the score matrix 
and the loadings matrix, respectively. 

The principal components are obtained through 
eigenanalysis of the correlation or covariance matrix. 
The correlation matrix is generally used, as is the case 
in this study, so that each variable is mean centered 
with unit variance, thus providing equal weight of 
each of the variables. Eigenanalysis of a p x p corre­
lation matrix produces p pairs of eigenvalues and 
eigenvectors. Each eigenvalue/eigenvector pair 
describes a principal component. The eigenvalues 
describe the amount of variance explained by each 
principal component and the loadings are the coor­
dinates of the eigenvector. The principal component 
scores are then given as linear combinations of the 
original standardized (autoscaled) data with the load­
ings as the coefficients. Principal components are 
extracted so that the maximum amount of variance 
is explained in (has the largest eigenvalue associated 
with) the first principal component and progressively 



Table I 

Sample location 

Wells 

Bcatty-WD#I 
Bcatty-WD#2 

Beatty-WD#2D 
CnOCrRanch#l 
CoiTcrRanch#2 

ER-20-o-3 
ER-20-6-30 
ER-30 
ER-OVI 
ER-OVID 
ER-OV2 
ER-OV3a 

ER-OV3aD 
ER-OVJa3 
ER-OV3c 
ER-OV3cD 
ER-OV4a 
ER-OV4aD 

ER-OV' 
FR-OV6a 

Sdalc 
Tolicha Pic# 1 
Tolicha Pk.#2 
Tolicha Pk.#2D 
U-20WW 
U-20WWD 
Uc-29a1 

Dale 

2/97 
4197 
4/97 
9/94 
X/90 

6/97 
6/97 
2/95 

11/97 
11/97 
11/97 
11/97 
11/97 
11/97 
11/97 
11/97 
11/97 
11/97 
11/97 

11/97 
11197 
11/96 
11/97 
11/97 
11/97 
11197 
IIN7 

Li Ti V Cr Mn Ni Gc As Sc Rb Sr Mo Sb Ba Ru Tl 
(ppb) (ppb) (ppb) (ppb) (pph) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) (ppb) 

w u 
(ppb) (ppb) 

Ua 
(ppt) (ppt) (ppt) 

93 
I 03 
104 
166 
179 

52 
51 
63 

175 

178 
192 
146 
147 
143 
119 
123 
127 

129 
72 

167 
97 

51 
50 
51 
62 
63 
38 

1.15 
1.87 

184 
0.47 
0.34 

2.78 
3.04 
O.lo 
0.42 
0.45 

0.73 
0.54 
0.52 
0.45 
0.46 
0.40 
0.36 

0.34 
0.32 

0.50 
0.44 
0.30 
0.23 
o.2o 
0.23 
0.23 

0.13 

10.3 1.42 
6.96 0.67 
7.07 0.67 
2.67 o.xo 
2.16 0.37 
2.20 0.93 
2.00 O.X7 
4.93 2.43 
178 
1.77 
1.54 
2.71 

3.20 
2.70 

1.47 
1.48 
1.38 
1.64 
1.64 

1.58 
2.69 0.42 
2.42 0.39 
3.74 

3.72 
14.5 

1.70 

1.72 
2.59 

7.97 0.99 
9.65 1.41 

4.30 1.14 
4.15 0.93 
4.10 O.X9 

2.42 0.25 
2.49 0.26 

3.43 1.39 

0.15 0.12 
0.09 0.18 
0.09 O.IX 
0.34 ll.IO 
0.49 0.09 

26.6 4.76 
2o.l 4.33 
11.0 o.o7 
0.54 1.07 
0.51 
0.99 
0.73 

0.77 
0.70 

1.04 
191 
1.5X 

1.21 
1.42 

0.47 0.64 
0.45 0.69 
o.2o 0.46 

0.23 0.50 
1.68 5.33 
2.39 0.43 
0.08 0.20 

23.9 0.1 <) 

0.57 0.15 
0.49 0.14 

49.9 
49.6 

0.56 

3.43 
3.43 
0.51 

0.32 
0.26 
0.27 
1.55 
2.36 
0.51 
0.50 
0.19 
112 
1.13 
133 
101 
1.02 

103 
1.23 
124 
1.19 

125 
0.58 
0.83 
0.78 
0.31 
0.32 
0.32 
0.42 
0.42 
0.33 

13.9 
15.1 
15.2 
6.4 
6.4 
5.8 
5.5 
7.X 
6.3 
6.5 
5.2 
8.2 
9.2 
7.9 

15.3 
15.4 
14.2 

14.6 
16.2 
12.9 
13.7 
16.3 
17.0 

16.9 
5.9 
5.9 
5.X 

1.7X 
0.92 
0.89 
0.57 
0.64 
0.45 
0.51 
0.57 
0.82 
0.82 
0.79 
0.84 
0.92 
0.82 
0.49 
0.41 
0.59 

0.52 

1.10 
0.81 
0.89 

IIX 
1.06 
0.91 
0.50 
0.51 
0.89 

22.5 
23.1 

23.6 
18.1 
I X.4 

11.4 
Ill 
3.7 

25.3 
25.4 
12.3 
11.8 
11.7 
11.7 
5.0 
4.8 

18.9 
19.2 
22.2 
11.6 
19.4 

17.2 
15.0 
14.5 
4.9 
4.9 
7.7 

148 
158 

160 
163 
167 
23.7 
23.0 

6.7 
4.7 
4.6 

44.5 
76.1 
74.4 
75.5 
97.3 
97.8 
21.7 
218 

191 
10.7 

277 

122 
Ill 
109 
24.3 
24.2 
51.5 

10.5 
9.0 
9.0 

12.2 
12.8 
3.4 
3.3 
3.0 

9.5 
9.6 
9.7 
7.5 

7.6 
8.1 

12.7 
12.8 
8.9 

9.1 
5.9 

10.6 
9.3 

4.5 
4.5 
4.5 
,,2 

3.2 
1.9 

0.21 
0.18 
0.19 
0.19 
0.17 
0.18 
0.18 
0.34 
0.16 
0.16 
0.20 
0.21 

0.20 
0.30 
0.32 
0.32 
0.31 
0.31 
ll.ll 

0.27 
0.08 
0.12 
0.11 
0.12 

0.14 
0.15 
0.14 

5.15 0.70 
5.48 0.76 
5.41 0.76 
9.80 0.80 

10.2 0.81 

2.89 
2.85 

1.27 
1.26 

1.18 0.66 
2.04 0.88 
1.97 0.87 
3.20 0.64 
4.44 

5.7 

1.45 

1.64 
4.38 0.73 
1.63 
1.65 
2.22 
2.21 
9.15 

1.78 
1.84 
1.72 
1.71 
1.70 

0.49 0.94 
21.1 0.95 

3.38 0.47 
1.92 0.52 
1.82 0.51 
0.08 1.15 
O.OX 1.15 
2.05 0.63 

8.50 
8.90 
8.90 

15.4 
15.5 

3.1 
3.5 

1.5 
1.5 

5.5 1.4 
2.7 3.3 
2.5 3.0 

2.98 227 
3.08 216 

3.1 
2.0 

1.80 
8.50 
8.32 

18.5 
7.76 
7.94 
7.95 
4.01 
4.10 
2.69 

2.66 
2.04 
4.80 
2.66 
2.51 
2.61 
2.67 
2.15 
2.11 
1.32 

170 0.0 
21 3.0 
20 3.1 

7.7 2.0 
19 
12 

22 
33 
30 
12 

2.3 

2.1 
2.5 
3.5 
2.7 
3.0 

II 3.0 
2.2 2.0 

54 3.0 
4.0 1.3 
8.9 0.7 

10 1.4 
10 
41 
43 

5.1 

2.1 
1.7 
1.9 
1.1 

108 
98.2 

85.0 :;-

~~:o f 
11.0 -
10.7 
23.6 
43.3 

20.1 

26.3 
19.2 
11.9 
11.7 
13.1 

13.0 
17.2 
21.3 
17 

49.5 
16.4 
15.1 
8.9 
9.0 

16.2 



llc-29al D 
Uc~29a2 

Uc-29a20 
Concr-WM#I 
ColTer-WM#2 
Co!Tcr-WM#2D 
Co!Tcr-WM#3 
Co!Tcr-WM#3D 
Co!Tcr-WM#4 
WW-X 
WW-8[) 

Spri11gs 
!Baileys 
IBailcysD 
2Bailcys#l 
2Bailcys#2 
3Bailcys#l 
3Bailcys#2 
Fran\;# I 
Fran 's#2 
Fran 's#3 

(loss 
GossD 
Mullen 

Tippipah 

11/97 40 
11/97 41 
11/97 3X 
9/94 Ill 
9/96 104 
9/96 104 
2197 I 07 
2/97 I 03 

11/97 120 
11/97 27 
11/97 29 

11/97 235 
11/97 235 
9/96 234 
4197 239 
9/96 220 
4/97 240 

11/97 129 
8/96 126 
2/97 128 

11/97 143 
11/97 146 
11/97 147 
12/94 12 

0.12 
0.12 
0.11 
0.63 
0.14 
0.14 
0.34 
0.36 
IUO 
0.10 
0.12 

0.61 
0.60 
0.46 
1.7X 
0.30 
1.56 
0.26 

0.61 
0.45 
0.70 
0.59 
0.40 
4.10 

3.40 1.35 
0.62 0.23 
0.64 0.27 
1)<)9 11.21\ 

lUI O.OX 
0.19 0.12 
0.20 0.23 
0.21 ll.21 
1.11 0.1.1 
1.()3 0.18 
1.03 0.17 

2.09 0.41 
2.11 0.42 
2.12 0.48 
2.07 0.39 
2.06 0.34 
2.04 0.39 
1.72 0.30 

2.28 0.58 
1.81 0.36 
2.38 1.33 
2.26 1.32 
2.21\ 1.18 
1.40 1).()9 

0.54 0.49 
4.90 0.26 
4.94 ll.28 

11.8 0.60 
23.5 0.48 
22.4 0.48 
15.6 0.41 
15.0 0.44 
8.25 0.41 
1.17 0.30 
1.11 0.28 

0.17 0.16 
0.16 0.15 
1.36 0.12 
0.06 0.08 
1.18 0.12 
O.D7 0.08 
0.05 0.03 
0.34 0.07 
0.29 0.25 
0.05 0.13 
0.05 0.16 
0.37 0.()7 
1.39 0.09 

0.33 
0.13 
0.13 
o.n 
0.25 
0.25 
0.14 
ll.l5 
0.89 
0.17 
0.18 

1.76 
1.79 
1.74 
1.79 
1.66 
1.82 
1.17 
1.28 
1.14 
1.07 
1.06 
0.9X 
0.04 

5.9 
2.0 
2.2 
7.8 

3.9 
2.4 
2.X 
2.X 
8.4 
1.8 
1.7 

18.4 
18.5 
19.7 
19.8 
18.8 
20.1 
23.1 
26.6 
23.7 

7.5 
7.2 
7.2 
2.0 

0.92 

0.49 
0.49 
0.40 
0.43 
0.43 
0.22 
0.24 
0.53 
0.70 
0.74 

0.29 
0.32 
0.84 
0.47 
0.74 
0.42 
0.60 
1.02 
0.53 

0.50 
0.54 
0.49 
0.56 

7.5 
5.6 
5.6 
4.7 
3.8 
3.8 
4.6 
4.6 
4.8 
6.7 
6.7 

28.8 
28.6 
28.6 
29.3 
26.3 
28.8 
11.6 
13.1 
12.2 
12.4 
12.5 
13.1 
7.1 

52.4 1.9 
28.6 2.1 
2Q.9 2.1 

I 83 11.2 
157 10.4 
159 10.6 
137 10.5 
133 10.6 
181 11.9 

4.9 0.9 
4.9 0.9 

117 12.2 
117 12.3 
121 12.2 
119 12.2 
110 11.6 
115 12.2 
21.0 9.2 

22.5 I 0.0 
21.1 9.2 
85.3 R.l 
87.5 8.2 
82.2 8.1 
6.2 0.7 

0.13 
0.06 
().()6 

0.23 
0.14 
0.15 
0.10 
0.10 
0.23 
0.05 
0.05 

0.4 
0.39 
0.41 
0.43 
0.39 
0.40 
0.50 
0.56 
0.53 
0.19 
0.19 
0.18 
1.94 

2.02 0.62 
0.12 0.56 
0.13 0.59 
1.82 1.53 
1.29 0.98 
1.13 1.02 
1.08 0.88 
1.03 0.83 
1.61 1.48 
0.09 0.21 
0.09 0.21 

18.3 2.74 
18.7 2.77 
16.7 2.82 
17.6 2.88 
16.0 2.84 
16.4 2.92 
0.48 1.63 
0.49 1.57 
0.53 1.60 
4.97 0.52 
4.89 0.52 
4.38 0.53 
0.34 (J.OI 

1.34 4.3 1.0 
0.54 3.3 O.X 
0.56 3.5 1.0 
5.08 I X 2.2 
1.1\6 7.9 1.1 
1.78 7.4 0.9 
1.12 II 2.1 
1.10 12 1.6 
5.86 15 2.5 
0.31\ 15 1.3 
0.35 14 1.0 

9.84 75 2.8 
9.83 75 2.2 
8.53 68 2.4 
9.21 76 2.1 
8.34 69 1.9 
8.63 75 1.4 
5.55 83 2.3 
5.54 100 1.7 
5.97 83 2.4 
9.2X 37 2. 7 
9.53 35 2.9 
9.49 33 2.6 
0.52 76 0.6 

15.6 
9.0 
8.2 

46.0 
35.2 
36.3 
35.8 
41.1 
10.0 
12.9 
11.7 

84.6 
82.2 

132 
159 
140 
156 
48.1 
51.9 
18.5 

" 19.4 ~ 
21.6 ~ 
25.1 
42.9 
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less variance is explained for each subsequent com­
ponent. 

Principal components analysis ofthe simulated and 
measured trace element data were performed using S­
PLUS [22] and MINITAB [23], respectively. 

2.3. Monte Carlo data simulation and single detection 
limit censoring 

Three parent data matrices (Xl 51 ,19, X221 ,14, and 
X324, 15) were used in this study. Identical data simu­
lation methodology was applied to each of the three 
matrices. The data matrix, Xl, consisted of 19 trace 
element measurements made on a total of 51 samples 
(see Table I). Some of the sites, listed in Table 1, were 
sampled multiple times either on the same day ( dupli­
cates) or over a period of time (repeat samples). 
Duplicate samples are identified with a "D" following 
the sampling location name and repeat samples are 
sequentially numbered. Details of these data, includ­
ing sampling locations, are reported elsewhere [6]. 
Although the concentration of a total of 58 trace 
elements was measured in each groundwater sample, 
only 19 were included in this study. The 19 trace 
elements were selected based on 50% agreement 
between duplicate samples. The 50% criteria were 
used to eliminate the elements with a greater uncer­
tainty associated with their measurement. In most 
cases, the concentrations of the trace clements meas­
ured in the field blanks were less than I% of the 
measured concentrations in the field samples. 

Using the Kolmogorov-Smimov Normality Test, 
the concentrations of the 19 trace elements in the 
groundwater samples were found to be neither multi­
variate normal nor multivariate lognormal. The p 
values for 15 of the variables and 8 of the log 
transformed variables were less than 0.01. Only three 
variables and six log-transformed variables showed p 
values that exceeded 0.15. Instead, subpopulations 
within the data were observed [6]. The data distribu­
tion within each of these subpopulations can then be 
modeled by a multivariate normal distribution. Data 
for this study were therefore generated using this 
mixture multivariate normal model. 

Six clusters, within this data set, were identified 
using Hierarchical cluster analysis [24]. The program 
S-PLUS was then used for Monte Carlo simulation of 
the data contained in each cluster (i) as follows: First, 

Choleski Decomposition of the covariance matrix CE;) 
was performed to find a; such that ~; = aJa;. An 
independent normal data matrix, Z;, was then gener­
ated. Mean centered data with a covariance structure 
similar to that of the original data were then calculated 
as Z;aJ. The mean was adjusted to that of the original 
data by adding the row vector of column means (mean 
of each variable in the original data contained in the 
cluster) to each row of the matrix Z,.aJ. Finally, the 
data matrices for each of the six clusters were com­
bined to produce the full data set. 

Detection limits (DL) were then applied so that a 
given percentage (5%, 10%, 15%, 20%, 30%, 40%, 
50%, 75%) of values within each column were below 
this value. Values < DL were substituted with 0, DL, 
and DL/2. PCA was then applied to the unsubstituted 
and each of the three substituted data matrices This 
process was repeated 1 00 times, generating 100 differ­
ent independent normal data matrices, Z;, for each of 
the clusters. The differences between the PC I and 
PC2 scores and loadings for the substituted data 
matrices and the unsubstituted data matrix were cal­
culated and averaged. 

The complete process for Xl is described in the 
algorithm below. The other two data matrices (X2 and 
X3) were treated the same as Xl with the exception 
that four clusters were observed for X2 ( n 1 = 3, n 2 = 3, 
n3 = 4, and n4 = II) and three clusters were observed 
for X3 (n 1 =II, n2 =4, n3 =9). 

1. Input six data matrices (X;) containing n; cases 
(samples) and p = 19 columns (variables), 
where n 1=6, n2 =ll, n3 =5, n4 =14, n5 =5 
(giving a total of 51 samples). 

2. Input a 51 x 19 matrix of cluster means, which 
combines six data matrices M; (i= 1, 2, ... , 6). 
Each row of the matrix M; (n; x 19) is 
represented by the vector of column means 
for the corresponding cluster. For instance, 
rows 1 to n 1 consist of the column means for 
cluster 1, rows (n 1 + 1) to (n 1 + n2) consist of 
the column means for cluster 2, etc. 

3. For each cluster i, i= I, 2, ... , 6: 
3.1. Read the data matrix X;; 
3.2. Compute S; = covariance of matrix 

X;; 
3.3. Compute the Choleski decomposition 

ofS;: a/a;=S;; 
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3.4. Generate the data matrix z;r (19 X n;) 
from independent multivariate nor­
mal (MVN) distribution; 

3.5. Generate MVN data for cluster i: YT 
(19 x n;)=aTZ;+MT; 

3.6. Compute Y;=transpose (Y!) to ob­
tain n; observations from cluster i. 

4. Combine the above six data matrices Y; into 
one 51 x 19 data matrix Xsim· 

5. Compute (for q = 5, I 0, 20, 30, 40, 50, 75) the 
I x 19 quantile vector Q such that q% of data 
in column j (of Xsim) is less than or equal to 
the j-th element of Q. Let the detection limit 
for the variable, j, be DL1 = Q1. 

6. If, for any sample (k= I, 2, ... , 51) within Xsim· 

the value in the columnj < Q1, then replace the 
value by one of the three substitution values: 
0, DL, DL/2. In the S-Plus program, the 
resulting matrices are called xsimO, xsimdl, 
xsimdlby2. 

7. Perform PCA (using the correlation matrix) on 
the unsubstituted data matrix (Xsim) and the 
three substituted matrices (xsimO, xsimdl, 
xsimd1by2). 

8. Compute the various PC-objects (PC-loadings 
and PC-scores for the first two PCs). 

9. Compute the distances between the PCA 
objects from xsimO, xsimdl, xsimdlby2 and 
those obtained from PCA of Xsim· Also, com­
pute the percentages of variance explained by 
the first two principal components. 

10. Repeat (steps 3-9) 100 times and average the 
PCA results of step 9 over the 100 iterations. 

2. 4. Simulation of' multiple detection limits 

The difficulty with dealing with values below the 
detection limit is further complicated when multiple 
detection limits are reported for a given variable (i.e., 
trace element). Multiple detection limits were there­
fore applied to Xl, X2, and X3. Data simulation was 
performed as described for the single detection limit 
case except that Step 5 is changed to the following: 

(5) Compute (for q= 10, 20, 30, 40, 50, 75) the 
I x 19 quantile vector Q such that q% of data in 
column j (of Xsim) is less than or equal to the j-th 
element ofQ. Let the maximum detection limit for the 

variable j be maximum DL1=Q1 and generate the 
multiple detection limits from the uniform distribution 
on the interval (Q1•5, Q1,q). 

2.5. Simulation for variable selection 

Selection of variables used in the data set included 
in this study was based on 50% difference between 
duplicate samples. Out of the 55 trace elements 
measured for each of the 51 samples, only 19 were 
retained for use in the statistical evaluations [6]. 
Although 50% difference between duplicate samples 
appears quite significant, in some cases, the only 
difference is between 1.0 and 1.5 ppt. This difference 
then becomes insignificant when compared to the 
100-ppt levels that may exist in samples collected 
from other locations. These criteria for variable selec­
tion may therefore result in the elimination of impor­
tant variables or also in retaining variables that 
provide no information toward discrimination 
between waters from different locations. Rather than 
selecting variables based solely on agreement between 
duplicates, variance between samples from different 
locations must also be considered. This section 
describes the experiment used to select variables 
based on the percentage of variance between duplicate 
samples relative to the variance observed for samples 
over all sites. 

(l) Replace all duplicate sample values by nor­
mally distributed values so that they are within 
± 20% of the original sample. This gives the 'true' 
data matrix Xsimtrue· Perform PCA on Xsimtrue and 
compute the various PC-objects (PC-loadings, PC­
scores, and percentages of variance explained for the 
first two principal components). 

(2) Randomly select 10 variables and replace the 
duplicate measurements for these 10 variables with 
original values+ q x normally distributed error with 
mean 0 and sd = q x sd of the variable across all the 
sites (q=O.l, 0.2, 0.3, 0.4, 0.5, 0.75). This gives the 
perturbed data matrix Xsimdup· Perform PCA on 
Xsimdup• and compute the various PC-objects (PC­
loadings, PC-scores, and percentages variance 
explained). 

(3) Compute distance between the PCA objects 
obtained from the two data matrices Xsimtrue and 
Xsimdup· The PCA objects chosen in this experiment 
are: (1) difference of PC 1 and PC2 scores between the 
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only duplicate measurements, (2) the same differences 
for all of the cases, (3) the PC loadings, and (4) the 
percentages variance explained. 

3. Results and discussion 

PCA is a useful tool when searching for similarities 
between samples (represented by PC scores) and also 
between variables (represented by PC loadings). The 
impact of the substitution methods on both the PC 
scores and loadings was therefore evaluated. Because 
of the large number of graphs prepared for the 
simulations of the three data matrices (Xl, X2, and 
X3), and because similar results were observed, only 
the graphs generated for Xl are presented here. 

3.1. Single detection limit censoring 

A comparison between the scores resulting from 
PCA on the substituted and unsubstituted data matri­
ces generated from Xl is shown in Fig. 1. The dif­
ference between the PC 1 scores resulting from the 
unsubstituted data matrix (full matrix) and those of 
the substituted data matrices is plotted on the y-axis 
and the percentage of values below the detection 
limit (nondetccts) is plotted on the x-axis (Fig. 1a). 
Fig. 1a shows that substitution with either 0 (SM_O) 
or DL/2 (SM_DL/2) is superior to substitution with 
DL (SM_DL). Fig. 1a also shows a rise in slope 
after the percentage of nondetects is increased 
approximately above 30%. Similar results are 
observed for the PC2 scores (Fig. 1 b); substitution 
with 0 and DL/2 are superior to substitution with 
DL. An identical pattern is observed for the Xl PC 
loadings (Fig. 2a,b ). The variance explained for the 
first two principal components are shown in Fig. 3. 
The variance explained for the data matrix substi­
tuted with DL/2 is quite similar to that of the full 
matrix when the percentage of nondetects is less than 
30% which is not the case for those substituted with 
DL or 0. 

The results for the data matrices X2 and X3 were 
quite similar to those for Xl. The distances from the 
unsubstituted matrix for both the PC scores and 
loadings were generally lower when substituted with 
DL/2. However, the distances were slightly lower for 
X2 when there were less than 10% nondetects present 
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and the DL substitution method was used. The impact 
of substituting the nondetects with DL/2 increased 
when the percentage of nondetects exceeded approx­
imately 25%, in most cases. DL/2 performed the best 
in terms of percentage variance explained for X2. For 
X3, the DL substitution method appeared to be better 
than substitution with DL/2 when comparing percent 
variance explained by PC I, and the two substitution 
methods, DL and DL/2, were very similar for PC2. 
Substitutions with DL and DL/2 were superior to 
substitution with 0. 

3.2. Simulation of multiple detection limits 

The difference in PC scores between the substi­
tuted and unsubstituted (full matrix) data matrices, for 
Xl, are shown in Fig. 4a,b. The x-axis for this 
multiple detection limit study is the maximum per­
centage of nondetects and corresponds to the max­
imum detection limit. The results are similar for 
substitution with 0 and DL/2 (PC I), and DL and 
DL/2 (PC2). Poor performance of all substitution 
methods was observed when the percentage of non­
detects exceeded approximately 35%. The results for 
the Xl PC! loadings (Fig. 5a) were quite similar for 
all three substitution methods. The change in slope, in 
this case, occurred after the percentage of nondctccts 
increased beyond 20% (Fig. 5a). For PC2, the two 
substitution methods, DL and DL/2, were superior to 
substitution with 0 (Fig. 5b ). This was also observed 
with the percentage of variance explained (Fig. 6a,b ). 
For both PCl and PC2, the performance of all sub­
stitution methods deteriorated rapidly, when compared 
to the full data matrix, after the percentage of non­
detects exceeded 30% (Fig. 6a,b ). Comparing scores 
and loading for PC! of X2, substitution by DL gave 
better results than substitution by DL/2 in the range of 
I 0-18% nondetects, whereas substitution by DL/2 
was better in the range of 18-30%. The picture 
changed considerably when comparing the explained 
percentage variance and also the scores and loadings 
for PC2; substitution by DL/2 was clearly the best 
method. 

The usc ofDL/2 was further examined using a data 
set containing multiple measurements of the trace 
element chemistry of groundwater collected from 
several springs in Death Valley, CA. These samples 
were collected in November 1993, March 1994, and 
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November 1994. In order to make an accurate com­
parison between waters from different locations, it 
must be first shown that waters from a single location 
can be measured reproducibly. Approximately 20% of 
these data were listed as ' < DL' and were substituted 
with DL/2. A higher detection limit was associated 
with the third sample set. A plot of the scores for the 
first two principal components is shown in Fig. 7. 
This figure clearly illustrates the excellent reproduci­
bility of the multiple measurements for each site. With 
the exception of Tex/Trv A and Scot/Surp, distinct 
clusters were formed that contain each of the multiple 
measurements and corresponding average for a given 
spring. The waters from Texas and Trv A cannot be 
distinguished from each other using these PCA results 
because the chemical composition of these springs is 
essentially identical. The same can be said for Scotty's 
and Surprise Springs. [I]. These results show that 
substitution of '< DL' values with DL/2 gives highly 
reproducible PCA results while maintaining the abil­
ity to distinguish waters from different sources even in 
the presence of multiple detection limits. 

3.3. Simulation for variable selection 

In general, the performance of the substitution 
methods deteriorated when the percentage of ' < DL' 
values exceeded 30%. Depending on the trace cle­
ment data set that is evaluated, the percentage of 
values below the detection limit may exceed this 
amount. For these cases, it may be preferred to use 
the uncensored data when available. Use of uncen­
sored data can often be useful for evaluation of the 
trace clement chemistry when the waters from differ­
ent locations vary substantially. For instance, the 
concentration of certain trace elements in the ground­
water from one region may be quite low (i.e., <DL) 
but may be substantially higher in another region 
(>>DL). These trace elements would therefore be 
quite useful in distinguishing groundwaters from 
these different regions. On the other hand, the 
concentrations of these trace elements may be quite 
low in the entire study area and including them in 
the evaluations may just add substantial noise to the 
analysis. Determination of criteria for the selection of 

Fig. 7. PCA score plot for Death Valley trace element data (values<DL were substituted with DL/2). 
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variables based on variance between duplicates rel­
ative to that observed between all samples (percent­
age variability between duplicates) is therefore 
necessary to the success of our investigation. To this 
end, data sets containing duplicate samples were si­
mulated based on 20% acceptability criteria between 
duplicate measurements (true data sets). A specified 
amount of variance, relative to the variance over all 
samples, was then added to 10 randomly selected 
variables within each of the duplicate samples. The 
results from PCA on the Xl data set are shown 
in Fig. S (scores), Fig. 9 (loadings), and Fig. 10 
(percentage variance explained). The distance bet­
ween the scores for the true data set and the data set 
with additional variability added to the duplicate 
samples are shown in Fig. Sa for all samples and 
Fig. Sb when only the duplicate samples are com­
pared. This distance increased linearly when compar­
ing the PC scores for all samples (Fig. Sa) and also 
the PC loadings (Fig. 9). When considering the 
scores of the duplicate samples only (Fig. Sb ), the 
distances increased exponentially once the variability 
between duplicates, relative to the total variability, 
exceeded 20%. The variance explained decreased 
exponentially, with no clear cutoff value, when the 
percent variability between duplicates was increased 
(Fig. 10). 

For data sets X2 and X3, the results were slightly 
different. The impact of the variability between dupli­
cates increased when the differences between dupli­
cates, relative to the total variability, were greater than 
30%. For data set X2, the differences in PC scores, 
when all samples are compared, and the PC loadings 
increased rapidly for both PC 1 and PC2 when the 
percent relative variability exceeded 30%. Similar 
results were observed for data set X3, with the 
exception that the differences in PC 1 scores for the 
duplicates only, and the loadings showed a linear 
trend. A somewhat linear increase in distances was 
observed for both X2 and X3, when the PC scores 
between the duplicate samples were compared. The 
variance explained decreased exponentially again; no 
apparent cutoff percentages were observed. 

A data set containing trace element concentrations 
in groundwater samples collected from a group of 
wells in Nyc County, NV was then used to test the 
effectiveness of selection of variables based on rela­
tive variability between duplicate samples. The con-
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centrations of a total of 58 trace elements were 
measured for samples collected from six wells: NC­
EWDP-1 S (1 S), NC-EWDP-3S (3S), NC-EWDP-9S 
(9S), NC-EWDP-1D (1D), Bond Gold Well #13 
(BGW) and SD6ST1. Multiple zones within three of 
the wells (1 S, 3S, and 9S) were sampled on two 
separate occasions (May and November 1999). May 
samples are identified as "#I" and November sam­
ples as "#2". A total of six samples (3SZn3, 9SZn1, 
9SZn4, lD, SD6ST, and BGW) were collected in 
duplicate during the May sampling. PCA was applied 
to the full data set and a total of 56% of the variance 
was explained in the first two principal components. 
The scores for the first two components arc plotted in 
Fig. 11. Because of the similarities that exist in trace 
element chemistry of these groundwaters and the 
relatively high variability in some of the measure­
ments, clear clustering of the different wells is not 
observed (Fig. 11 ). This is primarily seen in the 
overlap in clustering of the 9S, 1 S, and SD6ST wells. 
PCA was then applied to the data set after eliminating 
all variables with a variance between duplicates that 
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exceeded 30% of the variance observed between all 
25 samples. A total of 19 trace clements were 
retained. For this data set, a total of 78% of the 
variance was explained in the first two components. 
The PC scores for the first two components are plotted 
in Fig. 12. It is shown in Fig. 12 that the selected 
variables can be used to clearly distinguish between 
all of the wells. All samples collected from the same 
well clustered quite tightly together with no overlap of 
clustering observed between the different wells. 

4. Conclusions 

New data simulation experiments were established 
to determine the best constant to use for substitution 
of ' < DL' values within a given data set. Overall, for 
the data sets included in this study, the simulation 
experiments with single and multiple detection limits 
showed that substitution of' <DL' values with DL/2 
was superior to substitution with 0 or DL. The results 
also suggested that all of the simulation methods 
behaved poorly when ' < DL' observations exceed 
30%. The effectiveness of the substitution of censored 
data with DL/2 (when less than 30% of the values are 
< DL) was demonstrated using a data set collected 
from Death Valley, CA. Approximately 20% of the 
data was censored and multiple detection limits 
existed between the different sampling dates. Tight 
clustering was observed between the PC scores (PC I 
and PC2) of three measurements made on ground­
water samples collected from the same springs or 
springs with very similar trace element chemistry. 

A method for selection of variables was then 
developed for handling data sets with greater than 
30% ' < DL' values and also when uncensored data 
is available. Simulation experiments with duplicate 
measurements also showed that PCA results deteri­
orate quickly when the variation between duplicates 
exceeds 30% of the total variance over all measure­
ments. This selection scheme was further evaluated 
using a data set from Nyc County, NV. Elimination 
of variables with greater than 30% variance between 
duplicates when compared to the variance observed 
for all samples resulted in the ability to clearly 
distinguish each well from all others. The trace 
elements that are the best descriptors for this loca­
tion were therefore identified and geochemical pro-

cesscs responsible for this discrimination can be 
examined. 

As to be expected, the results may vary between 
different data sets. The methodology developed in this 
paper, however, can be used to determine the selection 
of substitution methods and variables for each partic­
ular data set. 
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