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Universal Scaling of Hydraulic Conductivities 
and Dispersivities in Geologic Media 

SHLOMO P. NEUMAN 

Department of Hydrology and Water Resources, Unil•ersity of Arizona, Tucson 

An interpretation is offered for the observation that dispersivities increase with scale. Apparent 
longitudinal dispersivity data from a variety of hydrogeologic settings are assumed to represent a 
continuous hierarchy of log hydraulic conductivity fields with mutually uncorrelated increments, each 
field having its own exponential autocovariance, associated integral scale, and variance that increases 
as a power of scale. Such a hierarchy is shown theoretically to form a self-similar random field with 
homogeneous increments. Regardless of whether or not the underlying assumption is valid, one can 
justify interpreting the apparent dispersivities in a manner consistent with a recent quasi-linear theory 
of non-Fickian and Fickian dispersion in homogeneous media which supports the notion of a 
self-similar hierarchy a posteriori. The hierarchy is revealed to possess a semivariogram y(s) .., cs tf2, 
where cis a constant, and a fractal dimension D ""E + 0. 75, where E is the topological dimension of 
interest. This can be viewed as a universal scaling rule about which large deviations occur due to local 
influences including the existence of discrete natural scales at which log hydraulic conductivity is 
statistically homogeneous. As such homogeneity is at best a local phenomenon occurring intermit· 
tently over narrow bands of the scale spectrum, one must question the utility of associating medium 
properties with representative elementary volumes and relying on Fickian models of dispersion over 
more than relatively narrow scale intervals. Porous and fractured media appear to follow the same 
idealized scaling rule for both flow and transport, raising a question about the validity of many 
distinctions commonly drawn between such media. Finally, the data suggest that conditioning 
transport models through calibration against hydraulic measurements has the effect of filtering out 
large-scale modes from the hierarchy. 

INTRODUCTION 

Chemical transport in geologic media is known to be 
strongly influenced by spatial variations in hydraulic conduc­
tivity. Such variations produce fluctuations in the ground­
water velocity which in tum cause dissolved chemicals to 
spread at rates considerably greater than those normally 
observed in laboratory column experiments. Field tracer 
tests [e.g., Peaudecerf and Sauty, 1978; Freyberg, 1986] 
suggest that in relatively uniform materials the rate of 
longitudinal spread increases in a non-Fickian fashion with 
time or mean travel distance toward a constant Fickian limit. 
In an experiment with inorganic tracers at Borden, Ontario, 
Canada [Freyberg, 1986], the plume reached a Fickian rate 
of longitudinal spread in less than 3 years while the rate of 
transverse spread continued to vary. resulting in a quasi­
Fickian regime. This behavior has been reproduced with 
increasing degrees of success by means of two-dimensional 
models based originally on a linear non-Fickian theory due 
to Dagan [ 1984, 1987, 1988] and more recently a quasi-linear 
theory developed by Neuman and Zhang [1990] and Zhang 
and Neuman (1990}. The latter authors have demonstrated 
that three-dimensional models are in fundamental conflict 
with observed behavior at Borden and in other stratified 
formations but that this conflict is easily resolved (at least in 
principle) by considering hydraulic anisotropy on the local 
scale. Both the linear and nonlinear theories deal exclusively 
with ensemble mean concentrations and therefore provide at 
best an estimate of how actual concentrations evolve with 
time. The fact that ensemble plume moments obtained from 
these theories agree quite well with observed spatial mo-
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ments of the Borden plume suggests that estimation errors 
associated with nonergodic phenomena are small compared 
to sampling errors during both the non-Fickian and quasi· 
Fickian stages of the experiment. 

Existing linear [Dagan, 1984, 1987, 1988] and quasi-linear 
[Neuman and Zhang, 1990; Zhang and Neuman, 1990) 
theories of non-Fickian dispersion generally deal with statis­
tically homogeneous media in which the log hydraulic con­
ductivity variance, u~. and tensor of correlation or integral 
scales, L, are fixed and finite. Both theories state that if the 
mean seepage velocity in such a medium is uniform and 
independent of time, a plume attains a constant (Fickian) 
rate of longitudinal spread after traversing a mean distance 
of only a few directional correlation scales, L,. (defined 
precisely in (3) below), from its source. This Fickian rate is 
characterized by a longitudinal macrodispersivity a L that 
depends only on the constants u~ and L,.. Yet when one 
examines over 130 longitudinal dispersivities deduced by 
means of continuum Fickian theories from laboratory and 
field tracer studies in a variety of porous and fractured media 
under varied flow and transport regimes, one finds that they 
increase without limit with the scale of the study [Lalle­
mand-Barres and Peaudecerf, 1978; Anderson, 1919; Pick­
ens and Grisak, 1981; Gelhar, 1986; Arya et al., 1988; Lake, 
1988, 1989). Even though a plot of a L versus experimental 
scale on logarithmic paper shows a very wide scatter, there 
is no mistaking a systematic increase in longitudinal disper­
sivity with scale, known in the literature as "the scale 
effect." 

It is common in the stochastic groundwater literature to 
distinguish between four m!\ior scales: pore, laboratory, 
local field at the formation level, and regional [Dagan, 1986, 
1989]. However, Sposito eta/. [1986, p. 84] have recognized 
that "a precise mathematical formulation and explanation of 
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the scale effect" must be built on the concept of "evolving 
spatial heterogeneities" which "evidently ... would re· 
quire simultaneous consideration of several scales in a 
continuum manner." This is so because "on physical 
grounds, it is conceivable that in natural aquifers, more than 
two time scales come into play in solute transport phenom­
ena as new spatial heterogeneities appear at larger displace­
ment distances. These heterogeneities may have the effect 
that solute movement is always in a state of transition 
without ever reaching asymptotic behavior, as was dis­
cussed by Gillham eta/. [1984]." Though "preliminary ideas 
along this direction are discussed by Bhattacharya and 
Gupta [1983], Cushman [1984], and Gupta and Bhattacharya 
[1986) ... a proper understanding of this very basic and 
important issue awaits much more research on both the 
theoretical and experimental sides." Sposito et al. [1986, p. 
86] have concluded that "the stochastic convection· 
dispersion model has not yet proved useful in shedding 
fundamental light on the scale effect." 

The stochastic model referred to by Sposito eta/. [1986] is 
based on the classical assumption that hydraulic heteroge­
neities are statistically homogeneous on a scale much 
smaller than the region being studied. That this assumption 
may not always be adequate was pointed out nearly 15 years 
ago by Winograd and Pearson [1976] in connection with a 
regional carbon 14 anomaly at Ash Meadows in south central 
Nevada. Based on their conclusion that the anomaly is 
related to transport through the regional carbonate aquifer of 
the south central Great Basin, the authors developed a doubt 
that [Winograd and Pearson, 1976, p. 1125] "all heteroge­
neities in fractured, solution-riddled, or lava tube-permeated 
aquifers are small-scale features or that they may not in 
some instances reinforce rather than cancel each other with 
regard to their effects on the distribution of velocity and 
concomitant dispersion of mass in a given aquifer." They 
pointed out that "major heterogeneities, such as shoestring 
sands, can also cause large local differences in velocity (and 
hence dispersion) even in unfractured, unconsolidated, and 
highly porous sediments, as was demonstrated by the classic 
laboratory study of Skibitz;ke and Robin.ron [1963]." Their 
own study in Nevada has suggested to the authors that 
"greatly differing rates of groundwater flow and concomitant 
distribution of mass may also occur on a regional scale, 
owing to channeling." Where detailed information about 
such channels and other flow paths is lacking (as is usually 
the case), the alternative is to treat them as statistical 
heterogeneities on a multiplicity of scales. 

Past interpretations of the scale effect by Arya et al. [1988] 
(see also Lake [1988, 1989)) and Wheatcroft and Tyler [1988) 
have relied on various fractal representations of solute travel 
distance.· Although the slope of log longitudinal dispersivity 
versus Jog scale appears to diminish as the latter increases. 
these interpretations have considered only a single straight· 
line tit to all or a portion of such data. A line of this kind 
represents a power relationship between aL and scale 
which, as pointed out by Philip [1986], is consistent with the 
notion of a fractal Lagrangian velocity field that has neither 
a finite variance nor finite temporal correlation scales. Al­
though Philip has not stated so directly, his analysis implies 
that the Eulerian velocity field, and the log hydraulic con­
ductivity field which gives rise to spatial velocity fluctua· 
tions, might also be fractal. That log hydraulic conductivities 
may indeed exhibit fractal behavior is evident from the 

analysis of Mount Simon aquifer data by Ababou et al. 
[1988]. 

The present paper shows that a fractal model of log 
hydraulic conductivities is indeed consistent with the scale 
effect exhibited by field and laboratory dispersivities dis­
cussed by Lallemand-Barres and Peaudecerf [ 1978), Pickens 
and Grisak [1981], Gelhar [1986], and Arya eta/. [1988] over 
the entire range of observed scales. These apparent disper­
sivities derive a priori not from a fractal model of dispersion 
but from Fickian models which assume (explicitly or tacitly) 
that log hydraulic conductivity is statistically homogeneous. 
This and the fact that scale dependence is a non-Fickian 
phenomenon suggest that the data should be consistent with 
the recent quasi-linear theory of Neuman and Zhang (1990) 
and Zhang and Neuman [1990], which accounts for both 
Fickian and non-Fickian dispersion in homogeneous media. 
Such consistency is indeed achieved by stipulating a poste­
riori that log hydraulic conductivities are not statistically 
homogeneous but form a random fractal. The result is a 
scaling rule which in a mean sense applies universally over 
the broad class of geologic media and wide range of scales 
represented by the available data. 

THEORETICAL BACKGROUND 

The quasi-linear theory of Neuman and Zhang [1990] and 
Zhang and Neuman [1990] predicts the manner in which 
ensemble mean concentrations evolve during the preasymp­
totic or non-Fickian stage toward an asymptotic or Fickian 
regime in three-dimensional geologic media that are statisti­
cally homogeneous. More precisely, the theory predicts how 
the dispersivity tensor u and spatial covariance tensor X of 
ensemble mean concentrations in a plume having zero initial 
spread vary with dimensionless time (mean travel distance 
relative to correlation scale) t,. , effective Peclet number P, 
and degree of anisotropy in a homogeneous log hydraulic 
conductivity field characterized by the anisotropic exponen­
tial covariance 

py(i) = u~ exp [- (i~ + i~ + i~) 
112

] 
L1 L 2 L3 

(1) 

where u~ is the variance of Y = In K, K being hydraulic 
conductivity, and L1, L 2 , and L 3 are its integral scales in the 
principal directions of anisotropy i 1, i 2, and i 3• The dimen­
sionless quantities t,. and P are defined as 

(2) 

where p. is the magnitude of the constant seepage velocity 
vector ._.,, t is time, 

(3) 

Pr is a unit vector representing the direction cosines of J1. 
with respect to principal coordinates i, and T indicates 
transpose. The scalar L,. is the length of a radius vector 
parallel to J1. of an ellipsoid having semiaxes L 1 , L2, and L3 
oriented along i 1, i 2 , and i 3, respectively. It represents the 
"directional integral scale" of the covariance function p y(i) 
parallel to the mean seepage velocity vector. The scalar d 1 is 
the longitudinal component of the effective macrodispersion 
tensor d, where 
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d = d1 + ~ lim dXIdt (4) ,_"" 

and d1 is a tensor accounting for Fickian dispersion on the 
local scale (most appropriately molecular diffusion). Since X 
cannot be computed without knowing d and vice versa, the 
relationship between them is nonlinear (or rather quasi­
linear because d is constant and hence the integroditferential 
equation (7) of Neuman and Zhang [1990] can be solved in 
closed form for X). As shown by Zhang and Neuman [1990], 
the eigenvectors of d are virtually parallel and normal to the 
velocity vector p.. This means that in the i coordinates, d is 
diagonal with principal components (eigenvalues) d1 parallel 
to i 1 and p., d2 parallel to i 2, and d3 parallel to i 3. The 
ensemble mean is of interest as the most easily obtained 
estimate of the actual concentration, which of course cannot 
be predicted without knowing the groundwater velocity at 
each point in space. 

In the absence of local dispersion, P in (2) takes on the 
simpler form 

P= L1Ja.,.L (5) 

where a .. L is the (constant) Fickian asymptote of the longi­
tudinal macrodispersivity aL as t - ""'· The quasi-linear 
theory implies that under this condition, P is related to u ~ 
and the asymptotic dimensionless longitudinal dispersivity 
a.,DL through [Neuman and Zhang, 1990, equation (66)] 

(6) 

where a .. 0 :s 1. It follows that in mildly nonuniform media 
in which u ~ < 1 the effective Peclet number satisfies P ~ I. 
Hence the following expression for a,.L, which according to 
the quasi-linear theory is valid for three-dimensional disper­
sion in such media, can be stated as 

(7) 

In some strongly anisotropic media [Zhang and Neuman, 
1990, Figures I, 6, and 7]. a ooDL « I, and therefore (7) is 
valid only when a..,L << L,.. In both cases, a,0 L is indepen­
dent of P. 

All existing stochastic theories are nominally restricted to 
very mildly heterogeneous media in which u~ << I. How­
ever, the quasi-linear theory is believed by its developers to 
be less prone to error than linear theories when extended to 
strongly heterogeneous media in which u r ~ I. This is so 
because the quasi-linear theory deals with nonlinearity due 
to the deviation of plume "particles" from their mean 
trcijectory without formally limiting u~. The expression for 
a,.L corresponding to uy » I follows from (5), (6), and the 
relationship [Neuman and Zhang, 1990, equation (47)] 

P<l (8) 

where c is a constant slightly larger than 2 in isotropic media 
(Neuman and Zhang, 1990, Figure 6] but I or smaller in 
anisotropic media [Zhang and Neuman, 1990, Figure 1]. It 
takes the form 

(9) 

and, together with (8), may be valid in anisotropic media for 
uy « I or, equivalently, a"'L << L,. (i.e., P >> I [Zhang 
and Neuman, 1990, conclusion I]). 

Two-dimensional dispersion occurs when mean flow takes 
place in a plane normal to a principal integral scale that is 
much larger than the other two principal integral scales, and 
one-dimensional dispersion occurs when mean How takes 
place parallel to a principal integral scale that is much 
shorter than the other two. Hence two-dimensional disper­
sion of the kind generally observed in stratified formations 
(for reasons discussed by Zhang and Neuman [1990}), and 
one-dimensional dispersion of the kind encountered in labo­
ratory column experiments, can be viewed as special cases 
of three-dimensional dispersion in anisotropic media. We 
thus expect (7) and (9) to be valid regardless of whether 
dispersion takes place in one, two, or three dimensions 
within a uniform mean velocity field. 

Let s(t) = p.t designate the mean travel distance of a plume 
from its source. Then the following expression for longitu­
dinal dispersivity during the early stages of non-Fickian 
transport, which the quasi-linear theory states is valid when 
tl' <<I and t,. « P, can be written as (Neuman and Zhang, 
1990, equation (42)] 

s(t) L,_ 
-<--
L,. a .. L 

(10) s(t)<L,. 

where c0 2i 0.5 in statistically isotropic media [Neuman and 
Zhang, 1990, Figure 6] and can be I or larger in statistically 
anisotropic media [Zhang and Neuman, 1990, Figure 1]. 
This shows that when L,. is larger than both s(t) and a .. L• the 
preasymptotic longitudinal dispersivity varies linearly with 
the mean travel distance. On the other hand, when P << I 
and P « t , according to the quasi-linear theory, the 
non-Fickian ~nd Fickian macrodispersivities are identical 
[Neuman and Zhang, 1990. equation (47)]. Hence we have in 
analogy to (9) 

L,. s(t) 
-«­
axL L,. 

(II) 

which. like (9). may be valid in anisotropic media when 
a..,L << Ll' and s(t) ~ L,.. 

The above results apply to a statistically homogeneous (in 
a wide sense) medium characterized by a given log hydraulic 
conductivity variance u~ and tensor of integral scales, L. 
However, geologic media tend to form discrete homoge­
neous units on not one but a hierarchy of scales. A geologic 
unit may exhibit homogeneity with respect to log hydraulic 
conductivity on a given scale and to have a mean that is 
drastically different from that of all neighboring units. As 
long as a plume evolves primarily within the confines of such 
a homogeneous unit, its spread is controlled almost entirely 
by the properties of this unit. If the plume travels a mean 
distance of several integral scales while remaining entirely 
within the confines of the same unit, it may start showing 
Fickian or quasi-Fickian behavior (Neuman and Zhang, 
1990, Figures 6-8; Zhang and Neuman, 1990, Figures 1-3, 
6-11, 14-16]. As the plume starts spreading into neighboring 
units, larger-scale fluctuations in log hydraulic conductivity 
come into play. Their effect can be included in the analysis 
through the notion of nested structures, as has been done for 
various soil properties by Burrough (1983a, b] (see also 
Journel and Huijbregts (1978, p. 150]) and for groundwater 
velocities by Philip 11986). 

Let Y;(x) be the Jog hydraulic conductivity ftuctuation 
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associated with the ith homogeneous unit in the hierarchy. 
We represent Y;(x) as the superposition of separate contri­
butions Yj(x) from this and all lower levels of the hierarchy, 
0 ~j ~ i, 

f;(x) =- L t;~x) 
j~O 

(12) 

Each of the contributing ftuctuations Yj(x) has a distinct 
-::ariance u~· and tensor of integral scales Li such that Li < 
Lj+l where Lj = IILill• the latter being a consistent norm 
(measure of the "magnitude") of Li. Spatial increments of 
the contributions are mutually uncorrelated so that the 
semivariogram of Y;(x), y~s) where s is a displacement 
vector, becomes simply the sum of semivariograms contrib­
uted by Yj(x), 

y ~(s) "' L y YJ{s) 
j~D 

(13) 

Although geologic media are often divisible into discrete 
hierarchical units, we work below with a continuous hierar­
chy and an infinite range of scales. In particular, we replace 
the summation in (13) by an infinite integral as was done for 
the Lagrangian correlation function of velocities in the time 
domain by Philip [1986]. We concentrate on semivariograms 
along a given direction defined by a unit vector 11 parallel to 
the displacement vectors. Let s be the scalar magnitude of s 
and Lv the integral scale in the direction of the displacement, 
defined as 

(14) 

Then the semivariograrn that corresponds to the exponential 
covariance function (1), with directional integral scale Lv 
and associated variance ui<L.), takes the form 

-yy(s; L.) = u~(L.)[l- exp (-siL.)] (IS) 

Integration over all possible integral scales Lv yields 

where n, defined as 

L -1 
n"' v (17) 

is a wave (or mode) number representing the spatial period­
icity (or frequency) of log hydraulic conductivity fluctuations 
in the direction v. Clearly, the semivariogram y rs) in {16) is 
not associated with any preferred variance u y or integral 
scale L •. 

Consider the special case where 

u~(n) = Cln 1 + 2"' 0< Zw <I (18) 

and Cis a positive constant so that the variance decreases as 
a power of the mode. Then the integral in (16) becomes 
[Gradshteyn and Ryzhik, 1980, equation 3.551(1), p. 360) 

(19) 

where c 0 is a positive constant equal to -en-2w) and r is 
the gamma function. In other words, the semivariogram of 

log hydraulic conductivity grows as a power of the distance 
s. Since the exponent 2w of this power structure satisfies 0 < 
2w < I, it follows [Yaglom, 1987, pp. 406-411] that Y(x) is a 
self-similar random field with homogeneous increments 
(some prefer to call such fields self-affine [cf. Voss, 1985]). 
This means that -y y(s) is invariant under a group of similarity 
(or affinity) transformations s-+ hs, Y-+ f(h)Y, wheref(h) is 
some function of h; when /(h) = h _.., and h > 0 one has 
-yy(s) =- h-2"'-yy{h.r). 

Although (19) was derived above for 0 < 2w < 1 under 
special assumptions, it is in fact known to be a valid (and the 
only valid) semivariogram for self-similar stochastic pro­
cesses over the broader range 0 < w < 1 ; as such, it was 
considered originally by Kolmogorov in 1940 ( Yaglom, 
1987). The associated processes represent fractional Brown­
ian motion (ffim) {Mandelbrot and Wallis, 1968; Mandel­
brot, 1982] which constitutes a mathematical model for 
random fractals. As explained in an admirably lucid fashion 
by Voss [1985), the latter are associated with a fractal 
dimension 

D=E+l-w O<w< I (20) 

where E is the topological dimension of interest. When w = 
0.5 and D = E + 0.5, increments of the property are 
uncorrelated in £-dimensional space and thus resemble 
Brownian motion (which has statistically independent incre­
ments). When w > 0.5 and D < E + 0.5, the increments are 
positively correlated so that the property shows relatively 
smooth variations characterized by long-range persistence of 
positive and negative values. The tendency of many geo­
physical time series such as tree rings, varves, precipitation, 
and streamflow to exhibit such persistence is known as 
Hurst's phenomenon, and w is therefore sometimes called 
the Hurst coefficient [cf. Bras and Rodriguez-lturbe, 1985, 
pp. 220-221); similar persistence is exhibited in space by 
landforms and the thickness as well as lithology of Paleozoic 
sediments [cf. Burrough, 1983a, Table 3]. When w < 0.5 and 
D > E + 0.5, the increments are negatively correlated, and 
the property appears to be relatively noisy. Such antipersis­
tence seems typical of many soil parameters including per­
cent fine or coarse material, bulk density, layer thickness, 
moisture capacity, and pH [Burrough, 1983a, Tables 1 and 2] 
as well as log hydraulic conductivities [Ababou eta/., 1988), 
all of which exhibit a dominance of short-range effects in 
space. Regardless of whether the correlation is positive or 
negative, it extends over arbitrarily large spatial scales. 

INTERPRETATION OF ScALE EFFECT 

We now tum our attention to over 130 longitudinal disper­
sivities from laboratory and field tracer studies in porous and 
fractured media throughout the world recorded by Lalle· 
mand-Barres and Peaude(·erf [1978], Pickens and Grisak 
(1981], Gelhar et al. [1985), Arya [1986], and Arya et al. 
[1988]. These dispersivities vary from less than t mm to 
more than 1 km and correspond to studies conducted on 
scales ranging from less than 10 em to more than JOO km. As 
pointed out in the introduction, these apparent dispersivities 
derive a priori not from a fractal model of dispersion but 
from Fickian models which assume (explicitly or tacitly) that 
log hydraulic conductivity is statistically homogeneous. This 
and the fact that scale dependence is a non-Fickian phenom­
enon suggest that the data should be consistent with the 
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Fig. I. Apparent longitudinal dispersivities versus scale of study 
excluding numerical model calibration results; first interpretation. 

recent quasi-linear theory of Neuman and Zhang [1990] and 
Zhang and Neuman [ 1990] which accounts for both Fickian 
and non-Fickian dispersion in homogeneous media. It is 
shown below that such consistency is indeed achieved by 
stipulating, a posteriori, that log hydraulic conductivities are 
not statistically homogeneous but form a self-similar random 
field with homogeneous increments as defined in (19). 

Figure I is a logarithmic plot of apparent longitudinal 
dispersivities crGL versus the scale of the study L, as 
reported by the aforementioned authors. For reasons to be 
discussed later the figure does not include dispersivities 
obtained by calibrating numerical grid models against solute 
concentrations of large-scale plumes. The remaining 134 
dispersivities can be interpreted in at least two ways, both of 
which lead to the same scaling rule. The first interpretation, 
illustrated in Figure I, is based on the assumption that (7) is 
valid for a,..L :S Lp. (the second assumes that (7) is not valid 
unless acoL << Lp.). For reasons to become clear later, the 
first interpretation excludes the three points in Figure 1 
which correspond to Ls 2: 3500 m. It consists of fitting by 
regression a line of the form 

log10 aGL = b log10 L, + c (21) 

to the remaining 131 points as shown, together with the 
corresponding 95% confidence limits, in the figure. This line 
of best fit can be expressed as 

(22) 

with a regression coefficient R 2 = 0.74 and 95% confidence 
intervals [0.01 13, 0.0272] about the coefficient 0.0175, and 
(1.30, 1.61] about the exponent 1.46. 

An examination of the methods that had led to the data in 
Figure J caused Gelhor [1986] and others to raise valid 
questions about the reliability of many of them. Indeed, part 
of the large scatter shown by these data can undoubtedly be 
attributed to experimental and interpretive errors; other 

reasons of equal or greater imponance for this scatter will be 
suggested later. Yet the data cannot be dismissed as being 
devoid of quantitative significance because, despite their 
questionable reliability and considerable scatter, they give 
rise to a regression line which is confined between remark­
ably narrow 95% confidence limits and explains nearly three 
quaners (74%) of their variation about the mean. In other 
words, experimental and interpretive errors account for not 
more (or, as implied below, much less) than one quaner 
(26%) of the observed random scatter about the mean, and 
one is therefore justified to ask what gives rise to the 
remaining 74% of systematic variation exhibited by the data 
at L, s 3500 m in Figure I. 

To answer this question in a manner which is consistent 
with the quasi-linear theory, we consider a plume or concen­
tration front having initially zero spread whose center of 
gravity has traveled a distances = L,. This means that we 
treat the reported experimental scales L, as mean travel 
distances and thereby introduce an error into our analysis. 
However, this error is expected to be small in comparison to 
the large scatter of data in Figure I because tracer studies are 
commonly interpreted on the basis of breakthrough curves 
registered at a distance L, from the source and the time 
required for such a breakthrough is often much shorter than 
the mean travel time associated with L,. 

The data in Figure I were obtained from laboratory and 
field tracer studies interpreted on the basis of traditional 
Fickian models which correspond to (7). Yet such a Fickian 
interpretation is analogous to a non-Fickian interpretation on 
the basis of (10) if one replaces a,.0 LL,. by c0s(t). Since we 
equate s with L,, the same is also equivalent to replacing 
a,.vLL'" by c0L,. Hence the Fickian interpretation is anal­
ogous to a non-Fickian interpretation in which the apparent 
longitudinal dispersivity is calculated according to 

(23) 

As c0 and accDL are of similar order and our first interpreta­
tion assumes (7) to be valid when a,.,L :S L'", (23) should 
provide a reasonable fit to the data in Figure l as long as 
aaL s L, (the fact that this equation derives from a theory 
which deals with ensemble mean rather than real concentra­
tions can be viewed merely as another interpretive error 
which contributes to the aforementioned scatter). The latter 
condition is indeed satisfied by all data corresponding to L, 
s 3500 m which form the basis for regression formula (22). 
For this formula to be consistent with (23) it is necessary that 
a~ vary with L, according to the power law 

(24) 

where C0 -= 0.0175/c0 with w = 0.23 with a 95% confidence 
interval [0.15, 0.30]. As we equate L, with s, (24) is analo­
gous to (19) provided only that a~ is given by the semivario­
gram 

(25) 

Hence the regression line in Figure 1 represents a self-similar 
log hydraulic conductivity field with homogeneous incre­
ments characterized by the fractal dimension D ~ E + 0.77 
with 95% confidence interval [I. 70, 1.85]. 

Our second interpretation considers that many of the 
reported tracer studies have been conducted in anisotropic 
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Fig. 2. Apparent longitudinal dispersivities versus scale of 
study excluding numerical model calibration results; second inter­
pretation. 

media and hence (7) may not be valid unless a.,L << L,.. To 
account for this possibility, we fit in Figure 2 two separate 
regression lines of the form (21) to 119 data points associated 
with L1 s 100m Oine A) and 16 data points associated with 
L1 ~ 100m (line 8); one point lies at L, = 100m and belongs 
to both lines. Line A can be expressed as 

(26) 

with a regression coefficient R2 = 0.71 and 95% confidence 
intervals [0.0108, 0.02641 about the coefficient 0.0169, and 
[1.35, 1.70) about the exponent 1.53. This is very similar to 
(22) and, in analogy to (25), leads to 

(27) 

where now w == 0.26 with a 95% confidence interval [0.17, 
0.35]. Since this is very similar to (25), we combined the two 
into a sin~e approximate scaling rule by setting w Ell 0.25 and 
writing 

(28) 

In other words, we conclude on the basis of our two 
interpretations that Jog hydraulic conductivities of the geo­
logic media represented in Figures 1 and 2 constitute a 
self-similar random field with homogeneous increments 
characterized by the semivariogram (28) and a fractal dimen­
sion D ;E!;! E + 0.75. We will show below that even though this 
conclusion was reached by excluding data associated with 
L, 2: 3.500 min Figure I and L, > 100m in Figure 2, it is 
nevertheless consistent with these data. 

Since the materials represented in Figures 1 and 2 include 
unconsolidated sediments as well as consolidated porous 
and fractured rocks of diverse origin from a variety of sites, 
the self-similarity and associated semivariogram in (28) 
appear to be a universal property of many geologic media. 

The marked scatter of the data about the regression line in 
Figure I and line A in Figure 2, attributed earlier in part to 
experimental and interpretive errors (including those stem­
ming from differences between the spatial and temporal 
moments of ensemble mean and real concentrations), can 
now be attributed in large measure to local deviations from 
this universal self-similarity pattern. One major reason for 
such deviations appears to be variations from one medium to 
another in the coefficient C which determines the log hydrau­
lic conductivity variance in (18) and affects the semivario­
gram coefficient Co in (19). Lesser deviations are expected to 
arise from fluctuations in the coefficient c0 that derives from 
the quasi-linear theory and affects (lO) as well as (23}-(25) 
and (27}-(28), due to the diversity of flow and anisotropy 
conditions encountered in the various tracer studies. Most 
importantly, the semivariogram in (28) is an idealization 
based on the notion of a continuous hierarchy of scales 
which does not strictly apply to geologic media possessing 
discrete natural scales at which the log hydraulic conductiv­
ity field is homogeneous. The existence of such natural 
scales was postulated over 30 years ago by Hubbert [1957), 
and more recent discussions ofthe concept can be found, for 
example, in publications by Cushman (1987, 1990]. The 
legality of associating medium properties with representative 
elementary volumes (REVs) is limited at best to natural 
scales, as is the possibility for the development of Fickian or 
quasi-Fickian dispersion regimes. Since tracer studies are 
often conducted within discrete geologic units exhibiting 
some degree of homogeneity, many of the apparent disper­
sivities in Figures I and 2 are expected to represent natural 
scales and therefore to deviate from the continuous model 
manifested by the regression lines in these figures. Hence the 
universal scaling rule embodied in (28) must not be viewed as 
a representation of actual conditions at any given locale but 
rather as self-similarity of log hydraulic conductivities in a 
mean sense over a large range of length scales in a broad 
variety of geologic media under diverse conditions of flow 
and transport. 

From (22) and (26) it is clear that the universal semivari­
ogram (28) corresponds to 

(29) 

which is valid at most for «at. :s L, or. equivalently, for 
L1 s 3460 m; this is why data points corresponding to L, 2: 

3500 m were excluded from the regression in Figure 1. Our 
second interpretation of the data according to regression line 
A in Figure 2 assumes that (29) is valid only for L, :s 100 m 
or equivalently a a~. << L,. Since the latter equation arises 
from ( 10), this is the same as saying that data corresponding 
to L, » 100m must be interpreted on the basis of(11) rather 
than (10). We stated earlier that the data were interpreted on 
the basis of traditional Fickian models which become anal­
ogous to (II) provided L,. is replaced by c1L,, where c 1 = 
c01a,.0 L and a,.,0 L is constant. Consistent with this replace­
ment, (l I) yields the following expression for apparent 
longitudinal dispersivity, 

(30) 

where c2 = cc 1• Upon further replacement of u y by y}12 

according to the universal scaling rule (28) this becomes 

- LJ.2S a at.= CJ s (JJ) 
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where c3 = (O.Ol7/c0 ) 112c2 • We see that whereas the fitted 
slope of aaL versus L, in Figure 2 is approximately 1.5:1 for 
L, :s 100 m, the quasi-linear theory predicts that the slope 
should drop to 1.25: I for L, >> 100m. In other words, the 
quasi-linear theory predicts a reduction in the slope of log 10 
aaL versus log 10 L, as aaL approaches L,, a phenomenon 
qualitatively consistent with our interpretations of the data 
in Figures I and 2. The same phenomenon was noted earlier 
by others but could not be interpreted theoretically. In fact, 
all previous attempts at a fractal analysis of the scale etfect 
(none of which dealt directly with hydraulic conductivities) 
were limited to a single straight line on logarithmic paper 
[Philip, 1986] fitted either to all the available laboratory 
and/or field data [Arya eta/., 1988; Lake, 1988, 1989] or to a 
portion of these data corresponding to relatively small L, 
[Wheatcra/t and Tyler, 1988]. It is therefore important that 
we ask whether the reduction in slope indicated by line B in 
Figure 2 is quantitatively consistent with the quasi-linear 
prediction embodied in (31). 

To answer this question, we note that data corresponding 
to L, 2:: 100m are represented in Figure 2 by regression line 
B, which can be expressed as 

(32) 

with a regression coefficient R 2 = 0.44 and 95% confidence 
intervals [0.026, 3.95] about the coefficient 0.32, and [0.30, 
1.37] about the exponent 0.83. Upon testing the null hypoth­
esis that the above slope is admissible under the regression 
leading to line B we find that it must be rejected at the 80% 
confidence level. In other words, our answer to the above 
question is negative and indicates that line B is inconsistent 
with the quasi-linear theory. We show below that this 
inconsistency is not real but an artifact of the method used to 
derive the data. 

Equation (31) derives in part from (30), which follows from 
(II), the latter being based on (9) and (8). The traditional 
Fickian interpretation was shown to imply that a xDJ. is a 
constant and L 10 can be replaced by c0L,. Hence on the basis 
of (5) and (8) it implies further that 

(33) 

where c4 is a constant. In analogy to the manner in which (9) 
gave rise to (II) and (30), (33) gives rise to 

(34) 

Comparing (34) with (31) shows that in contrast to the 
quasi-linear theory which states that a aL should grow as 
L]· 2~, the traditional (linear) model leads to apparent disper­
sivities that are linearly proportional to L,. Indeed, the null 
hypothesis that the exponent in (32) is not 0.83 but 1.00, i.e., 
that (32) can be replaced by 

(35) 

where b is a coefficient, cannot be rejected at the 50% 
confidence level. This means that (35) constitutes an accept­
able alternative to line B in Figure 2 and the corresponding 
data are consistent with our theoretical relation (34). The 
latter relation. however, is an artifact arising from the 
interpretation of tracer studies by means of a linear theory 
where the quasi-linear theory is considered (in our second 
interpretation) to be more appropriate. The large scatter of 
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Fig. 3. Apparent longitudinal dispersivities versus scale of 
study including numerical model calibration results compared to 
second interpretation. 

the data about line B is due to fluctuations in the coefficient 
c4 and other reasons of the type discussed earlier. 

The dispersivities in Figures I and 2 were obtained by 
considering the hydraulic conductivity (or transmissivity) to 
be uniform in each tracer study. Figure 3 is similar to Figure 
2 but includes dispersivities obtained from the calibration of 
numerical models against hydraulic and concentration data 
corresponding to large-scale plumes. Most of the calibrated 
dispersivitics are seen to be associated with scales in excess 
of 100m and to lie below the lower confidence limit of line B. 
Applying regression to the calibrated dispersivities yields a 
straight line with a slope of 0.54 (not shown in the figure). 
When the regression includes all dispersivities correspond­
ing to L_. 2:: 100m, the slope reduces to 0.48 (not shown). In 
both cases the null hypothesis that the slope is I or larger 
must be rejected at the 99% confidence level. Hence the 
calibrated dispersivities are consistent neither with our first 
theoretical interpretation of the data in Figure I nor with the 
second in Figure 2. 

The calibrated dispersivities in Figure 3 grow approxi­
mately in proportion to L] 12

, as does the discrepancy be­
tween them and theoretical values predicted by (34). Hence 
they can be made consistent with our theory if one associ­
ates them with a reduced scale L, proportional to L]n. This 
reduction in scale appears to be caused by the fact that 
numerical model calibration often provides information 
about the spatial variation of hydraulic conductivities (or 
transmissivities) on scales exceeding the dimensions of 
model subregions (called "zones") within which they are 
kept constant or allowed to vary at a relatively slow rate (J. 
Carrera, personal communication, 1989). Calibration is thus 
tantamount to filtering out low-frequency modes from the 
random log hydraulic conductivity field and thereby reduc­
ing the range of length scales that atfect dispersivities to 
below the characteristic length of the zones. In other words, 
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the dispersivities are associated with a length scale L, which 
depends on the dimensions of the zones rather than on the 
mean travel distance L, of the plume. The above regression 
analysis suggests that in past calibration exercises, L, in­
creased with the mean travel distance at an average rate 
proportional to L112

• This in turn implies that modelers 
tended to design the zones of their computational grids in a 
manner roughly proportional to L112

• 

CONCLUSIONS 

The following mi\ior conclusions can be drawn from this 
study: 

I. Consider a hierarchy of homogeneous Jog hydraulic 
conductivity fields with mutually uncorrelated increments, 
each field having an exponential covariance with a distinct 
integral scale and a variance which increases as a power of 
this scale. Then the superposition of a continuous hierarchy 
of such fields over all scales ranging from zero to infinity 
yields a self-similar (or self-affine) random field with (wide 
sense) homogeneous increments. 

2. Apparent longitudinal dispersivities a 11L from labora­
tory and field tracer studies in a variety of porous and 
fractured media in diverse hydrogeologic settings show a 
systematic increase with the scale of the study, L,. It is 
possible and appropriate to interpret this scale effect by 
requiring that the data be consistent a priori with the recent 
quasi-linear theory of non-Fickian and Fickian dispersion in 
homogeneous media due to Neuman and Zhang [1990] and 
Zhang and Neuman [1990], but that they represent a poste­
riori a self-similar log hydraulic conductivity field with 
homogeneous increments. Regression against the available 
data implies, at a high level of confidence, that this field is 
associated with a semivariogram ')'(s) ;;: cs 112 , where cis a 
constant and s is a measure of distance. Such a semivario­
gram is in turn characteristic of a random fractal with 
dimension D = E + 0.75, where E is the topological 
dimension of interest (£ = I for a linear transect, E = 2 for 
a two-dimensional plane or cross section, E = 3 for a 
three-dimensional medium). 

3. The above semivariogram and fractal dimension can 
be viewed as a universal scaling rule which does not neces­
sarily describe conditions at any given locale but accounts 
for the self-similarity of log hydraulic conductivities in a 
mean sense over a large range of length scales in a broad 
variety of geologic media under diverse conditions of flow 
and transport. Actual aoL data show sizable random fluctu­
ations about such mean behavior due to a variety of causes 
including experimental and interpretive errors (caused in 
part by the fact that existing dispersion theories deal with 
ensemble mean rather than real concentrations), variations 
in material properties from one locale to another, and 
differences between flow and transport regimes during dif­
ferent tracer studies. A major cause for local deviations from 
universal behavior appears to be the presence in many 
geologic media of discrete natural scales at which the log 
hydraulic conductivity field is homogeneous. This work 
implies that such discrete scales occur at best intermittently 
over relatively narrow bands of the scale spectrum. 

4. Based on the aforementioned universal scaling rule, 
the quasi-linear theory of Neuman and Zhang [1990] and 
Zhang and Neuman [1990) predicts a reduction in the slope 
oflog 10 aaL versus log 10 L, as aaL approaches L,. A similar 

reduction has been noted earlier by others but could not be 
interpreted theoretically. Previous attempts at a fractal anal­
ysis of the scale effect (none of which dealt directly with 
hydraulic conductivities) were limited to a single straight line 
on logarithmic paper fitted either to all the available labora­
tory and/or field data [Arya et al., 1988] (see also Lake [1988, 
1989)) or to a portion of these data corresponding to rela­
tively small L, values [Wheatcrqfi and Tyler, 1988) while 
saying little about dispersivities on larger scales. 

5. Equations (20), (23), and (24) imply jointly that longi­
tudinal dispersivity varies with scale as a positive power of 
the Hurst coefficient wand a negative power of the fractal 
dimension D. This makes physical sense considering that an 
increase in w (and, since D = E + l - w, a decrease in D) is 
associated with an enhancement of long-range phenomena 
which cause log hydraulic conductivities to persist over 
increased distances: the effect on dispersivity is qualitatively 
similar to that of lengthening the spatial correlation scale in 
a statistically homogeneous medium which causes it to 
increase. Our finding that w ;;: 0.25 and D ;;: E + 0.75 
suggests that log hydraulic conductivities are generally dom­
inated by short-range phenomena which render them rela­
tively noisy though their increments are correlated over 
arbitrarily large spatial scales. This is qualitatively consis­
tent with the conclusion of Ababou et a/. [1988] that log 
hydraulic conductivities of the Mount Simon aquifer are 
associated with w = 0. Our finding that longitudinal disper­
sivity varies with scale as a positive power of w and a 
negative power of D is consistent with related analyses by 
Philip [1986, equation (46)] and Arya et al. [1988, equation 
(24)] but inconsistent with (16) of Wheatcroft and Tyler 
[1988], which appears to state the opposite. The consistency 
is encouraging, and the inconsistency puzzling despite the 
different meanings ascribed to w and D by the various 
authors. 

6. Since homogeneity is at best a local phenomenon 
limited to random and relatively narrow intervals of scale, 
one must question the utility of associating medium proper­
ties with representative elementary volumes (REVs) as has 
been the custom in subsmface hydrology for several de­
cades. Alternatives to the traditional REV concept as ap­
plied to porous media have been discussed in a recent review 
article by Cushman (1987); arguments in favor of treating 
fractured crystalline rocks as multiscale stochastic continua 
to which similar alternatives apply have been put forth by 
Neuman (1987, 1988] and Neuman and Depner [1988]. 

7. The latter arguments in favor of treating crystalline 
fractured rocks as multiscale continua can be extended on 
the basis of this work to a variety of other fractured media. 
This follows from our finding that many fractured and porous 
materials follow the same universal scaling rule. Since the 
latter rule applies to log hydraulic conductivities which affect 
flow, and extends to dispersivities which affect transport, 
one must question the prevailing tendency among many 
hydrologists to draw fundamental distinctions between the 
manners in which fractured and porous media conduct 
single-phase fluids or affect the spread of chemicals dis­
solved in such fluids when detailed information about the 
geometry and transport properties of individual fractures is 
not available. As the lack of such infonnation seems to be 
the rule rather than the exception [Neuman, 1987, 1988), 
treating fractured rocks as multiscale continua appears to be 
a viable alternative in many cases. 
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8. Given that homogeneity is at best an intermittent local 
occurrence on relatively narrow scale intervals, one must 
question the continued application of Fickian transport 
models to subsurface plumes that spread over more than a 
limited range of scales. A plume spreading through a homo­
geneous medium of infinite extent may attain a Fickian mode 
of dispersion asymptotically. However, geologic media are 
finite and possess a hierarchy of scales. Hence Fickian or 
quasi·Fickian behavior constitutes at best intermittent epi­
sodes during what is otherwise an inherently non-Fickian 
mode of transport. 

9. Longitudinal dispersivities obtained from the calibra­
tion of numerical models against hydraulic and concentra­
tion data are found to vary more slowly with the scale of the 
study than do dispersivities determined by other means. This 
appears to be caused by the fact that calibration often 
provides information about the spatial variation of hydraulic 
conductivities (or transmissivities) on scales exceeding the 
dimensions of model subregions (called "zones") within 
which they are kept constant or allowed to vary at a 
relatively slow rate. Calibration is thus tantamount to fil­
tering out low-frequency modes from the random log hy­
draulic conductivity field and thereby reducing the range of 
length scales that affect dispersivities to below the charac­
teristic length of the zones. Stated otherwise, conditioning 
transport models on hydraulic data has the effect of filtering 
out large-scale modes from the multiscale hierarchy of log 
hydraulic conductivity fields. This leads to the important 
operational conclusion that the scale parameter which con­
trols dispersivities in a given transport model diminishes as 
the density of information about hydraulic heterogeneity 
goes up. 
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