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1 EXECUTIVE SUMMARY 

This report summarizes several projects related to data compilation and analysis (including flow 

and transport modeling) in support of regional aquifer characterization. 

The primary goals of the FYOl work have been to update estimates ofjlow directions and velocities using 

the regional aquifer model, supplemented with new data collected from R-wells, to evaluate model 

uncertainty and prioritize new data collection accordingly, and to continue development of a facies-based 

model of heterogeneity for the Puye Formation. 

The fundamental goal for the regional aquifer model is to provide estimates of three-dimensional 

groundwater flow directions and velocities, qualified by technically-defensible estimates of model 

uncertainty. The aspects of aquifer characterization necessary to accomplish this goal are water level data, 

hydrostratigraphic zone delineation, permeability and porosity estimates, and flux estimates 

(rechargeldischarge). With the addition of recent R-well data, our ability to estimate lateral flow directions 

using existing water level data and flow modeling has improved significantly. Both measured hydraulic 

gradients and flow model predictions continue to indicate easterly flow. Our understanding of vertical 

gradients has improved as well. Strong downward gradients exist in several locations; near-neutral 

conditions exist, as well. To date, no strongly upward gradients have been measured in R-wells. A 

significant gap in our vertical gradient dataset is the northwestern portion of LANL. Lack of vertical 

gradient information in this area could compromise our ability to determine the correct depth for 

monitoring wells in Los Alamos and Pueblo Canyons. 

The new water level data has been incorporated into flow model calibration and the resulting 

estimates of large scale permeability have become more certain. In particular, our estimates of 

permeability for the Puye Formation and basalt flows have become well-constrained by water level and 

flux data. Estimates for Santa Fe Group rocks continue to be fairly certain. The outstanding problem with 

regard to estimates of large-scale permeability is that model-derived estimates for the Santa Fe Group are 

substantially lower than field-based estimates (e.g. pump tests in Los Alamos Canyon). This may be due to 

scaling effects or structural features such as north-south trending low-permeability fault zones. 

Unfortunately, collecting data to conclusively prove or disprove this hypothesis would require very 

expensive multi-hole testing. Other possible reasons for the discrepency (dramatic underestimation of flux 

through the aquifer and/or overestimation of aquifer thickness) do not appear to be plausible at present but 

are worthy of hrther evaluation. 

In-situ hydraulic testing in R-wells and geophysical estimates of permeability have provided more 

evidence of large variation in medium- and small-scale permeability within the Puye Formation. 

Unfortunately, at present we do not have a robust conceptual model that relates these permeability 

variations to lithology. Geophysical logs have also provided small scale estimates of effective porosity. 
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Geophysical logs indicate that a large proportion of the Puye Formation has very low porosity; these same 

zones also have very, very low permeability. This result should be tested by collecting core samples and 

conducting laboratory analyses; until they are verified in this way the porosity data will not be incorporated 

into flow and transport modeling. 

We have continued to evaluate the adequacy of hydrostratigraphic zonation (defined by the 3-D 

geologic model) by comparing simulated and observed water levels under a variety of parameter 

combinations. The results are mixed. It appears that the delineation between basalt flows and sedimentary 

rocks has real hydrologic significance; the basalt flows appear to be substantially higher in permeability. 

Differing transport characteristics, assuming that flow in basalts occurs primarily through fractures, 

amplifies the importance of this delineation. At present, however, the delineation between the “Los 
Alamos Aquifer” and the lower Santa Fe Group does not appear to have hydrologic significance, nor does 

the delineation between the Puye fanglomerate and the Totavi Lentil. This result contrasts with previous 

studies (Rogers, Birdsell) which demonstrate a strong hydrologic significance of stratigraphy within the 

vadose zone. 

Our calibrated flow models reproduce many of the general trends in water level data (drawdowns 

in wells over time, of approximately the correct magnitude, easterly gradients, downward gradients in the 

vicinity of R25, etc.). Our errors are unbiased. However, significant discrepancies exist between observed 

and simulated water levels in some wells. This result, in combination with the small- and medium-scale 

heterogeneity observed within the Puye Formation and the lack of apparent hydrologic significance of 

several defined hydrostratigraphic zones, has important implications. Clearly, small- and medium-scale 

heterogeneity exists that is not incorporated in the flow model and which compromises our ability to 

simulate local effects within the flow field. Large-scale heterogeneity, with the exception of basalt flows 

interfingering with sedimentary units, does not appear to be controlled by stratigraphy. Further 

characterization is necessary to determine if large-scale heterogeneity is present within the sedimentary 

rocks, and, if so, what (if any) relation it may have to lithology or stratigraphy. 

We have completed two formal analyses for the effects of parameter uncertainty (permeability, 

recharge rates, and specific storage) on model predictions. The first is an analysis of the uncertainty in the 

predictions made using the basin model for lateral fluxes to the aquifer beneath LANL. This analysis 

showed that water level and flux data (baseflow discharge to the Rio Grande) is sufficient to support model 

predictions that little or no groundwater enters the aquifer from the north or leaves the aquifer to the south. 

In contrast, there is large uncertainty in flux estimates from the west (none or a relatively large amount 

relative to the total water withdrawn from municipal supply wells). Subsequent transport calculations were 

insensitive to these uncertain fluxes; however. The importance of this uncertainty will depend on the 

model application. 

The second analysis was of uncertainty in flow directions downgradient from R25. This analysis 

demonstrated fairly low uncertainty in lateral flow directions (regardless of parameter values, calibrated 

models always predict generally easterly flow); however, much greater uncertainty accompanies the 
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vertical component of flow and the ultimate discharge point (PM-2 or the Rio Grande). Sensitivity analysis 

showed that of multiple possible locations for new water level data to reduce predictive uncertainty, multi- 

level data at or near R25 would be the most valuable. This analysis was completed before many of the 

recent water level data became available (including data from R25) and therefore may overestimate 

uncertainty. 

Finally, we made substantial progress in our development of stochastic, facies-based models of the 

Puye Formation. Our goals for this project were to 1) integrate borehole and outcrop-derived geologic data 

into facies-based, Markov chain models of the Puye, 2) calibrate these models against water level data, and 

3) develop methodology to preserve the transport characteristics of fine-scale models of heterogeneity 

when upscaling to a coarser-scale flow and transport model. We made substantial progress in areas (1) and 

(3). So far, our effort to calibration the models against water level data have not been successful. This may 

be because our initial models are overly simplistic (e.g. 2-D, two classes) or because our conceptual model 

of which facies are most hydrologically important within the Puye is incorrect. Making further progress in 

model calibration will require detailed analyses of existing hydrologic and geologic data from R-wells to 

determine which depositional facies have distinctive hydrologic properties. With this understanding, the 

methods we have developed for the Markov chain models should be easily applied and presumably model 

calibration will be much more successful. 
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This chapter describes water level, porosity, and permeability data for the regional aquifer. 

It draws heavily on data presented by Purtymun (1995), Broxton (2001a,b,c,d) and Longmire 
(200 1 ) 

2.1 Water levels 

Significant progress has been made since Oct. 2000 in the collection and compilation of 

water level data. Table A-1 lists the most recent water level data available for all wells 

completed in the regional aquifer, including recent data collected in R-wells. Because of the 

increased density of water level data collected in test wells that penetrate only the uppermost 

portion of the aquifer, it is possible to construct a water table map for the plateau that does not 

include data from water supply wells. Figure 2-1 shows a contoured map of water levels in these 

wells (indicated in Table A-1). This figure demonstrates the slope of the water table is generally 

to the east. Table 2-1 shows calculated horizontal gradients for several well pairs; estimated 

gradients range from 0.01 to 0.03. 

Figure 2-2 shows head data in in vertical cross-section; each well is projected onto a E-W 

plane. This figure illustrates the downward gradients to the west and the upward gradients to the 

east. In general, the gradients shown in Figure 2-1 and Figure 2-2 are gradients that would be 

expected in a relatively homogeneous aquifer with topographically-driven flow (recharge in high 

areas, discharge in low areas (Rio Grande). 

Table 2-2 lists the vertical gradients estimates for the plateau. Some of these estimates are 

quantitative, calculated using water levels measured in R-wells completed with multiple screens. 

Others are qualitative, calculated using water levels measured in pairs of nearby wells. These 

estimates show that by far the strongest vertical gradients measured have been downward (R25, 

R19). Moderate downward gradients are also present near TW-1 and R22. Slight upward 

gradients have been estimated in the vicinity of R9 and TW-3. In general, all the measured 

upward gradients have been fairly small and are possibly within the margin of error for water 

level measurement accuracy. Significant downward gradients are important because they 

indicate possible zones of recharge and potential pathways for contaminant migration downward. 



l R-well 
Other wells 

0 Water supply well 
l Test well 

Figure 2-1. Water table elevation. Data medfor drawing contours are listed in 
TableA-I. 

Table 2-l. Estimated E-W hydraulic gradients 

E-W 
Distance Gradient 

Pair of Wells ON (m/m) 
Upgradient Downgradient 

Well Water level (m) Well Water level (m) 
R25 1836 CDV 15-3 1833 2189 0.02884 

CDV 15-3 1833 R19 1795 4710 0.02149 

DT-IO 1805 R22 1747 5195 0.01121 

R15 1785 RI2 1738 3684 0.01283 



eod 
-108.38 -100.34 -100.52 -1W.30 -100.20 -100.26 -108.24 -106.27. -1W.20 -1W.10 -1W.10 -100.14 -1 

Long#ldr(-d.gnr) 

12 

Figure 2-2. Heads projected onto a E- W cross-section through Pajarito Plateau 



Table 2-2. Estimated vertical gradients, ordered by magnitude 

Well 
R- 1 9-6 

R9/PM- 1 

TW3/0-4 

Vertical 
&adient 

0.08 Weakly upward 

0.05 

0.05 

CdV-R-15-3-6 

R-3 1-4 

R-3 1-3 

R-3 1-5 

TWl/O-1 eakly downward 

R-22-4 

0.02 

0.01 Nearly neutral 

0.0 1 

0.02 

R-25-8 

R-22-3 

R-25-6 

R-25-4 

R-25-5 

0.86 

1.10 

R-25-3 

8 

1.72 Strongly downward 



2.2 Porosity 

Geophysics data provide us with our first site-specific estimates of effective porosity. The 

geophysical data are measured by Schlumberger using the Combinable Magnetic Resonance 

(CMR) tool. The CMR tool uses the nuclear magnetic resonance (NMR) technique to log porous 

aquifers. The NMR measurements can provide different types of porosity-related information. 

For example, they can tell how much fluid is in the formation and give detail information about 

the pore size distribution of the formation from which the porosity, bound and free water, and 

hydraulic conductivity are estimated. However, the estimated values depend on the choice of 

cutoffs for the so-called transverse relaxation time Tz. For instance, the volume of the clay- 

bounded water is usually determined from the distribution of the relaxation time using a cutoff 

value of TZ = 3ms, and the value of the effective porosity corresponding to T2 > 33 ms in the 

distribution of the relaxation time. Geophysical estimates of porosity are shown in 

Table 2-3 and Figure 2-3. Effective porosity estimates for the Puye Formation, based on 

geophysical logs . Average effective porosity for the Puye ranges from .07 to . I, with some 

relatively small zones with significantly higher porosity. For the two zones in R19 that showed 

high permeability in hydraulic testing, the porosity estimates were approximately 0.2. Analyses 

for the same data, assuming different values of T2. (I 2ms and 60ms) showed that these results 

are not sensitive to the value of this uncertain number. 

0.6 

q CDV-R-15 
n R-19 
0 R-7 

Figure 2-3. Effective porosity estimates for the Ptcye Formation, based on geophysical logs 



Table 2-3. Effective porosity estimates based on geophysics data 

Well 
CDV-R-15 

Interval Mean N 
All data within Puye 0.07 744 

ICDV-R- I 5 lscreen 4 I 0.06 187 I 

CDV-R-15 Screen 6 0.16 15 

R19 All data within Puye 0.1 1466 

R19 SCREEN 6 0.2 14 

R19 SCREEN 7 0.2 15 

ICDV-R-15 IScreen 5 ' I 0.01 113 I 

I R ~  lAll data within Puye I 0.09 1293 I 

2.3 Permeability 

Two field-based methods have been used to estimate permeability since Oct. 2000 hydraulic 

testing of wells and analysis of geophysical logs. In the case of geophysical logs, the 

permeability k is derived from porosity according to the following formula: 

k = c44T;,, ( 2-1 ) 

where (I is the CMR porosity, T2,10g is the logarithm mean of the T2 distribution, and C is a 

constant, typically 4 for sandstones and 0.1 for carbonates. All the data from the Puye Formation 

is shown in Figure 2-4. Summary statistics are provided in Table 2-4. In two wells, both 

methods were used which provides an opportunity for comparison. Unfortunately, these two 

estimates in poor agreement, even in a relative sense. The most probable reasons for this include 

scaling effects, errors in data analysis, poor test performance, or some combination of both. In 

CDV-R-15 the two methods were of the same order of magnitude; in R19 hydraulic testing 

suggests a much higher permeability than geophysics. It is interesting to note, however, that 

geophysical logs (not shown here) suggests that a very permeable zone is present just below the 

zone of hydraulic testing; perhaps this lower zone impacted the hydraulic test results. 
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0.9 1 - 0.8 

8 0.6 
0 0.5 

e 0.3 
E 0.2 
IL 0.1 

0 

8 0.7 F! 
, w R-19 c 

0.4 o R-7 

Q? 
Hydraulic conductivity (fUd8y) 

L 

Figure 2-4. Hydraulic condrctivity estimates for the Puye Formation, based on geophysical logs 

Figure 2-5 shows all the field-based permeability estimates currently available for the 

plateau. Different symbols correspond to different methods. Strictly speaking, this dataset 

cannot be used to compare methods because in most cases (excepting those listed in table 2), the 

tests were conducted in different portions of the aquifer. The addition of injection test and 

geophysical data to the previous dataset shows that the range of permeability for both the Puye 

and the basalts is larger than pump test estimates suggested. These estimates clearly show the 

presence of low permeability zones within both the basalts and the Puye Formation. 

-10.00 

-10.50 

-11.00 

-1 1.50 s E -12.00 

-12.50 ' -13.00 

1 -13.50 

-14.00 

-14.50 

-15.00 

Tsf Tsfuv Tpf Tpt Tb Tt 

Figure 2-5. Permeability estimates fiom field-based methods 



Table 2-4. Summary of recent hydraulic conductivity estimates from field-based testing 
W a y )  

CDV-R- 1 5 

R7 

R3 1 

R3 1 

R3 1 

R3 1 

Screen 6 0.74 15 0.1 

All data within Puye 0.1 293 

Screen 4 0.009 

Screen 5 0.007 

Screen 2 0.42 

Screen 3 3.6 

Formation 

Puye 

Puye 

Puye 

Puye 

Puye 

Puye 

Puye 

Puye 

basalts 

basalts 

basalts 

basalts 
a geometric mean 
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3 GROUNDWATER VELOCITY IN THE REGIONAL AQUIFER 

In this chapter we compare three methods for estimating groundwater velocity in the 

regional aquifer. The first is a very simple method, which assumes that flow is horizontal and 

relies entirely on hydraulic conductivity estimates taken from pump tests in wells on the plateau. 

Purtymun (1 995) used this approach; acknowledging spatial variation in permeability but 

assuming uniform porosity. We calculate a range of velocities for the plateau, using this method 

based on a slightly larger set of hydraulic conductivity estimates (including recent data from R- 

wells). Second, we use the very limited geochemical tracer data available to provide estimates 

which are completely independent from the first, although they share the simple assumption of 

two-dimensional flow. The third approach is based on calibrated flow models. This approach 

provides three-dimensional estimates of velocity and uses spatially distributed estimates of both 

permeability and porosity. 

3.1 Estimates based on 2-D flow, measured hydraulic gradients 

and field-based hydraulic conductivity estimates 

The regional hydraulic gradient is generally to the east, with a slight southerly component in 

some areas. As shown in Table 2-1, the gradient varies from approximately 0.03 to 0.01. 

Locally, gradients may depart from these larger scale estimates; however, uncertainty due to 

local variations at scales less than R-well spacing is probably larger than uncertainty due to 

measurement error. Permeability data (provided in Table A-2) show that considerable variation 

in permeability is present in the aquifer. By assuming a hydraulic gradient of 0.01 and a 

porosity of 0.1, we calculate a range of groundwater velocities from 0.1 to 363 d y r ,  with a 

median value of 11 d y r  (see Table A-2). Using a similar method, Purtymun (1995) estimated 

that groundwater velocities vary from a minimum of 6 d y r  (Los Alamos well field ) to 105 d y r  

(near DT wells). We expect these velocities may be larger than a site-scale “average” velocity 

since many of the permeability estimates are derived from water supply wells which were 

presumably placed in the highlyt permeabile portions of the aquifer. 
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Pump test data only I - - -_---- 

0 1 5 10 50 100 200 

Average linear velocity (mlyr) 

Figure 3-l. Histogram of velocity estimates, based on hydraulic testing and 2-D flow 

Assuming 2-D, horizontal flow, approximate travel times would be as follows: 

Table 3-l. Calculated travel times, assuming 2-D horizontal flow 

Figure 3-2. Figure 3. Carbon I4 age date! 
(Rogers et a& 1996) 

1 Vertical gradients are well documented both on 

the plateau (both downward and upward) and near the 

Rio Grande (upward); hence flow paths are most 

certainly three-dimensional and therefore travel times 

may be longer than those calculated above. 

3.2 Geochemical evidence 

Carbon age dates presented by Rogers et al. 

(1996) suggest that waters are progressively older 

from 
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west to east. Again, assuming 2-D flow from west to east, we can calculate groundwater 

velocities. For the eastern portion of the plateau, assuming a distance of 7.8 km between PM3 

(age = 4900 years) and LA-1B (age >= 27000 years), we calculate a maximum velocity of 0.35 

d y r .  For the central portion of the plateau, assuming a distance of 3.2 km between 0-4 (3900 

years) and PM-1 (5600 years), we calculate a velocity of I .9 d y r .  These calculations ignore the 

effects of 3-D flow, mixing in wells with long screens, and (near the Rio) mixing of waters 

converging near the regional discharge zone. As expected, these estimates,which reflect large- 

scale average velocities, are slower than those derived from hydraulic test data. 

Unfortunately, we cannot use contaminant data (e.g. 3H, HE, Ur) to estimate travel times. 

These data do demonstrate that relatively fast travel times exist within the vadose zone. 

However, we cannot estimate how much lateral transport occurred within alluvial or intermediate 

perched zones before the contaminants reached the regional aquifer and therefore the distance of 

travel within the regional aquifer is unknown. 

3.3 Groundwater flow and transport modeling 

Numerical modeling has both advantages and disadvantages in comparison to the simple 

methods described above. The primary advantages are that the model considers the full three- 

dimensionality of the aquifer including spatial variation in recharge rates, pumping rates, 

hydraulic conductivity and porosity. The resulting predictions of flowpaths and velocities are 

fully three-dimensional. The x component of velocities at the water table predicted by the 

regional model are shown in Figure 3-3. These estimates are very sensitive to assumptions about 

porosity. The values used for these calculations are shown in Table 3-2. The median value of 

velocity is 0.8 dyear.  This estimate is lower than the mean estimate obtained by hydraulic 

testing data, and is similar to the estimate derived from geochemical data. One reason for the 

lower velocities is the fact that the model assumes a lower permeability for the Santa Fe group 

than hydraulic tests suggest. The reason for this is unclear, however, it may be that the large- 

scale effective permeability of this unit is impacted by north-south trending faults (Kelley 1978). 

In some locations, particularly in basalt units which are assumed to have very low porosity 

(fracture-flow only), have much higher predicted velocities Another important aspect to the flow 

model results is that in a substantial portion of the water table, the vertical component of velocity 

is much larger than the horizontal. For approximately half the water table surface (within model 



boundaries), flow is predominately horizontal. However, for approximately 10% of the area 

within the model, flow is nearly completely vertical (downward or upward). 
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Figure 3-3. E- W component of velocity at the water table, in d y r  
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Figure 3-4. Histogram of E- W component of velocity at the water table, predicted by flow model 

16 



Table 3-2. Permeability and porosity values used in velocity calculations (st-cap9) 

Porosity I 

-1 
0.05 

0.05 I 
0.05 I 
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Figure 3-5. Ratio of horizontal to vertical velocity 
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4 MODEL DEVELOPMENT 

Several significant model developments have been accomplished this year. One, the process 

of mapping geologic features onto the numerical grids (both basin and submodel) has been 

improved, providing more faithful renditions of the conceptual and numerical geologic models 

(see Appendix B). Second, new water level data (R-wells) have been incorporated into the 

model calibration process. This addition has caused a significant decrease in model parameter 

uncertainty, particularly with regards to the Puye Formation. Third, geophysical, geologic, and 

hydrologic data have been integrated into stochastic, facies-based models of the Puye Formation. 

This work is summarize in Chapter 8. This process, while providing some new insights into the 

hydrologic behavior of the Puye, has also highlights gaps in our understanding of geologic 

controls on hydrologic properties within the Puye. 

We have also made substantial progress in evaluating model uncertainty and prioritizing 

new data collection that would most reduce model uncertainty. We have analyzed uncertainty in 

lateral fluxes that entedexit the aquifer beneath LANL and uncertainty in flow path directions in 

the western portion of the aquifer. Both of these analyses evaluate the combined impact of 

parameter uncertainty (all parameters) under model calibration constraints; this process is much 

more powerfbl than traditional sensitivity analysis. 

4.1 Computational mesh and hydrostratigraphy 

The computational grids for our basin- and local-scale models were originally designed by 

Keating et al. (1999). In FYOl , we have slightly modified and improved these grids. 

The grids were generated using LaGriT (Trease et al., 1995) and debugged and visualized 

using GMV (Ortega, 1995) and Tecplot (Amtec, 2001). Basin- and local-scale grids have the 

same horizontal grid spacing. The grids include a zone of octree mesh refinement in the region of 

LANL. The fine horizontal grid spacing is 250 x 264 m in x and y direction, respectively; the 

course grid spacing is 1,000 x 1,055 m. The grids are structured except for the transitional 

regions between the fine and coarse griding. Outside these transitional regions the tetrahedral 

elements of the grid can be collapsed to hexahedral elements. For both basin- and local-scale 

grids, the vertical spacing is 500 m at the bottom and it changes to 50 m at elevation of 1 , 1 00 m. 

The local-space grid is further refined above elevation equal to 1,550 m where the vertical grid 

spacing is just 12.5 m (Keating et al., 1999). 
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In the new grids, the nodes are ordered based on their coordinates which simplifies the pre- 

and post-processing of model data. The shallow portions of the crystalline units are defined by a 

surface, which is 800 m below the model top boundary in the central regions and is thinning with 

the elevation along the mountain slopes. The shallow units of the Santa Fe group and Tschicoma 

formation are defined by a surface, which is 1,500 m below the model top boundary. We have 

also refined the discretization of basalts. Additional efforts were taken to better characterize the 

top model boundary. 

Respectively for the new basin- and local-scale grids, the number of nodes is 277,95 1 and 

172,741 and the number of tetrahedral elements is 1,528,407 and 949,835. The local scale-grid 

and a cross-sectional view beneath LANL are shown in Appendix B. 

4.2 Model Calibrations, Using New Water Level Data from R-wells. 

As described in Keating et a1.(1999,2000), our models are calibrated using two datasets: 

one, predevelopment water levels, and two, drawdowns measured over time due to pumping in 

municipal wells. Our parameter estimation procedure seeks the parameter values (permeability, 

recharge rates) that provide the best fit to both these datasets simultaneously. Using these two 

datasets should provide the most accurate estimates of permeability and recharge, however, this 

process precludes the use of recent water level measurements in wells for which there are no 

corresponding “predevelopment” data. To take advantage of the many recent R-well 

measurements we modified our calibration dataset. We are now calibrating to every water level 

data available in 5-yr snapshots. Our flux calibration targets have not changed significantly. 

- 

Using parameter estimation code (PEST) we estimated permeabilities and recharge mode1 

parameters for both the basin model and the submodel. Table 4-1 shows the parameter estimates 

and corresponding confidence intervals. For the submodel, we used two different approaches to 

estimation of recharge rates. The first is the same elevation dependent model used for the basin 

model, as described in Keating et al(2000). The second is a more complex model emphasizing 

focused recharge along canyons, developed as part of the First Order Groundwater Assessment 

Project (ER Project). Recharge rates for this model are shown in Figure 4-1. The advantage of 

this approach is that since recharge rates are assumed apriori this reduces uncertainty in other 

model parameters (permeability). This may be misleading, however, since the recharge rates 

specified in this model are still quite uncertain. 
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Table 4-1. Model parameter estimates 

Parameters Short Units Transient basin Transient sub Transient 
name 

Recharge 

dz 

Gin 

Recharge volume 

Pemeabilities 

Deep Basement 

PaleozoiciMesozoic 

Shallow PaleozoiciMesozoic 
(fractured) 

Pajarito fault zone 

Tschicoma Formation 

Tschicoma formation - shallow 

Cerros del Rio basalts 

Cerros del Rio basalts 

Cerros del Rio basalts 

Santa Fe group - West 

vertical 

Santa Fe group - deep 

vertical 

Puye fanglomerate 

Puye Totavi Lentil 

Chaquehui Formation 

vertical 

Shallow Sangres 

Frac. PC - Ojo Caliente vicinity 

Frac. PC - Penasco vicinity 

dz 

zmin 

infl 

Basement 

P/M 

Frac. PiM 

Paj.Fault 

Tt 

Frac. Tt 

Tbl 

Tb2 

Tb4 

Tsf (west, 
XY) 

Tsf (west, 
2) 

Tsf 
(deeP9xY) 
Tsf 

(deep,z) 

TPf 

TPt 

(XY) 
Tsfuv 

Tsfuv (z) 
Frac. PC 

(1) 

Frac. PC 
(2) 

Frac. PC 
(3) 

model model (1) sub-model 
(2) 

Estimates Conf. Estimates Conf. Estim Conf. 
limits limits ates limits 

[ml 1.00 (fixed) 1.00 (fixed) 

[ml 2195.68 177.25 2195.68 773.10 

[m31 3844.56 511.89 208.67 (fixed) 

a a a -14.98 h30[m21 a 

loglo[m2] -15.01 3.18 -15.01 28.61 -17.44 

h30[m21 C C C c -14.0 

loglo[m2] -15.34 0.83 -15.34 18.32 -15.0 

log,o[m21 a a a a -15.0 

loglo[m2] -12.99 0.20 -12.99 9.74 -15.3 

loglo[m2] -12.16 0.19 -12.16 0.53 -11 6.75 

~og1o[m21 b b b b -12.2 0.4 

log,o[m21 b b b b -11.4 1.35 

loglo[m2] -13.24 0.16 -13.24 0.20 -13.2 0.16 

loglo[m2] -15.04 0.43 -15.04 0.31 -13.9 0.53 

loglo[m2] -15.56 8.64 -15.56 208.28 -15.49 (fixed 

loglo[m2] -15.56 (fixed) -15.56 (fixed) -15.49 (fixed 

logIo[m2] -14.20 1.35 -14.20 2.99 -12.6 0.52 

) 

) 

log1o[m21 f f f f -13.52 11.02 

loglo[m2] -13.24 0.27 -13.24 0.33 -13.35 0.71 

loglo[m2] -15.53 0.87 -15.53 2.04 -12.34 

loglo[m2] -12.62 0.24 

loglo[m2] -13.07 0.58 
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Agua Fria fault zone 

Santa Fe group - East 

vertical 

Santa Fe group - Airport 

vertical 

Santa Fe group - Pojoaque 

vertical 

Ancha formation 

vertical 

Santa Fe group - North 

Santa Fe - Ojo Caliente sandstone 

Santa Fe - Penasco embayment 

Specific Storage 

AF fault 

Tsf 

Tsf 
(east,z) 

Tst (SF, 
XY) 

Tst (SF, 
2) 

Tst (Poj., 
XY) 

Tst (Poj., 
z) 

Ancha 
(XY) 

Ancha (z) 

Tsc 

Tso 

Tst (Pen) 

SY 

(east,xy) 

e 

-14.08 

e 

- 12.58 

-12.58 

e 

e 

- 12.26 

-12.26 

-13.44 

-13.26 

-12.36 

-3.86 

e 

0.4 1 

e 

0.79 

(fixed) 

e 

e 

0.5 I 

(fixed) 

0.49 

0.18 

0.28 

0.38 -3.86 0.59 -4.0 0.5 

a 

b combined with Tbl 

C combined with PaleozoicMesozoic 

d 

e 

f combined with Puye fanglomerate 

combined with Santa Fe group -deep 

combined with Frac. PC - Ojo Caliente vicinity 

combined with Santa Fe group - East 
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Figure 4-1. Recharge rates, in rn+ 

Figure 4-2 shows that for Santa Fe Group rocks (Tsf and Tsfuv), Totavi Lentil, and 

Tshicoma formation rocks, inverse model estimates are lower than field-based test data. The 

local, fixed recharge model estimates a very low permeability for the Tshicoma Formation; this 

permeability may be unrealistic and suggests that recharge rates in the western portion of the 

model are underestimated. For the Puye fanglomerate (Tpf) and Cerros del Rio basalts (model 

estimates for Tb4 are shown here), model estimates are near the average field-based estimate. 

Figure 4-3 shows the confidence limits associated with model estimates. These confidence limits 

demonstrate the degree to which the calibration data (water levels and fluxes) constrain the 

possible values of permeability. For all three models, estimates for the Tsf and Tb are quite 

reliable; estimates for Totavi Lentil are very uncertain. Of the two models with calibrated 

recharge rates, the basin model provides much parameters estimates with much greater degree of 

confidence. In particular, estimates for Tsfuv, Tpf, and Tt (Tschicoma Formation) are very 

good. The uncertainty in the estimate for the Puye Formation is much lower than was reported in 
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Keating et al. (Keating, Kwicklis et al. 2000), this improvement is due to the new water level 

data from the Puye collected in R-wells. 
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Figure 4-2. Inverse model estimates ofpermeability, compared to field-based estimates 
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The parameter estimates from the submodel, using an a priori distribution of recharge rates 

(Figure 4-1), differ from the other model estimates in several important ways. In general, since 

there are less parameters to estimate in this inverse model, we would expect that parameter 

uncertainty would be lower. This is generally true, particularly in the case of the Puye Formation 

where the parameter estimate has a one-order-of-magnitude 95% conference interval, falling well 

within the range of observed variability in the field-based estimates (Figure 2-5). The estimate 

for the Tschicoma Formation is very low (less than 10- m ) and has very little uncertainty. This 

result is somewhat difficult to explain at present; we are currently investigating possible reasons. 

1s 2 

Figure 4-4 shows the simulated present-day water table elevations, according to the 

submodel results (apriori recharge distribution). The purple dotted lines indicate the correct 

location of contours; the 1800m and 1750m simulated contours are too close together. 

Figure 4-4. Simulated water table contours. Meastired water levels are indicated next to red 
dots. Dotted lines show contotrrs indicate locations of model error, where simulated and 
measured contoirrs dyer Contotrr interval = 25m 
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Figures 4-5,6, and 7 show simulated heads in three-dimensions. Figure 4-7 includes 

representative particle tracks. This figure illustrates the relatively complex flow paths that can 

be exist with relatively simple hydrostratigraphy. The flowpaths are strongly influenced by the 

Pajarito fault zone (low permeability) and the basalt flows (high permeability). 

d 

Figure 4-5. Simulalcd he& for local+cale d e l  (2) 
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Figure 4-4 Simulorcd heath for locol-swlc mo&i (2) 
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Figure 4-7. Cross-section of shvlatrd he& (~=123,l@Om), w&h representative particle tracks 

4.3 Predictive Uncertainty 

While it is important to evaluate parameter uncertainty (e.g. Figure 4-3 ), it is much more 

valuable to evaluate the impact of parameter uncertainty on key model predictions. Typically, 

sensitivity analysis (varying uncertain parameters, one-by-one) is used to accomplish this goal. 

However, sensitivity analysis results can be misleading if correlation between parameters is 

significant and/or if the model is extended out of the range of calibration. The predictive 

analysis capability within PEST searches for extreme values of the prediction of interest by 

varying all uncertain parameters while keeping the model in calibration. 

Our first analysis was designed to evaluate the uncertainty in flow directions in the western 

portion of the aquifer. In this analysis, we posed two questions. For particles originating at the 

water table near R-25, what is the most northerly possible trajectory? What is the most southerly 
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possible trajectory? The predictive analyzer in PEST searched a wide range of parameter 

combinations to determine the answer to these questions, given the data available to the model 

(water levels, fluxes). The analysis, presented in Chapter 5, demonstrated that particle paths 

trajectories do not vary widely in plan view (flow directions range from slightly to the northwest 

to slightly to the southeast). However, significant uncertainty exists in the vertical direction; 

particles can either stay fairly shallow in the aquifer or travel quite deep. These two pathways 

have very different travel times and different discharge points (water supply well or Rio Grande). 

We tested various locations of “hypothetical” wells where new water level data could be 

collected to reduce the uncertainty in these predictions. This analysis demonstrated that 

knowledge of vertical head gradients in the vicinity of R-25 would be the most beneficial dataset. 

These data, which, in fact, do exist should be incorporated in a future update of this analysis. 

Our second analysis was designed to evaluate the uncertainty in fluxes enterindexiting the 

aquifer beneath LANL. As described in Keating (2000) we use the fluxes predicted by the basin 

model to establish lateral boundary conditions to the submodel. We used predictive analysis to 

determine the minimum and maximum possible fluxes across the northern, western, and southern 

boundaries, given the information available to the basin model (water levels and discharge to the 

Rio Grande and its tributaries). Our methods and results are described in Chapter 6. 

Interestingly, this analysis suggests that the predictions of very little inflow/outflow across the 

northern and southern boundaries is very certain. No combination of parameters could be found 

that would place large fluxes across these boundaries and still honor water level and flux data. In 

contrast, there is large uncertainty in predicted fluxes across the western boundary. This 

uncertainty, however, proved to be insignificant in our ability to estimate travel times in the 

western portion of the aquifer. We expect this uncertainty to be more significant for model 

predictions that require estimates of solute concentrations 
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5 UNCERTAINTY IN GROUNDWATER FLOW DIRECTIONS 

In a homogenous aquifer with primarily two-dimensional flow, it would be possible to 

derive flow directions from a potentiometric map (see Figure 2-1). However, due to the effects 

of vertical gradients (see Figure 2-2), heterogeneity within the aquifer (Figure 2-5), and the 

effects of municipal pumping, flow directions derived from such a simple approach may be quite 

misleading. Groundwater flow modeling offers the advantage of being able to incorporate these 

three-dimensional effects, yet model predictions such as flow directions will be uncertain due to 

a number of factors. 

Our ability to estimate groundwater flow directions accurately is impacted by several types 

of uncertainty. The most important are I )  sparse water level and flux data, 2) uncertainty in 

hydrostratigraphy of the regional aquifer, and 3) uncertainty in permeability of the various 

hydrostratigraphic units. In the past decade, numerical tools have been developed to provide 

quantitative measures of the impact of (1) and (3) on model predictions. We have applied these 

tools to our predictions of groundwater flow directions; results are presented below. 

Unfortunately, quantitatively evaluating the effects of (2) is impossible at present, since our 

model of hydrostratigraphy (as expressed in the 3-D geologic model (Carey, Cole et al. 1999)) is 

deterministic. We hope in the future multiple working hypotheses can be incorporated into the 

3-D geologic model and then the effect of hydrostratigraphic uncertainty can be included in our 

uncertainty analyses. 

5.1 Model uncertainty 

We have used inverse approaches to parameter estimation (see Keating (2000)), adjusting 

both recharge rates and permeability values to provide the best possible fit to water level data. 

This process provides parameter estimates that should be used as the basis for any model 

predictions, however, even more importantly it provides quantitative estimates of parameter 

uncertainty. Figures 5-1 through 5-3 show the predicted water level elevations for an inverse 

model result, along with model error calculations (colored dots in Figure 5- 1, histogram of model 

errors in Figure 5-2 and Figure 5-3). The head errors are unbiased (see Figure 5-2), yet there are 

significant discrepancies between simulated and observed heads in several wells. These errors 
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are evidence of either errors in the permeability structure (overly simplified hydrostratigraphy 

and/or incorrect positioning of contacts between hydrostratigraphic layers) ,errors in the recharge 

distribution, or measurement errors (Carrera and Neuman 1986). We have been able to explore 

alternative models of recharge (smoothly increasing recharge rates with elevation; focused 

recharge along canyons) but have not been able to significantly reduce the errors in simulated 

heads. It is likely, therefore, that errors in the permeability structure (as defined by the 3-D 
geologic model) are the primary cause of these head errors. 

Figure 5-1. Simirlatedpre-development water table contoirm (in feet) and model errors at wells 
(simirlated - measirred) 

Figure 5-2. Distribution of model errors (simulated - observe4 
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Figure 5-3. Histogram of model errors for drawdowns due to pumping (simtdated - observed, in 
feet) 

Parameter estimates derived from model calibrations are shown in Figure 5-4. These results 

suggest that the permeability of the Santa Fe Group is fairly well constrained by water level data, 

particularly transient data. Far more uncertainty is present in permeability estimates for the Puye 

Formation and Tb4. 

5.2 Impact of parameter uncertainty of predicted flow directions 

It is unclear how the parameter uncertainty indicated in Figure 5-4 impacts our predictions 

of groundwater flow directions. We have estimated uncertainty in the model predictions by 

constrained nonlinear optimization of our inverse model (e.g. Vecchia and Cooley, 1987) using 

PEST. The predictive algorithm searches for the maximudminimum in the model prediction 

within pre-defined limits of the objective function. The 'analysis allows efficient way to 

determine the impact of parameter uncertainty on the model predictions. It differs from the 

sensitivity analysis of model predictions in respect to model parameters, which considers only 

the calibrated parameter set and assumes that the model is linear. 
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Figure 5-4. Inverse estimates and prior data of permeability 

5.3 Theoretical basis 

There are many possible factors which may affect the reliability of model predictions: 

conceptual model errors, parameterization errors, discretization (grid-resolution) errors, 

uncertainty in parameters. Due to low model sensitivity and correlations among parameter 

estimates there may be multiple parameters sets that produce equally-well calibrated results (as 

measured by our objective function), but provide quite different predictions. Our method for 

estimating uncertainty in the model predictions utilizes constrained nonlinear optimization (e.g. 

Vecchia and Cooley, 1987); this method is available in the parameter estimation code, PEST 

(Doherty 1997). The predictive algorithm searches for the maximudminimum in the model 

prediction within pre-defined limits of the objective function. The analysis allows efficient way 

to determine the impact of parameter uncertainty on the model predictions. It differs from the 

sensitivity analysis of model predictions in respect to model parameters, which considers only 

the calibrated parameter set and assumes that the model is linear. Let the objective functions is 

defined as: 
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where c is a vector [Nxl] of optimization targets, b is a vector [Mxl] of model parameters, Q is 

a cofactor matrix [NxM], and f is our model. Let f‘ is the same model under predictive conditions, 

and the prediction p is defined as 

P = f ‘(‘1 

[C - f(’)I, Q[c - f(’)I = ’ K i n  

We search for b such that maximizes/minimizes p subject to 

where Fmin is defined for the maximum-likelihood estimates bML. For the maximum-likelihood 

case, 

Fa ( N ,  N - M) + 1 
N a=- 

N-M 

where F is the F distribution. The nonlinear constrained optimization can be replaced by iterative 

solving of Lagrangian problem as proposed by Vecchia and Cooley (1987). 

5.4 Application to flow direction uncertainty 

We applied this method to analyze uncertainty in flow directions downgradient from R25. 
We define the model “prediction” in this case to be the y value of the predicted particle trajectory 

as it passes x=l8290. Using the methodology described above, PEST searches for the 

combination of parameters which simultaneously produce an acceptable match with calibration 

criteria (heads and flux measurements) and produce a maximum (or minimum) value of the 

prediction. 

Figure 5-5 and Table 5- I show the results of this analysis. The best “calibrated” model 

predicted a particle trajectory indicated by the purple line (particle is captured by PM-2). 

Parameter combinations that produces the most northerly and most southerly departures from 

this line are indicated by blue and red lines. The values of permeability used to obtain these 

three particle paths are shown in Figure 5-6. The water table elevations predicted by the models 

for these two pathways are indicated by black and blue contour lines. It is interesting to note that 

despite fairly large difference in water table elevations (see difference between blue and black 

1750m contour line) groundwater flow directions do not vary substantially. It is also interesting 

to note that even small differences in flow direction can change the predicted discharge location 

(either water supply well PM-2 or the Rio Grande). 
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Figure 5-5. Particle trajectories that correspond to the maximum and minimicm y value at x= 
18290. Blue dots are wells wed in steady-state @redevelopment) calibration; red dots are wells 
used in transient calibration. Green x’s are locations of hypothetical wells 

Table 5-1. Results 01 predictive analysis 
linversemeddi Objective Predkted predicted predicted 

fUUction Y (m) travel time (to travel time 
(#) T18290) ( t o w  

‘optimized optimized 5.85E-l-4 131001 1,424 1445 

analyst 
Predictive Minimum 1 7.98E+4 131448 1,425 1629 

Maximum 1 7.27E-l-4 130937 1,774 1785 
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Figure 5-6. Model parameters. Calibration rest116 shown in green; parameters corresponding 
to mimtim and maximum predictions shown in red and blue 

Figure 5-7 illustrates that despite relatively constrained flow directions, the rock types that 

the particles pass through are quite different. The more northerly trajectory enters the Los 

Alamos aquifer (Tsfuv) as it flows east; the southerly trajectory enters the Puye Formation. This 

difference could have substantial impact on contaminant transport, if effective porosity and 

geochemical characteristics of the two rocks types were different. 

-7 

Minimum 
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Figure 5- 7. Types of rocks particles travel through. 

Figure 5-8 shows the particle paths in cross-sectional view. This view illustrates that the 

two path differ substantially in the vertical direction. The pathway that goes deeper 

(corresponding to maximum Y) travels much slower than the shallow pathway. 

IP. 

t 

Figure 5-8. Cross-sectional view of particle paths 

5.5 Benefit of new data to reduce model uncertainty 

We used a very simple method of analysis to determine what locations new wells could be 

placed to most reduce the uncertainty in our predicted flowpaths. We proposed 5 well locations 

(one exactly at R25), indicated by green markers in Figure 5-5. Four of these wells are multiple 

completion wells. The R25 well is considered “hypothetical” for the purposes of this analysis 

because at the time of the analysis (November, 2000) water level data from all the R25 screens 

were not available to us. We used the calibrated model to define the “measured” heads 

For each of the hypothetical locations (and depths of screens below the water table) we 

determined the sensitivity of the predictions to the head measurements at these locations. This is 

a simple way to evaluate how important a measurement would be to the model prediction. 

Figure 5-9 shows the calculated sensitivities. The sensitivity of maximum prediction does not 

show a strong spatial pattern; many of the locations and depths are approximately equally 

important. In contrast, the sensitivity of the minimum prediction is much more sensitive to heads 

at R25 (dw4) than to heads at any other location. 
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Another comparison is shown in Figure 5-10. This figure shows the error in simulated 

heads for the hypothetical wells. (Error = 0 for calibrated model). The greatest benefit should be 

in locations where the simulated head is quite different between the two models. According to 

these results, this location is R25 (dw4). 

1.00 

1.10 

1 .m 

Figure 5-9. Sensitivity of model predictions to head measwements in hypothetical wells 

Figure 5-1 0. Residuals (simulated - observed) for the two models 
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5.6 Summary 

There are several important implications of this analysis. The uncertainty in lateral 

groundwater flow directions downgradient of R25 due to model parameter ltncertaintyis fairly 

low. Other sources of uncertainty (errors in hydrostratigraphy, conceptual model errors, etc.), 

while potentially important, are difficult to evaluate. 

Although the easterly flow direction is fairly well-constrained by existing water level data 

(model calibration targets), vertical flow directions are less well constrained. In addition, even 

small differences in flow paths can determine whether or not a particle is captured by a supply 

well. There is also substantial uncertainty as to which rock units the water will flow through. If 

significant differences exist in the transport characteristics of these rocks, this uncertainty could 

have a big impact on predictions of contaminant transport. 

These analyses were performed before the addition of recent R-well data into the model 

calibration process. Presumably, if the analyses were repeated today there would be a somewhat 

smaller range of possible flowpaths. For the most accurate results, these analyses should be 

repeated with the most current water level data set and updated 3-D geologic model (when it 

becomes available). 
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6 UNCERTAINTY IN LATERAL FLUXES TO AQUIFER BENEATH 

LANL 

We used predictive analysis to determine the degree of uncertainty present in our ability to 

estimate lateral fluxes to the aquifer beneath LANL. The source of uncertainty we considered 

were parameter uncertainty in the basin model (permeability of all hydrostratigraphic units and 

recharge model parameters). The predictive analyzer found the minimum and maximum fluxes 

across submodel boundaries that were consistent with water level and flux (baseflow to rivers) 

calibration targets. 

The following paper describes this work; it was presented at a groundwater modeling 

conference in September 200 1, was published in conference proceedings (Keating, Vesselinov et 

al. 2001), and has been requested for January 2002 submission for publication in a special issue 

of Journal of Groundwater, publication of National Water Well Association. 

Coupling a large-scale basin model with a high resolution local model using a finite- 

element flow and transport solver (FEHM) and an automated parameter estimator (PEST) 
Elizabeth Keating, Velimir V.Vesselinov, Ed Kwicklis, and Zhiming Lu 

6.1 Abstract 

In support of the hydrogeologic characterization program at LANL we have developed a 

groundwater model of the Espaiiola Basin in Northern New Mexico. This large-scale model 

takes advantage of regional water-level and stream-flow data and provides reasonable constraints 

on fluxes through the aquifer beneath LANL. However, even using selective grid refinement in 

the vicinity of LANL we were unable to achieve the fine discretization required to support local, 

high-resolution transport simulations. We extracted a sub-model fiom the basin model for the 

LANL site which has finer vertical resolution in the most shallow hydrostratigraphic units which 

are very heterogeneous. We use automated parameter estimation (PEST) to calibrate both models 

and independently estimate medium properties and aquifer recharge. We couple the basin- and 

local-scale models through flux specification at sub-model lateral boundaries. Using predictive 

analysis, we are able to estimate the uncertainty of these fluxes within specified calibration 

criteria. The calibrated sub-model was used to simulate advective transport of high explosives 
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through the aquifer. The sub-model grid resolution is sufficient to allow geostatistical 

characterization of the medium properties within those hydrostratigraphic units important to 

transport predictions. Transport results were shown to be relatively insensitive to the 

uncertainties in lateral fluxes across sub-model boundaries, but sensitive to the uncertainties in 

model parameters. 

6.2 Introduction 

In our efforts to evaluate groundwater flow directions and velocities in the deep aquifer 

beneath Los Alamos National Laboratory on the Pajarito Plateau in northern New Mexico we 

face a scale problem that is inherent to many groundwater investigations. In order to capture the 

significant details of sedimentary hydrostratigraphy at the site scale, we must build a flow and 

transport model with very fine grid resolution, particularly in the vertical direction. Due to 

computational limitations, this high resolution requirement prevents us from extending the 

spatial extent of the model to natural hydrologic boundaries (in our case, the margins of the 

Espaiiola Basin). Therefore, we must impose lateral model boundaries which are closer to the 

area of interest than we would like and our transport results may therefore be very sensitive to 

the boundary conditions we apply. In this paper we discuss a process of linking a basin-scale 

model (relatively low grid resolution) to a site-scale submodel (relatively high grid resolution) to 

provide better constraints on sub-model parameterization and boundary condition specification 

than would be possible using the site-scale model alone. We are particularly interested in 

evaluating the uncertainty associated with the flux estimates provided by the basin-scale model, 

in order explore h l l y  the range of possible boundary conditions to the lateral boundaries in the 

sub-model. Using transport calculations from the sub-model as a measure of model sensitivity, 

we can then assess the importance of the uncertainty in fluxes at model boundaries. 

6.3 Model development 

3-D flow and transport models for the basin and submodel have been developed using 

FEHM (Finite Heat and Mass Transfer Code (Zyvoloski, Robinson et al. 1997)); computational 

meshes were generated using LaGriT (Trease, George et al. 1996) (see Figure 6-). Hydrostratigraphic 

zonation was established according to a geologic framework model (Carey, Cole et al. 1999) 
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constructed using Stratamodel st and mark 1998) (see Figure 6). Major rivers within the basin are 
simulated as specified head. Most lateral boundaries in the basin model are specified as no-flow. 

The lateral boundaries of the submodel were chosen to correspond to hydrologic features 

(north and south boundaries: perennial stream channels; western boundary: topographic divide, 

eastern boundary: Rio Grande). It is possible that all of these boundaries are approximately no- 

flow; however, because of sparse water level data the fluxes are uncertain and we would like to 

evaluate the impact of this uncertainty on transport calculations within the sub-model. Presently, 

we are only evaluating the impact of uncertainty in flux estimation across the northern, western, 

and southern boundaries. Since the Rio Grande is the regional discharge boundary, the vertical 

boundary parallel to the river is assumed to be no-flow, except at the surface where constant 

head nodes allow groundwaterhrface water exchange. Along this boundary, sufficient water 

level data is available to suggest that a groundwater divide exists, thus lending credence to the 

no-flow assumption. 

I 
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Figure 6 2 .  Hydrogeologic@amework model. 

We use the basin model to estimate fluxes between each pair of nodes that crosses the 

surfaces defining the lateral boundaries of the submodel. These fluxes cannot be mapped 

directly onto the submodel boundaries because of the increased grid resolution in the submodel. 

Our mapping algorithm preserves the total flux across the boundary and the proportion of that 

flux that flows through each hydrostratigraphic unit in the models. Within each 

hydrostratigraphic unit, we allow small discrepancies between the spatial distribution of fluxes 

predicted by the basin model and those applied to the sub-model boundary. 

6.4 Parameter estimation 

Using PEST (Doherty, Brebber et al. 1994), we have estimated both aquifer recharge rates and 

permeability, k, of the various hydrostratigraphic units for both the basin and sub-models. The 

details of our procedure and results are described in Keating et al. (2000). To a large extent, we 

have decoupled the parameter estimation process for the two models. One reason for this is that 

by doing so we can learn to what extent grid resolution and scaling effects (in the case of 

permeabilities) influence the parameter estimation process. In addition, by allowing the recharge 

rates to differ between the two models we can determine the degree to which local recharge 

patterns may differ from regional trends. 
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For each model, we have used two different approaches to parameter estimation. The first 

approach is based on an inverse steady-state model representing the “pre-development” (with no 

significant withdrawals) aquifer condition. We evaluated the model parameters as well as their 

uncertainty and sensitivity, given the pre-development water levels (93 basin-wide, 34 of which 

fall within the sub-model boundaries) and flux’estimates along rivers (1 0 reaches). The second 

inverse approach combines a steady-state and a transient models. Since 1945, the water levels 

have declined due to intensive development of the aquifer. To incorporate this information in the 

calibration process, we developed a new inverse model that estimates the parameters 

simultaneously against (1) steady-state “pre-development” data (as described above) and (2) the 

transient drawdowns due to the pumping. The steady-state-ttransient inverse model includes one 

additional parameter, the specific yield, which, for the moment, is defined to be equivalent for all 

the hydrostratigraphic units. The transient data is available for each year since 1945 in 14 wells 

on the Pajarito Plateau. For the moment, to increase the computational efficiency, we performed 

the transient simulations using not 1 but 10 year time steps. To do so, ten-year average pumping 

rates were derived from the annual pumping data for all the wells in our model. 

6.4.1 Steady-state basin model results 

The steady-state basin inverse model estimated 37 model parameters which include 3 

recharge parameters and 34 permeabilities . The residuals between simulated and observed 

measurements are unbiased (centered around zero) but clearly not normally distributed. Our 

parameter estimation errors ranged widely; for example, the permeabilities of the two largest 

hydrostratigraphic units in the basin were very well constrained; estimates for several smaller 

units were very poorly constrained. We were able to demonstrate that the high uncertainty is 

predominantly due to the cross-correlations of estimation errors rather than low parameter 

sensitivities to the observations. We also compared the k estimates to data derived from pump 

tests, which were not included in the model calibration process. For most units, the pump-test k 
values are very close to the estimates or within their uncertainty limits. For some units, 

including several important units on the Pajarito Plateau, pump-test k values were significantly 

higher than inverse estimates. The inverse k estimates and the pump test k data represent the 

rock properties at very different scales. The k estimates represent the large-scale effective 
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permeabilities for the whole rock unit, while the k data is defined from small-scale field tests 

representing rock properties in the close vicinity of test boreholes. We should also take into 

account the fact that the pump test k data is predominantly collected from water supply wells 

which are placed in highly permeable portions of the aquifer in order to achieve higher pumping 

rates. Therefore, the pump test k data could be biased towards higher estimates. Another 

possible source of inconsistency is in the conceptualization of hydrogeologic conditions not only 

in the numerical model but also in the pump test analyses. 

6.4.2 Steady-state sub-model results 

The sub-model calibrations were only partly dependent on basin-model calibration results. 

As described above, we use basin-model results to apply fluxes at sub-model lateral boundaries. 

For reasons of simplicity, during the sub-model calibration process we did not allow these flux 

estimates to vary. A more rigorous approach could be developed which would consider the 

effects of permeability changes on flux estimation. We also examined two alternative 

approaches concerning the recharge. The first approach assumes that the basin model calibration 

will produce the most reliable recharge estimates, since the basin model provides the best 

possible constraints on global water balance. Thus, the recharge model parameters are taken 

from the basin model results and applied directly to the sub-model. The second approach 

assumes that the recharge rates on the Pajarito Plateau might be different than “average” rates at 

the basin-scale and thus recharge parameters are re-estimated for the sub-model. 

The steady-state inverse sub-model estimated 20 model parameters which include 3 recharge 

parameters and 17 permeabilities . Sub-model and basin-model permeability estimates are very 

similar; the largest discrepancies are for two relatively small hydrostratigraphic units. For one of 

these, the sub-model estimate was closest to the pump test data, for the other, the sub-model 

estimate was the farthest. More importantly, however, the two models obtained substantially 

different recharge parameters. Since both models provided reasonable simulation of the head 

and flux measurements it is impossible to discriminate between these two recharge models at 

this point. 
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6.4.3 Transient results 

The addition of transient observations in the inverse process improved significantly the 

uncertainty of estimated parameters. For the sub-model, the steady-state+transient inversion 

allowed an improvement in the steady-state flux and water level matches. The steady-state model 

failed to converge to a global minimum due to the high cross-correlations between the estimation 

errors. We have demonstrated that these cross-correlations have been significantly decreased by 

the addition of the transient data. A comparison between the steady-state and steady- 

state+transient estimates shows that the major changes are associated with the k of two 

potentially important hydrostratigraphic units. The uniform specific storage estimated by the 

transient inverse model is close to independent estimates derived from hydraulic testing. 

6.5 Uncertainty of fluxes across lateral boundaries of the 

submodel 

As described above, using the calibrated basin model we estimated fluxes into/out of three 

lateral boundaries of the submodel (north, south, and west). However, due to parameter 

uncertainty our calibrated model is non-unique and thus these flux estimates are also uncertain. 

One way to address this problem is through sensitivity analysis. However, sensitivity analysis of 

basin-model parameters to the flux predictions across the sub-model domain boundaries provides 

us only with information about the degree of dependence between the parameters and the 

predictions in the close vicinity of the optimal estimates. Therefore, sensitivity analysis has 

limited applicability due to non-linearity of the forward problem and the cross-correlations 

between estimates. A better approach is prediction analysis, which does not depend on these 

assumptions and allows estimation of a set of model parameters which not only reproduce 

observations within a specified tolerance but also maximizatiodminimization of the analyzed 

predictions. We used the predictive analysis capability within PEST to estimate the maximum 

and minimum fluxes across each of these three boundaries that could be achieved by varying 

parameters while still requiring the model to meet specified calibration criteria. 
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Lateral Boundary 

Figure 6-2. Predicted maximum and minimum f lues  acr across three 
lateral boundaries 

We performed six 

predictive analyses, 

searching for the maximum 

and minimum total flux 

across each of the three 

boundaries. Figure 3 shows 

the resulting range of 

predictions, all compared to 

the “best calibration” result 

(solid circles). This figure 

illustrates the relatively low 

degree of uncertainty for 

the predicted north and south fluxes and the relatively high degree of uncertainty for the 

predicted flux across the western boundary, it is interesting to notice that the predicted fluxes 

across these boundaries are generally negatively correlated (e.g. large flux along one boundary 

tends to be associated with small flux along the other two), reflecting the degree to which flux 

calibration targets are constraining the range of possible results. 

6.6 The influence of flux uncertainty on transport calculations 

Using the calibrated sub-model, we simulated advective transport of dissolved high- 

Table 6-1. Mean travel times 
explosives away from a contaminated site near 

the western boundary of LANL. We used the 

Boundary condition Mean travel time (yrs) particle tracking capability within FEHM to 

N-max 750 estimate pathways and travel times through 

N-min 882 numerous of stochastic realizations of the Puye 
S-max 730 Formation (Keating, Kwicklis et al. 2000). 

Elsewhere, we have demonstrated (Keating et 
866 

643 

S-min 

W-max 

W-min 87 1 al., 2000) that the travel times are very sensitive 

to the uncertainty in the model parameters (recharge and permeability). Here, we investigate 

sensitivity to fluxes at model boundaries. Table 6-2 presents the predicted mean travel time for 

HE “particles” to reach the Rio Grande, assuming different flux boundary conditions, all using a 
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single realization of the Puye Formation. Overall, we find that the predicted travel times are 

relatively insensitive to the uncertainty in fluxes at the boundaries; much less sensitive than to 

uncertainty in model parameters. This result will allow us to focus future sensitivity analyses on 

parameter uncertainty and to emphasize data collection that will provide the most reduction in 

parameter uncertainty. In future contaminant transport calculations, to provide conservative 

predictions (i.e. “worst case” scenarios) we must apply the W-max boundary condition. 
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7 HYDROLOGIC DATA COLLECTION PRIORITIES FOR REGIONAL 

AQUIFER CHARACTERIZATION 

This summary attempts to provide an overview of outstanding data needs regarding 1) 

groundwaterJow directions and velocities, and 2) contaminant transport in the regional aquifer; 

however, we emphasizes data needs regarding (1). This emphasis is reasonable since it 

addresses basic characterization requirements and also gives us the necessary information to 

predict migration of highly mobile contaminants which could pose the greatest threat to water 

quality. Characterization of aquifer properties that control retardation of contaminant migration 

(essential to (2), for some contaminants) is best addressed on a site- and contaminant-specific 

basis and is outside the scope of this document. 

There are four types of data that should be collected from R-wells so that groundwater 

flowpaths and velocities can be better defined in the regional aquifer: head, permeability, 

storativity, and porosity. A fifth type of data, flux data, is important as well. The guiding 

principles for setting priorities are to emphasize measurements in the following categories: 1) 

the “least well characterized” hydrostratigraphic unit(s), 2) the units where fluxes and/or 

velocities are potentially the greatest and therefore most important for transport, and 3) the 

locations where spatial data coverage is poor. 

7.1 Flow directions 

Flow directions in the regional aquifer are determined by hydraulic gradients and 

permeability variations within the aquifer. Variations in both gradients and permeability are 

expected to be scale-dependent. Characterizing large-scale flow directions (at the scale of the 

LANL site: kilometers to tens-of-kilometers) is the highest priority; followed by medium-scale 

flow (hundreds to thousands of meters). The importance of quantifj4ng small-scale variations 

(tens to hundreds of meters) should be evaluated on a case-by-case basis according to site- 

specific monitoring and/or environmental restoration issues. 
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7.1 .I Permeability characterization 

Figure shows the current estimates for large, medium, and small-scale permeability for 

various hydrostratigraphic units within the regional aquifer. Each category is discussed 

separately below. 

Unit 

Santa Fe Group (lower) 

7.1.1.1 Large-scale permeability variations 

The best indicators of large-scale permeability variations (over 100’s to 1000’s of meters) ‘ 

are water level responses to long-term pumping, spatial variation in water levels across the 

plateau, and multi-hole pump tests. No multi-hole pump tests have been conducted to date. 

If the total flux of water through the aquifer is reasonably well-known, water level data can 

be analyzed using a numerical flow model to estimate large-scale permeability of 

hydrostratigraphic units within the aquifer. Analysis of historical streamflow data along the Rio 

Grande has provided both an estimate of mean flux and associated uncertainty. Combining this 

flux information and water level data (both present and historical) with our flow model for the 

aquifer, we have estimated large-scale permeability of the major aquifer units. For the 

Estimated 95% Confidence Model 
permeability Limits 

(m2) 
13.32 +/- 0.16 Local 

(2) 

sedimentary rocks, there are relatively small differences between units (less than one order of 

magnitude). 

+/- 0.71 Local 
-13*4 I Santa Fe Group (“Los Alamos aquifer”) 

+/- 0.52 
12.6 I Puye Formation - fanglomerate 

I I I 

Basalts -12.16 +/-0.19 Basin 

7.1.1.2 Medium-scale permeability variations 

Our estimates of medium-scale permeability are derived from single-hole pump tests in 

water supply wells screened over -2000’. These estimates are representative of the rock within 
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within tens of meters to a few hundreds of meters of the boreholes. Estimates are only available 

for the Santa Fe Group (both lower and “Los Alamos Aquifer” facies). Other units such as 

basalts and Puye were present in many of these boreholes; the effect of these units on test results 

is unknown. 

Unit Mean Max/Min Number of 
permeability (m’) tests 

Santa Fe Group (lower) -12.5 - 1 2.26/- 12.84 12 

Santa Fe Group (“Los Alamos -1 1.2 -1 1.94L11.67 3 
aquifer”) 

These estimates are noticeably higher than the large-scale estimates (described above). 

Possible reasons for this discrepancy are 1 ) large-scale features that single-well pump tests 

cannot detect, such as low-permeability faults (trending N-S), 2) the fact that pump test data are 

entirely derived from water supply wells, which may have been purposely sited in relatively 

high-permeability zones within the Santa Fe Group, and flow model errors such as 3) 

underestimation of total flux through the aquifer, and/or 4) overestimation of the total thickness 

of the aquifer. We are using sensitivity analyses to evaluate the plausibility of (3) and (4); 

preliminary results indicate that neither of these factors can explain the discrepancy. Additional 

pump test data, particularly 2 or 3-hole pump tests, are needed to evaluate (1) and (2). These data 

clearly suggest that there are relatively high-permeability zones within the Santa Fe Group. At 

present, we do not have a geologically-based conceptual model of the structure of these high- 

permeability zones. 

7.1.1.3 Small-scale permeability variations 

Hydraulic test data from wells screened over relatively short intervals (e.g. R-wells) 

demonstrates variability over 4 orders of magnitude exists within the Puye Formation and the 

basalt flows. Although no such data exist for the Santa Fe group, it is reasonable to assume that 

similar variability exists within these rocks. 
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7.1.1.4 Definition of hydrostratigraphic zones 

The grouping of data presented in Figure 2-5 by rock type and the model estimates presented 

in Table 4-1 are based on a conceptual model that different rock types (stratigraphic unit) will 

have different hydrologic properties. Given the similarity of the mean permeabilities (both as 

evidenced by field-based testing and by inverse modeling) between rock units, it is reasonable to 

question this conceptual model, at least for the sedimentary rock units (Puye (fanglomerate and 

Totavi Lentil) and Santa Fe Group (“Los Alamos aquifer” and older rocks). Inverse models 

demonstrate an unbiased set of model errors for simulated heads, yet errors for any given well on 

the Plateau can be quite large (greater than 50m, for example). The unbiased head errors and the 

similarity of the permeability estimates for the major hydrostratigraphic units suggests 1) 

substantial heterogeneity exists within the aquifer that is not captured by the 3-D geologic model, 

and 2) the zones defined by the 3-D geologic model do not necessarily have hydrologic 

significance. This is a very different result than those reported for the vadose zone (Rogers and 

Gallaher 1995; Birdsell, Wolfsberg et al. 2000) 

7.1.1.5 Data/analysis needs 

At large-scales, our estimates of the permeability of sedimentary units are very well 

constrained. There are two important unresolved issues regarding sedimentary rocks: one, the 

large-scale permeability of Santa Fe group rocks is lower than single-hole pump tests , and two, 

there are small and medium-scale variations within these units that we do not understand. There 

are two important aspects to addressing this problem. First, we need larger-scale hydraulic tests 

(multi-hole tests) that can help us understand the discrepancy between permeability estimates 

derived from water level data and those derived from single hole tests. Second, we need to 

continue our efforts to develop a conceptual model and eventually a numerical model of 

permeability variation within sedimentary rocks. This model will be critical to our ability to 

accurately simulate water level gradients in the aquifer and to our ability to accurately determine 

flow directions at medium and local scales. Although more medium and small-scale 

permeability data may be helphl in this regard, we recommend emphasizing more detailed 

analysis of existing data (water level, geophysical and geologic logs, mineralogy data, hydraulic 

testing data) to develop a conceptual model relating our geologic understanding to permeability 
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variation at small and medium scales. This analysis is critical to ensure that we are collecting the 

appropriate types of data in the remaining R-wells. 

Permeability data for the basalt units clearly shows a very large variability, presumably due 

to various lithologies lumped into the “basalt” category such as fractured and unfractured lava, 

inter-flow breccia, and inter-flow paleosols. It is unclear how important it will be to gather more 

detailed knowledge of the spatial distribution of these various lithologies. 

7.1.2 Hydraulic gradients 

7.1.2.1 Horizontal gradients 

As evident in Figure 2- 1, in plan view the spatial distribution of wells on the plateau is 

sufficient to determine that flow is generally east (although a slight southerly component is 

present in some areas) in the uppermost portion of the aquifer. Although deeper head data is 

more sparse and (in some wells) ambiguous (e.g. some heads are composite measurements over 

long screened-intervals and some heads are heavily influenced by nearby pumping), deeper head 

data also suggests easterly flow. This result is consistent with regional hydraulic gradient data, 

which suggests that flow is generally east-west, towards the Rio Grande, despite the well- 

documented fact that considerable geologic complexity exists within aquifer rocks. The 

radiocarbon ages of water from deep wells beneath the Pajarito Plateau increase from west to 

east, supporting this conceptual model of easterly flow indicated by water level data. 
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Figure 7-1. Two alternative water table contour maps, drawn using the same data 

Although all the available data suggests easterly flow, departures from this trend may occur 

at scales smaller than typical well spacing. Figure 7- 1 shows two alternative water table maps, 

both matching all the head data. At present, our data (hydrologic and geologic) and modeling 

results suggest that the map on the left, exhibiting a relatively smooth gradient, is much more 

plausible than that on the left. If, during drilling of the remaining R-wells, either 1) new water 

level data are collected that demonstrate departures from smooth regional gradients, or 2) 

geologic features are identified with measured influence on permeability that would cause either 

local perturbations in hydraulic gradients andor cause bending in head contours, maps such as 

the one on the right side of Figure 7- 1 may become more credible. 

7.1.2.2 Vertical gradients 

Figure 2-2 shows head contours along a cross-sectional slice through the plateau. Figure 7-2 

shows the location of LANL wells (or well pairs) that indicate vertical gradients (size of circle is 

proportional to magnitude of gradient). This figure shows that the largest gradients are all 

downward. Upward gradients are evident in Los Alamos water supply wells (LA 1-6) and wells 

in the Buckman wellfield (not shown). It is evident fiom this figure that we have no information 

about vertical gradients in the northwestern portion of the laboratory. This is an important area, 

since it is upgradient from potential contaminant sources such as Los Alamos and Pueblo 

Canyons. 
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From the vertical cross-section Figure 2-2 it is evident that the R-wells are considerably 

more shallow that our water supply wells. This may preclude the use of an R-well as a sentry 

well, since in the vicinity of vertical gradients, contaminants may dive well below the water table 

and escape detection by shallow wells. This would be a problem in wells that draw a substantial 

portion of their water from deep zones; spinner logs could be used to identi@ wells with this type 

of vulnerability. 
Data needs 

In summary, spatial coverage is reasonable for estimating lateral plateau-scale flow 

directions. Vertical gradient information is also adequate, except for the northwestern portion of 

LANL where no such data exist. The relatively shallow depth of R-wells, compared to the 

depths of water supply wells, may limit their ability to detect contamination downstream of 

source areas with strong downward gradients. 

7.2 Groundwater velocity 

Estimation of groundwater velocity requires the same data as for flow directions (described 

above); current estimates are summarized in Chapter 3. The estimates described in this chapter 

are very sensitive to assumptions about effective porosity, for which we only have very small- 

scale data (derived from geophysical logs). The types of data that would be most helpful to 
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reducing the uncertainty in our estimates are 1) larger-scale estimates of effective porosity, and 

2) conservative geochemical tracers. Unfortuantely, contaminants that have been detected in the 

regional aquifer, such as 3H, Sr90, HE, cannot be used to calculate velocities because we do not 

know whether they have been transported from the source primarily in alluvial, vadose zone 

(including perched aquifers) or primarily in the regional aquifer. Either cross-hole tracer tests or 

single-hole “huff-puff’ tests could provide valuable information about groundwater velocity. 

7.3 Rec ha rg e/d i sc h a rg e 

The Rio Grande is the main discharge area for the regional aquifer. Estimates of discharge 

are based on springflow data (although it is unclear whether springs in White Rock Canyon 

discharge perched aquifer(s) or the regional system) and streamflow gain along the Rio Grande. 

These data suggest that the regional system discharges approximately 15 cfs between Otowi 

Bridge and Cochiti Reservoir. Statistical analysis of streamflow data suggest that this estimate is 

associated with a standard error of 4.3 cfs. 

The largest component of recharge occurs as underflow of groundwater from the Sierra de 

10s Valles, to the west of the Pajarito Plateau. Recharge also occurs by leakage from mesas and 

from alluvial groundwater in canyon bottoms on the Pajarito Plateau. While it may be 

insignificant volumetrically, local recharge on the Pajarito Plateau is important because it 

provides pathways for contaminants that originate from effluent discharges. The exact volume 

of recharge occurring on the plateau is impossible to measure; however, using the regional 

aquifer discharge estimate (described above) to place bounds on the total amount of recharge that 

can possibly occur on the plateau we use sensitivity analyses and flow and transport modeling to 

evaluate the effect of various plausible recharge scenarios. For example, to predict a “worst- 

case” scenario, we can simulate aquifer quality assuming all recharge occurs within those 

canyons that are most contaminated. Water budget, chloride-mass balance estimates, and 

vadose-zone flow model calibration can also be used to place bounds on recharge rates. Model 

sensitivity analyses have shown that our uncertainty in hydrostratigraphic zonation, permeability, 

and porosity are much more important than the uncertainty in recharge rates, therefore we would 

not recommend a high priority be placed on collecting new data to better estimate these fluxes. 
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7.4 Montoring 

Although the primary purpose of the R-wells is to provide basic characterization data, many 

of the wells have been located downgradient of potential contaminant sources so that they may 

serve as monitoring wells in the future. We used transport modeling to help site R- 13 

downgradient of contaminant sources in Mortendad Canyon. The particle tracking results, 

shown in Figure 8-12, suggest that the ideal location of a monitoring well would be slightly 

southeast of the source area. 

W 

Figure 7-3. Partick tracking results, showing ttvtjectories ofparlrcrcs r e b e d  at th wa&r tab& beneath source 
areas in Mortmdod Canyon 
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8 DEVELOPMENT OF FACIES-BASED MODELS OF THE PUYE 

FORMATION 

The Puye Formation is perhaps the most important hydrostratigraphc unit in the regional 

aquifer, because of its relatively large volume and the indication that there are very permeable 

zones within the Puye that may provide fast pathways. At present, our 3-D flow and transport 

models have relied primarily on assumptions of uniformity within the Puye. This assumption is 

the.most likely cause for the mismatches between measured and simulated heads in wells 

completed within the Puye (see Chapter 4). The assumption of a uniform Puye Formation not 

only compromises our ability to correctly reproduce hydraulic gradients (and thus induces errors 

in our groundwater flowpath predictions) but also compromises our ability to predict fast 

pathways which might exist. 

Keating et’al(2000) presented a compilation of data regarding the depositional facies of the 

Puye (as observed in outcrop). These data were used to create gaussian-based heterogeneous 

models of the Puye, which in turn formed the basis for Monte Carlo simulations of HE transport 

downgradient of R25. Gaussian models, while relatively easy to construct, have been widely 

criticized because they fail to reproduce depositional structures within sedimentary rocks. Our 

more recent work has focused on building more realistic models of the Puye Formation, using a 

facies-based method (Markov chain). Our approach has been three-fold: 

l To integrate geophysical, hydrologic, and geologic data from the R-wells into facies- 

based models of heterogeneity 

l To test these models against recently collected water level data in the R-wells 

l To develop and test methods of upscaling, since the important scales of 

heterogeneity within the Puye may be much smaller than can be accommodating in 

site-scale flow and transport models 

0 

It is widely recognized that sedimentary rocks can be very heterogeneous and that even 

detailed hydrologic investigations using very closely-spaced wells cannot produce a unique 

“map” of the subsurface. Therefore, it is more realistic to think of images of the subsurface in a 

probabilistic framework, where many possible “realizations” of the subsurface are equally likely. 

A large body of literature exists to generate stochastic realizations of sedimentary rocks; we 
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review this literature in the first section of this chapter. Relatively little research, however, has 

been devoted to the issues of 1) calibrating stochastic models to water level data and 2) upscaling 

fine-scale models of heterogeneity to coarser-scale models of flow and transport. We have made 

quite a bit of progress on the upscaling issue. The calibration issue has not been solved; 

however, we feel that the most likely reason for this is the descrepencies that exist in the 

hydrologic and geologic data from the R-wells regarding the Puye, and a lack of a clear 

conceptual model for which facies within the Puye are most important hydrologically. Until 

these issues are resolved, little more progress can be expected in flow model calibration. 

8.1 Overview Of Stochastic Approaches To Modeling 

Heterogeneity 

Spatial statistical methods using random field generators attempt to represent the range of 

possible spatial patterns in the subsurface by generating multiple, equally likely images of facies 

or hydraulic properties, where facies refers to an assemblage of like characteristics that severs to 

differentiate the unit from neighboring units. These multiple images are then used as input to 

flow and transport models to assess the effect of uncertainty in hydraulic properties fields on 

predictions of mean head and mean concentration, among other variables. 

The traditional geostatistical approach to generating maps of hydraulic properties treats the 

true aquifer or any statistically homogeneous part as a single realization of a stochastic process. 

The lack of knowledge of the one true hydraulic property field requires using an assumed model 

of spatial structure, such as a covariance model or variogram, inferred .From measurements 

[Journel and Huijbregts, 1978; Dettinger and Wilson, 1981; Gelhar, 19861. In applying the 

stochastic theory to the real world, two concepts have been introduced: statistical homogeneity 

(stationarity) and ergodicity. Because complete characterization of a medium property requires 

knowing the joint probability density function (pdf), which is impossible, it is commonly 

assumed that the property of interest in the medium is stationary, i.e., the joint pdf is invariant 

with respect to translation in space. The term “stationary” is often referred to second-order 

stationary, that is, the mean of the property is constant over the space and the covariance between 

two locations depends on the their separation distance rather than their actual locations. By 

assuming that a stationary property follows some kind of distribution, we mean that the property 

has the same distribution at any location. However, at any location, we can have only one value 

of the property, thus we have to assume that the field is “ergodic”, Le., the distribution of the 
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property at any point can be obtained from observing the distribution of this property at different 

points. This is the reason why we derive distribution of the property by taking measurements at 

different locations and calculating statistics of the property. When measurements at some 

locations are available, a simulation may be performed such that the simulated values should be 

exactly the same with measurements at these locations. This is called “conditional” simulations. 

In the case that the mean is not constant, the trending should be removed such that the mean- 

removed residuals (the difference between value of the hydraulic property and its mean at a 

given location) may be treated as a stationary process. The removed mean is then added later to 

the generated fields. The trending may be recognized by performing hand contouring or using 

some geostatistic methods, such as kriging or cokriging. 

The simulation methods can be divided into Gaussian and non-Gaussian methods. Gatissian 

approaches produce the continuous log hydraulic conductivity field directly, without first 

creating a geologic image. Geologic information is considered in developing a trend map. Many 

types of soft information are difficult or impossible to consider with Gaussian methods. Gaussian 

approaches have been used extensively in hydrologic community, not only because this 

distribution is simple and convenient, but also because it has been recognized that the saturated 

hydraulic conductivity follows log normal distribution [for example, Freeze, 1975; Hoeksema 

and Kitanidis, 1984; Gelhar, 19931. Many algorithms have been developed for generating 

Gaussian random fields, including nearest neighbors [Journel, 1974; Smith and Freeze, 19791; 

turning bands [Matheron, 1970; Mantoglou and Wilson, 198 1 ; Tompson et al., 19891; lower- 

upper (LU) decomposition [Davis, 1987, Neuman, 198x1; fast Fourier transformation methods 

[Gutjar, 19891; sequential Gaussian simulation [Gomez-Hernandez and Journel, 1993; Deutsch 

and Journel, 19981. Sequential Gaussian simulation is the most powerful of the Gaussian random 

field generator algorithms. In addition to conditioning during the map generation process, it can 

generate very large random fields, requires only that the covariance is positive definite, can treat 

irregular as well as regular grids, and does not require the covariance or the mean to be 

stationary. 

These Gaussian random generators have some limitations. LU decomposition method, for 

example, is usually restricted to relatively small domain. Turning bands methods itself is not 

suitable to generate random fields with conditioning points. Of course, through postprocessing 

the generated fields, one may obtains conditional fields. The fast Fourier transformation method 

63 



is also restricted to a relative small domain (5 12 x 5 12), and the field generated has to be at the 

size of 2 N ~  2N, where N 5 9 (a domain with a size other than 2 N ~  2N can be cut from a larger 

field). In addition, conditioning fields have to be obtained through postprocessing. 

To represent geological facies using Gaussian approaches, the generated fields are truncated 

using a set of cutoff values (thresholds). For a stationary random field, the proportions of facies 

are controlled by the choice of the thresholds. One of the problems is that the facies generated 

from truncation will have a fixed order in both the upper and lower threshold boundaries, Le., the 

facies with a higher (or lower) value of the property is always adjacent to the facies with a next 

higher (or lower) value. However, in reality, the highly permeable gravel, for example, may be 

just above the lowly permeable clay. 

There are many other cases for which Gaussian methods are not the best choice. First, since 

fields generated using Gaussian methods are usually continuous in space, abrupt transitions in 

hydraulic properties or discontinuities such as faults that juxtapose different rock types are often 

best handled using a non-Gaussian approach or a deterministic trend or zonation. Variations 

within each rock type or around the trend can then be generated using Gaussian approaches and 

added to the field generated by non-Gaussian approaches. Second, Gaussian spatial statistical 

models do not necessarily reproduce patterns of connected extreme values, considered one of the 

most important factors affecting subsurface fluid flow and transport [Joiirnel and Alubert, 19871. 

In addition, the assumption of multivariate Gaussianity allows for only one spatial covariance 

relation within an aquifer. Some complex patterns of spatial variability, such as buried channels 

formed by meandering streams, cannot be adequately represented solely with a variogram 

function and a constant mean (Fogg 1989). If the geologic pattern can be treated as deterministic 

through detrending, then Gaussian methods can be used for the residuals. However, if the 

locations of geologic features such as channels are unknown, then a non-Gaussian algorithm that 

considers geologic features as stochastic is preferable. Third, non-Gaussian algorithms can 

handle complex geologic shapes through consideration of higher-order statistics and geometric 

relations, provided these can be inferred. Finally, non-Gaussian methods have many more 

options for inclusion of soft geologic and geophysical information. 

Non-Gaussian methods include indicator-based methods, Boolean methods, simulated 

annealing, and Markovian chains. Indicator-bused methods rely on indicator variograms that are 

computed on a transformation of the original data given threshold values or categories (Joumel 

64 



1983) and produce maps that are quite different from those produced using Gaussian methods. 

One of the advantages of indicator-based methods is that there are no limitations on distribution. 

In addition, indicator algorithms allow including hard and soft data. Here the term “hard data” is 

what can be described with some specificity, which usually means that it is quantified, such as a 

measured porosity value at a location, or observed hydrostratigraphic unit (e.g., sandstone) at a 

location. While the term “soft data” means at a location the property takes a certain value at 

some probability. For example, in some old wells that penetrating the Puye Formation, the 

formation is classified as fanglomerate. Though we are not sure what the particular unit is, this 

classification does give us some prior information about the unit: it is not Totavi Lentil, and it is 

one of units in the Puye Formation (except for Totavi Lentil) with probabilities equal to their 

volumetric proportions. Any soft information that can be quantified and turned into a prior local 

probability value in terms of a threshold or category type can be used [Jotirnel, 1986a, b; Zhu 

and Journel, 19931. The ability of indicator-based methods to consider soft data has important 

implications for successful simulation of groundwater flow and transport. One of the limitations 

is that cross covariances between different classes of indicators are generally ignored. In 

addition, the maps produced by indicator-based methods are sensitive to the form and parameters 

of the indicator variograms. For example, given the same conditioning data, anisotropic and 

isotropic indicator variograms produce very different maps. Indicator-based algorithms include 

indicator kriging, sequential indicator simulation, and indicator principal components. 

Simiilated annealing is an optimization problem in which an objective (or energy) function 

minimizes the difference between features desired in maps of the subsurface and the statistics 

calculated from the current image. Any’geologic feature that can be specified quantitatively in 

the objective function can be included. In simulated annealing, either an initial map of node 

values is generated by another spatial statistical method, or an initial map is generated by 

assigning hard data to their nearest nodes in a grid and drawing from a data histogram to assign 

all remaining node values. An iterative procedure ensues in which pairs of nodes not associated 

with hard data are swapped to reduce an objective function that minimizes the difference 

between the desired spatial structure and the structure currently exhibited by the map. The 

iteration procedure stops when further swaps would not lower the value of the objective function, 

or when a target objective function is achieved. The final map maintains the data histogram and 

the conditioning data, but has rearranged the values assigned to the initial image. 
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Boolean algorithms have been used in generating sandshale fields [Haldorsen and Chang, 

19861. Simple shapes (ellipsoids, parallelepipeds, semicircles or half moons) are generated and 

placed randomly onto a background. Geologic information is used to establish probabilistic rules 

and geometric constraints that govern the distribution, geometry, direction of elongation, and 

connectedness of objects in space. Smaller-scale variability within each rock type can be 

superimposed using Gaussian methods. For each rock type, however, probabilistic and geometric 

rules must be defined. Although Boolean images can be conditioned by specifying, in a 

nonrandom manner, the locations of rock types in well logs at the start of the generating 

procedure and then randomly selecting the object geometries in the other dimensions [Haldorsen 

et al., 19881, conditioning is particularly difficult with closely spaced well data. Deutsch and 

Journel [ 19921 list additional problems with Boolean methods: (1) lithofacies do not conform to 

the simple geometric shapes commonly used; (2) lithofacies are not randomly distributed in 

nature; and (3) these algorithms are difficult to generalize and must be custom-designed for each 

depositional pattern. 

Markov chains have been used to predict preferential facies successions and deduce 

repetitive patterns of sedimentation. This approach generates a synthetic stratigraphy by ordering 

discrete facies types and bed thicknesses in a sequence. Doveton [ 19941 notes that vertical 

transition frequencies can be used for prediction in the horizontal dimension by invoking 

Walther's law, which states that facies that succeed each other in a conformable vertical sequence 

were deposited in adjacent depositional environments. In this study, we will employ Markovian 

chain model, partially because the code is available, partially because it can be easily 

incorporated with Gaussian methods to generate combined realizations, in which the distribution 

of different materials are generated using Markovian model while the variation within each 

material is produced using Gaussian methods. 
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8.2 Markov Chain Theory 

Markov chains offer an interpretable and mathematically simple yet powerful stochastic 

model for categorical variables. In time-series applications, the Markov chain model assumes 

that thejitiire depends on the present and not the past. Analogously for one-dimensional spatial 

applications, the Markov theory assumes that spatial occurrences depend entirely on the nearest 

data. The Markov chain method has been applied to geological formations with different 

materials [Harbaligh and Bonham-Carter, 1970; Agterberg, 1974; Lin and Harbaugh, 1984; 

Polltis, 1994; Carle, 1996; Carle and Fogg, 1997; Carle et al., 19981. The distribution of 

materials is characterized by the transition probability between different materials. It has been 

shown [Carle, 1996; Carle and Fogg, 19971 that, in characterizing the structure of the indicator 

random functions, the transition probability between different classes is equivalent to covariance 

of the indicator random hnctions and the former can be easily derived from field measurements. 

It is assumed in a three-dimensional Markovian chain model that spatial variability in any 

direction can be characterized by a one-dimensional Markovian chain model [Lin and Harbatigh, 

I 984; Politis, 19941. For a one-dimensional Markovian chain model, the continuous-lag 

transition probability matrix T for any lag can be written as [Carle, 1996; Carle and Fogg, 

19971: 

T ( h )  = eRh)Equation 8-1 

where R is an Mx M(for more general cases, Mbeing the number of materials) transition 

rate matrix whose entry ru represents the rate of change from category i to category j per unit 

length of category i in the given direction. If the transition rate matrix R is known, the transition 

probability matrix T can be evaluated by the eigenvalue analysis. Let vi, i =1,2, . . .,M, be 

eigenvalues of the transition rate matrix R, and Zi, i =1,2, .., M, be their corresponding spectral 

component matrixes that are evaluated by 

where E is the identical matrix, then (Ll) becomes 

M 
T ( h )  = Ee"IhZi 

i=l 

\ 
which means that the transition probability is summation of a series of exponential terms. 
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Now we focus on how to evaluate R and relate the covariance of the indicator random 

variables to the statistics of different materials in a porous medium. Suppose we have a transition 

probability matrix T measured at a discrete lag Ah in a direction 4, the transition rate matrix RI 

can be computed [Agterberg, 1974; Carle, 1996; Carle and Fogg, 19971 

which again involves an eigenvalue analysis. In this case, the transition probability matrix 

for the direction 4 at any lag can be calculated using (L1) to (L3), and the proportions of all 

categories can be calculated by multiplying the transition matrix to itself a number of times until 

the product is stablized. 

In reality, the discretized-lag transition probability matrix in the vertical direction may be 

obtained, for example, from borehole data. Thus transition rate matrix R can be computed using 

(L4). However, in the lateral directions, sparse data may prevent directly measuring discretized- 

lag transition probability matrix. In this case, one is unable to calculate R using (LA), thus, some 

alternative ways for deriving R are needed. Taking derivative of (Ll) with respect to h and let h 

= 0, we have 

.=-I dh h a  

M 
J=l r= l  

Since the transition probability tu has to satisfy c! tii = 1 and c. pitu = p j  , j  = 1,2,. . .M, 

it follows immediately that transition rate rg satisfies 

M 
z ry  = o  i = 1,2,..*M 
j=l 

M 

C p i r i i  = O  i = 1,2, ... M 
i=l 

'$ 

Equations (L6) and (L7) imply that det(R)=O, 

(L7) 

therefore, one of the eigenvalues of R, say 771, 

must be zero. The spectral component matrix Zl corresponding to this zero eigenvalue has 

special meaning, i.e., any row of Z-1 represents the proportions of all categories. 
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For a given porous medium, proportions of categories are the same in any direction. 

Therefore, once the transition matrix T (and so R) in one direction QO is known, R in any other 

direction Q may be estimated with some additional information. Carle [I9961 shows that the 

diagonal terms of the transition rate matrix RQ is related to mean lengths: 

In practice, if the mean length of one category, say Ll,g, in direction Q is known, the mean 

lengths for all other categories in this direction can be calculated from Li,+ =pi Ll,glpl, i = 

1,2,. . . fl. 
For a bimodal porous medium, either knowing proportions (maybe from other directions) 

and one mean length or knowing two mean lengths in the direction Q is enough for solving R in 

this direction. It is seen that, if the mean lengths in a given direction are LI and L2, respectively, 

the transition rate matrix is in the following form 

- I J L '  IIL, - l l L 2  l J L 1  1 R = [  

Two eigenvalues are 171 = 0 and 172 = -l/prLl= -1IplL2, and their corresponding spectral 

matrixes are 

z1=[ PI P2 ] 
P1 P2 

z2=[ p 2  -P2 3 
-P1 

From (L3), the transition probability tu can be written as 

where the parameter 11 is defined as 

A, = p 1 L 2  = p2L1  = LlL2 l(Ll + L 2 )  

It should be emphasized that, if the mean lengths depend on directions, the correlation 

length 11 is also direction-dependent, and so is the transition probability (L11). 

Once the three-dimensional transition probability model has been generated, then 

conditional (or unconditional) simulations can be performed through a two-step procedure: ( 1 )  
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generating an initial configuration using a cokriging-based version of the sequential indicator 

simulation algorithm (Deutsch and Journel, 1992), and (2) iteratively improving the conditional 

simulation in terms of simulated and modeled transition probability using simulated annealing. 

The initial configuration use a transition probability-based indicator cokriging estimate to 

approximate the local conditional probability: 
N K  

Pr(k occurs at xo I i j ( x a ) ; a  = 1,2 ,... ~ ; j  = 1,2 ,... K )  = ~ , ~ i j ( x o ) w J k , a  (**I 
a=l j=l  

where N is the number of data, K is the number of categories, i j  (x , )  is the value of the 

indicator variable, and wjk,a represents a weighting coefficient which is obtained by solving the 

following equation: 

where W, = (wy,k). The obtained field is iteratively adjusted by minimizing the object 

function: 

(**I 
/=I /=I k=l 

The iterative improvement procedure continues until the object function 0 is minimized, or 

a limit on the number of iterations is reached. Conditioning is maintained by not allowing change 

of categories at conditioning locations. 
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8.3 Derivation Of Statistical Properties For Puye Formation 

We have been compiling and interpreting geologic and geophysical data from boreholes, 

outcrops, and geologic maps. Much of the preliminary work is described in Keating et al. (2000 

8.3.1.1 Spatial analysis of geophysical data 

The geophysical data were collected by Schlumberger for R-7, R- 19, and CDV-R-I 5,  and 

have been summarized in Chapter 2. We have analyzed parameters derived from geophysical 

logs (permeability, water content, and porosity) to determine if distinctive spatial structures exist. 

The basic analytical tool for this analysis was generation and interpretation of variograms and 

semivariograms. 

8.3.1.2 Variogram overview 

The variogram is an alternative way to measure the spatial variability of a regional variable 

Z and is defined as 

2y(h) = var{Z(u + h) - Z(u)}* (S2) 

where u is a location and h is the separation vector. In general, the separation vector h is 

specified with some direction and distance (lag) tolerance. For a variable sampled at regularly 

spaced locations in a direction, the semivariogram may be calculated using the following formula 

where N(h) is the number of possible data pairs that are separated at distance h. For instance, 

if h = 10, then all pairs of points in this direction with distance 10 units are used in calculating 

$1 0). The expected form of the semivariogram is that y should increase as h increases. This is 

because points that are close together should be more similar than points that are widely 

separated. Eventually a lag (h) is reached, above which y does not increase. This is called the sill. 

When a variogram is extrapolated back to zero distance, it may not approach zero variance. The 

amount by which the variance differs from zero is known as the nugget effect. In a special case 

that the attribute of interest is periodical in the direction, it is expected that the variogram shows 

a sharp decrease at the separation distance that is equal to the multiple of the length of the period. 

In an ideal case, if two materials repeat in a sequence, the variogram will show a quickly 

71 



increase from zero till some value at the separation distance of L1/2, and then variogram 

continuous to increase slowly until the separation distance at L2/2. Further increase of 

separation distance will cause a suddenly decrease on semivariogram until separation distance at 

(Ll+L2)/2. Though, in realty, we will never see such an ideal case, the semivariogram does give 

us some indication about the mean lengths of different materials. 
R-Well data 

Semivariograms for permeability data from R7, R19, and CDV-R-15 are shown in Figures 

8-1- 8-3. It is interesting to note that all three of these figures show evidence of a two-material 

system. In addition, in all three wells there is indication that the mean length of the lesser 

material (volumetrically) is approximately 5m. We estimate the mean length of the more 

prominent material to be approximately 40-60 m. 

LOM. 
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Puye Formation 
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Figure 8-2. Skmivariogmm & M @ m  penneabiU@ data in well R-19 
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Figure 8-3. S e m i v a r i o ~  &&ted@m permeabiU@ data in well CD V-R-I 5 

8.3.13 Analysis of textural classes identified in well logs and outcrops 

We have compiled textural class data from well logs in well completion reports (list here), 

Purtymun (1995), and Waresback (1986). The locations of these wells are shown in Figure 8-4. 
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Based on description in well completion reports (R-9, R-12, R-15, and R-19?), we have 

divided the Puye formation into five categories: gravel, coarse sandstone, fine sandstone, clay, 

and Totavi Lentil. We used a very simple method to determine the classification. A material is 

classified as "gravel" if terms "gravel", "gravelly" or "conglomerate" appear in its description. 

The class "coarse sandstone" refers to those materials with "coarse sandstone" in their 

description. The class "fine sandstone" represents those core segments with terms "fine" or "fine- 

grained" in their description. Though the fraction of the clayey material is very small, we 

separate it from other classes because it may have great effect on flow and solute transport. This 

class also includes "mudstone" as appearing in the outcrops. Intervals with descriptions that do 

not fall into any of the above classes are lumped together as "unclassified" 
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In well logs presented in Purtymun (1 999,  the Puye Formation is classified into 

fanglomerate and Totavi Lentil. Though there is no detailed classification within fanglomerate, 

this kind of information can be used in the future as soft data in conditioning simulations in such 

a way that the probability of the fanglomerate being any one of the above four types is 

proportional to their volumetric proportions. In total, we analyzed data from 39 wells. Detail 

classification for each outcrop section and well is shown in Table C-3and Table C-4, 

respectively. The total thickness and percentage of each material are listed in Table C-5. 

8.4 Generation Of Markov Chain Models 

We have genererated both three and two-dimensional Markov chain models. The three- 

dimensional models are very large, encompassing the full extent of the saturated Puye Formation 

on the Pajarito Plateau. We generated two sets of realizations according to two different 

approaches to parameter estimation, both derived from site-specific geologic data for the Puye 

In order to develop methodology for calibration to water level data, we also developed 

smaller, two-dimensional models In the two-dimensional models, we generated one set of 

realizations generated using site-specific data for the Puye; the other set was generated using 

synthetic data. Model development is described in the sections below. 

8.4.1 Parameter derivation 

Markov chain models require 3 (2-D models) or 4 (3-D models) parameters to be specified 

for each material class: the fraction of the total volume occupied by that material (f) and the 

mean length of that material in each axis direction (Ix, I ,  and 13. Of these parameters, the most 

difficult to estimate are the mean lengths, particularly in the lateral directions (I, and 1, ). For a 

model with n material classes, parameters only need to be specified for n-lmaterials; parameters 

for the last material can be derived from the others. 

The initial models presented in this report are based on a simple two-class approach. We 

divided the Puye into Totavi and non-Totavi materials, since for many of the original wells on 

the plateau these are the only two materials identified (Purtymun, 1995). Starting with a two- 

class is approach is reasonable considering the sparseness of the dataset and the difficulty of 

estimating 1, and 1 for any classes. Our conceptual model is that Totavi deposits, being much 
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coarser grained and possibly better sorted than other Puye (fanglomerate) deposits, may be more 

permeable. 

The volumetric proportions of two materials are calculated from Table C-5. For the three 

dimension models, we used all the available well data to derive volumetric proportions and mean 

lengths in the vertical direction; for the 2-D models we used a subset along an E-W transect (R- 

25, R-19, R-15, R-12, and R-9). The resulting parameters are shown in Table 8-land Table 8-2. 

Using the well data, our estimate of mean length (vertical direction) for the Totavi Lentil (1 8m) 

is in very close agreement with estimates reported in (Keating, Kwicklis et al. 2000) from 

outcrop data (1 2-24 m). 

We use several different methods to estimate lateral mean lengths, which are far less certain. 

The first (Model 1) is to assume that data collected in outcrop are reasonable approximations; 

this method should underestimate true lateral mean lengths and thus serves as an end-member. 

The second (Models 2 and 3) are based on a conceptual model that the Totavi deposits are long, 

thin, fluvial deposits approximately parallel to the modern Rio Grande channel, on average 

approximately the same width as the modem channel (Reneau 2001). To derive I,, we estimated 

the width of the channel alluvium using a geologic map (Puye Quadrangle, 7.5 minutes series). 

We set up 80 equally-spaced measurement points along the length of the river in the vicinity of 

the Puye and measured the width of the river and surrounding alluvium (average = 97.5m). This 

estimate is somewhat smaller than those reported for outcrops in Keating (2000) (50 - 560 m). 

The parameter lz,, corresponds to the length parallel to the Rio Grande. We use two estimates for 

this parameter, for which we have no data (2000 m (Model 2) and 500m (Model 1) 

Parameters for the non-Totavi class were derived from the Totavi class, since this is a two- 

class model. 

Table 8-1. Parameters used for Markov chain models 

Parameter 
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Mean 

Length (m) 

1, 

1, 
1, 

Table 8-2. Parameters used for 2-D Markov chain models 

Totavi Non-Totavi 

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 

345 97.5 97.5 2309 652.5 652.5 

560 2000 500 3748 13385 3346 

18 18 18 120.5 120.5 120.5 

1 Parameter I Gravel I Sand I 

1, 

1, 

I Volumetricfraction I 0.552 I 0.448 I 

1109 900 

37 30 

I Mean lengths (m) I 

8.4.2 Model domain and grid resolution 

The extent of the domain for the 3-D models is 9500- 31000 meters in the x direction (East- 

West), -13800- -1 14000 meters in the y direction (North-South), and 1600-2088 meters in the z 

direction (vertical). This encompasses the entire saturated Puye Formation on the Pajarito 

Plateau. The vertical resolution of measurements at the outcrop locations is typically about a few 

centimeters, while the vertical resolution of the well data is about 5 ft. The vertical resolution of 

both these datasets is much greater than the vertical resolution of the flow and transport model 

(1 2m). Nevertheless, we chose to create Markov chain models of the aquifer at a resolution fine 

enough to capture the heterogeneity present in the dataset. Issues related to upscaling (mapping 

properties onto a coarser flow and transport grid) will be addressed separately. 

Many factors have been considered in designing the Markov chain grid: the grid size used in 

the flow and transport model, the correlation lengths of the formation in three directions, and the 

balance between accuracy and computational efforts. It is commonly required that the grid size 

in any direction should be small enough such that each correlation length should be larger than 4 

or 5 grid elements. Some researchers suggested that the grid resolution 6 should satisfy the 

relationship: S/ R 5 1 / ( I +  0: ) , whereh is the correlation length in the given direction and aiK 
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is the variance of the log hydraulic conductivity. The relationship may be used only for 

generating permeability field for saturated flow simulations. For unsaturated flow simulation, it 

is generally required that the grid size should be less than lla, where a is the pore size 

distribution parameter. Assuming the covariance of permeability follows an exponential model, 

we can estimate the correlation lengths by dividing the mean lengths (Table 8-1 ) by a factor of 

three (L= 32.5m, &= 667m, k= 18.7m). 

Another consideration on the choice of the grid size is the current grid size in the basin 

model. To avoid unnecessary interpolation of the generated fields, the size of the finer grid 

should be selected such that after several steps of upscaling the grid should fit the coarser grid in 

the basin model. Because of the large extent of the Puye Formation, the computational effort will 

be very large if the spatial discretization is too fine. 

, 

Based on these arguments, we choose a grid with a resolution of 3 1.25 my 250 my and 1.5 m 

in the x, y and z directions. The total number of nodes in this grid is 688x96~328 (= 21,159,936 

nodes). 

The 2-D models are based on a grid resolution of dx = 100 m and dz =5 m. The model 

extends approximately from the topographic divide west of LANL to the Rio Grande (see Figure 

8-4). The bottom of the model is 915m MSL. 

8.4.3 Conditioning 

We require each of our statistical realizations to fit the measured data exactly. This is 

accomplished using a process called “conditioning”. Although both well and outcrop data were 

used to develop the statistical parameters for the simulations, our initial simulations are only 

conditioned to the well data; these are listed in Table C-1 . 

8.5 Images. 

The following three images are one realization from each of the three model sets (see Table 

8-1) 
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8.6 Calibrating 2-D Markov chain models to head data 

We use a stochastic approach to modeling heterogeneity within the Puye because wells are 

sparsely spaced and multiple hydrostratigraphic models can be constructed, all of which honor 

with data collected in each well. Of these hundreds/thousands of plausible geologic models, only 

a subset will be compatible not only with geologic data but also with hydrologic data (water 

levels). If our aquifer model is correct, we should expect very small or zero differences between 

simulated and measured heads at each well. Since our model errors assuming uniform 

permeability within the Puye are substantial in certain wells, we should expect a heterogeneous 

model of the Puye to improve the model fit. 

Since three-dimensional stochastic modeling is very computationally intensive, we 

developed two-dimensional models of the Puye Formation that could be used to develop and test 

methodology for calibration of stochastic models. For these models, we selected wells that were 

approximately along a two-dimensional cross-section (R25, R15, R19, R9, and R12). Using the 

classes derived from drillers lithologic logs (see Table C-4 ), 1000 Markov-chain realizations of 

the Puye Formation were generated, conditioned to data in these 5 wells. 

For model calibration, we used water level data from selected wells on the plateau (locations 

are shown in Figure 8-5). In the calibration procedure, all of these data were collapsed onto an 

E-W cross-section. This is a reasonable assumption for the wells used for the Markov chain 

models (solid circles), since these are located approximately on an E-W transect. We justified 

collapsing the water level data onto an E-W cross-section based on the approximately E-W 

gradient evident in the water table map (see Figure 2-1). The validity of this assumption remains 

to be tested. 
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Figure 8-5. Location of wells used for Markov chain model conditioning and flow model calibration 

Figure 8-6 depicts one realization of a Markov chain model, conditioned to geologic data at 

the five wells indicated in Figure 8-5. The model domain extends to the Rio Grande, including 

portions of the aquifer that are Santa Fe Group. These models, therefore, assume that the type of 

heterogeneity present in the Puye Formation is similar to that in the Santa Fe Group. Like many 

other assumptions in this analysis, this one remains to be tested. 

Figure 8-6 also shows measured heads in wells along the cross-section (open circles in 

Figure 8-5). This figure demonstrates the clear downward gradient in the vicinity of R25 and 

upward gradients close to the Rio Grande. The bottom frame in the figure shows the result of a 

steady-state flow model for this cross-section. We used the parameter estimate code (PEST) to 

estimate the permeability of each of the two classes of rock to provide the best fit to measured 

heads. For this simulation, the upper boundary is a recharge boundary (rates are determined by 

an elevation-dependent model); the western and lower boundaries are no-flow. The eastern 

boundary is also no-flow, except a small group of nodes near the upper east-most comer of the 

grid which are designated specified head (elevation of the Rio Grande 

Qualitatively, the measured and simulated heads are similar. However, significant 

disparities exist in matches to individual wells, particularly heads in R22. To improve the match, 

we used a number of strategies: 1) excluding data from the calibration dataset that may be 

influenced by pumping (there is no pumping in the model), 2) relaxing the ‘no-flow’ assumption 
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at lateral boundaries, 3) replacing the water table boundary (specified flux) with a specified head 

boundary. Unfortunately, none of these strategies resulted in a significantly better model. 

We also performed a series of model calibrations to this 2-D dataset using a more simple 

model of heterogeneity: a two parameter anisotropic model (kx #ky). In general, these models 

performed as well as the Markov chain models. 

Despite that lack of agreement between simulated and measured heads in some wells, all of 

these calibrations suggested that there is little question that the Puye Formation is strongly 

anisotropic. Simple models of heterogeneity (two parameter anisotropic models) suggested that 

kz is approximately two orders of magnitude lower and k, Calibration of Markov chain models 

suggested that the permeability of “low k” zones is approximately 2.5X lower than “high-k” 

zones. 

We analyzed geophysical datasets to determine if there is a relation between permeability 

estimates derived from geophysical logs and textural classes (according to drillers lithologic log). 

Table 8-3 shows the results of this comparison for two wells. This result suggests that the 

textural class “fine sandstone” has clear hydrologic significance, having a much lower 

permeability than coarse sandstone or gravel. However, the distinction between coarse 

sandstone and gravel does not appear to be significant. 

Table 8-3. Comparison of geophysical data and tatural class in R-19 and CDV-R-15 
Classes # of data Mean K Variance of K 

Gravel 0.453 

Coarse sandstone 1323 0.579 6.16 

I Fine sandstone I 316 I 0.008 I 0.0006 I 

8.7 Conclusions and suggestions for future work 

We consider these results to be very preliminary. However, these models do suggest that 

there is little doubt that the Puye Formation is strongly anisotropic. At present, however, 

Markov chain models do not produce a significantly better agreement between simulated and 

measured heads, compared to uniform models (2-D or 3-D). There are many possible reasons 

for the lack of agreement between measured and simulated heads in these 2-D flow fields, such 

as three-dimensional effects (both in water levels and in the heterogeneity of the Puye) that 
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cannot be approximately with a 2-D model, the effects f pumpin (not considered in these 

models), the number of classes in the Markov chain models (perhaps more than 2 are necessary), 

the parameters used for the Markov chain models (recall that lateral mean lengths are quite 

uncertain). It is also possible that the Markov chain approach is inappropriate for the Puye. 

Until these various possibilities are tested, it is difficult to draw firm conclusions about the nature 

of heterogeneity within the Puye. 

The conceptual basis for the Markov chain model is that the most important high 

permeability facies within the Puye is the Totavi Lentil. At present, hydraulic testing results 

suggest that the Totavi Lentil contains both high and low permeability zones (see Figure 2-5); 

thus, our conceptual model may be flawed. We recommend that further analysis of geologic, 

hydrologic, and geophysical data be conducted so that our Markov chain models are based on a 

defensible conceptual model. At that point, these model calibrations can be continued and 

improved. 

Because the mean length of Totavi Lentil in the x direction is about 100 meters, the grid size 

of 250 meters in this direction in the current model is too large and should be reduced. 

Large variation of the hydraulic conductivity has been observed within each facies, it is 

therefore recommended that the variation within the facies be considered in the future work. This 

can be done by the following way. For each realization of Markovian chain model with ncat 

categories, instead of assigning a constant hydraulic conductivity value to each category, we can 

generate ncat continuous realizations with specified means, variances, and correlation scales 

corresponding to these categories. Each realization used in the flow simulation is obtained by 

combining ncat continuous realizations, based on the Markovian chain realization. More detail 

description on this method can be found in Lti et al. [2001]. 
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8.8 Equivalent/Effective Permeability 

One important challenge inherent in imbedding a geostatistically-based model of 

heterogeneity within a flow and transport model is calculating the effective permeability of a 

geostatistical representation. The permeabilities of materials within the geostatistical domain 

should be adjusted so that the overall equivalent permeability of the domain is equal to that 

which is obtained through analysis (e.g. pump test interpretation, inverse modeling) of the same 

rock unit assuming homogeneous properties. 

By equivalent permeability we mean a constant permeability tensor taken to represent a 

heterogeneous medium. Because a complete equivalent between the real heterogeneous medium 

and the fictitious homogeneous one is impossible, it is therefore required to defined some criteria 

that must be the same for both media. The most commonly used criterion is the equality of flow. 

Under the same head gradient, the flow at the boundaries of the domain should be identical for 

the real heterogeneous medium and the equivalent homogeneous medium. The term “effective 

permeability” is used for a medium that is statistically homogeneous on the large scale and is 

defined as 

( t i )  = -K (vh) 

where ( ) represents expectation. The effective permeability is an intrinsic property, 

independent of the macroscopic boundary conditions. Many models have been developed to 

estimate the equivalentleffective permeability of the binary medium. Hushin and Shtrikman 

[ 19631 gave bounds for the isotropic binary medium as 

wherefi andf2 are the fractions of material 1 and material 2 in the medium; kl and k2 (kl< 
k2) are the permeability of two materials, and p, = flkl + f 2 k 2  is the arithmetic mean of the 

permeability of two materials. Using the self-consistent approach (or embedded matrix method), 

in which the heterogeneous medium consisting of homogeneous blocks placed side by side is 

replaced by a single inclusion of K permeability embedded in a homogeneous matrix with an 

unknown permeability, Dagan [ 19791 derived the formula for the effective permeability as 
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where f(K) is the probability density hnction of the permeability, D is the space dimension. For a binary medium, 

(E3) simplifies to 
r 7 - 1  

+ A 
K, + (D - l)Ke, K2 + ( D  - l)Kef 

To take into account of anisotropy of permeability field, Neuman [ 19941 derived the 

formula: 

Kef  =K,exp oy --- [ 1(: 31 
where 0 I p I D, and Kg = exp((Y)) . Ababou [ 19951 gave p = I, / I i  , where I,, is the 

harmonic mean of the correlation lengths in the principal directions of anisotropy, Zi  is the 

correlation length in the considered direction. 

Now we consider horizontal flow in a two-dimensional vertical cross-section with a size of 

200 m in the horizontal direction and 100 m in the vertical direction. The element size is 1 .O m 

by 1 .O m. Two vertical wells are located at x = 65 m and 135 m, with a depth of 70 m. The 

porous medium consists of two materials, with volumetric fractions of 0.85 and 0.15, 

respectively. The mean lengths of two materials are 30 m and 70 m in the horizontal direction, 

and 6 m and 14 m in the vertical direction. The medium is therefore anisotropic. An 

unconditional Markovian realization is generated and the material types at the wells are 

considered to be known in the sequential generation of the conditional Markovian realizations. 

Figure El shows the unconditional realization and one conditional realization. At the wells, 

material types are the same in both realizations. 
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We first perform a flow simulation with a homogeneous permeability of IgK =12.5 (the unit 

of K is m’), under constant heads at left and right vertical boundaries and no-flux at the upper 

and lower boundaries. For each Markovian realization, the log (1 0-based) permeability of the 

less permeable material is assigned to be -13.0. The permeability of the higher permeable 

material is determined using an inverse approach (PEST) such that the flux at the boundaries are 
the same as those in the flow simulation with a homogeneous permeability. The histogram of the 

permeability of material 2 for all 100 realizations is shown in Figure (E2). It is seen from the 

figure that the distribution is more-or-less normal. The mean and variance of l g K 2  is -1 1.49 and 

0.0089, respectively. 
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Figure E2. Histogram of the IogpermeabiIity for material 2 

The mean of the lgK2 can also be determined analytically using (E5). For a binary medium, 

the mean and variance of the composite medium can be expressed as 

k 

( y )  = (In K) = fi (Y, ) + f 2  (y2) = (Y, ) + f 2  ((y2) - (Y, )) 

0; =Af2((Y2)-(Y,))Z (E7) 

(E6) 

Substituting (E6)-(E7) into (E5) and taking the natural log on both sides of (E5), one has 

Solving for (Y2)  yields 

where A = 1/2 - 1, /Dli  . In our case, the correlation length of the indicator variable in the 

horizontal direction, using (L12), is A?) = 7.0m, and that in the vertical direction is A?) = 1.4m, 

thus 1, = A?’ Ay’ /($) + A?)) = 1.1 67 . For flow in the horizontal direction we have li  = 7.0. 

Substituting these data into (E9) gives one feasible solution (Y2) = -1 1.5, which is almost 

identical to the value of -1 1.49 from Monte Carlo simulations. 
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8.9 Upscaling 

An important issue in the numerical simulation of groundwater flow and solute transport is 

the problem of scale. Data are collected at a scale different from the scale considered in field- 

scale flow and transport models.. For instance, the hydraulic conductivity obtained from core 

measurements, slug tests or packer tests, support scales in the order of centimeters to meters, 

whereas numerical models for groundwater flow requires conductivity values representative of 

tens to hundreds of meters. The process that transfers data from a small scale to a larger is called 

upscaling. The purpose of the upscaling procedure is to obtain a description of conductivity 

spatial variability at the numerical scale that reproduces same average behavior of the 

conductivity field at the measurement scale. 

Hydraulic conductivity is not an additive property. It is well known that the equivalent 

conductivity for a group of cells serially arranged is equal to their harmonic average, whereas if 

the cells are arranged in parallel the equivalent conductivity is equal to their arithmetic mean. It 

has been shown that the equivalent conductivity of a heterogeneous block, which consists a 

number of cells that are at the support scale, is bounded above and below by the arithmetic and 

harmonic averages, respectively. 

The block conductivity is defined from an extension of Darcy’s law as: 

where V represents the block support, K, is hydraulic conductivity at the support scale o, 

and h, is the piezometric head at cell o. A number of methods have been developed for 

computing the block conductivity. One of the commonly used methods is the power-averaging 

which is defined as [Joiirnel et al., 19861: 

where p depends on the spatial distribution of permeability and ranges from -1 to 1. When p 

= -1 .O, the equivalent conductivity is equal to the arithmetic mean of conductivities of the 

elements in the block; when p = 1 .O, the equivalent conductivity is equal to the harmonic mean 

of conductivities of the elements in the block. I fp  approaches to zero, the derived conductivity is 

the geometric mean. 



Simplified renormalization was proposed by Le Loc’h. The calculation is done by 

successive grouping a number of finer meshes to form a coarser mesh. If the finer meshes are in 

series relative to their flow direction, the element permeabilities are averaged with a harmonic 

mean. If they are in parallel, an arithmetic mean is used. At each iteration, the direction of 

grouping is changed. In two directions, for example, a grouping along the x direction is followed 

by a grouping in the y direction, as illustrated in upper part of Figure U1. Alternatively, one may 

start from a grouping in the y direction first and then a grouping in the x direction (as shown in 

the lower part of Figure U1. The final resulting permeability values depend on the order of 

groupings. 
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We have explored the scaling of flow and transport behavior by considering the scale- 

average of hydraulic conductivity at multiple scales in the numerical aquifer system. We 

considered a two-dimensional sqbare domain of a size 25.6 m by 25.6 m in the x and y 

directions. Five different levels of resolutions were considered: the number of uniform grid 

elements along each of two principle directions N = 256, 128,64,32, and 16. The grid with N = 

256 corresponds to the fully resolved baseline hydraulic conductivity field and the grid with N = 

16 corresponds to the greatest degree of spatial averaging considered. The baseline hydraulic 

conductivity field was generated using GCOSIM (Gomez-Hernandez, 1991), with a zero mean, a 

unit variance, and a correlation length of h = 5.0 m. 
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The simple renormalization method was used to derive the hydraulic conductivity fields for 

different level of upscaling (Figure 8-7). The finite element numerical code was employed to 

solve for the flow field. It is seen that there is no significant difference on hydraulic head 

between different levels of upscaled hydraulic conductivity fields (Figure 8-8). 
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The effect of upscaling on solute transport was studied using two approaches. Using the 

method of characteristics approach, the MOC solves the classical convection-dispersion equation 
in variably saturated porous media (Bear, 1972), which can be expressed as: 
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ac V(D, . vc) - q .  vc = e - 
at 

where C is the solute concentration, 8 is the water content, and Dij is the dispersion 

coefficient tensor. The dispersion coefficient is generally defined as 

(U4) 
D,, =(aL -aT)-+aTqJv 4i4, + D ,  

4 

where a~ and a~ are the longitudinal and transverse dispersivities, respectively; qi is the 

specific discharge at the ith direction, q is the magnitude of specific discharge; &j is the 

Kronecker delta ( 6 ~  = 1, if i = j and 0 otherwise); and Dm is the molecular diffusion, which is 

generally small and can be omitted. In this study, we assume both longitudinal and transverse 

local dispersivity values are zero. Nevertheless, small numerical dispersion exists in our 

simulations. Solutions to (U3) require the specification of the initial and boundary conditions. In 

our simulation, the initial concentration in the flow domain was assumed zero everywhere. Zero 

concentration flux boundary conditions were assigned to the upper and lower sides of the flow 

domain. At the right side of the flow domain, non diffusive flux boundary condition was 

specified. A prescribed concentration is specified at the middle of the left boundary. 

During the solute transport simulation, the time step used for each case under different mean 

pressure heads was selected by using the maximum velocity in the field. In other words, the time 

step is selected in a way such that any solute particle within one element at the current time will 

remain in the element or in the adjacent elements within next time step. The selection of the time 

step allows us to avoid numerical instability and minimize numerical dispersion. The 

concentration distributions for different resolutions of the hydraulic conductivity fields are 

shown in Figure 8- 10. The difference in concentration distributions represents the dispersion 

effect due to heterogeneity of the hydraulic conductivity fields and numerical grids. To see the 

effect of numerical dispersion, we solved the concentration fields with uniform hydraulic 

conductivity fields on the same numerical grids as those heterogeneous cases. The concentration 

distributions for different grids are shown in Figure 8-1 1. 

Another way is the particle-tracking technique. For a particle originating from a location a at 

time t = to, its trajectory is described by the following kinetic equation 



subject to the initial condition X(t , ;a , t , )  = u , where X(t , ;u, t , )  stands for the particle 

position at time t and V[X(t ;a , t , ) ]  denotes the Lagrangian velocity of the particle. Once the 

Eulerian velocity field is obtained from the flow simulation, it is converted to the Lagrangian 

velocity field based on the position at which the particle was released and then Equ. (U5)  is 

solved step by step from the time t = to to any elapsed time. 

In our case, a particle is placed at the middle of the left boundary, i.e., x = 0 and y = 12.8 m. 

The trajectories for different levels of upscaling were illustrated in Figure 8-12. The figure shows 

that there is no significant difference between different levels of upscaling. 
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10 APPENDIX A. WATER LEVEL AND PERMEABILITY DATA 



Table A-1. Most recent water level data from wells in the vicinity of LANL 
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G-2 

(3-3 

1 G-4 15863 I 1772 I 1315 I 1997 I 1788 I Y 

5700 1761 1249 1997 1738 Y 

5764 1737 1327 1986 1757 Y 

G-5 

G-6 

5858 1713 1466 1994 1786 Y 

5857 1789 1353 1997 1786 Y 

LA-1 

LA-IB 

LA-2 

I LA-5 I5671 I 1646 I 1249 I 1987 I 1729 I Y 

5537 1695 1450 1990 1688 Y 

5646 1616 1199 1996 1721 Y 

5525 1690 1458 1991 1684 Y 

LA-3 

LA-4 

5560 1697 1466 1991 1695 Y 

5706 1592 1223 1987 1740 Y 

I PM-5 I 5840 I 1724 I 1226 1 1997 I 1780 1 

LA-6 

PM-1 

PM-2 

5678 1631 1217 1985 1731 Y 

5737 1693 1225 1997 1749 

5847 1742 1353 1995 1783 

Buckman well field 

PM-3 

PM-4 

TestWells I SF-2A 15510 I 1125 I 1122 I 1997 I 1680 I 

5859 1732 1252 1997 1786 

5827 1726 1240 1997 1777 

0-4 

0-1 

I ’ SF3B I 5466 I 1625 I 1622 I 1997 I 1666 I 

5863 1680 1228 1995 1788 

5793 1640 1195 1990 1766 

SF-3C 1 5467 1 1659 1 1 ::!Bi 1 iz 1 
SF-4B 5468 1634 1997 

SF4C 5461 1655 1652 1997 1665 

SF4A 5326 1588 

SF-2B 

SF-2C 

SF3A 

1 SF-SC I 5453 I 1648 I 1645 I 1997 I 1663 I 

5038 1445 1441 1997 1536 

5320 1590 1587 1997 1622 

5307 1587 1584 , 1997 1618 

IBuckman 51 5431 I 1690 I 1440 1 1998 I 1656 I 
Buckman 6 

Buckman 7 

5408 1685 1319 1998 1649 

4932 1648 1282 1997 1504 



Table A-2. Permeability data for wells on the Pajarito Plateau, and average linear velocity estimates 

Hydraulic conductivity 

Tshv 

TPf 

I 

G-4 I 0.52 

G-3 I 0.52 

G-2 I 0.65 

G-1A I 0.53 

G- 1 0.59 

DT-9 0.73 

0-4 0.6 1 

PM-4 0.6 

CDV-R- 15 1 

CDV-R- 15 1 

CDV-R-I 5 1 

CDV-R- 1 5 1 

R7 1 
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a fraction of screened interval occupied by given hydrostratigraphic unit 
J 

assuming horizontal flow, hydraulic gradient = 0.01, effective porosity = 0.1. 

P=pump test; I= injection test; G=geophysical log 
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APPENDW B. HYDROSTRATIGRAPHY AS INTERPOLATED ONTO LOCAGSCALE MODEL GRID 

1 - -  
jarito fault mne I 

Figure B-I. Local-scale grid, wUI, ekments Colond amonling to hydmstrntigraphy 



Puye 

10000 20000 25000 

Pajarito fault zone 
Figure B-2. E-W cross-section of local-scale grid, beneath LA NL 

30( 

Fe Group 



Outcrop Thickness Gravel Coarse sand Fine sand 

name d(m) % d % d % d 

LA-01 86.3 48.5 2.79 7.0 0.6 17.1 1.64 

(Totavi) 

GC-01 65.5 41.0 0.89 7.5 0.31 9.5 0.41 

Table C-4. Textual class data compiled from drillers lithologic logs 

Clay Totavi Lentil 

% d % d 

19.4 2.1 N/A 0 

38.9 1.16 4.5 1.48 

J 

I I I I I I I I I  I I I I 



Gravel Coarse sand Fine sand clay Totavi 

Well d(m) 2470.21 486.87 160.99 1.24 447.77 

(%) 69.25 13.65 4.5 1 0.03 12.55 

Total 

3567.08 

100.00 

116 

Outcrop d (m) 371.32 74.34 22.81 142.67 110.76 721.91 

(Yo) 51.44 10.30 3.16 19.76 15.34 100.00 



Table C-6. Thickness of Totavi Lentil measured at outcrops (m) 

Ancho Canyon 

Water canyon 

North-South 
dimensions Location 

20.1 244 

20.4 223 

Mortandad Canyon 

Sandia Canyon 

61 223 

41 142 

Los Alamos 

Canyon 
41 

I Mean I 36.7 I 345.1 

893.7 

Standard deviation 

East-West 
dimensions 

i i l G F  

17.1 309.3 

80.7 I 264 

6.1 

6 1  I 122 

6.1 17.8 I 391.4 

Thickness 

elevation 

18.3 I 30.5 I 1755.6 

~ 12.2 I 18.3 1 1524 

18.3 I 24.4 I 1774 

6.1 I 18.3 I 1792 

6.1 I 30.5 1 1823 

12.1 I 24.4 I 




