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A method is presented for developing probability density functions for parameters of soil moisture 
relationships of capillary head [11{0)] and hydraulic conductivity [K(O)]. These soil moisture parameters 
are required for the assessment of water flow and solute transport in unsaturated media. The method 
employs a statistical multiple regression equation proposed in the literature for estimating (h(O)] or 
[K(O)) relationships using the soil saturated water content and the percentages of sand and clay. In the 
absence of known statistical distributions for either [h(O)] or [K(O)] relationships, the method facilitates 
modeling by providing variability estimates that can be used to examine the uncertainty associated with 
water flow or solute transport in unsaturated media. 

INTRODUCTION 

Assessments of groundwater contamination from chemical 
waste disposal or agricultural chemical application invariably 
include evaluation of chemical transport through the unsatu
rated zone. For transforming or degrading chemicals, the 
magnitude of contamination depends on the residence time in 
the unsaturated zone. The residence time is dependent on 
chemical and soil characteristics and meteorologic conditions. 
The movement of hazardous wastes or pesticides is inherently 
affected by soil characteristics and the associated spatial varia
bility occurring within and among individual waste disposal 
sites or agricultural use areas. 

The soils literature contains numerous assessments docu
menting the ariability associated with textural and hydraulic 
characteristics of soils [e.g., JrJry, 1982; Nielsen el al., 1973). 
The coefficient f variation (CV) is often used to represent the 
magnitude of v riability. The CV often is found to be highest 
for soil hydrauli~ properties (e.g., hydraulic conductivity) and 
lowes~ for texturfl properties such as bulk density and total 
porosity [e.g., Sharma and Rogowski, 1983; Warrick and Niel
sen et al., 1980]. Variations in soil characteristics can contrib
ute considerable uncertainty [e.g., Bresler and Dagan, 1981; 
Jury, 1982) to assessments of solute transport and ground
water contamination. 

Traditionally, mathe~atical models have been used to 
evaluate the uncertainty of predicted chemical movement in 
the unsaturated zone. Cox and Baybutt [1981] have described 
five different modeling methods for conducting uncertainty 
analyses. The choice of any one method depends upon the 
model (or models) selected and analysis objectives. The widely 
used Monte Carlo procedure is suitable for developing uncer
tainty analyses of solute transport. These analyses make use of 
randomly generated time series to produce frequency distri
butions. Frequency distributions can be used to assess 
groundwater contamination by expressing the uncertainty as a 
probability of occurrence. Such assessments may provide esti
mates of various percentiles of the predicted unit solute load
ings (mass per unit area) to groundwater. 
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Monte Carlo numerical simulation methods require prob
ability density functions of model input parameters and, in 
some cases, correlations among parameters. In a typical 
Monte Carlo run, for example, values of the various parame
ters are generated randomly from hypothesized or inferred 
distributions. Corset et at. [1988] examined uncertainty of the 
leaching potential of the pesticide aldicarb through a Monte 
Carlo simulation. Estimated distributions of field capacity and 
wilting point were used to characterize input parameters for 
the PRZM model [Carse/ ec a/., 1988). The potential for 
leaching below selected depths was expressed in the form of 
cumulative probability distributions. 

Monte Carlo techniques that are used to evaluate uncer
tainty of solute transport require probability distributions for 
hydraulic parameters that affect water-solute movement in 
soil. Unfortunately, such distributional and correlational in
formation often is lacking or is not well-established. However, 
these obstacles have been greatly reduced by development of 
estimation techniques for many of the hydraulic parameters 
required by solute transport models [e.g., Rawls et al., 1982; 
Rawls and Brakensiek, 1985; El-Kadi, 1981]. Application of 
these estimation methods provides a basis upon which associ
ated probability distributions of model input parameters can 
be inferred. 

Fundamental to this approach is the need to establish good 
approximations to empirical distributions for many parame
ters in several soil classifications. A family of statistical distri
butions can be used advantageously to provide a commonality 
of form that permits correlations to be incorporated. The 
family of distributions known as the Johnson system [Johnson 
and Kotz, 1970; Johnson, 1987] was used here for this pur
pose. This system is rich in variety of fonn and is especially 
useful for data fitting, particularly where gc.od approximations 
to many empirical distributions are needed. It provides a sig
nificant advantage over alternatives by producing, after ap
propriate variable transformations, a set of normally distrib
uted variables. 

As part of this work, probability density functions were 
developed for soil-saturated hydraulic conductivity and other· 
hydraulic parameters. In addition, joint niuJiivariate denSity 
functions that incorporated correlations''iimorig!/ the~··\·llii-. 
ables were developed fot various soil textural' Classes;' Where' 
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Term In (KS) er 

{Constant) -8.96847 -0.0182482 

s - 0.0087269 

c -0.028212 0.00513488 

as 19.52348 0.02939286 

52 0.00018107 -
cz -0.0094125 -0.0015395 

92 -8.395215 -II 

sc - -
ses 0.077718 -0.0010827 

cas - -
s 2c 0.0000173 -
C29, 0.02733 0.0030703 

szell 0.001434 -
SC2 -0.0000035 -

ce! - -0.0023584 

s 2e! -0.00298 -
c2e! -0.019492 -0.0018233 

S = percent sand (5<S<70) 
C = percent cloy (5<C<60) 

In (a-1) 

5.3396738 

-
0.1845038 

-2.48394546 

-
-0.00213853 

-

-
-0.0435649 

-0.61745089 

-0.00001282 

0.00895359 

-0.0072472 

0.0000054 

0.50028060 

0.00143598 

-0.00855375 

9s = total saturated water content, em 3 cm-3 

KS = saturated hydraulic conductivity, em hr-1 

e,. = residual water content, em 3 cm-3 
oc = empirical constant, cm-1 

N = empirical constant 

General regression model: 

In (N-1) 

-0.7842831 

0.0177544 

-
-1.062498 

-0.00005304 

-0.00273493 

1.11134946 

-
-0.03088295 

-
-0.00000235 

0.00798746 

-
-

-0.00674491 

0.00026587 

-0.00610522 

2 2 2 
f(s.c.es) = [b0 + b 1S + b 2C + b395+ b, S + b22 C + b 339 5 

+ b12 SC + b13 5911 + b23C95 

+ buz S
2
C + b223 C

2
9s + bu;s S

2
9s + bl22 SC

2 

+ b233 ce! + b1133 s2a! + b 2233 C
2 e! ] 

Fig. I. Multiple regression model and coefficients developed by Rawls and Brakensiek [1985) to estimate selected soil 
waler relenlion characteristics. 

input variables are correlated, a properly formulated joint sta
tistical distribution permits combinations of values to be more 
appropriately represented, from a frequency standpoint, in the 
simulation. The presence of correlations implies that some 
combinations of values are more probable or less probable 
than they otherwise would be under an assumption of inde
pendence. A joint distribution serves to better represent the 
relative frequencies of the variables under study. A multi
variate approach also provides for variance reduction and in
creased resolution in the sense that the effect of a smaller 
change in the system can be evaluated. EI-Kadi [1987] con
sidered parameter correlation in relation to infiltration. He 
concluded that when correlation was accommodated, uncer
tainty was reduced by one third for the cases considered. 

selves normally distributed. Generally, however, if the joint 
distribution is not normal, it may be more difficult or impossi
ble to include the correlation structure in the distribution 
model. Therefore it was a goal of this research to identify, 
through appropriate choices of variable transformations, the 
associated probability distributions as members of the John
son family that best fitted the empirical frequency distri
butions. Then, estimates of covariances could be used to pro
duce a multivariate normal distribution model that embodied 
all of the distributional information (for these parameters) 
needed for subsequent Monte Carlo modeling or other simu
lation studies. 

DATA AND PROCEDURES 

Correlations among input variables can be easily incorpor
ated into a multivariate normal distribution model, provided 
marginal distributions of the individual variables are them-

Et,aluation of Soil Data 

The complexity and extreme variability of soil at the scale 
of the primary particle can be bypassed by measuring hydro-
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Fig. 2. Johnson (J9S7] system of distributions in relation to third 
and fourth standard moments. 

logical properties at much larger scales [Sharma and Ro
gowski, 1983]. Various combinations are possible for produc
ing a sample population of sufficient size to describe the varia
bility that may be expected among soils. For example, Baes 
and Sharp .[ 1983] reduced the apparent variability of soil bulk 
density estimates by grouping soils into five textural types (silt 
loams, clays and clay Joams, sandy loams, gravelly silt foams, 
and foams) reported by Holtan et a/. [1968] and Free et a/. 
[1940]. The variability of these characteristics is a product of 
both the inherent spatial variability of the continuum and 
their assignment to categories. 

The soil water characteristic [h(e)] and hydraulic conduc
tivity [K(e)] functions are essential to the application of soil 
water flow theory and solute transport. Experimental methods 
[e.g., l-/illel, 1982] for determining these curves often are time 
consuming and tedious. Thus simplified approaches for esti
mating the hydraulic properties· of soils are quite useful, es
pecially for nonpoint source problems. Rawls and Brakensiek 
[1985] have demonstrated a method for computing saturated 
hydraulic conductivity from soil-saturated water content, sand 
content, and clay content. Their analysis also indicated that 
these characteristics can be used to estimate the parameters 
required by several water retention models [e.g., Brooks and 
Corey, 1964; Campbell, 1974; van Genuchten, 1976]. 

The van Genuchten [1976] model is widely used for predict
ing soil water content as a function of pressure head. This 
model is generally expressed as 

where 

e water content; 
e, residual water content; 
e. total saturated water content; 

a empirical constant, em- 1 ; 

N empirical constant; 
M empirical constant; 
h capillary head, em. 

Also, where M is related toN as follows: 

M =I -1/N 

(I) 

Hydraulic conductivity can be represented by 

· K(e) ={E)_ e.}l/2{]- [t -( e _ e,)l/M]M}2 (
2
) 

K5 e.- e, e,- e, 
where K(e) is the hydraulic conductivity for a given water 
content (centimeters per hour) and K5 is the saturated hy
draulic conductivity (centimeters per hour). Equation (I) con
tains four independent parameters (e,, e,, a, N) that have 
to be estimated (h is assumed to be positive). Equation (2} 

Develop database values 
for each soil texture class 
(~ sand, ~ cloy, porosity) 

Apply Rowls-Brokensiek Eqs. to 
produce KS, 8 r, oc , N values 

Determine ranges of variation (A,B) 
for each water-retention parameter 
via initial data screening and 
theoretical considerations 

Apply transformations (LN, SB, SU) 
for each variable 

Fit normal distributions for all 
untronsformed and transformed 
variables (i.e., estimate means 
and variances) 

For each variable, choose best 
fit (NO, LN, SB, SU} via 
Kolmogorov-Smimov GOF statistic 

Investigate use of truncated 
distributions 

Estimate covariance matrix for 
selected (transformed) variables 

+ Factor covariance matrix 

y 

Fig. 3. Procedure used for identification, fitting, and estimation of 
parameter distributions. 
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TABLE I. Descriptive Statistics for Percent Sand and Clay Content 

Sand Clay 

Soil Type .i s cv n .i s cv n 

Clay* 14.9 10.7 71.6 1177 55.2 10.9 19.7 1177 
Clay loam 29.8 5.9 19.7 1317 32.6 3.7 11.4 1317 
Loam 40.0 6.5 16.3 1991 19.7 5.2 26.3 1991 
Loamy sand 80.9 3.,8 4.6 881 6.4 3.2 50.1 881 
Silt 5.8 4.5 77.2 115 9.5 2.7 28.9 115 
Silt loam 16.6 11.7 70.8 3050 18.5 5.9 31.6 3050 
Silty clay 6.1 4.5 73.5 1002 46.3 4.9 10.7 1002 
Silty clay loam 7.6 5.3 70.7 1882 33.2 3.7 11.1 1882 
Sand 92.7 3.7 4.0 803 2.9 2.0 67.1 803 
Sandy clay 47.5 3.9 8.2 74 41.0 4.5 10.9 74 
Sandy clay 54.3 7.3 13.5 610 27.4 4.0 14.6 610 

loam 
Sandy loam 63.4 7.9 12.5 2835 11.1 4.8 43.2 2835 

Here, .i, mean; s, standard deviation; CV, coefficient of variation (percent); and n, sample size. 
*Agricultural soil, Jess than 60% clay. 

contains one additional parameter, K 5 , that has to be esti
mated. 

A soil database compiled by Carsel et a/. [1988] was used 
to obtain bulk density, sand, and clay contents for the 12 Soil 
Conservation Service (SCS) textural classifications including: 
clay, clay loam, silt, silt loam, silty clay, silty clay loam, sand, 
sandy clay, sandy clay loam, and sandy loam. These data were 
obtained from measurements for all soils reported in SCS Soil 
Survey Information Reports. These reports (published by 
State) generally contain static soils data for the predominant 
soil series within a state. A total of 42 books representing 42 
states were used to develop the database. Saturated water 
content was inferred from bulk density [Rawls and Brakensiek, 
1985]. The saturated water contents, the sand contents, and 
the clay contents reported for each of the SCS classifications 
then were used to compute saturated hydraulic conductivity 
(centimeters per hour) and water retention parameters for the 
van Genuchten [1976] model using a multiple regression equa
tion developed by Rawls and Brakensiek [1985]. The general 
form of the regression equation (where f denotes any of the 
variables In (K5). 9,, In (cc- 1), or In (N - 1)) and related coef
ficients are provided in Figure 1. Their work included testing 

TABLE 2. Descriptive Statistics for Saturated Water Content 8, 

Saturated Water Content 8, 

Soil Type .i s cv n 

Clay* 0.38 0.09 24.1 400 
Clay loam 0.41 0.09 22.4 364 
Loam 0.43 0.10 22.1 735 
Loamy sand 0.41 0.09 21.6 315 
Silt 0.46 0.11 17.4 82 
Silt loam M1 0.08 18.7 1093 
Silty clay 0.36 0.07 19.6 374 
Silty clay loam 0.43 O.o7 17.2 641 
Sand 0.43 0.06 15.1 246 
Sandy clay 0.38./ 0.05 13.7 46 
Sandy clay 0.39./ 0.07 17.5 214 

loam 
Sandy loam 0.41 0.09 21.0 1183 

Here, x, mean; s, standard deviation; CV, coefficient of variation 
(percent); and n, sample size. 

*Agricultural soil, less than 60% clay. 

of the regression model using 95 soils with textural classifi
cations ranging from clays to sands. Estimated means for. final 
infiltration rates of each soil were within one standard devi
ation of the observed means. The regression equations were 
developed for natural soils only; modifications would be nec
essary for soils having temporal variations such as surface 
crusts, etc. Spatially, the hydraulic parameters are expected to 
vary with the percent sand, clay, and saturated water content. 
By applying the equations to each SCS soil classification with 
large deviations of percent sand, clay, and saturated water 
contents, spatial representation of hydraulic parameters can 
be estimated. 

Statistical Analysis Procedures 

The database of computed saturated hydraulic conduc
tivities (K5) and van Genuchten [1976] water retention param
eters (9,, cc, N) for each of the 12 soil textural classifications 
was used as the basis for characterization of probability distri
butions for these variables. Descriptive statistics, moments, 
and other distributional characteristics were examined. Em
pirical cumulative distribution functions (CDF) were derived 

TABLE 3. Descriptive Statistics for Residual Water Content 8, 

Residual Water Content 8, 

Soil Type .i s CV n 

Clay* 0.068 0.034 49.9 353 
Clay loam 0.095 0.010 10.1 363 
Loam 0.078 0.013 16.5 735 
Loamy sand 0.057 0.015 25.7 315 
Silt 0.034 0.010 29.8 82 
Silt loam 9_ • .!167 0.015 21.6 1093 
Silty clay ·Jl:.OJ_O · 0.023 33.5 371 
Silty clay loam 0.089 0.009 10.9 641 
Sand 0.045 0.010 22.3 246 
Sandy clay 0.100. 0.013 12.9 46 
Sandy clay 0.100 0.006 6.0 214 

loam 
Sandy loam 0.065 0.017 26.6 1183 

Here, .i, mean; s, standrad deviation; CV, coefficient of variation 
(percent); and n, sample size. 

*Agricultural soil, less than 60%. 
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TABLE 4. Descriptive Statistics for Hydraulic Conductivity Ks and van Genuchten [1976] Water 
Retention Parameter a 

Hydraulic Conductivity Ks, em 
hr ·· 1 a, em- 1 

Soil Type x s cv n i .~- cv n 

Clay* 0.20 0.42 210.3 114 0.008 0.012 160.3 400 
Clay loam 0.26 0.70 267.2 345 0.019 0.015 77.9 363 
Loam 1.04 1.82 174.6 735 0.036 0.021 57.1 735 
Loamy sand 14.59 11.36 77.9 315 0.124 0.043 35.2 315 
Silt 0.25 0.33 129.9 R8 0.016 0.007 45.0 82 
Silt loam l).£j~ 1.23 275.1 1093 0.020 0.012 64.7 1093 
Silly clay ._IJ,Q:U 0.11 453.3 126 ::~. 0.005 113.6 126 
Silty clay loam 0.07 0.19 288:7 592 0.010 0.006 61.5 64i 
Sand 29.70 15.60 52.4 246 0.145 0.029 20.3 246 
Sandy clay 0.12 0.28 234.1 46 0.027 0.017 61.7 46 
Sandy clay L31 2.74 208.6 214 0.059 0.038 64.6 214 

loam 
Sandy loam 4.42 5.63 127.0 1183 0.075 0.037 49.4 1183 

Here, .i, mean; ·'· standard d~viatiun; CV, cucnicicnt of variation (percent}: and n. sample size. 
*Agricultural soil. less than 60%. 

for all of these variables, and hypothesized distributions were 
fitted. The first objective was to obtain the set of best fitting 
distributions that would adequately approximate the empiri
cal distributions. In each instance, a mathematical transforma
tion was sought that would produce a normally distributed 
variable. 

Fitted CDF were selected generally from a class of trans
formed normal distributions known as the Johnson system 
[Johnson and Kotz, 1970]. The normal (Gaussian) distribution 
(denoted by NO) also was used in those cases where no trans
formation was necessary to achieve normality. The Johnson 
system involves three main distribution types: LN, lognormal; 
SB, Jog ratio; and SU, hyperbolic arcsine. By definition, a 
random variable that has a lognormal distribution will have a 
normal distribution after. applying a logarithmic transforma
tion. Similarly, variables following the SB or SU distributions 
also can be transformed to normality, as is described below. 
Oftentimes, the lognormal distribution is inadequate for the 
representation of given empirical data, whereas the SB or SU 
may be well-suited. All of the types of Johnson distributions 
represent transformations of variables that have normal distri
butions after the transformations are applied. From an empiri
cal standpoint, one would choose the transformation that does 
the best job of producing normally distributed data in any 
given case. The underlying reason why one transformation 
might work better than another in this regard actually is relat
ed to certain other characteristics of the distribution. 

The third standard moment (termed skewness, denoted by 
(p1)

112
) and fourth standard moment (termed kurtosis, denoted 

by /32) of Johnson family distributions can be used to discrimi
nate among the three types. Geometrically, the plane defined 
by the set of all values of {3 1 and {32 divides into two regions: 
one corresponding to SB distributions, the other correspond
ing to SU distributions (see Figure 2). The skewness and kur
tosis of the lognormal are functions of the variance (a2) of the 
log transform of the random variable (i.e., a2 denotes the vari
ance of the normal distribution that obtains for log x when X 
is lognormally distributed). Hence the boundary defined by 
the parametric equations 

/3 1 = (w- l)(w + 2)2 

where w = exp (u 2
) is the locus of all points in the plane that 

correspond to lognormal distributions. For given skewness 
values, the region where kurtosis is Jess than that of the log
normal is the SB region; the region with greater kurtosis is the 
SU region. The SB region is bounded also by the line 

{32 = P. +I 

the limit for all distributions. Each point in the (/3 1~ /32) plane 
is uniquely associated with a specific Johnson distribution. 
For empirical data, there often will be an SB or an SU distri
bution thai fits better than the lognormal, a situation en
countered when the ({3 1, {32) point lies far from the lognormal 
boundary line. As the skewness and kurtosis coefficients ap
proach 0 and 3, respectively, the limiting distribution is the 
normal. 

The Johnson transformations may be given as 

LN: Y =In (X) (4) 

SB: 1' =In [(X- A)/(B- X)] (5) 

SU: Y = sinh- 1 [U] =In [U + (1 + U2
)

1
'
2 J (6) 

TABLE 5. Descriptive Statistics for van Geml£'hten [1976] 
Water Retention Model Parameter N 

N 

Soil Type .i s cv II 

Clay* 1.09 / 0.09 7.9 400 
Clay loam 1.31 0.09 7.2 364 
Loam 1.56 0.11 7.3 735 
Loamy sand 2.28 0.27 12.0 315 
Silt 1.37 0.05 3.3 82 
Silt loam 1.41 0.12 8.5 1093 
Silty clay ~ 0.06 5.0 374 
Silty clay loam 3 0.06 5.0 641 
Sand 2.68 0.29 20.3 246 
Sandy clay 1.23 0.10 7.9 46 
Sandy clay 1.48 0.13 8.7 214 

loam 
Sandy loam 1.89 0.17 9.2 1183 

Here, .i, mean; s, standard deviation; CV, coefficient of variation 
(percent); and n, sample size. 

*Agricultural soil, less than 60%. 
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TABLE 6. Statistical Parameters Used for Distribution Approximation 

Estimated* Truncation 
Limits of Variation Limits on 

Soil Hydraulic Trans- Standard Transformed 
Texture Variable A B formation Mean Deviation Dt Variable 

s Ks 0. 70. SB -0.394 1.15 0.045 
s 0, 0. 0.1 LN -3.12 0.224 0.053 
s a 0. 0.2.5 SB 0.378 0.439 0.050 
s N 1.5 4.0 LN 0.978 0.100 0.063 
SL Ks 0. 30. SB 2.49 1.53 0.029 
SL 0, 0.00 0.11 SB 0.384 0.700 0.034 
SL a 0.00 0.25 SB -0.937 0.764 0.044 
SL N 1.35 3.00 LN 0.634 0.082 0.039 
LS Ks 0. 51. SB - 1.27 1.40 0.036 
LS 6, 0. 0.11 SB 0.075 0.567 0.043 
LS a 0. 0.25 NO 0.124 0.043 0.027 
LS N 1.35 5.00 SB - 1.11 0.307 0.070 
SJL Ks 0. 15. LN -2.19 1.49 0.046 
SIL 0, 0.00 0.11 SB 0.478 0.582 0.073 
SIL a 0.00 0.15 LN -4.10 0.55.5 0.083 
SIL N I. 2. SB -0.370 0.526 0.104 
Sl K.~ 0. 2. LNt -2.20 0.700 0.168 -2 . .564 -0.337 
SJ 0, 0.0 0.09 ND:f: 0.042 0.015 0.089 0.013 0.049 
Sl a 0.0 0.1 NO 0.017 0.006 0.252 
Sl N 1.2 1.6 NO 1.38 0.037 0.184 
c Ks 0. s. SB -5.75 2.33 0.122 
c 0, 0.0 0.15 SU:J: 0.445 0.282 0.058 .0065 0.834 
c a 0.0 0.15 SB:t -4.145 1.293 0.189 - .5.01 0.912 
c N 0.9 1.4 LNt 0.0002 0.118 0.131 0. 0.31.5 
SIC Ks 0. I. LN - .5.69 1.31 0.20.5 
SIC 0, 0.00 0.14 NO 0.010 0.023 0.058 
SIC 0.00 0.15 LN -5.66 0.584 0.164 
SIC N 1.0 1.4 SB - 1.28 0.821 0.069 
sc K, 0.0 1.5 LN -4.04 2.02 0.130 
sc 0, 0.00 0.12 SB 1.72 0.700 0.078 
sc 0.00 0.1.5 LN -3.77 0.563 0.127 
sc N 1.0 1.5 LN 0.202 0.078 0.100 
SJCL ks 0.0 3.5 SB -5.31 1.62 0.049 
SJCL 9, 0.0 0.115 NO 0.088 0.009 0.056 
SJCL a 0.0 0.15 SB -2.75 0.605 0.082 
SJCL N 1.0 1.5 NO 1.23 0.061 0.082 
CL Ks 0. 7.5 SBt -5.87 2.92 0.058 -8.92 2 
CL 9, 0. 0.13 su 0.679 0.060 0.061 
CL a 0. 0.15 LN -4.22 0.72 0.052 
CL N 1.0 1.6 SB 0.132 0.725 0.035 
SCL Ks 0. 20. SB -4.04 1.85 0.047 
SCL 6, 0.00 0.12 SB:t 1.65 0.439 0.077 0.928 2.94 
SCL a 0.00 0.25 SB - 1.38 0.823 0.048 
SCL iv ]. 2. LN 0.388 0.086 0.043 
L Ks 0. 15. SB -3.71 1.78 0.019 
L 6, 0. 0.12 SB 0.639 0.487 0.064 
L a 0. 0.15 SB - 1.27 0.786 0.039 
L N ). 2. su 0.532 0.099 0.036 

S, sand; SL, sandy loam; LS; loamy sand; SIL, silt loam; Sl, silt; C, clay; SIC, silty clay; SC, sandy clay; SICL, silty clay loam; CL, 
clay loam; SCL, sandy clay loam; and L, loam. 

*For distribution of transformed variables. 
tKolmogorov-Smirnov goodness•of-fit test statistic. 
:!:Truncated form of the distribution. 

where In denotes natural log, X denotes an untransfomed 
variable with limits of variation from A to B (A < X < B), and 
U =(X - A)/(B - A). This form of the LN distribution is de
fined for all positive values of X, being unbounded above. SB 
is bounded between limits A and B, while SU generally is 
unbounded. The use of A and B in the SU transformation is 
for mathematical convenience. In the present application, X 
corresponds to any of the variables K 5 , e,, a, N. In each case, 
Y has a normal distribution. 

In using this approach, the limits of variation (A and B) for 

each variable (K5 , 9,, ex, N) were determined a priori on the 
basis of observed data ranges and theoretical considerations 
and, then, utilized in the three LN-SB-SU transformations 
(equations (4), (5), and (6)). Generally, the third and rourth 
sample moments (skewness and kurtosis) can be used to deter
mine which of the three distribution types of the Johnson 
family Is an appropriate choice in any given case, as is noted 
above. In this application, however, where only empirical fits 
were needed, it was sufficient and convenient to independently 
fit the normal distribution to the original data set and to the 

--~ 
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TABLE 7. Correlations Among Transformed Variables 
Presented With the Factored Covariance Matrix 

a 
N 

a 
N 

Ks 
8, 
a 
N 

N 

N 

Ks 
IJ, 
a 
N 

a 
N 

Ks 
9, 
a 
N 

Ks 
8, 
a 
N 

a 
N 

a 
N 

Ks 
IJ,. 
a 
N 

0.535 
-0.204 

0.984 
0.466 

1.96 
0.972 
0.948 
0.908 

9, 

Silt (n 61) 
-0.002 

0.008 
-0.200 
-0.610 

Clay (11 = 95) 
0.070 
0.017 
0.890 
0.819 

a 

0.003 
0.000 
0.001 
0.551 

0.565 
-0.080 

0.172 
0.910 

Silty Clay (II 123) 
1.25 
0.949 
0.974 
0.908 

0.008 
0.003 
0.964 
0.794 

0.314 
0.040 
0.060 
0.889 

Sundy Clc•y (11 46) 
2.02 
0.939 
0.957 
0.972 

0.883 
0.324 
0.937 
0.928 

0.539 
0.063 
0.150 
11.932 

1.04 
-0.515 

0.743 
.0.843 

Sand (n = 237) 
-0.109 0.328 

0.258 
0.143 
0.298 

1.60 
-0.273 

0.856 
0.686 

1.48 
-0.359 

0.986 
0.730 

1.478 
-0.359 

0.986 
0.730 

0.182 
O.JJ9 

-0.858 

Sundy Loam (n 
-0.153 

0.538 
0.151 

-0.796 

Loamy Sand (n 
-0.201 

0.522 
-0.301 
-0.590 

Silt Loam (n 
-O.iOJ 

0.522 
-0.301 
-0.590 

Silty Clay Loam (n 
1.612 0.006 
0.724 0.005 
0.986 0.77 
0.918 0.549 

1.92 
0.790 
0.979 
0.936 

Clay Loam (N 
0.040 
0.031 
0.836 
0.577 

1145) 
0.037 
0.017 
0.014 
0.354 

3/3) 
0.037 
0.017 
0.014 
0.354 

1072) 
0.525 
0.030 
0.082 
0.775 

591) 
0.511 
0.048 
0.073 
0.911 

328) 
0.589 

-0.062 
0.106 
0.909 

Sandy Clay Loam (n 212) 
0.784 
0.122 
0.220 
0.787 

1.85 0.102 
0.261 0.378 
0.95i 0.392 
0.909 - 0.113 

1.41 
0.204 
0.982 
0.632 

Loam (n = 664) 
-0.100 

0.478 
-0.086 
-0.748 

0.611 
0.073 
0.093 
0.591 

N 

0.013 
-0.015 

0.014 
0.013 

0.048 
-0.014 

0.002 
0.016 

0.367 
-0.086 

0.066 
0.131 

0.076 
0.004 

-0.001 
0.018 

0.081 
-0.047 
-0.011 

0.017 

0.211 
-0.194 

0.019 
0.108 

0.211 
-0.194 

0.019 
0.108 

0.353 
-0.170 

0.234 
0.158 

0.049 
-0.009 

0.008 
0.017 

0.542 
-0.154 

0.065 
0.116 

0.077 
-0.031 
-- 0.008 

0.016 

0.055 
-0.055 

0.026 
0.029 

Entries in the lower triangular portion of the matrix are sample 
Pearson product-momeni correlations. The diagonal and upper 
triangular entries form the triangular Cholesky decomposition of the 
sample covariance matiix. N, sample size. 

three sets generated by applying the Johnson transformations 
on a given variable. In each case, the first two moments (i.e., 
mean and variance) of the transformed values were used to 
estimate the corresponding parameters of a normal distri
bution. An objective measure of goodness of fit, the 
Kolmogorov-Smirnov (K-S) D statistic, then was used to 
select the best fitting distribution from among the four candi
dates (NO, LN, SB, SU). The K-S D statistic is defined basi
cally as the maximum observed deviation between an empiri
cal CDF and a fitted CDF, so that the smallest observed value 
of D signified the mosf appropriate iransformation in any 
given case. 

In following this procedure, a fitted normal or Johnson dis
tribution was derived for each variable within each soil tex
tural class. A knowledge of the type of transformation, the 
estimated mean and variance of the associated normal distri
bution, and the limits of variation were sufficient to define 
completely the fitted distribution of any given variable. 

Data peculiarities, such as outliers, required that the fits be 
carefully scrutinized with respect to proper estimation of pa
rameters. For the most part, maximum likelihood estimates of 
the mean and variance were computed on the basis of com
plete data sets, although in a few cases trimmed estimates were 
utilized. The goodness-of-fit criterion was based consistently 
on untrimmed data sets to ensure objectivity. That is, in some 
instances, outlying values were not used in estimating the 
mean and variance, but they were included for goodness-of-fit 
calculations. 

If a case exhibited characteristics that usually are associated 
with truncated distributions to such a degree that a nontrun
cated fit was considered unacceptable, efforts were ·made to 
use truncated Johnson system distributions. In these situ
ations, maximum likelihood estimates of the mean and vari
ance of the normal parent distribution for the transformed 
variable were obtained using methods appropriate for the 
doubly truncated normal [Joltnson and Kotz, 1970]. That is, a 
truncated normal distribution was fitted to the transformed 
dat~ in these cases. The density function of a truncated normal 
distribution can be given as 

f~x) = f(x)/[F(b)- F(a)] 

= u:-14>[(x- Jl)/u]IJ)b-• -I (7) 

where 

f(x) = u- 1(2x)- 112 exp { -(l/2)[(x- p)/u]2 } (8) 

is the density function of the non truncated normal parent dis
tribution having mean Jl, and variance u2 and associated CDF 
F(x), where 

(9) 

is the standard normal density with associated CDF Cll(z) and 
where 

1,1),__.- 1 = IJ)[(b - p)/u] - IJ)[(a - p)/<1] (10) 

The limits of truncation are a and b. The first two moments of 
the truncated normal distribution are related mathematically 
to the moments of the nontruncated parent distribution 
through two nonlinear equations. The expressions for the ex
pected value and variance of the truncated distribution are 

(12) 
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Soil Parameters 
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Transformation of Four Soil Textures (Standard Units) 
Fig. 4. Observed and predicted cumulative distributions for saturated hydraulic conductivity K,. and van Genuchten 

[1976] model parameters 0,, a, and N for sand, sandy loam, loamy ~and, and silty loam soils. NO, normal; LN, 
lognormal; SU, hyperbolic arcsine; SB,Iog ratio. 

where z. =(a - /-1)/o, zb = (b - J.-1)/o, <P. = <f(z.), and rfb = 
r/J(zb). lly equating these nonlinear expressions to sample mo
ments obtained from the data and, then, soiving numerically, 
estimates of the parameters J.-1 and u of the parent distribution 
were determined. This estimation procedure was used only in 
those cases where truncated normal distributions were needed. 

After choosing the best fitting distribution, sample covari
ances (and correlations) among the selected transformed vari
ables were computed. These served to estimate the covariances 
needed by a joint multivariate distribution model. Since the 
Johnson system provides a mechanism for developing, after 
transformations, a set of normally distributed variables, a mul
tivariate normal distribution model was selected to represent 
the joint probability density for the transformed variables. In 
this inanner, the estimated covariance structure was incorpor
ated for future tise in Monte Carlo simulations. (A one
dimensional finite element solute transport model with a 
Monte Carlo preprocessor is currently being developed.) This 
identification fitting. estimation procedure is summarized in 
Figure 3. It depicts the steps of determining appropriate trans
formations and corresponding estimates of distribution means, 
variances, and covariances. 

The multivariate normal distribution is parameterized in 
terms of marginal distribution means and variances and pair-

wise covariances in the form of a covariance mati:ix. The mul
tivariate normal density function is given by 

-CO< Z; <CO i = 1, 2,. ··,p (13) 

where z represents a vector of p random variables with mean 
vector p and variance-covariance matrix I:, and 11:1 denotes 
the determinant of :E. Random deviates from a correlated mul
tivariate normal distribution can be produced by first gener
ating a vector z of independent standard normal deviates and 
then applying a linear transformation of the form 

y =JI + rz (14) 

where p is the desired vector of means and T' is the transpose 
of an upper triangular matrix derived from the factored form 
of the symmetric covariance matrix I: = TT. The existence of 
this factorization requires that the covariance matrix be posi
tive definite. 

Within each soil textural class, after transformations were 
selected and distributions were fitted for all variables, sample 
Pearson product-moment correlations and covariances were 
calculated for the transformed variables, as is described above. 
These estimates were based on sets of complete observations 
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Soil Parameters 
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::J 0 0 0 0 0 u 1/) -3 0 3 -3 0 3 -3 0 3 -3 0 3 

so so 

E 
0 
0 

_J 

0 0 0 0 
-3 0 3 -3 0 3 -3 0 3 -3 0 3 

Transformation of Four Soil Textures (Standard Units) 
Fig. 5. Observed and predicted cumulative dislributions for saturaled hydraulic conductivity Ks and van Genuchten 

[1976] model parameters 0,, a, and N for silty clay loam, clay loam, sandy clay loam, and loam soils. NO, normal; LN, 
lognormal; SU, hyperbolic arcsine; SB,Iog ratio. Asterisks indicate the truncated form. 

in which all variables had nonmissing values. This approach 
utilized somewhat less information when compared to individ
ual pairwise estimates, but it guaranteed that the covariance 
matrices would be positive definite and thus could be factored. 
The Cholesky decomposition algorithm [Kennedy and Genr/e, 
1980] was used to factor the estimated covariance matrices. 

RESULTS AND DISCUSSION 

Descriptive statistics for saturated water, sand, and clay 
contents, are provided in Tables 1 and 2. Estimated saturated 
hydraulic conductivity K 5 and van Genuchten [1976] water 
retention parameters (9,. a, N) are provided in Tables 3-5. 

The CV for saturated water content e. was less than 25% 
for all soil types. These values are consistent with those re
ported elsewhere [e.g., Jury, 1985]; therefore variability for 
saturated water content is minimal. The CV for percent sand 
was greater than 50% for clay, silt, silt loam, silty clay, and 
silty clay loam soils and less than 20% for clay loam, loam, 
loamy sand, sand, sandy clay, sand clay loam, and sandy 
loams. The CV for clay content was greater than 40% for 
loamy sand, sand, and sandy loam soils and less than 35% for 
clay, clay loam, loam, silt, silt loam, silty clay, silty clay loam, 
and sand clays. Generally, the CV for simulated values of 
residual water content 8, and the van Genuchten [1976] 

model parameter N were less than 30 and 20%, respectively. 
Higher CV were observed for the van Genuchten [1976] model 
parameter value a. The CV was generally greater than 35% 
for a (CV for sand was 20.3). The CV for simulated saturated 
hydraulic conductivity K 5 ranged from 453.3 for silty clays to 
52.4 for sands. Common agricultural soils such as silt loams, 
loamy sands, loams, and sandy loams exhibited CV of 174.6, 
77.9, 275.1, and 127.0, respectively. These values compare fa
vorably to measured CV for loamy sands, sandy loams, sands, 
silty clays, and silty clay loams of 69-105, 178-190,69,92-320, 
and 48-118, respectively [Smith et a/., 1987]. Sensitivity of the 
characteristic curve (equation (1)) as indicated by the CV 
would appear to be generally related to cr. 

The results for hydraulic conductivity and van Genuchten 
[1976] model parameters indicated that considerable differ
ences are expected for any simulation of solute movement in 
the unsaturated zone. It follows that uncertainty estimates 
should be incorporated into any associated modeling study. 

Estimates of the distribution mean and standard deviation 
for appropriately transformed variables, limits of variation for 
the original variables, and values of the K-S goodness-of-fit 
statistic D (maximum absolute deviation between the empiri
cal and fitted CDF) are displayed in Table 6. In cases where 
truncated distributions were used, the truncation limits also 
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Transformation of Four Soil Textures (Standard Units) 

Fig. 6. Observed and predicted cumulative distributions for saturated hydraulic conductivity K 5 and van Genuchten 
[1976] model parameters E>,, a, and N for sill, clay, silty clay, and sandy clay soils. NO, normal; LN, lognormal; SU, 
hyperbolic arcsine; SB, log ratio. Asterisks indicate the truncated form. 

are shown. Correlations among transformed variables are 
given in Table 7; these appear (in boldface) as the six entries 
below the matrix diagonal in each case. The entries on and 
above the diagonal comprise the upper triangular matrix that 
forms a factor of the estimated covariance matrix. 

Figures 4-6 display plots of the empirical and fitted CDF 
for transformed values of saturated hydraulic conductivity and 
van Genuchten [1976) model parameters for each of the 12 soil 
textural classes. In each case, standardized (zero mean and 
unit variance) scaling of the transformed variable is utilized 
for purposes of uniform presentation. 

The fitted CDF are considered acceptable for simulation 
because they are based on available data and because the 
absolute errors between observed and predicted CDF are not 
expected to be distinguishable when using solute transport 
models. The present approach met the primary objective of 
obtaining good approximations for most of the underlying 
distributions. In addition, the fitted distributions had a 
smoothing effect in cases where data gaps may have occurred 
{e.g., silt, clay, and sandy clay soils). This offers an implicit 
advantage for data representation. 

Very few of the data sets could be adequately described by 
the normal distribution without using one of the Johnson 
transformations. The SCS textural triangle system used for 
classifying soils is thought to have contributed to the existence 
of truncated forms and of forms having properties un-

characteristic or the normal distribution. Classification 
schemes and/or restrictions that weight results could have 
produced the results observed for these soils. Notably, many 
data sets were significantly better described by the SB and SU 
distributions rather than the more commonly used lognormal, 
although the lognormal was selected in about one third of the 
cases. Truncated distributions were used in 7 of the 48 cases; 
the resulting fits were significantly improved in each of these. 

In most cases, correlations were significant for the van Ge
I!Uchten [1976] model parameters. For example, correlations 
generally were greater than 0.70 for between K 15 and a, and 
between K 15 and N. The implication is that an assumption of 
independence in a Monte Carlo simulation is not plausible. 
{Such an assumption would add considerable white noise to 
the results, thus limiting their utility.) 

The Monte Carlo implementation of these results would 
require that multivariate normal deviates be generated with 
means, variances, and covariances as previously estimated. 
These random values then would be inverse-transformed into 
the original scaling used for the hydraulic parameters. Equa
tions (4)-(6) may be inverted mathematically to produce 

LN: X= exp {Y) (15) 

SB: X= [B exp (Y) + A]/[1 + exp (Y)] (16) 

SU: X= A+ {B- A)[exp (Y)- exp (- Y)]/2 (17) 

f ,, 

,._ 
·'· 
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~' '-'-'-'-'-'-'-'-'-'-'-" '-"'-""" "" '-'-'-'-'-'-'-'-'-""" '-" '-'-'-"'-, .. , '-'-'-"" '-'-'-" '-'-'-~ 
~ INPUT: Limits of variation (A. 8) ~ 
~ Transformations (NO. LN. SO. SUJ ~ 
~ Hean estimates (uJ ~ 
~ Factored covariance matrix {T) ~ 

~"'''"'"'''"''''''''"'""''''""'""''""'''''""'''"'''''''~ 
Generate p N(0,1) random values, z 

Apply transformations to obtain correlated 
multivariate normal vector: y = u + T'z 

N 

Apply inverse transformations 

N 

Output rondom vector for simulation use 

y 

Fig. 7. Procedure for implementing Monte Carlo numerical simu
lation using the multivariate normal Johnson transformation ap
proach. 

where Y represenls a normally dislributed variale wilh pre
scribed mean and variance. Of course, values of X generaled 
in Ibis manner generally must be checked to ensure that they 
are wilhin the specified acceptable ranges (A to B) after trans
forming to original scales. In addition, whenever truncated 
normal distribulions are involved, each element of !he mulli
variale normal random deviate that is associated with a trun
cated distribution must be checked for range validity prior to 
inverse transformalion. This is necessary, since the multi
variate normal distribution model is parameterized in terms of 
the parent distribulions of the truncated variables. A random-

ly generated vector would be retained only when all range 
constraints are satisfied. 

Figure 7 illustrates Monte Carlo implementation using the 
multivariate normal-Johnson transformation approach. The 
data provided in Tables 6 and 7 can be used to select and 
parameterize the distributions for K 5 , e,, ex, and N in any 
given soil textural class. The factored covariance matrices and 
transformed variable means can be used to generate sets of 
correlated normal random deviates. These values would then 
be translated mathematically, as in (15)-(17), depending on the 
fitted distributions, to produce random values for the soil 
waler retention parameters. 

Example 

For the silt loam soil data, the limits of variation, variable 
transformations, and estimates of the transformed variable 
means are obtained from Table 6, and the factored covariance 
matrix is read from Table 7: 

Ks: 

e· ,. 

ex: 

N: 

y 1 =In (Ks) A = 0, B = 15.00, LN 

Y2 =In [0,/(0.1 J - 0,)] A = 0, B = O.Jl, SB 

y 3 =In (cr) A = 0, B = 0.15, LN 

Y4 = In [(N - 1)/(2 - N)] A = I, B = 2.00, SB 

[

1.475 

T= 0 
0 
0 

l-2.187] 
0.478 

u = -4.099 , 

-0.370 

-0.201 0.525 
o.522 omo 
0 0.082 
0 0 

0.353J -0.170 
0.234 
0.158 

Recall that the transformations were selected so that data 
associated with each Y; were approximately normally distrib
uted. The vector of means u consists of the estimated means 
for the distributions of the transformed variables y 10 y 2 , y3, 

and y4 • The estimated covariance matrix for the y1 may be 
calculated from T as 

-0.296 0.774 

S=T'T= 
-0.296 r 2176 0.313 -0.090 -0.160 

0.521] 

0.774 -0.090 
0.521 -0.160 

0.283 
0.199 

0.199 
0.233 

relation matrix, as given in Table 7, can be computed as 
R = DSD, where D is a diagonal matrix with elements equal 
to the reciprocals of the square roots of the diagonal elements 
ofS. 

To illustrate how a random vector of values (K 5 , e,, ex, N) is 
produced, suppose that z' = (-0.592, -0.009, LOll, -1.649) 
is a vector of independent standard normal deviates. A new 
random vector y is derived by application of the transforma
tion y = u + T'z: 

r-,,.,1 r ... , 0 0 

L.] = 0.478 + -0.201 0.522 0 
y -4.099 0.525 0.030 0.082 

-0370 0.353 -0.170 0.234 

["'l] [-~] -0.009 0.592 
. 1.01 J = -4.327 

-1.649 -0.602 
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·==================:================================:====== 
' BASIC PROGRAM TO GENERATE RANOa! VALUES FOR SOIL PARAMETERS 

CICS, CR, ALPHA, AND N) USING SILT lOAM INPUT DATA 
·==========::===:::=====================::;;==========:::.========== 

DIM T( 10) ,AMUC4) ,X(4), Y(4) ,Z(4),AC4),B(4), TR$(4), TA(4), TB(4) . .. .... .... -- .......................... -· ........................... -· ........ -.................. ----· .. -- ...... .. 
'load means, variable I imits, transformations, and truncated 
• I imits, if any. [Note: Code truncated distributions as 
• 1tlN*11 I 11SB*11 • "SU*11 II or "NO*tt ) ·- ............ -...................................................................... ----- ...... --- ........ --- .. .. 

DATA ·2.187, o.o. 15.0, 11LN11 , 0., 0. 
DATA 0.478, 0.0, 0.11, nssu. o .• 0. 
DATA -4.099, 0.0, 0.15, IILNII, 0., o. 
DATA ·0.370, 1.0, 2.00, 11SB", 0., 0. 

FOR 1=1 TO 4 
READ AMU(I), ACI), 8(1), TRS(I), TA(I), TB(I) 
NEXT I 

................... -............................................... --- ...................... --- .................... .. 
'Load factored covariance matrix T 
•- .. --- .. ----- .... ~ ---- .. --- ............... -- ................... --- ...... ~· ...................... .. 

DATA 1.4754, 
DATA 
DATA 
DATA 

FOR 1=1 TO 10 
READ J(l) 
NEXT I 

-0.2006, 0.5245, 0.3526 
0.5215, 0.0300, ·0.1696 

0.0820, 0.2342 
0.1584 

,_ .... ---- .... -- .... -- .................. -- .... -- ............ -- .......... -- .. -- .......................... .. 
'Get nunber to generate and open output file , __ .. ----- .. -.... -................................ -- ........................ -- .. -.................... -- .. .. 

INPUT "Enter m.mber of vectors to generate • 
INPUT "Enter random nuroer seed • • • • • • 

RANDOIIZE !SEED 

OPEN "MCARLO.SIL" FOR CUTPUT AS 1 

", N 
", ISEED 

............. -.. -.. -- .. -............ -- ........ --- ....................... ~ .................................... . 
'Begin loop 
................. - .. -- .... ---- ......... -.................................... -.. ---- .......... -...... -.. --
FOR L=1 TO N 

t- .. -- .... ~ .......... - .......................... --- ...... - ........... -- ........ - ........... - .. - .......... .. 

•Generate indeperdent normal random deviates 
................... -- ............. - .. ---- ....................... --- .. --- .................................... .. 

100 FOR J=l TO 4 
ZCJ) = ·6.0 
FOR K=1 TO 12 

ZCJ) = Z(J) + RND 
NEXT K 

NEXT J 

'RND = uniform (0, 1) deviate 

. -- ............ -- .................... -.......... -........ -- ................. -- .. -------- ..................... -.. .. 
•Apply t !near transformation to produce correlated values 
..................... -- ......................... ----- ........ ------ ........ ---- ........ ---- .............. .. 

Y(1) = Alll(l) + H1>•ZC1) 
Y(2) = AIIJC2) + TC2)•ZC1) + T(5)*Z(2) 
Y(3) = AIIIC3) + J(3)*2(1) + TC6)*Z{2) + TCB>•ZC3) 
YC4> = AMUC4> + T(4)*Z(1) + T(7)•ZC2) + 1(9)*2(3) + T(10)*ZC4) 

.......................................... --- ...... -- ....... ·----- ........................... -- .................... .. 
•checlc limits for any truncated distributions 
..................................... ----· ........ -------- ............ ---- .................................. .. 

IF MIDS(TR$(1),3,1)="*" THEN _ 
IF YC1)<TA(1) OR Y(1)>T8(1) THEN 100 

If MIDS(TR$(2),3,1)="*" THEN_ 
IF Y(2)<TA(2) OR YC2)>TB(2) THEN 100 

IF MIDSCTR$(3),3,1)="*" THEN_ 
IF Y(3)<TA(3) OR Y(3)>TB(3) THEN 100 

IF MIDS(TR$(4),3,1)="*" THEN _ 
If YC4)<TA(4) OR Y(4)>T8(4) THEN 100 

....................................... ---- --· .......... -.. -- ~ ................................. -- ·- ......... --
'Inverse transform correlated normals to get' random deviates 

for KS, DR, ALPHA, N ·- ................. ---· ................................................... --- ........................................... .. 

FOR J=1 TO 4 
U = EXP(Y(J)) 
IF HIDS(TRS(J),1,2) : "LN" THEN 

XCJ) " U ELSE 
IF MIDSCTRS(J), f;-2) = "58" THEN _ 

XCJ) = (B(J)*U+A(J))/CLO+U) ELSE 
IF MIDSCTRSCJ),1,2) = "SU" THEN _ -

XCJ) = ACJ) + 0.5*(B(J)-A(J))*CU-1.0/U) ELSE_ 
X(J) = Y(J) 

NEXT J . ...................................................................................................................... -- ...... .. 
•Ensure that values ere within defined limits . -........... ~ ................. -- -- .... -.... -- ...................... --- ............ -- ...... -.... ·- .............. .. 

IF XC1)<A(1) OR XC1)>B(1) THEN 100 
If X(2)<AC2) OR X(2)>8(2) THEN 100 
If XC3)<A(3) OR X(3)>8(3) THEN 1..00 
IF X(4)<A(4) OR X(4)>BC4) THEN 100 
I . .............................................................. -................... -- ............................ --
•Output rardan vector (ICS, CR, ALPHA, N) and close loop 
............................. -- .. --- .................. -- ................ ---------------- .......... .. 

PRINT #1, XCI); XC2); X(3); XC4) . 
NEXT L . ................................. ---· ......................................................................... .. 
•Finish ..................................................... -- .. ----- ...... -..................... --- ................ --- .. 

CLOSE #1 
END 

·- ................................................... -- .............................. -- ........................................ .. 

Fig. 8. BASIC program to generate random values for soil parameters using silt loam input data. 

That is, y is a random vector from a multivariate normal 
distribution with mean u and variance-covariance matrix S. 
Inverse transformations (equations (15HI7)) must be applied 
to y, as follows, in order to obtain the final random values for 
the original variables: 

K 5 = exp (y1) = exp ( -3.060) = 0.047 

e, = [B exp (y2) + A]/[ I + exp (y2 )] 

= [0.1 I exp (0.592)]/[1 + exp (0.592)] = 0.071 

a= exp (y3 ) = exp ( -4.327) = 0.013 

N = [B exp (y4 ) + A]/[1 + exp (y4 )] 

= [2 exp (- 0.602) + 1]/[1 + exp ( -0.602)] = 1.354 

These steps have been programmed as illustrated in Figure 
8. By substituting appropriate values in the input data state
ments, any of the 12 soil textural classes may be represented. 
For the case of silt loam, the program was used to generate 
1000 sets of values for K 5 , E>,, a, and N. These data then were 
examined for agreement with the original observed data. 
These have been plotted in I he form of double-bar histograms 
(Figures 9-12) showing both sets of relative frequencies for 
each variable. Table 8 displays the computed percentiles of 
both the generated values and the observed data for compari
son. 

CONCLUSIONS 

A method was presented for developing probability density 
functions for several water retention characteristics for 12 soil 
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Fig. 9. Histogram of randomly generated saturated hydraulic conductivity Ks values and original observed data. 
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Fig. 10. Histogram of randomly generated residual water content 0, values and original observed data. 
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Histogram of randomly generated van Genuchten [1976] water retention model parameter a values and original 
observed data. 
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Fig. 12. Histogram of randomly generated Villi Getruchrm L1976] water retention model parameter N values and original 
observed data. 

TABLE 8. Percentiles of Generated ami Observed Data, Silt Loam 

a N 
Percentile 

Level Generated Observed Generated Observed Generated Observed Generated Observed 

1% o.oil4 0.001 0.003 0.002 0.005 0.004 1.188 1.24 
5% 0.009 0.011 0.043 0.040 0.007 0.008 1.238 1.27 
10% 0.016 0.019 0.048 0.048 0.008 0.009 1.268 1.28 
25% 0.044 0.040 0.057 0.059 0.012 0.011 1.331 1.32 
50% 0.115 0.096 0.068 0.070 0.017 0.015 1.412 1.38 
75% 0.316 0.310 0.078 0.(}78 0.024 0.025 1.495 1.49 
90% 0.778 0.818 0.084 0.083 0.034 0.036 1.570 1.57 
95% 1.233 1.574 0.088 0.086 0.040 0.043 1.612 1.63 
99% 2.916 5.122 0.094 0.091 0.053 0.060 1.680 1.76 
Minimum 0.001 0.000 0.018 0.014 0.003 0.000 1.102 I. II 
Maximum 6.045 7.072 0.099 0.098 0.068 0.068 1.797 1.95 

Observed, li = 1092; generated, n = 1000. 

texture classifications. Joint multivariate distributions that in

corporated correlations among hydraulic variables were devel

oped for each class using an extensive soils database. The 

marginal distributions used in fitting these empirical data were 
selected as members of a family of distributions. Application 
of appropriate transformations resulted in variables that were 
approximately normally distributed, so that a multivariate 
normal distribution could be used to represent each of the 
joint density functions. 
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