AR Environmental Ragioration g . Ceel e Ni
..+ Los Alamos Raaritiocesing Faciny - LOS.ALAMOS NATIONAL LABORATORY 4
- ENVIRONMENTAL RESTORATION »
: Records Processing Facility Y,
- ERRecord .D.& 70147 - ERRecords Index Form Q

| SR

N : o . . ' ' : . o : 7: S

- ERIDNO. 70147  Date Received:  10/10/0L. Processor: DSV Page Count: 37 6\ .

Privifeged: (Y/N) N Record Category: P - N
FileFolder: NIA
Correctiqn: (Y/N) N Corrected No. 0 - Corrected By Number: 0

':A': . Adtr:fnistrative Record: (YIN) Y
. Refilmed: (Y/IN) N Old ER ID Number: 0 New ER ID Num{;cr: 0

... Miseellaneous Comments:
LNIA |

PSRy e v s e 0w s e e oo

THIS FORM IS SUBJECT TO CHIANGE. CONTACT TIE RPF FOR LATEST VERSION. (JUNE 1997)

30777

N LT




LA-13307-MS

rm

R L L

Summary of the Models and
Methods for the FEHM

Application~ A Finite-Element
Heat- and Mass-Transfer Code

HCUVeQ Dy SR-RE

0CT 10,401

Los Alamos =5

NATIONAL LABOAATOARY

Los Alamos National Laboratory is operated by the University of Californin
Jor the United States Department of Energy tnder contract We7405-ENG-36,

R e




This twork was supported by the Yucea Mountain Site Characterization
Project Office as part of the Civilian Radioactive Waste Management
Program of the U.S. Department of Energy.

An Affirmative Action/ Equal Opportunity Emplower

Ths report g prepered de an account o work spoisorad by mn ageicy of the United States
Goverttment. Neither tie Reyents o the Unitversity of Califorstia, He United Sttt Goveriment
wor gny ayency thereof, nor any of therr emplovees, whes anu wormnty, express or implisd, or
assuntes auy legel liability or responsibility for the accuracy, completeness, or tivfiedieeof any
information, apminittis, prodict, oF procese disclosed, or reprosentis that its ise wondd wot infringe
pritately otoned vights, Referesce erein to iy specific commercinl product, process, or service by
rinde mome, tradentark, manugicturer, or otheraese, does ol necewarily constitute or imply its
crtdimrnent, nvommensfation, or fivortng try e Regents of e Umversity of Califorin, the
United Stittes Guavrnment, or iy ayency Hered, The vieas and opiniois of aithors exprosad
Iereint do not neeessarily stube or reflect those of the Regents of the University of Califorttia, the
Unetend Stutes Goveripnenet, or diy ayency therwof, The Low Alnmos Natiowa! Laboratory seroegly
sipports deudemic froedom and o restrolier's right fo prblishy an i instittion, lioever, tie
Libwratory does not endorse the vietepoint of o publication or gudrmtee its teclnion] correctises,




Summary of the Models and
Methods for the FEHN
Application — A Finite-Element
Heat- and Mass-Transfer Code

Grorge A, Zyvoloski
Bruce A, Robinson
Zorn V. Dash

Lynn L, Trease

LA-13307-MS

UC-500 and UC-802
Issued: July 1997

)

v
2l

-

R 8 4 SR e B |




Summary of Modols and Mothods for the FEHM Application .

TABLE OF CONTENTS :;
TABLE OF CONTENTS £
Ml
&
TABLE OF CON T N TS oottt iiias e aiiias s s st i iaesrannns Y ?
LIST OF FIGURES i iiiiiie it e e R . Vil 3
LISTOFTABLES . .....iviinriininnann, e e e e e e viii
ABS T RAC T, vt ittt et i i e e e e ey Fatea s 1
10. PURPOSE ... viiiiiiiiiniianeeniy e e e 2
2.0. DEFINITIONS AND ACRON Y M. 1 ittt iiire ittt iiies i asserioen Cieresn 2
2.1, Definitions .. ..vv v, Lt e e e e e 2
2., ACTONYION « vttty ettt e b i e e Ve e 2
3.0, REFERENCES ..ttt iiiiiiiiie i, e e e 2
4,0. NOTATION ... iiiiiiiiininn s e et 5
5,0. STATEMENT AND DESCRIPTION OF THE PROBLEM.. ... e e 12
6,0, STRUCTURE OF THE SYSTEMMODEL .....ovvviiiiiirininns e e e e 13
7.0, GENERAL NUMERICAL PROCEDURE L.ttt vet i iiiiiiiiieiciireroisentonas A
8,0, COMPONENT MODELS ..... Vv e e e N vevred 1D
8.1. Flow and Encrgy-Transport EQUations ... .. 0vvsvusrrniiiieeerisosenninoanines 15
Purpose
Assumptions and limitations
Derivation
Applications
Numerical method type
Derivation of numerical model
Location
Numericnl stability and accuracy
Alternatives
8.2. Dual-Porosity and Double-Poronity/Double-Permenbility Formulation. ...oovvviiuvns 28
Purpose
Assumptions and limitntions
Derivation
Application

Numerico) method type
Derivation of numerical model
Location

Numericnl ntability and accurncy
Alternatives




Summary of Models and Methods for the FEMM Application
TABLE OF CONTENTS

8.3, Solute Transport Models; Reactive Transport nnd Particle Tracking. . .vvvvvvvine o 36
Purposc
Assumptions and limitations
Derivation
Applicutions
Numerical method type
Derivation of numerical model
Location
Numerical stability and accuracy
Alternatives
8.4, Constitutive Relationships c oy v iiiiiiiiiiiiisii i iiisiieas a2 08
Purpose
Assumptions and limitations
Derivation
Application
Numerical method type
Derivation of numerical model
Location
Numuorical ntability and nccuracy
Alternatives

vi




Summary o! Modols and Mothods for the FEHM Application
LIST OF FIGURES

LIST OF FIGURES
Simplificd diagram of code Now in the FEHM application. .. ..oo v viians

Comparison of nodal connections for conventional and Lobatto integrations
for an orthoponal grid, e

Arca projections and internode distances used in {inite-volume culculations on
o e aUnaY P, o e e e e et s

Computational volume elements showing dunl-porosity and double-purosity/
double-permenbility Parametert . v v v i e e

Mode] system usced to formulate the residence-time transfer function for
Mt QHTUNION . . s e e e et s s




Summary of Models and Mathods for the FEHM Application
LIST OF TABLES

Table L.

Tuble II,

Table 11,

Table IV,

LIST OF TABLES

B oo 11 o T 1T T N 4

Sorption 180therm modelR. oo vt it ittt i i i i i i e 3T

Polynomial coefficients for enthalpy, density and viscosity functions . ...oovvvivve., 62

Polynomial coefficients for saturation funetions. .. oo iiieriiiiiviirnnienasas 63

vill




Summary of Models and Methods for the FEHM Application—
A Finite-Element Heat- and Mass-Transfer Code

by

Georgo A, Zyvoloski, Bruce A, Rebinsen, Zora V. Dash, and Lynn L. Treaso

ABSTRACT

The mathematical models and numerical methods emploved by the FEHM application, u {inites
clement heat- and mass-transfer computer ¢code that can simulate nonisothermal multiphase multi.
component flow in porous medin, are described, The use of this code is npplicable to natural-state
studios of peothermal vystems and groundwater flow. A primary use of the FEITM application will be
to assist in the understanding of flow ficlds and mass transport in the saturated and unsaturated zones
below the proposed Yucea Mountain nucleur waste repository in Nevada, The component models of
FEHM arec discussed, The first major component, Flow. and Energy-Transport Equations, deals with
heat conduction; heat and mass transfer with pressure- and temperaturc-dependent properties, relos
tive permeabilitics and capillary pressures; isothermal nir-wnter transport, and heat and mass trans-
fer with noncondensible gay, The second component, Dual-Porosity and Double-Porosity/Double-
Permeability Formulation, is designed for problems dominated by fracture flow. Another component,
The Solute-Trunsport Models, includes both o reactivestransport model that simulates transport of
multiple solutes with chemical reaction and a particle-tracking model. Finally, the component, Consti-
tutive Relotionships, deals with pressures and temperature-dependent fluid/air/pas properties, relative
permeabilities and capillary pressures, stress dependencies, and reactive and sorbing solutes, Each of
these components is discussed in detail, including purpose, assumptions and limitations, derivation,
applications, numerical method type, derivation of numerical model, location in the FEHM code flow,
numerical stability and accuracy, and alternative appronches to modeling the component,
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PURPQSE

1.0 PURPOSE

This models-and-methods summary provides a detailed description of the mathomatical
models and numerical mothods employed by the FEHM application.

DEFINITIONS AND ACRONYMS

2.1 Definitions
FEHM: Finite-cloment heat- and masa-transfer code (Zyvoloski ot al, 1988).

FEHMN: an onrlior vorion of FEHM designed specifically for the Yucea Mountain
Site Charncterization Project. Both versions are now equivalent, and tho use of

FEHMN has been dropped.

Acronyms
LANL: Los Alamos National Laboratory.

RTD: residence-time distribution.
RTTF: rosidence-time transfer function,
SOR: simultancous over-relaxation.

YMP: Yucca Mountain Site Characterization Project.
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NOTATION

Variables used in the derivation of the component and numerical model are enumerated
in Table T with reference to the equations in which they appear (given in square
brackets).

Table l, Nomenclature

Goneral notation conventions
%Approximation of A,

iVector A.

%Two-dimensional array A,

]
|One-dimonsianal array/vector A,

ESubscript danoting air propertios.
‘Subscript doneting concontration.
Subscript denoting capillary values,
dry ;Subscripz donoting value at zoro saturation.
¢ Subscript deneting energy.
[ Subscript doneting fracture properties,
Sflow Subscript denoting propertios of tlowing fluid,
i J K }Subscripts denoting nodal position (node indices).

[ Subscript donoting liquid properties.

Units are given im MLOT system of dimensions: mass (M), length (L), time (0}, and temparature (T),
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NQTATION

Table . Nomenciature (continued)

Subscript danating residual liquid,

Subscript deneting mass or matrix property for dual-porosity formulations.
Subscript donoting maximum valuo.

Subscript doenoting minimum value,

Subscript donoting derivativa with rospect 10 prassure.

; Subscript donating tuid phasa,

Subscript donoting reck propertios.
Subscript denoting value at reforence conditions.
ISut:xscrim donoting dorivativa with respect to saturatien.

Subscript donoting slope of a lincar ralation,

Subscript denoting saturation dopondenca.

|Subseript donoting derivative with respoct to temperaturo or temperalure
;dopendence

Subscript donoting vapar properties.
Subscript denoting rosidual vapor,
Subscript denoting water proportios.

Subscripts danoting coordinato direction.

n Subscript denating noncandansible gas.

0 %Subscript danoting initial value,
L2, ...m |

] n Subscripts denating tho specio or component (L.o., mh component).

Supersarints
ur | Superseript denoting upstroam-weighted value.

Ok k+1 Superscripts danoting iteration (l.o., &th itaration).

n, n+l !Supcrscrims donating time step {i.0., nh timo step).

Paramaotars
A {In:ernodo aroa projection for finite-voluma calculation (L2). [Figure 3]
A) |Solution matrix for systom of nonlinear gquations. [Egns. {(47) - (54), (64) - (72)]

4 Arrhanius oquation mode! paramator (fraquancy factor). For units, soo discussion of
“for |control statomont rxn In User's Manual (2yvoloski et al, 1997). [Eqn. (85)]

Units are qivon in MLOT systom ot dmenslons. mass (M) length (L) tlma (9). and temperature (T)
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NQTATION

Table I. Nomenclature {continued)

‘ MHenry's Law cootlicient model paramoter [(—M-) per malestraction of hquid] . [Ean.
Lo*

ks '\-;-an:;—!t,.a-\j F o«

/(80)]
Constants in tomperature-dependont Henry's Law exprossion, [Eqn, (82))

|

Concentration (solute) accumulation torm(mtms) [Eqns. (36), (75), (76)]

Energy accumuiation torm (1. ) [Eqns. (4), (5), (10), (16), (26)]

Maso accumulation term (M M) [Eans, (1), (2), (9). (25)]

}Constants in temporature-depondent oquilibrium-constant expression. [Eqn. (89))

Noncondonsible gas accumulation term ( . [Egns. (19), (20), (27)]

oichiometric coalficionts used in roaction-rate mode!. [Eqns. (83), (84)]
{Spocies/soluto in tha reaction-rate equation. [Eqns. (83), (84), (80}
'Exponent in the roaction-rate oguation, [Egn. (84)]

i

| Air conservation variable. [Eqns. (50), (51)]

iResidual vector, right-hand sie {foreing function) for systom of lingar equations,
[Eqns. (46), (64) - (72)]

|Concantration (soluto) (L“-‘;-A’”—“) [Eqns. (36), (37), (39), (73) - (76), (78), (79). Tabie I1]

Norrnalizod concontration. [Egns. (96)and (97))
’Capaci:anco rmatrix. [Eqns. (25), (28), (27), (32), {(36)]

2
Comprossibility (‘-‘3—) [Eqn. (129)}

'Hoal capacity/spocific hoat -L-\ {Page 16, Egns, (113), (114)]
} 0 )

'

2
Dy Solute diffusion coefficient (‘:U-] (Ean. (77)]

D Combination of molecular ditfusion and dispersivity ( ) [Ean. (77)]

cl

2
Dy, Airfwater ditfusivity (.LO-) [Eqns. (20), (21), (27). (30), (35))

Units are given in MLOT system of gimensions: mass (M), longth (L), time (0), and tomperature (T).
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NOTATION

Table . Nomenclature (continued)

Disporsion coatliclent tor tmcor( ) [Eqns. (36), (38), (76))

Enorgy-transmiss cbllltyterm( . [Egns. (10). (12), (29), (34)]

Effactivo disporsion coetficient of a solute, [Eqn. (93)]

{Mass-transmissibility term (0). [Eans. (9), (11), (12), (20), (22), (23), (28). (33), (35),
(37), (39), (76))

[internode distanco for finite-volumo caiculation (L). [Figure 3]

Young's modulus ( . (Ban. (78)]

Arrhonius oquation modol paramator (agtivation enargy) (OQML; J [Eqn. (85)]
molos,

Equation residuals. [Eqns. (25), (26), (27). (36), (42) - (54)]

[* norm of residuals (square root of the sum of the squared residuals). [Eans. (44),
(48)]

;Jacoblan matrix for nonlinoar systom, (Egn, (43)]

{ Flux vactor for concontration equations (m:"’“) [Egn. (73))
Fiux vector fof onergy eguation (0 ) [Eqns. (4), ()]

Flux vector for mass equation (L ) [Eqns. (1), (3)]

Flux vactor for noncondensible gas oquation (L 0] [Eqn. (17)]

Function at time & [Egn. (24)]

Derivative of / with respect to timo. [Ean. (24)]

Gravity-torm coetficionts, [Eqns. (25), (26), (27), (33) - (36), {39)]

Accolaration of gravity ((v]l-';) . [Eans. (9), {10), (20), (22), (23). (25), (26), (27}, (36),

(76)]
Iy £ timos tho unit vactor in the gravitational (2) direction, [EQns. (7), (8)]
Units are given in MLOT system of cimansions: mass (M), length (L), time (8), and temperature M.
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NOTATION

Table I. Nomenclature (continued)

l

{Honry's Law-0quation modol parametor (hoat of roacnon){ ML ] [Egn. (BO)]

-|

0 molos,

VIKER

0°moles)’

Equilibrium-constant meode! parameter (heat of reaction)[ [Ean. (87)]

Enthalpy[ ) [Eans. (6), (12), (13), (62), (63), (113), (115), (116)]

|
|

|
|
\
i

{

i

'
i

Lj. Lﬂ)' [‘ﬂ' [‘ﬁ
M

M,

|Equilibrium constant. (Egns. (86) - (89)]

{Intormodtiate torm used in cquilibrium constant oxpression. [Eqns. (88) and (89))

{Multipher 1o incroase roaction ratos 1o approach oquilibrium bahavior,

{Forward and rovorse roaction rate constants, [Egns, (84), (85)]

!
gRadioactive-docay rate constant, [Eqn. (102))

m [Exponenrt usod in Gangi stross modal. [Ean. (130))

Mass-{low impodanco (-QJ [Eqn. (40)]
L

Hoat-flow impedanco (—M—-) [Ean, (41))
LYo

Thermal conductivity (1%) [Egns. (6), (16), (26), (31), (133), (134), Page 21]

Rotardation coofticiont (inear adsorption). [Table (]

£quilibrium constant at 25°C, {Eqn. (87)]

Honry's Law constant ( ) [Ean. (118)Y}, [(L—M;) per mole-(raction of liqund] (Egn. (80)].
0
intermediato term used in oxpression of Hanry's Law canstant, [Egn. (82)]

Intormadiate ‘orm used in oxprossion of Henry's Law constant. [Egn. (82)]

Intrinsic rock pormaability (L%). [Eqns. (7), (8), (14), (B1). (62), (63), (132)]

Flow path length (L),

Longth scales used in dual-porosity and doubig-porosity/doublo-parmoability
preblems. [Egns. (56), {58), (59), (60), Figuro 4]

Moxocularwmgm( ) [Egn. (79)]

Fiuid mass in a cell (M), [Egn. (91)]

Units aro givon in MLUT system of dimensions: mass (M), langth (L), ime (), and temparature (T). N
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NOTATION

Table . Nomenclature (continued)

mr)ul

n

[N

Pe
e
4.
9 fm

Um

L

i

v

Qutlot mass flow rate {from one colt to anothor ( ) [Eqn. (81)]

l

Exparimental paramotor usod in van Genuchten rolative-pormoability and capillarys
prossuro modols. [Page 57, Page 58)

Finita-olomant shape tunction. [Page 20, Eqns. (28) - (34), (37) - (39)]

|Prassuro kLu) [Eans. (7) - (10), (20), (22), (23), (25), (26), (27), (36), (40), (47) -

](54). {61), (62), (83), (76), (79), {104) - (107), (111), (118), (127) - (129), (131))
|Closure stross for uso in Gangl stress model (ML), [Eans. (130), (131))]

4
Paglot number for disparsion. [Eans, (96) and (87)]

Concontration source tarm (TL‘.’T'E-’:). [Eans. (36), (74), (76)]

t

'Energy sourco term (L. ) [Eqns. (4), (10), (13), (16). (26), (41))

|Selute flux torm from fracture 10 matrix in particle-tracking madel development.
I[Ean. (89))

Mass sourco torm (-S-_f-) (Eans. (1), (9), (14), (22), (23), (25), (40)]

Noncondonsible gas sourco term (L ) [Eqns. (18), (20), (27)]
l

§umvorsa| gas constant (8.314 kJ/molK). [Egns. (80), (85), (110))
i‘Sorptlon rotardation factor. [Egn. (92)]

|Ralative permoadility, [Eans. (7), (8), (1), (15), {121) - {1286))
Parametars usad in nonlingar adsorption modol (Langmuir), [Tabio 1]
Saturation. [Eqns. (2), (5), (19), (22), (23), (53) - (54), (121) - (128)]

Temporature (T). [EGns. (6), (16), (41), (47), (48), (50) - (52), (80). (85), (104) - (107),
(111), (113), (114), (131)]

Stitfnass matrix, [Egns. (25) - (29), (36), (37)]
|Transfor terms in dual-porosity solution. [Egns. (59) - (63))
Tima (0). [Eqns. (1), (4), (9), (10}, (16). (20) - (27), (36), {76)]

Intornal onorgy( } [Ean. (5)]

Integral volume. [Eqnrs. (28) - (34), (37) - (39)]

Urits ara gwon (n MLOT system of dimensions: mass (M), tength (L), time (0), ang tompaorature (T).

10
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NOTATION

Table I. Nomenclature (continued)

<1

vl. X

{x}

N < =

e

[av})

A

e e
1Volume fraction for fractures in dual-porosity and double-porosity/aoubla-pormoability
'iproblems. [Eqns. (B5) - (58))

]
IVolume tractions for the matrix volumes usod in dual-porosity and double-porosity/
Idounlo-pormeabiltty problems, [EqQns. (55) - (58))

fTotal volume of computational coll (L. [Egn. (59), (60)]

Superficial velogity in one-dimensional model used in particle-tracking model
davelopment. [Eqn. (93)]

Volocity voctor (g) [Eqns. (3), () - (8). (17)]

Darcy volocity of hiquid phaso, x-dirgction. [Egn. (77)]

Woighting factor for time discretization. [Egn. (24))

fProssuro or lamperaturg variable in rational-tunction approximation for saturaton
iequations, (Eans. (108), (109)]

iSolution voctor. [Eqns. (42), (43), (46), (64) - (72)]

Normalized distance along llow path. [Eqn. (96)]

Polynomial in numerator of rational-flunction approximation, {Eqns. (104) « (109)]
Polynemial in denominator of rational-lunction approxirmation, [Egns. (104) - (109)]

1Coordinate oriented in the diroction of gravity, [Eans. (9), (10), (20), (33}, (34), (39), (76))
Coelficiont of thermal oxpansion (.}) [Ean, (131))

Coefticients used in sorption models. [Eans. (78), (90), Tabig 1]
!Dispcrswity of solute in transport calculations (L) .
Exporimental pararneter used in van Genuchten capillary-prassure moael. [Page 58)

Exponent used in sorption models. [Egns. (78), (90), Tablo 1]

Fractional approach to equilibrium computed at an iteration in the reactive-transport
Imode!, [Ean, (91)]

Fractional approach 1o cquilibrium specitied for an equllibrium reaction, [Egn. (91))
Tolerance taken for solution schemao, [Egn. (45)]

Mass fraction of air, {Eans. (2), (3). (9), (17) - (20), (27), (35), (115) - (119)]
Exponent usod in the air/wator ditfusion megel, [Egn. (21))]

Normalized timo. [Eqns. (96)and (97))

Paramoter used in nonlinear adsorption mode! (Fraundlich, moditiod Fraundlich).
{Tablo 1]

Units are given in MLOT systam of dirmensions: mass (M), langth (L), time (0), and termporature (T).
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STATEMENT AND DESCRIPTION OF THE PROBLEM

Table I. Nomenclature (continued)

'Parameter used in van Geruchten relafiva-permeabiiity and capilary-pressure

A 'modeols. [Eqn. (125), Page 58)
n Viscosity (E'%) [Eans. (7), (8), (11), (15), (61), (62), (63), (119), (120)]
v Fractlonal vapor fiow parameter. [Egns. (14), (15))
5 Donsity (g) [Eqns. (3), (5), (7) = (1), (15), (17). (19) - (28), (61). (62), (63), (76),
(90), (111), (112), (11?))
) In situ stross (%) [Egn. (131)]
T Tortuosity factor in the air/wator ditfusion model. [Ean. (21))
Tage Particle age since entering the modet domain (0). [Egn. (102)]
T, Fluid residonce time in a coll (0). [Eqn. (81)]
'r,,w, Particlo residence time in & cell (). [Egn, (91))
i/ Radioactive-gacay hall-life (0).
¢ Poresity. [Eqns. (2), (5}, (19), (21) « (23), (30), (129), (130), (132))
(T Matrix porosity in particle-tracking modal. [Egn. (99))
Q Flow demain of the modol. [Egns. (28) - (34), (37) - (39)]

Units aro givan in MLOT systam of dimansions: mass (M), iength (L), time (0), and tomperatura (1),

5.0

STATEMENT AND DESCRIPTION OF THE PROBLEM

The primary use of the FEIIM application will be to ansist in the understanding of flow
ficlds and mass transport in the saturated und unsaturated zoncs below the potential
Yucca Mountain repository. Studiex in the saturated zone are prescribed in YMP.
LANL-SP-8,3.1.2.3.1.7 (the C-Wolls project) and include use of the FEILM code to design
and analyze teacor tests (reactive and nonreactive) to charncterize the {low ficld below
Yuccn Mountain, Studies in the unsaturated zone are proscribed in YMP-LANL-SP-
8.3.1.3.7.1 and include the study of coupled processes (multicomponent {low and natural
convection),

Yucca Mountain is extremely complex both hydrologically and goologically, The
computer codes that are used to model flow must be able to describe that complexity,
For exumple, the flow at Yucca Mountain, in both the saturated and unsaturated zoncs
in dominated by {racture and fault flow in muny arcas. With permeation to and {rom
faults and fractures, the {low is inherently threesdimensional (3-1), Birdsell ot al.
(1990) presented caleulations showing the importance of 3-D {low at Yueea Mountain,
Coupled heat and mass transport occurs in both the unsaturated and snturated zones,
In the noarfield region surrounding the repository, the coupled flow effects dominate
the fluid behavior, Here, boiling, dryout, and condensation ¢an oceur (Nitao 1988), In
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Summary of Modois and Methods for the FEMM Apphication
STRUCTURE OF THE SYSTEM MODEL

the fur-field unsaturated zone, Weeks (1987) has described natural convection that
occurs throuph Yucca Mountnin due to seasonul temperature changes. Hent and mass
transfer are also important in matching suaturated-zone models Lo temperature logs and
pressure tosts and in modeling enhanced conveetion due to repository heating,

Thu transport processes at Yucen Mountain are very complex, Various adsorption
mechanieme ranging from simple lincar relations to nonlinear isntherms must be
incorporated in the trunsport models, Multiple interacting chemieal specios must be
modeled so that this structure can repredent radionctive deeny with duughter products

and coupled peochemical transport,

STRUCTURE OF THE SYSTEM MODEL

The component models that mitke up the overall transport mode! are:
Flow- und Enecrgy-Transport Equations for simulation of processes within porous
and permeable media, which include:
e hent conduction only;
= heat and mass teansfer with pressure- and temperature-dependent
properties, relative permeabilities, and capillary pressures;
= isothermal air-water transport; and
e heat and mass transfer with noncondensible gas,
Dual-Porosity und Double-Porosity/Double-Permeability Formulation for problems
dominated by fracture flow,
Solute-Transport Models, including:
* u reactive-transport model that simulates transport of multiple solutes with
chemical reaction; and
* u particlestracking model,
Constitutive Relationships lor pressure- and temperature-dependent fuid/air/gax
properties, relative permuabilities and capillary prossures, stress dependencics,
and reactive and norbing sxolutes, which encompuss:
¢ thermodynamic cquations;
nir and air/water vapor mixtures;

¢ cquation-of-state models;
relative-permeahbility and capillary-pressure functions;

stress-dependent properties; and
variable thermal conductivity,

7.0 GENERAL NUMERICAL PROCEDURE

The numerical wolution strategy for FEIIM is shown in Figure 1.

13
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GENERAL NUMERICAL PROCEDURE

N . |initialize parameters !

! Calculnte finite-
felement coefficlents {

e
A

- \\
Compute™

- ;'f!ow and energy
. \\ransport?

a g

Evaluate fluid pnmmetcrs, I
accumulation terms,
transmissibilities !

\\no

"' Cut time step |
- |

Form equations,
solve Jacobion system

3 Update solution

SN R

no ;
! Y
P -
~Maximum-~_ no oDid ™
= Zlterations or time\.- the solution -
; \cxcecded?,- ~.converge?,.~
‘yes \\“\/" \\/
i yos ! ] Increment time
T":_:s ' ' ‘
RN ~7 N
- ~Compute™~.  pq
N rcnctive-trnnsport\ ,
™~ solution? ..
e -
Y ’Computc\
) YOS - partlcle-trnckinq\-q no
A ~.solutien? -
‘ : [ compute solute | ~
. | | reaction terms | ] yes
| Cut time step ; Form equations,
{ solve Jacobian ey
) i system Pertorm part. |
| Update solutlon || icle-tracking | no
<| caleculation
no

,/Maxlmum\

o Ziterations or time ..a thc solutlon _..QY)..____..&_ the simu!atmn
\cxcceded // _\\converge?,. Wecy -[
R : '\./ \\f

SAREN y yes

L e - sro )

T Figure 1. Simplified diagram of code flow in the FEHM application.
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8.0 COMPONENT MODELS
8.1 Flow and Energy-Transport Equations

8.1.1

8.1.2

8.1.3

Purpose

The purpose of this model is to simulute heat conduction, heat and mass
transfer for multiphase flow within porous and permeable medin, and
noncondensible gas flow within porous and permenble media.

For heat conductian, the input to the model connists of an initiul
description of the medin (rock) properties and state. The output connints of
u final medina state,

For heat und mass transfer, the input to the model consists of an initial
deseription of the Nluid state as well as media properties. The output
connists of the final fluid and media states,

For noncondensible gas flow, in nddition to the initinl medin properties nnd
fluid ntate, the deseription of the initial state of the gas is required, The
output consints of the final state of the gaw in addition to that deseribed for
the previous componenta,

Assumptions and limitations

The mujor ussumptions are those associated with Darcy's law for fluid Tow,
Thin rentriction means the velocity of fluid flow must be very slow. The
exact quantification of the values in best uddrensed in the nesociated
validation report (Dash et al. 1997). Another assumption is thermal
oquilibrium between fluid and rock (locally), which is usually an excellent
nssumption as the thermal wave for rocks travels on the erder of 107 m/s,
103 m in the upper limit of the pore size, and fluid velocitions nre of the
order of 10°% m/s.

Other assumptions include an immovable roek phase and negligible vincous

henting, The assumptions associated with flow are discussed in Brownell,
ot al. (1975).

Derivation

Because the derivations of the governing equations are analogous for heat
conduction, heat and mass transfer for multiphnse flow within porous and
permeable media, noncondensible gaws flow within porous and permeable
media, and transport of multiple solutes within porous and permenble
media, only the heat und mass derivation will be presented.,

Detailed derivations of the governing equalions for two-phuse flow
including heat transfer have been presented by weveral investigators (o,p,,
Mercer and Faust 1975; Brownell et al. 1975), therefore, only a brief
development will be presented. The notation used is miven in Tuble 1.

Conservation of mass for water is expressed by the equation

18
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aAm 5 T

-5-;-+V-j"'+qm=0. (1)
where the mass per unit velume, A, 18 given by

A = 005, (1 =7,) *+ 5Py (1 =7))) (2)
and the mass JQux, j":. ix miven by

Fo = (L=, 0, + (L=T)p; - @

Here, ¢ ix the porosity of the matrix, 3 is saturation, p is denrity, 7 is the
concentration of the noncondensible gas und is expressed as a {raction of
the total mass, ¥ in velocity, and the subseripts v and { indicate quantities
for the vapor phasc and the liquid phase, respectively. Source and nink
tormns (such as bares, reinjection wells, or groundwater recharge) are
represented by the term g,

Conwnervation of {luid-rock cnergy is expressed by the equation

aAr oo
~+V [ +q, =0, @

where the energy per unit volume, A . is given by
A, = (1=0)pu,+0(S,p,u,+Spuy) . (5)

with ¢, = c,,,.T. and the cnergy {lux, f:,. in given by

T, = phv, = KVT 6)

Hore, the subseript » refers to the rock matrix, u,, 4, and y; are specific
internal eneryies, ¢, i the specific heat, 4, and /) are apecific enthalpics, K
is an effective thormal conductivity, 7 is the temperature, and g, is the
energy contributed from sources and sinks,

To complete the governing cquations, it is assumed that Darey's Law
applies to the movement of each phase:

-— kRV v 0 L
M, S e Pv-pp\u) ("
Ky
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Here, & is the permeability, R, and R) are the relative permeabilities, 1,
and y; are viscosities, P, and P are the phase pressures, and g reprosents
the accelerntion due to gravity (the phase pressures are related by

P, =P+ Pm,,, where Pmp is the copillary pressure), For simplicity, the
cquations are shown for an isotropic medium, though this restriction doos
not exist in the computer code,

Using Darcy’s Law, the basic conservation equations, (1) through (4), can
be combined:

-V =-m)D, VP)=V (1 -n)D, VP)+q,+

04,
3—;: -N)0, P+ (l-n,)Dm,p,)a-—c.”— =0 9)

and

VD, VP)-V (D, VP)-V . (KVT)4q,+
oA,

P(L(Dpvp;o+Dplp[)+-a"r = 0 (10)

where 2 is oriented in the direction of gravity, Here, the transmissibilities
are given by

kR,p, kR
Dmv = '_—p" v = _'_IE" (11)
B Hy
and
Drv = thmv ¢ Dr{ = thm!' (12)

The source and sink terms in Eqnu, (1) and (4) arise from bores, and if the
total mass withdrawal, ¢,,, for cach bore is specified, then the encrgy
withdruwal, ¢,, is determinced as follows:

4, = g ,h,+q,h, (13)
where
4y = V4, . q; = (1=V)g,, , (14)
and
ve—1 (15)
1+ pIPI“'v
pv vp'[

17
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The form of Eqn. (15) shows how important the relative permeability ratio
R;/R, is in controlling the discharge composition. Other source/sink terms
arise from implomentation of boundary conditions, Those include npocifiod
prossure and temperntures and are discussed in the “Boundary conditions”™
subscetion of Section 8,1.6, “Derivation of numerical model®, The rolative-
permcability and capillary-pressure functions are summarized in Section
8.4, “Constitutive Relationshipa™,

The final form of the pure heat-conduction equation is easily obtained {rom
Eqn. (10) when all conveetive terms are eliminated:

I 24,
-V (KVT) +([‘,+-ét— =0, (16)

The manss flux, r » vource (or sink) strength, ¢y, and accumulation term,
Aﬂ‘ are defined as follows {or the noncondensible gan conservation

equation:
Ty = WP+ P (17)
4y = M4, + N4, , and (18)
Ay = 0(MS,P+NS P - (19)

The noncondensible gas conservation equation in

-

V.0, V)=V D, VP) =V (D,VN,) + g+

) oA
agx(nvD,,wp‘.*-mDm,p;)*wmﬂ =0. (20)

Hero, 1 is the concentration of the noncondensible gas and is expressed as
o (raction of tho total mass. As with the water-balance equations, sourcoe/
sink terms are used to imploment boundary conditions. The reador is
referred to tho “Boundary Conditions” subacction of Section 8,1.6,
“Dorivation of numorical model”, for details.

The air/water diffunivity (Pruess 1991) is given by

) " 0
D, = 105, Dgapvo.low.s[h-n.ls] ' 1)

P 273,18

whore T is the tortuosity {actor and Deu is the value of D, at standard
conditions, Within FEHM, tho valuo of D, in sct to 2.4 x 100 m%¥x, 6 in net
; to 2,334, and the tortuonity factor is an input parameter.
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Equations (9), (10}, (16), nnd (20) represent the model equations for (luid
and energy transport in the computer code FEHM, It whould be noted that
Eqn. (9) with n set to O also represents pure water.

For situations in which heat effects are minimal, the model can be
simplified, The isothermal air-water two-phase system in FEHM is
represented somewhat differently thnn the nonisothermal system defined
above, IHere, the liguid phase is pure water and the vapor phase is pure
nir, The component maws-balance cquotions are then also phase-balance
oquations:

:)a_,(q)pl'sl) = v ' (Dmlﬁpn * At %—:g(Dmlpl) = 0 and (22)
3 5 e 2
m(mpvsv) -V (Dmvvr v) Qe+ 'a':g(Dmvp\') =0, (23)

where Eqn, (22) in the woter-balance cquation and Eqn. (23) refors to the
conservation of air. Here, the subscript [ refers to the liquid-water
properties and v refers to air properties, One aption in the model is to
solve Eqns, (22) and (23) as a ful} two-phase flow problem. A further
simplification cun be made in which the air pressure is assumed Lo be
constant, This avsumption leads to an equation that is similar to
Richard's cquation for unsaturated flow. The method reduces to using only
Eqn. (22). The method is deseribed further in the subsection on *Reduced
degree-of-frecdom algorithms™ in Section 8,1.6,

Applications

The component model deseribed above moy be used to model the flow of air,
water, water vapor, and heat in a porous medium, The validity of the
model is dependent on the validity of the equations described In

Scction 8.1.3. The [low of hoth air and water must be sufficiently small at
all possible flow rates o that the above described equations will be valid,
This restriction is believed to be satisfied at Yucca Mountain, Of more
concern is the nccuracy of the required input and the numerical precision to
which these equations are solved.

For the flow equations, the saturated permeabilities, porosities, fracture
permenbilities, and volumes of hydrogeolopic units are required. In
addition, the relative-permeability and capillary-pressure functions are
required, Historically thix information has been difficult to obtain, 1t is
important to note that the capillary pressure at low liquid saturations is
very important to the validity of the caleulations but i not available in
regions near the residual saturations,

The isvue of numerical aceuracy i extremely important to the usefulness of
the resultn, The accuracy may be evaluated by solving the same problem
uning different size grids and cvaluating the change in the solution.

19
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8.1.5 Numerical method type

8.1.6

The primary numerical method used in FEHM is the {inite-cloment
mothod. The reader is referred to Zienkiewicz (1977) for an excellont
account of this method. The summary of the numerics in FEIIM given in
Section 8.1.6 assumes o busic knowledpo of the numerical solution of
partial differontial equations, In addition, a working knowledge of the
finitescloment method is helpful.

Derivation of numerical mode!

Discretization. The time derivatives in Eqas. (9), (10), (16), (20). and (76)
are discretized using the standard {irst-order method (Hinton and Owen
1979) given by

FEN = S+ Aw T R (=) U @)

whore f(!" " ]) i the desired function at time ¢ ! , f(l") in the known
value of fat time ", Af is the time step, /™ is the derivative of f with
rospect to timo, and w is o weighting factor, For w = 1, the scheme is
fully implicit (backward Euler), and for w = 0, the scheme is fully explicit
(forward Euler).
The space derivatives in the governing equations are discretized using the
finitc-clement formulation. The finite-clement cquations are generated
uning the Galerkin formulation, For a detailed presentation of the finite-
clement rmothod, the reader is referred to Zienkiewicz (1977). In thin
method, the flow domain, £, ix assumed to be divided into {inite clements,
and variables P, T, and 1, along with the accumulation terms A, A, and
Ay, arc interpolated in cach element: P, = [NI{P}, P = [N]{ P},

T = [NHTh M, = INH{N,}, 4, = IVI{A,}, A, = [NJ{A,}and

Aﬁ = l_NH’An}. where | V] in the shape function.

Thesc approximations are introduced in Eqns, (9), (10), (16), and (20), and
the Galerkin formulation (described by Zienkicwicz and Parckh 1973) is
applied. The following equations are dorived:

, - {aAm
[T, s H{P T, 1P} +[Cl k-;;-}* {qm}-

81G, 1 =81G b =1{F .} (25)

| _ e on |94,
LT,,VI{PVHlT,,,HP;HI.KHI‘HI.Cll-g;- +

{q‘-}_“\'{G(.p}_g{Gﬂl.} = {F.c} ’ (26)

and
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. {94
[T P+ 1To P} +1D,,1{n,} +ICI{-5,31r+

J
{gnt=8{Cn 1 =2{Gy } = {Fp}, (27)
where
Ty = YN, DR TN, av (28)
myj = i m J '
0]
. S ur G
Ty = [VN-De VN4V, (29)
£2
T = [VN .0 nY"'VN v (30)
utJ] i J !
Q
Kj=[VN R INav (31)
£
Cy= [NNav, (32)
18]
N,
G, = I% ~'N,Du p,, v, (33)
ON
G, = a N D.. p‘. dV , and (34)
G, = j ND 1, av. (35)
hif] a m ld

. . KK, ur
In the above equations, K = K——I-\;L and the D™ terms indicate an
upstream-weighted trunsmmmbxhty (Dnlcn 1979). This technique hax
worked well in the low-order elements (3-node triangle, 4-node
quadrilateral) for which the xchemes resemble difference techniques. The
upstream weighting is determined by evaluating the internode flux for the
nodes { and j, The shape-function covfficients arc generated in a unique
way that requires the integrations in Egns, {33), (34), and (35) to be
performed only once and the nonlinear coefficients to be wepnarated from
this integration (kee Zyvoloski 1983 for more doetails).
The integration schemes available in FEHM are Gauss integration and a

node-point acheme used by Young (1881). His implementation differs {rom
commmon methods in shat it uses Lobatto instead of Gauss integration. The
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net offeet is that, while retnining the same order of intogration aceuracy (at
lenst for linear and quadratic olements), there are considerably fewar
nonzero terms in the rosulting matrix equations. Figure 2 shown a
comparinon of the nodal connections for Lobatto und Gaurs integration
mothods, It should be noted that these results hold on an orthogonal grid

Figure 2. Comparison of nodal connections for conventional (=)
and Lobatto (7) integrations for an orthogonal grid.

only. If a nonorthogonal grid were introduced, then additionul nonzero
terma would appear in the Lobatto quadrature method. Nate also that the
lincar clementx yield the standard 5- or 7-point difference scheme. The
reader is roforred to Young (1981) for more dotails,

In addition to the finite-clement integration techniques described abovoe,
the codn has provisions for finito-volume calculation of the internode flow
terms described by Eqna, (28) to (36). In the finite-volumc approach, the
geomatric terms are calculated as arcn projections and distances between
nodes. The geomotric part of Eqnes. (28), (29), and (30) aro given by the
urea betwoen the nodes divided by the distance. The area is partitioned
nceording to the perpendicular bisoctors of the midpoints of the sides of the
clements. This technique is shown in Fig. 3 {or triangles in two
dimensions. An analogous approach is used in three dimensions for
tetrahedrals, Quadrilaterals in two dimensions and hexahodrals in three
dimoensions are first decomposed into triangles and tetrahedrals,
respectively, and the geometry cocfficients formed as described above. For
more details the reader is referred to Fung et al. (1994),

It is important to noto here that with upwinding, the geometric factors that
govern internode flow, regardloss of whether caleulated from a finite-
clement or finite-volume approach, must not change in sign. This requires
a Delaunay grid plus the constraint that any elements at interfaces or
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Figure 3. Area projections and internode distances used in
finite-volume calculations on a Delaunay grid.

exterior boundaries have interior angles less than /2 radians, The reader
in apnin referred to Fung ot al, (1994) for more details.

The development ol the numerical approximation of the transport equation
in similar to that for the flow equntions, Following the discussion above,
the species concentration, €, and the species accumulation tc}:m, Ag, are
interpolated in ench element: C = [N] {C} and A, = [N] {A_}.
Using these approximations and a Galerkin approach, the {ollowing
cquation is obtained:

. (04
ITC(C)HP}‘*‘IDL-HC}*'ICI{'B‘;E}"‘WC}*A’{GC}={Fc}‘ v (38)

where

T = [N D, " UNav, (37)
Q

Dy; = [VN,-DIN,av, (38)
82

dN; s

Gay = [ D, C""VN dV , and (39)

Q

ur . , e .
D,C”" is un upstream weighted-concentration transmissibility, This
appronch is similar to the {Inite-difference method for solving the transport
cquations,
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Boundary conditiona, Two typos of {luid (mass) sourcos and sinks are
implemented: a specilied flow-rate source/sink and a specified pressure
condition at a source/sink. No-flow or impermeable boundary conditions
are automatically natisfied by the finite-clement mesh. The conntant-
pressurce boundary condition is implemented using o pressure-dependent
flow term:

Im,i = Im.i(Pﬂow.i-pi> ' (40)

where P; is the pressure at the source node ¢, Py, is the specified flowing
pressure, [, ; is the impedance, and ¢, ; is the mass flow rate. By
specifying a lurge [, the pressure can be {urced to bo equal to Pﬂm... The
onergy (temperature) specified at o source/sink or flowing pressure node
refers only to the incoming fluid value; if fluid {lows out, stability dictates
that the energy of the in-place fluid be used in calculutions,

In nddition to the maxs-{low source/sink, heat-flow sources ean alwo be
provided. A specificd hoat flow can be input or a specified temperature
obtained:

Qe,i = [e.i(Tﬂow.i"'Ti) ’ (41)

whore 7} ix the temperature nt the source node ¢, Ty, ; is the specified
flowing temperature, /, ; is the impedance to heat flow (thormal
resistance), and ¢, ; is the heat {low. This heat {low is superimposed on
any existing hent flow from other boundary conditions or source torms.
Specified saturations, rolative humidities, air-mass {ractions, as well as
specifiod air flows aro allowed. Thoese use source/sinks to achieve the
dosired variable values in o way that is analogoun to that described for
pressure boundary conditions,

In FEMM, thore is also n provision for creating large volume reservoirs
that effeetively hold varinbles at their initial values, The nodes are labeled
on input and the volumos replaced after the caleulation of the geomatric
cocfficients with a reservoir volume of 1039 m3,

Solution method, The application of the discretization methods to the
governing partial differential cquations yiclds a system of nonlinear
algebraic cquations. To solve these equations, tho Nowton-Raphson
iterative procodure is used. This iterative procedure makes use of the
derivative information to obtain an updated solution {rom an initial guess,
Lot the sct equations to be solved be given by

{F}{xh = {0}, (42)

where {x} is the vector of unknown values of the variables that satisfy the

above oquation. The procedure is started by making an initinl guess at the
solution, say {x} . This guoss is usually takon us the solution {rom the
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prcvmun time step. Denoting the value of {.x} at the Ath iteration by iJ'
{ 'c} the updating procedure is given by Sg
k| K(LF} r} 7

Pt = qay ey : (43) o

d{x } “.

, k k ,
At cach wtep, the residuals {F} = {F}({x}") arec compared with a
prescribed crror tolerance. The prescribed crror tolerance, €, is an input
parameter, and an I? norm ix used:

/e
171, = (zr-) . ()
Convergence ix achieved when

1A, selrl, . (45)

The value of € is usually in the range from 10% to 107, Semiautomatic
time-ntep control is designed based on the convergence of the Newton
iterations, Ifthe code is unable to find a solution {x} such that the
residuals become less than the tolerancee within a given number of
iterations, the time step is reduced and the procedure repeated. On the
other hand, if convergence is rapid, the time step is increaded by
multiplying with o user-supplied factor, thus allowing for large time steps
when possible,

The linoar equation set to be solved at each Newton-Raphson iteration of
Eqn. (43) in

o{ F} kel k
— {axt = ~{F}, (46)
where (aa{ /'}J is the Jacobian matrix, {Ax}k “! ik the chango in the
{x}

. k+ k1 k ko, .
solution voctor {Ax" ~ mxX" " =x"},and {F}" is the residual,

It in nolved with a reusc component, GZSOLVE (sec Zyvolonki and Robinson
1995), that provides a robuxt solution method for saparse nyntems of
cquationa. Further details of the solution procedure can be found in the
CZSOLVE MMS component of the document just cited,

Reduced degree-of-freedom algorithms, In the coupled physical
procenses that describe flow in porous medin, one process in often
dominant. In heat and {luid {low, for example, the pressure changes more
rapidly than the temperature.  As rocognized by Zyvoloski ot al, (1979),
this fact moy be used to nimplify the linear cquations solved at each ntep of
u Newton-Raphron iteration. Solving the purc-water heat and mass flow
leads to the following set of lincar equations ot ench such iteration:
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"L ' . Aml’ Am'l'{ AP } = Fm l i (47
‘\"«‘I' A(P APT AT F

'

The subscripts m and ¢ refor to the mass- and energy-balance equations,
respectively. The subscripts P and T refer to derivatives with reapect to
pressure and temperature, respectively., The superscripts indicating the
iteration number have been dropped for convenienco. From Eqns. (9) and
o , (10), it can be seen that the primary contribution of temperature is to affect
el the thermal conduction terms and the density und viscosities. Pressure,
however, affects the density and is dircctly involved in the Durcy velocities,

e In other words, the pressure more directly affects the global transport of

e - heat and mass, Guided by this reasoning, a computationally cfficient

. scheme is obtained by neglecting the off.dingonal derivatives with respect
S to temperature, With this modification, we can solve for the temperature

change using:

(AT} = A" {~{F.}=[A,pl{AP}} . (48)

This result may, in turn, be substituted in the mass-balance portion of
Eqn. (47) giving:

A, p] = [AypllA,p) " [ApI{AP}=
—{F, }+[AypllAp ] HFY (49)

The indieated matrix inversions and multiplications are performed with
dingonal matrices, and the resulting matrix for the caleulation of the
pressure correction is a banded matrix of exactly the same structuro as
[A,,p]. It was found that additional efTiciency could be achieved by taking
scveral passes of SOR (simultancous over-relaxation) itorations after the
system in Eqne. (48) and (49) was solved (Bullivant and Zyvoloski 1990).

The same process can be used to reduce the air/water/heat-coupled system
to a one or two dogrec-of-frocdom problem. The coupled 3n by 3n system
may be written as

App Amr Apg AP Fm
Ap Ay Ayl AT b= F. ¢ (50)
Aup Agr Ao da F,
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Here, the subseript g refers Lo the conservation of air mass and derivatives )
with respect to the air variable, The air variable is eliminated in favor of o
the pressure and temperature using e
| 7

{0a} = [A ] {={F,} =1A p{AP}=1A p{AT}} . (61 ;;

1

Subntituting this in the manss- und enerpy-correction cquntions yiclds: bl

U App) =1 A 1A, T 1A A p] =14, 1A, TA )] { AP }
HAp) = 1A AL 1A 1Al =14 1A, 1AL AT

AF 1A Al )
”{Fr} + IAfa]lAaarl{Fa}

(52)

During the simulation, the phase stute of the system can change. This
ponsibility maken it necessary to rearrange Eqns. (51) and (562), The
method remains the same, The reduced Eqns, (51) and (52) are useful in
thermal simulations in which phase chanpoes or other fnctors reduce the
time step. The 3n-by-3n system may further be reduced to an neby-n
system (discussed in Bullivant and Zyvoloski 1990), Bullivant and
Zyvoloski also showed that the operations given above can conveniently be
done during the cquation normalization process,

The last reduced degree-of-freedom algorithm to be deseribed reduces the
isothermal air/water problem to o one-variable saystem. The result is
similar to the Richard's solution, To obtain a computationally efficient
sncheme, the air prossure is constrained to atmospheric pressure in the two-
phase region and the liquid saturation is constriined to 1.0 in the one-
phase liquid region, The method involves switching variables and
axsocinted derivatives in the solution of the linear system that produces
the Newton-Raphson correction. The matrix equation that describes the
Jacobinn matrices for an isothermal system is given by

(AwpHAP} A sHAS}=={F} . (58)

Here, the subscript w refers to the watersconservation equation, und the
rubseripts 2 and S refer to derivatives with respect to pressure and
saturation, respectively, Though Equation (53) has the appearance of
being underconstrained, for every matrix position there ix only onc nonzero
entry in the two matrices |A | and [A,¢]. This is a consequence of the
variable switching just discussed, The algorithm consists of replacing
terms in [A ] with termas from lAwSl il two-phase conditions exist at a
node, The resulting system i given by
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8.1.7

8.1.8

8.1.9

[AgH{x} = ={F,}, (54)

where X represents pressure or saturation, depending on the nodal phase
statoe.

Location

The implementation sequence for the Flows and Energy-Transport
Equations may be seen in Fig, 1 in which tho box “Form cquations, solve
Jacobian syatem” indicates the position in the algorithm of the compononts
of those cquations- in the overall structure of FEHM,

Numerical stability and accuracy

The oquations that are solved are highly nonlinear and coupled. The
stability of the systom has beon maximized by solving the {ully coupled and
fully implicit formulation of tho problem, Because of the nonlinearity,
however, atability cannot be guaranteed. Logic has been incorporated to
rostart a time step if' the code realizes it is caleulating in an arca in which
tho equation of state (us implemented by FEHM) is nat valid,

Accuracy of the simulations is also clouded by the nonlinearity issue,
Formally, the spatial differencing is sccond-order accurate and the time
terms are {irst-ordor accurate. There is a provision (which is usually
invoked) that upwinds the transmissibility terms, This reduces the spatial
accuracy to first order. Itis difficultin practice to estimate the quality of a
simulation from these theoretical considerntions, The user is advised to
run a givon problem with several grid sizes and time-step sizes to assess
the quality of a particular solution obtained with FEIIM, The accuracy of
the caleulations is also addressed in the FEHM verification report (Dash

and Zyvoloski 1997),

Alternatives

The primary alternative to the formulation given here is an integrated
finito-difforence formulation, The roader is referred to Nitao (1988) and
Prucss (1991) for dotails, The banic difference in theory is that FEHM uses
a node-contered appronch, whoreas the integrated finite-difference
formulation uses a cell-contered approach. Classical finite differences may
also be used to solve the cquations presented here, but this approach lacks
the geomotric {lexibility of the other methods mentioned,

8.2 Dual-Porosity and Double-Porosity/Double-Permeability
Fermulation

8.2.1

Purpose

Many problems arc dominated by {racture {low. In thase cases, the
fracture permeability controls the pressurc communication in the reservoir
even though local storage around the fracture may be dominated by the
porous rock that communieates only with the closest fractures. Thin

phenomena requires a model in which the {ractures dominate tho global
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pressure response of the reservoir. The fractures are needed merely as
ntoruge. Mounch (1984) has studied several wells in the saturated zone
beneanth Yucen Mountain and found that results could be understood iff
dunl-porosity methods were used. The numericnl model in which the
matrix muterin! is constrained to communicate only in the neighboring
fructures is known as the dual-porosity method,

In a partinlly suturated porous medium, flow is often dominated by
capillury suction, 1ln a medium comprised of fractures and matrix, the
matrix materinl has the highest capillary suction, and under relatively
siatic conditions, the moisture resides in the matrix material, Infiltration
cvents, such as severe rainfnll, can saturate the porous medium allowing
rapid flow in the fractures. To enpture this flow phenomena, o system of
cquations allowing communication between the frnctures and matrix blocks
in the reservoir in addition to the flow within the fractures and matrix
blocks is necessary, Thin method is known awx the double-porosity/double-
permenbility method,

The decision about which fructure model to use is often affected by the
transient nature of the simulation. It is possible to obtain nearly the same
results for o double-permenbility vimulation using o less expennive
vquivalent-continuum approuch for o steady-state solution, but different
results would be obtained for a transient solution,

For transport, the alternative frocture formulations are even more
important, Here, the simulations are almost always transient. The matrix
and {rnctures are in approximate pressurc cquilibrium, and there in little
flow from matrix to {ructure, The tracer in this xeenuario in constrained to
wtay in the fracture if it sturted there. This construint often produces
erroncouns results that can be improved if diffusion M'rom matrix to lracture
in included. The fracture formulations in FEHM aceount for matrix-to-
fructure diffusion,

Assumptions and limitations

In the dual-porosity method, the computationnl volume consints of' u
fracture thot communicates with fraetures in other computational cells,
and matrix materinl thot only communic¢ntes with the fracture in its own
computationul cell. This behavior of the matrix materinl is both a physical
limitation und a computational teal, The physical limitation renults from
the model's inability to allow the matrix materials in different cells to
communicate dircetly. Thin limitation yields only minor errurs in
raturated-zone caleulntions but could powre lnrger errors in the unsaturated
zone where capillary pressures would force significant flow to occur in the
muatrix material, The computational ndvantuges will be nddressed in
Scction 8,2.3,

The double-porosity/double-permeability method Qiffers from the dual-
poronity method in Lthat the matrix ¢can communicate with other matrix
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Figure 4. Computational volume elements showing dual-porosity and doubie-
porosity/double-permeability parameters.

nodes, ‘his ability produces u more realistic simulation but is
computationally more expensive,

8.2.3 Derivation

Figure 4 depicts the double-porosity/double-permenbility and dual-poronity
concopts. Two parnmetern characterize u double-porosity/double-
permenbility roservoir, The first is the volumo {raction, Vf. of the fracturos
in the computationa] cell. For the single-matrix-node ayutem shown in
Fig. 4, this fraction is a/b. The second parameter ix related to the
fracturce’s ability to communicnte with the local matrix material, In the
literature, thin parameter takes a variety of lormy, The simplest is o
length scale, Lf. that quantifies the average distance the matrix material is
from the fracture. With just one node in the matrix material, the teansiont
behavior in the matrix material cannot be modeled, To improve this
situntion, two nodes arc uned in FEHM to represent the matrix material for
u dual-porosity reservoir, Conceptually, this approach in the same
formulation as just described with the addition of a second fracture volume
(it i assumed that the longth scale of cach matrix volume is proportional to
the volume {raction), This approach is the two-matrix-node nyntem shown
in Fig. 4. More matrix nodes could be added, but data are rorely good
enough to justify the use of even two matrix nodes, The wimple slab model
depicted in Fig. < in junt one of novern) different geometri¢ arrangementas,
Moench (1984) and Warren and Root (1963) lint other reservoir types, All
are similar in that they assume a loeal one-dimonsional connection of the
mutrix to tho fracturo.

A volume fruction and a length seale are used to charactorize the syatem,
Equations (9), (10), (20), and (76) are {formulated for both the fracture and
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matrix computational grids, One-dimensional versions are created to
locally couple the two sets of equations, The length scales are used to
modify spatiul difference terms, and the volume fractions are used to
modify the accumulation terms,

The volume fractions {or the double-porosity/double-permeability
formulation satisfy the {ollowing relationship:

VpsVe =0, (55)

where Vfis the volume fraction of {ractures und Vﬂ is the fruction of the
mutrix volume, The length scales are partitioned for the fracture and
matrix volumes using

L= L.V
d S0 N (568)
fo = L_rovjl

where Ly in the length scale {or the fracture volume, Ly is the length scale
of the matrix volume, and Ly is a charucteristic lenpgth seale.

The volume {ractions for the dual-porosity formulation satisfy the following
relationship:

Vf+Vﬂ+VI:._= t, {67

where Vfiu the volume fraction of fractures, Vﬂ in the fraction of the first

matrix volume, and Vp ix the fraction of the second matrix volume. Reeall
that two nodes are used to model the porous rock (matrix) and the mairix

materin! communicates only with the local fractures. The length scales are
friven by

Lfl = Lf()vfl )

where Lfiu the length seale for the fracture volume, Lﬂ is the length seale
of the first mutrix volume, Ly ix the length seale of the wecond matrix
volume, und Ly is a churacteristic length seale,

Application

The fracture models are extremely useful in investigating flow and
transport in the geologic repository because of the importance of {racture
flaw and transport, Large differences are expected between transport
calculations from models with lumped (matrix and fracture) properties and
models that include fracture flow and transport, FEHM, throupgh o
realintic description of fractures, allows the use of mare realistic
radionuelide dose culeulations in the performance-anscssmont caleulationns,
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8.2.5 Numerical method type
Only algebraic manipulations are used in the derivations deseribed in
Section 8.2.6.

8.2.6 Derivation of numerical model

8.2.6.1 Dual porosity

Computationally, the volume fractions and length scales arc used to create
onc-dimensional versions of Eqns, (9), (10), (20), and (76). The length scale
in used to modify spatial differonce terms, and the volume factors arce used
to modify the accumulation terms (the C matrix in Eqns. (25) and (26)).

The geometric factor repreosenting the spatial differencing of the one-
dimensional equation for flow between the fracture and the {irst matrix
node (analogous to the geometric part of Eqna. (28) and (29)) is given by

Ty = Vr
I Le(Lp+Lpy) "

where Vpis the total volume of the computational cell.
The analogous term for the {low from the first matrix volume to the second
matrix volume is given by

Ve

Y (P S S (60)
e Lol +Lp)

Using these geometric factors, Eqns, (25), (26), and (27) are modified with
the addition of the following {lux terms:

v [Pep  _p “rp _p 6

S -II:( Mmoo f,v)"";;( mi ./“[) s (6
Ap ’hv kplhl

fo_f:("'ﬁ:"‘(Pm.v-Pf' BE) T(P""'-Pf‘t)) . and (62)

. kpvhvnv kp/hlnl

rﬂf‘:( m (Prmy=Pra)* m (P,..,,-Pf.,)) . (63)

where 7 refors to the matrix and f to the fracture. The equation for the
matrix consints of these transfer terms plus accumulation termy analogous
to those for the {racture and shown in Eqna. (2), (5), (19), and (24), It
should also be noted that the gravity terms are not shown in the transfer
torma above for simplicity but are reprosented in an analogous way.

The one-dimensional nature of the cquations providens n compututionally
cfficient method for nolving the algebraic equations arizing from the dual-
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poronity ximulation, Equation (64) shows the matrix cquation arising from
such o simulation:

Ay Aot Aga| | Xy { by
Agg Azy Am|| X2 by J

Herv, the subneript 0 refers to the fructure, 1 refers to the Mirst matrix
volume, and 2 refers to the second matrix volume, The x represents the
unknown variable or variable pair, The one-dimensional charncter of the
matrix diffusion means that the second matrix node can only depend on the
first matrix node. Thercefore, the submatrix [Aa] is ompty, The fact that
matrix nodes cannot communicate with matrix nodes in other
computational cells means that the submatrices [Aa | and [Aa] are

diagonal, therefore:

"~

{xa} = 1Apl " [={ba}t= 1Ay Hu } (65)

where the inversion is trivial beeause | Aa, | in dingonal, Substituting this
expression into the cquation for the first matrix node gives

IAmeo}"' l/\“ Hx bk
A2l Azl = {ba b= 1Az o H) = =10} (66)
Rearranging yiclds
Ayt +I|A“I-M;:llﬂggl-zlﬂg{ll{xl b=

—-{/)l}ﬁ'(/‘l:“/\zzl-l{b:}

ar

fay b= 1A b =1yl 67
where

1An] = 1A, = (A l[Axnl 1Ay ] (68)
and

{byh = ~{bb+1AAn] " {ba} . (69)
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8.2.7

8.2.8

8.2.9

The inversion and multiplications are trivial becuuse of the dingonal
nature of the matricos involved, Equation (67) may next be substituted
into the equation for the fracturce variables, Noting that [AO:] in empty
{(the fracture can only communicate with the {irst matrix volume) gives

lr\ml{xu}+Mmll:‘-\nl-‘[{'f.;x}—l/\m'l{-‘io}l = ~{by} . (70)

Rearranging torms results in

(1 Agy) = 1A A1 T 1A g 1{xo} = -{b0}+Mszﬁu.1“{Bz}. (71)

Equation (71) consists of an augmented fracture matrix of the same form us
the original fracture matrix [Agg]. The operations carried out only add a
fow percont to the solution time required to nolve a single-porosity system.
After the solution of Eqn. (71} is obtained with the methods deseribed in the
CZSOLVE MMS component of Zyvoloski and Raobinson (1995), the solution in
the {racture volume can be obtained by using Eqna, (65) and (67).

8.2.6.2 Double-porosity/double-permeability method

The double-porosity/double-permeability method is analogous to the dual-
poronity method described above with the exception that there is only one
matrix node represented in the double-porosity/doublespermoability
method. The matrix node, however, can communicate globully to other
matrix nodes, This approach leads to o systom of equations of the form:

Ang Agy [xu] ~. ol 72)
"‘xof‘nl-“l J b,

In this set of linear cquutiona, the submatrices Agg and Ay are sparse and
Agy und A;p are diagonal. Currently, this nystem of cquations is solved
directly, but roscarch to improve the efficiency of solution is ongoing.

Location

Wher enabled, the fracture models are called during the equation-
gencration and solution phases of the simulation, This peint is the same
as that shown for the Flow- and Encergy-Transport Equations in Fig. 1.

Numerical stability and accuracy

The name considerations that were discussed in Section 8.1.8 for the Flow-
and Energy-Transport Equations arc valid here,

Alternatives

Other approaches to modeling {ractures include the equivalent continuum
approach, in which the {ructure and matrix properties are averaged, and
the discrete fracture approach, in which the {ractures are modeled as
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individuu! compututional cells. Both af these methods are included in the
model deseribed in Section 8.1, *Flow and Encergy-Transport Equations®,
There has also been some effort to use a combination of numerical and
nnulytic techniques, In this upprouch, the matrix flow is represented with
a one-dimensionn} analytic expression, Because of the nonlinear nature of
the wolution, this approach has not been pursuced.

8.3 Solute Transport Models: Reactive Transport and Particle
Tracking

8.3.1

Purpose

The purpose of the reactive-transport and particle-tracking models in the
Solute-Transport Models component is to simulate the movement of tracer
nolutens traveling in cither the liquid or gas phasen. A variety of reactive-
transport capabilities are present in the models, To perform a reactive-
trunsport simulation, an initial description of each wolute concentration in
cach phase, transport properties of the {luid and medium, and a
specification of the ndsorption model and parameters and any renction
models are required. Thoe output connists of the final concentrntion of ench
nolute in cach phase,

Assumptions and limitations

Solutes are assumed to be present in trace quantition such that their
presence does not impact the fluid propertion or the computed {flow fields,
A related assumption i that chemical renctions do not enter into the
enerpry balunce through endothermic or exothermic reaction terms, I
reactions toke place between the fluid and nolid phases (dissolution and
precipitation), the trunsfer of mass is assumed to have nu impact on the
hydrologic properties of the medium.

Many other specific assumptions are built into the Solute-Transport
Models component that are related to the nature of the transport and
chemical reaction behavior, These assumptions are treated in

Scction 8.3.3.

Derivation

8.3.3.1 Reactive-transport model
The solute-tronsport equations in the reactive-transport model
are not directly coupled to the heat- and muss-transfor system
but uwe the flow rates and temperatures obtained by the heat-
and mass-transfer nolution, The mass flux, [, source (or sink)
strenpth, ¢, and accumulation term, A, are defined an follows
for a solute:

j'c Cvp‘,q:..' Clp;:;[ 0 (73)

9. = Cq,+Cyq, ,and (74)
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A= o(C S P, +CSpp . (75

¢

The transport equation {or u solute it given by

-V.(¢,p,,VPy-V.(p,VP)-V . (D, VC)-V.(D,IC)+

my
) oCy 94,
4e* 528 (C DRt CD P + P, gm w52 =0 (78

Here, € ix the concentration of the solute, the term

B i,
V. (D_VC) is the dispersion torm, p,.—aT i an

equilibrium sorption term (see the nection below for the
formulation {or sorbing naluten), €, represents the adsorption of
the rolute onto the porous media, and in addition, the term ¢,
includes the souree or sink due to chemical reaction. The
chemical-reaction torms are discussed in more detail below in
the section titlod *Multiple, interacting nolutes,”

Equation (76) is o peneral equation for & solute present in either the
liquid or gus phases or one that partitions between the liquid and
gas, Tho mode! in capuble of simulating any of these possibilities, an
wull an a solid species, for which only the accumulation und
chumicul-renction torms are present. Several solutes can be
simulated simultancously and can internct with one another
through the chemical-reaction model, The transport terma can be
net ans o function of position, and there is no requirement that they
be the samue lor all volutes present in a phase.

The next four subsoctions claborate on various transport,
sorption, and reuction {caturen of the reactive-transport model.

Dispersion cocfficients. The model unes o stundard
formulation for the dispersion coefficient, expressed as follows
for the x-direction:

Dcl. = DAB * ad{, ,gvl. Xt Xy,

The Darcy velocity is computed from the solution of the fluid-
flow equation. The dispersivity, & ;, and the molecular-
diffusion cocfficient, D, 4, are properties of the medium, the
fluid (liquid in the above equation), and the solute, Similar
exprossions are written for the v- and z-directions,

Advsorbing solutes. The genoral oquilibrium model {or
adusarption of specics onto the reservair rock in riven by Polzer
ot al, (1992):
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a,C?

= 5 - (78)
] +0.2C,

o

The parameters a4, g, and B are given in Tuble I1 along with
the commonly used sorption-isotherm models that can be
derived from the equation. The parnmeters Ky, A, Copgy fp ond
r are the corresponding parameters nnnocinted with the sorption
modecls as they are more commonly formulated. For example,
when the linear, equilibrium sorption model is selected, the @
parameter is the widely used Ky parameter cited in sorption
studics,

Table Il. Sorption isotherm models*

Mode! i Expression i 0, [ U ; #
Lincar | C, = K,C K0 1
Freundlich ¢, =acd | A 1 0 [ o0<p<s

Modified | C, B | '
| = . '
Freundlich ' C,‘ e C. ACI ! ‘\Cmm,\ | A r 0< B <1
L . ? c rhcl | , | i 1
ang -. = |
angmuir | TTRG b r :

¥ from Rohinson (1993

To solve the nolute mass-balance equation with equilibrum
sorption, Cp, in Eqn. (76) is computed using Eqn, (78) to
determine the mass of solute on the rock for a given fluid-phase
concentration, Thun, C, i not actually present us a neparate
unknown in the mass balunce,

Henry's Law species, In contrast to a liguid-only or vapor.
only apecies, all transport terms of Eqn. (76) are retained (both
liquid and vapor), The vapor concentration is related to the
liquid concentration uassuming the equilibrium Henry's Low
cquation:

C, = M.”_C' , ("9)
MP,

where M, is the molecular weight of water, M is the

molecular weight of the vapor, P, is the gas pressure, and K,,

is the Henry's Law coefficicnt. Temperature dependence of the

Henry's Law constant is modeled using the following relntion:
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Ky = Aycxp P (80)

W Rl _L__1

O ‘(293.16 7‘)
: B where Ay, and Affj; are model parameters, R is the universal .
i gox constant (8,314 x 10° kd/mol-K), and T is the tempernture
e in degrees Kelvin, The units for Aff), are kd/mol, and the units
o for A); and K, are MPuwliquid mole-fraction. '

An alternate formulation of the temperature dependence of the
Henrys Law coufficient is also available, Itis included

W specifically to model the dissolution of COg into the liquid
it phuse, The empirical correlation used to {it data for CO»
e dissolution by Plummer and Busenberyy (1982), after converting

U into the units required by FEHM, is
- 10.1325

e p = - P (81)

k M Ky .
: where Ky = IOK", and

- R o Aurs

Multiple, interucting solutes, Thus far, only the
specification of an individual solute has been discussed, In the
reactive-transport model, chemienl reactions involviag one or
morc components cun be specified with the following form: .

@B +arBy+ . +ayB, =

UM*!BM*I"‘“”‘*:BM*:"' rer +a”8". (83)

where the a's are the stoichiometric coefficients and the B's
denote cach nolute present in a particular reaction (i,e¢., the mth
or m+1th component), This relutionship is formulated forcach
renction being modeled, and a solute may be prosent in any
number of reactions as cither o reactant or n product,

The roactions may be apecified cither as kinetically controlled or -
cquilibrium reactions. For a kinctically controlled roaction, the

rate law governing cach reversible reaction in wpocifiod un

follows:

a8
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A \
I B))= -‘_-ajikwalB,-] -k, T] 18] } . (84)
{m {fmmw

Here, the squarc brackets | | denote concentration, the b; are
exponents in the reaction-rate or equilibrium equation
(specified for every reactant in cach reaction), and the forward
and reverse reaction-rate constants, kfm- and k.., are governed
by the Arrhenius equation (shown here only for the forward
reaction):

-E
A sep| —dL08
Kpor = Aﬁ,,c:cp( T ) . (85)
In Eqn. (B4), the stoichiometric coefTicient oy premultiplying the
rate-law cxpression is negative if B j is a reactant because it is being
consumed in the reaction.

For cquilibrium reactions, the following relationship is
satinficd:

b,
I &7
- (zm=+l
K',(I—'—-;'—-—;'-. (86)
’I
1115
i)

where K,q is the cquilibrium constant for the reaction. The
temperature dependence of K,q enn be exprossed in two ways,
similar to the specification of Henry's Law constants above, In

the first model, the van't Hoff relationship is used:

Al
—_ (87)

R
R(29s.1 6 ?)

Alternatively, a formulation allowing simulation of the
carbonate reaction system is included, which uses the {ollowing
form:

Cd

]\rq = qu. 25CXP

K, =107, (88)
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N A , A
Keq = Ar.\-n. 1 + Arxn.‘.'T - _L;'?_a + Ar.m. 41°g10T + O‘.l‘::. S . (89)
7‘-

In Eqns, (87) and (89), the tomperatures are in degrees Kelvin,

For worbing spucies, roaction may occur for solute in the fluid
phaso, in the sorbed phase, or both. For the moedilied
Freundlich isotherm (Eqn, (78)), the totul concentration used in
tho reaction-rate law for the case of {luid and sorbed-phase
soluto participating in the reaction is

p,a,18,1°

— . (90
p,0(1+aB,1")

l‘B.I']'J"()T = [Bj] +[B.I'Jrock = [B/]+

where p, is the bulk-rock density, p p B the fluid density, ¢ is
porosity, and @, da, and [ aro the sorption isotherm
paramoters. Effectively, the socond term on the right-hand side
of Eqn. (90) is the cquivalent concontration of the sorbed species
if it were present in the fluid phase, The assumption that
reactivity in identical for solute regardless of phase is valid {or
radionctive decny but will ¢ertainly be incorrect for vome
chemical reactions. Thus, FEHM provides an option whercby,
for cach species in cach roaction, the user may specifly whether
the roaction applics to solute in the fluid phase (concentration of
|B j) ), solute in the sorbed phase (concentration given by the
{raction on the right hand side of Equ. (90)), or bath. For two-
phuse flow, P, in replaced by §,p,,, where S, is the saturation
of the phase (p) containing the solute.

For reactions involving a solid species, typically a zero-order
chemical reaction is assumed, though this is not required. The
concentration of a solid {8 expressed in moles of species per ki
rock, whercas all other concentrations in the code are expressed
in moles of species per kg of fluid. The model for solid reactions

_undergoing zero-order reactions accounts for the degree of
saturation whon computing rates, When there is no solid
presont, n solution must be supersaturatod (the rate of the
reaction forming the solid must be greater than the rate of the
reaction consuming the solid), or else the reaction is assumed to
not take place,

Finally, whon Honry's Law specios are specified as undergoing
chemical reactions, it is assumed that the reaction takes place
for solute in cither the liquid or vapor phases but not both. The
uscr must specif{y which phase participates in the reaction.
When it is dosired that the reaction take place in both phases

»”
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(ray, for n radionetive-decay reaction), the user munt specify two
reactions with identical rate expressions, one for the liquid-
borne portion of the nolute and one for the vapor-borne portion,

Solute nourcen and sinks, Solute sources or sinks are
handled in o0 manner analogoun to the Nuid-flow nources and
sinks, If there is fluid flow out of the model domain (a fluid
wink), the in-plaee solute concentration is uned in the solute
mans balonee, For fluid entering the system, the solute
concentration of the incoming fluid can be specified.
Alternatively, the concentration at a node or nodes can be held
at a fixed coneentration, Thik boundary condition can be either
u nource or a sink for solute, depending on the gradient in
concentration at Jocations adjucent to the node ut which the
boundary condition ix upplied.

Particle-tracking model

The particle-tracking method doveloped in FEHM views the
fluid-Now computational domuin as an interconnected notwork
of fluid storape volumes, The description that follows is
applicable for steady-state flow fields; the varintions in the
method for treating transient flow systems are dincusned later,

The two steps in the particle-trncking appronch are to
determince 1) the time a particle spends in a given cell and 2)
which cell the particle trave!s to next, These two steps are
dotailed bejow.

The residence time that a particle spends in a cell in roverned
by a transfer function describing the probability of the particle
spending a given length of time in the cell. Thuw, this particle-
trucking approach s called the "residence-time trunsfer
function™ (RTTF) method, For a cumulative probability
distribution function of particle residence timen, the residence
time of o particle in n cell is computed by generating o random
number between 0 and 1 and determining the correnponding
residence time. Ifa large number of particles pass through the
cell, the cumulative residence-time distribution (RTD) of
particles in the cell will be reproduced.

From the solution of the flow field in o numerical model, the
mass of fluid in the computational cell and the mass flow rate to
or from cach udjacent cell in obtnined. In the simplest case, the
residence time of a particle within each finite-difference cell,
T

parts in given by

I 31 PR 7- N

T

1,105
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M,

Tpant = T S o o1)
o' tout

where M ¢ in the {luid mass nssociated with the cell und the
summation term in the denominator refers to the outlet mass
flow rates from tho cell to adjacent cells, In the absence of
dispersion or other transport mechanisms, the tranafor function
in o Heaviside function that is unity at the fluid residence time,
T/, beeaune for this simple cane, all particles possess this
residence time, Equilibrium, linear sorption is included by
correcting the rosidence time by a retardation fuctor R 780 that
= Rf‘tf. where Rf in given by

-
*part

K
R, = 1+-‘3’,’—“‘ (92)
03Py

In Eqn. (92), K, in the oquilibrium sorption coofficient, p,, is
the bulk-rock density, ¢ ix the porosity, Sf is the saturation of
the phase in which the particle is traveling, and p, is the
density of the {luid. Once agrin, in the absence of other
transport processes, the transfer function is o Heaviside
function,

Bofore discussing more complex examples of the RTTF method,
we will outline the method for dotermining which cell a particle
travels to after comploting its utay at o given coll. The
assumption that i connistent with the RTTF method is that the
probability of traveling to a neighboring cell is proportional to
the mass flow rate to that coll, Only outflows are included in
this ealeulation; the probability of traveling to an adjacent node
is 0 if flow is from that node to the current nodo. By generating
n uniform random number {rom zero to one, the decision of
which node to travel to is utraightforward. Thus, the particles
tracking algorithm consists of 1) computing the residence time
of o particle at a cell using the RTTF method and 2) sending the
particle to an adjacent ¢ell randomly with the probability of
traveling to a given cell proportional to tho mass {low rato to
that cell.

The transfer function for trankport processes such as dispersion
aro dencribed now, Within a computational eell, it is assumed
that one-dimensional, axial dispersion is valid, The transport
equation and boundary conditions for the one-dimensional,
advective-dispersion cquation are:

]
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ac 3¢ ac
l\fa— = D',ffs-;i-‘—\’a; , (93)
c=C, at ¥ = 0,and (94)
g% =0 for x = 00 | (95)

In the equations nbove, C is the concentration, C,, is the
injection concentration, v in the superficial flow velocity, and
D,ff i the effective dispersion coefficient given by D,,jf = o,
where O is the dispersivity of the medium, Here, it ix assumed
that the {low dispersion component of D,ﬂ- in lurge compared to
the moleculur diffusion coefficient D,,. A nondimensional
version of Eqn. (93) ean be obtnined using the following
transformations: € = €/C,,, & = x/L, und

P = wa/L = Rf‘:f. where & in the distance along the flow
path where the concentration is being meansured. Then

Eqn. (93) becomes

-Q—C = 'l a”e'--u-..----C' (986)
o8 a"'

where Pe = \'L/D,f in the Peclet number. Alternatively,
Pe = L/0. The solution to this cquation and these boundary
conditions is given by Brighum (1974) an

-l Bt ol ]

The use of this nolution in the RTTF particle-tracking method
requires that the transport problem be advection dominated wo
tiat, during the time spent in a computational cell, solute would
not tend to spread a significant distance away {rom that cell,
Then the approximate use of u distribution of times within the
cell should be ndequate, Qunntitatively, the criterion for
applicability in based on the grid Peclet number, PrR = Av/0,
where Ax in the characteristic length seale of the computational
ccll. Note that in contrast Lo conventionnl solutions to the
adveetive-dispersion cquations, coarse spatinl diseretization is
helpful in satisfying this criterion, as long ax the mesh spacing
in small enouph to provide an accurate flow solution, Highly
dinpersive transport invalidates the assumptions of the RTTF
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particle-tracking technique. This is not viewed ar a severe
limitation of the method, because accurate solutions to the
advoctive-dispersion equation are canily obtained by
conventional finite-diffcrence or finite-clement techniques for

this ease. The niche filled by this new techniquo is in the L
solution of advection-dominated problema involving the
movement of sharp concentration fronts,

For multidimensional flow systems, this method for simulating
dispersion can be extended for the casce of dispersion coefficient
values aligned with the coordinate axes, For this case, the flow
direction is determined by the vector drawn {rom the nodal
position of the coll from which the particle traveled to the current
cell, and the dispersivity for this flow direction is given by

Axo, + Ave, = A0
- L

(98)

The RTTF particle-tracking technique cannot be formulated
with a longitudinal and transverse dispersionscoefficient model,
because the {low rates between colls are defined rather than the
actual flow velocity ut a position. For a dixpersion modol
aligned to the flow direction, the partiele-tracking method, such
as thut of Tompson and Gelhar (1990), or a ¢conventional {inite-
clement or finite-difference solution to the advective-dispersion
equation should bae uned.

Matrix diffusion, Matrix diffusion has been recognized an an
important transport mochanism for {ractured porous media
(Neretnicks 1980; Robinson 1994), For many hydrologic flow
systems, {luid low is dominated by {ractures because of the ordors-
ofsmagnitudce larger permeabilitios in [ractures compared to the
surrounding rock matrix. However, even when the {luid in the
matrix is complotely stagnuant, solute ean move into the matrix via
molecular diffusion, resulting in a physical retardation of solute
compared to pure {racture transport, This cffect has recently been
demonstrated at laboratory scale by Reimua (1995) and at field
scale by Maloszowski and Zuber (1986).

To dovelop a transfer function for matrix diffusion, an idealized
representation of the transport system must first be gonorated,
Figure 5 shows the geometry of the model systom used for this
purpose. The geomotry and flow syatem consists of equaily
spaced, parallel fractures, cach of which transmits equal {low,
Fluid in the rock matrix is stagnant, Transport in the fractures
in governed by Eqn. (93) with nn additional term 4 m oD the
right-hand side given by
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Figure 5. Model systern used to formulate the residence-time
transfer function for matrix diffusion
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where @, is the matrix porosity and bf i the fracture
aperture. Trunsport between the frocture and matrix is
groverned by the une-dimensional diffusion equation:

o 2L (100)

where R, is the retardation coefficient for the matrix, The
molecular diffusion coefficient is a function of the free diffusion
cocflicient of the solute in water and a tortuosity factor to
account for the details of diffusion through the tortuous, fluid-
filled pore network, In this model, D, is treated as the
fundamental transport parameter, recognizing that it is a
property of both the solute and the medium, Solutions to this
transport problem depend on the nature of the boundary
condition away {rom the {racturcr. An analytical solution is

griven by Tang ct al. (1981) for the semi-infinite boundary

condition -g—\g = 0 an y =00, For the cane of plug flow (no

dispersion) in the {ractures, Starr ot al, (1985) show that the
solution reduces to

45
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TR D
C = e,_f[q)mm NS fom AB] . (101)

bf r—Rf‘:f

The semi-infinitc boundary condition between {ractures limits
the validity of either of these solutions to situations in which
tho characteristic diffusion distance {or the transport problem is
amall compared to the fracture spacing, However, as long as the
solute has insufficient time to diffusc to the centorline between
fractures, the solutions provided by Tang et al. (1981) or Starr
ot al, (1985) arc valid to represent the transier function for the
particle-tracking technique.

Although, in principal, the Tang et al. (1981) solution eould be
used for the transfer function, its complex form mukes it very
inconvenient for rapidly computing particle residence timen,
Instend, o two-step process is used in which the residence time
within the {racture is first computed using the transfer function
for one-dimensional digpersion in Egn. (97) without rorption.
Then the plug-flow equation with matrix diffusion nnd sorption
{Eqn. (101)) is used with the value of the frasture residence time
just dotormined to set the transfer function for the matrix.
diffusion component of the model, To use Eqn. (101) as a
transfor function, & subroutine was developed to determine the
inverse of the error functinn, that is, the value of x; for a given
value of ¥y, wuch that »; = erf(x,) . The numerical
implemontation of this method entails dividing the error
function into piccewise continuous segments {rom which the
value of X is determined by interpolation. The use of the two-
step approach is justified because of the principle of
superposition, which allows the decoupling of the dinpersive
process in the fracture from the diffusive transport in the
matrix.

Radioactive deeny. Radiouctive decay is important to many
of the applications for which this model was developed, namely
nuclcar waste repository studies, Natural isotopes, such as S¢c)
and *C, ulso require the simulation of radioactive decay. This
phenomenon can be treated by introducing the decay equation
for an irreversible first-order roaction:

C = cxpl=kpnTape) (102)

e is the particle’s age since entering the systom and
Ky, is the rate constant for radioactive decny, which is related
to the radionctive-decny halflife, %) 4, by kg, = 0.693/7, /2.

where T
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In this model, the concept of a fruction of a purticle is used tu
incorporate rudioactive decny into the ealculation. The age of a
particle, or timo since entering the system, is used in kqn, (102)
to compute the fraction of the particles remaining at the current
time. When concentration values are computed from the
composite behavior of a large number of particles, this method
nccurately nccounts for radionctive decay.,

Particle nources und sinks. There nre two methods for
introducing particles into the flow system: 1) inject the particlen
with the source Nluid entering the model domain or 2) release the
particles at a purticular node or net of nodes. The {irst method is
used to track injected fluid as it passes through the vystem, The
number of particles entering with the source fluid at cach cell in
proportional to the source flow rate at that node. The method in
the particlestracking cquivalent of n constant solute concentration
in the source luid, For method 2, an cqual number of particles
are released at cach node specified regurdless of the source flow
rate. In cithor case, the model calls for the particles to be released
over n speeified time interval, The code then computes a starting
time for cach particle.

For fluid exiting the model domain, the model treats this flow as
another outlet flow from the node. The decision of whether the
particle leaves the system or travels to an adjncent node is then
made on o probabilistic basin, just as though the Nuid sink were
another connected node. When a particle leaves the nystem, its
sojourn through the model domuin in completed; thin fact is
recorded an part of the statistics of the simulation,

Trunsient flow fields, When the RTTT particle-tracking
mothod in implemented for a time-varying fluid flow wystem, the
approach ix samewhal mare cumplex but stil] tructable,
Consider n numerical simulation in which a discrote time stop in
taken at time ! and a new fluid flow field is computed. In this
model, transient flows are handled by treating the new fluid
flow time, f,,,,,, s an intermediate time in the purticle-tracking
calculation that the simulation must stop at. The fate of ull
particles in tracked from time ¢ to time f,,,, assuming that the
flow ficld is constant over this time interval, When the
simulation reaches /,,,,, the position of the particle is recorded,
along with the {ractional time remaining for the particle at the
cell and the randomly gencerated y-coordinate of the transfer
function used for that particle in the cell. When the new fluid
flow solution is cstablished, the process continues, but the
remaining residence time for a particle is the time determined
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from the now transfer function times thoe {ractional time
remaining in tho cell.

Another transiont effoct that must be connidered in that the sum

of the outlet mass Jow raten zn'xom in Eqn. (91) does not

necessarily oquul the sum of the inlet mass flow rates. When

there is net fluid storage in a coll, the particle-tracking R
ulporithm uses the sum of the inlet flow rates in Eqn. (91),
wherean Eqn. (91) itwelf in used when there is not drainage of
fluid.

8.3.4 Applications

For tranxport calculations using either the reactive-transport or particle-
tracking models, the validity of the solution depends first on the accuracy
of the flow equationn, In addition, the reliability of the transport
paramctera is also a factor in the roprosentativencss of any transport

simulation,

For the reactive-transport model, the insue of numerical accuracy is
extremely important to the usefulness of the results, The accuracy may be
evaluated by solving the same problem using different size prids and
evaluating the change in the solution. The major source of numerical
orrors for trunsport nolutions in anticipatod to be the numerical disporsion
resulting from the upwinding of the ndvecetion term. Alternatively, the
particlo-tracking module can be uned {or advection-dominated problems to
provide a solution that can be compared to the reactive-trunsport results,

The primary applications of the particle-tracking model are:
e to goncrate transport solutiona that aro able to track sharp {ronts in con-

centration without numerical dinpersion, thereby allowing results from
the reactive-transport model to be evaluated for numerieal ugcuracy;

*» to allow (luid pathways to be mupped cut visually using particler that {ol-
low the fluid;

e to provide a transport solution for a solute that diffuses into the rock
matrix; and

= to compile statistics on the distribution of fluid ages present at a given
location.
Several limitations of the particle-tracking model should be neted. The
particle-tracking method produces a transport solution that is {ree of
numerical dispersion when {low is predominantly aligned with the fluid
flow finite-clement grid. Grid orientation effocts may be present when flow )
travels diugonally across the grid. The dispersion model extends the
transport solution boyond u simple "plug flow” transport model, but the
RTTF method ix only valid for advection-dominated problems. In regions of
a model domain for which the grid Peclet numbor is loss than about 1, the
method produces inaccurate results. Finally, the matrix-diffusion method
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is valid only if the rolute has insufficient time to difTuse fully between
fractures during the time scale of u vimulation,

Numerical method type

Far the reactive-transport model, the approximntion of the partial
differentinl equations for solute transport parallels exactly the theory
outlined for the solution of the flow- and energy-transport cquations in
Seetion 8.1.6. The concentrations of all solutes must be solved
simultancounly beeause the concentrations are coupled through the kinetie
or equilibrium reaction terms. The code employs an aption to solve
multiple solute concentrations directly using the multiple degree-of-
freedom cquation rolver for up to four solutes, When more than four
solutes are present, an iterative procedure in required, Thin method ix
outlined in detail in Section 8.3.6.

The RTTF particle-tracking method is n Lagrangian numerical method that
employs transfer functions to compute particle residence times in cach cell,
Thun, the time a particle npends in a cell, an well as the decision of which
adjacent cell to travel to next, are determined probabilistically.

Derivation of numerical model

8.3.6.1 Reactive-transport mode!
Becunuse many aspects of the reactive-trunsport numerical
methods parallel the development of the fluid- and energy-
transport numerical method, only the parts of the development
that are unique to solute transport are outlined here, Internal
to the ende, the chemical reaction termes of the solute manse.
bulance equations are always formulated an kinetic expressions
with forward and reverse rate termas, For kinetically controlled
reactionn, these rate terme are the two praduet terms of
Egn. (84), Equilibrium reactions use the fact that, nt
cquilibrium, the forward and reverse ratos are equal so thot
Koy = K70/ kyey- Furward and reverse rate constants are
forced to be in the correct ratio to simulate cquilibrium, and as
longr as the rate constants are high enough, cquilibrium in
upproximated, Of course, it is not known a priori what values to
use for the rate constants, 1 the values are too low, cquilibrium
behavior in not approximuted. A loss obvious consideration is
that il the values are too high, the rate terms in Egn. (76)
vverwhelm the trunsport terms in the mass balance and the
roactive-transport problem is not well-pased: the transport part
of the mass balance pets lost in Lthe solution of the equations,

To circumvent these problems, on the [irst woJute time step, the
model starts at o relotively low value for the forward rate
constant, computes the corresponding reverse rate constant
consistent with the equilibrium constant for the reaction, solves
the renctive-transport, problem, then performes n check to ensure

49



http://noIut.cn

Summary of Modols and Mothods for the FEHM Application
COMPONENT MODELS

that cquilibrium is approximated everywhere in the model
domain, The check is

]
krr\‘ H Bil“

Voo = | —aby| —L2ml ey, (103)
b,
ke T1 8,

{=]

where Y,,, is a user-defined tolerance parameter defining how
close to equilibrium to furce oach reaction. Comparing

Eqns. (103) and (86) and making use of the fuct that

K.y = kg /k,,, ot cquilibrium, the value 1 =7, can be neen
ax the ratio of the equilibrium quotient (the right-hand side of
Eqn. (88)) to the cquilibrium constant, Setting ¥, to, say, 0.01
forcons thin ratio to 0.99, or roughly speaking, 99% of the way to
cquilibrium, 1f the check is not satisfied at all positions, the
minimum value | =¥, is found, and the forward rate constant
is multipliod by Yo/ e Where kg o, in o user-defined
parameter (assumed to bo losn than 1) that setw the rate ot
which the rate conntants are increased to approach cquilibrium
behavior. Alternatively, kﬁm can be chosen to be a direct
multiplier to the current forward rate constant, in which cuse

the value is set greater than 1,

In cither case, the process of nolving the entire reactives
trannport system is repented with higher and higher rate
constanty until Eqn. (103) in satisfied for all cquilibrium
reuctions at all positions. In portions of the model domain
whore concentrations are low, it is possible that the reaction
ratos nre low, or even zero, even when equilibrium behavior in
apecified, The model can be made to rkip the equilibrium check
of Eqn. (103) whun the forward rate (the denominator in

Eqn. (103)) is lonns than a uncr-specified reaction tolerance
parameter, called rroot When a new time step is tuken, the
rate constants dotermined previously are used to rentart the
process, These rate constants will usually be sufficient to
assure cquilibrium behavior at subsequent time steps, but the
equilibrium cheek is stil) performed and rate constants
incroared if necesnary,

The system of cquations reprosenting the mans balance for cach
solute results in a coupled system of Nygy x Ngg equations. When
kincties are rapid compared to tranaport, cither because the
rate constants are sct large or the cquilibrium reaction option in
chonen, the solution technique must be quite robust, The
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multiple degrec-of-Ireedom rolver naturally handles this sort of
strongly coupled system of equations, Towever, the current
salver handles up to four dogrees of freedom (in this case, four
coupled nolutes), To wolve for more than four solutes, an
iterntive procedure has been implemented in which the solutes
are placed into groups of up to four nolutes. The code solves the
equations group by group., When a solute is not presentin a
grroup, the current values of conceontrations are used in
computing reaction rate termes, but those concentrations are not
unknowns ut thuat particular step of the solutien,

Because the caleulation of concentrations in groups falling later
in the sequence may impact the mass balance of olutes already
solved for, the entire system in not necessarily converged afltor
all groups are solved. An outer iterative loop over all groups is
traversed until the residuals of all equations are low, At this
point, the entire system of equations is solved to the specified
tolernnce, and a new time step is tnken,

Particle-tracking model

All nspects of the numerical model for particle tracking are
disvcusnod in Section 8,3.3.2.

Location

The implementation sequence for either the reactive-transport model or
the particle-tracking model iv illustrated in Fig, 1 (page 14), The twao
models ¢annot be run simultancously in the current version of FEHM,
After o heat- and maons-transfor time step is tnken and the flow and
temperature ficlds are determined, the solute-transport solution is
computed {rom the previous heat- and mass-transfer time to the current
time. The flow field used for the transport culculations is assumed to be
unchanying during this time.

Numerical stability and accuracy

Reactivestransport model, As in the heat- and muss-transfer solution
discussion (Section 8.1.8), nonlincaritios can give rine to problems with the
stability of the nolution, The formulation of the problem as a fully coupled,
implicit solution muximizes the likelihood of obtaining a stable, accurate
solution. Accuracy is also intimately tied to the grid discretization, time
step, and dispersion coefficients of the nolutes, Advection-deminated
transaport with low dispersion couefficients is well known to be difficult to
simulate accurately with finite-difference or finite-clement techniques.
Testing the solution aguinst the results of n caleulation with smaller grid
spacings and time steps is one way to assess the level of numerical
dispernion. Another way is to ecompare the solution to o particle-tracking
simulntion, which is derigned to minimize numerien] innccuracies,
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8.3.9

Particlestrucking model. The accuracy of un RTTF particle-tracking
solution should be evaluated using the following considerations:

e The dispersion coefficiont must be set high enough to avoid grid Peclet
numbern less than 1; in fuet, the code sets the Peclet number of a cell to 1

for any value lower thun 1,

e Diffusion into the reck matrix must be slow cnough that the wolute has
insufficient time to diffuse fully to the conterline botween {ractures,

e II'the velocity vectors are not aligned with the finite-clement grid, some
inuccurncios duc to prid-orientation effects are to be expected.

* The number of particles in the simulation must be sufficient to minimize
errars induced by statistical fluctuations,

Alternatives

Reactivestransport model, Many different numerical formulations of
the reactive-transport problem arc possible. A review of these mothods
wan performed by Yoh and Tripathi (1989). Those models differ in the
number of species that can be simulated and tho nature of the chemical
reactions that can be simulated. When equilibrium is assumed for all
reactions, the reaction part of the problem can effectively be decoupled
from the transport and consideruble simplification results. For combined
kinectic and equilibrium formulations, Friedly and Rubin (1992) have
shown that similar simplifications are possible. Most models presented in
the literature that use sophisticated chemical submodels are restricted to
simplified flow geometrics and {low physics or require a {low solution ax
input, and the number of grid points that practically can be simulated in
small.

The reactive-transport model developed here war specifically designed for
usc in the context of larpe-ncale two- und three-dimensional simulations, [t
was assumed that in the near future, computational resources would be
insufficient to handle a large number of chemical specior for a large-scale
problem of many thousands of grid points, Therefore, the model
development assumed that information {rom other sources (goochemical
codues and literature data for a fow key reactions and species) could be
abstracted and distilled into a relatively small number of interacting solutes.
Given this assumption, the logical method of solution was to use the multiple
degree-of-freedom solution technology that in at the conter of the FEHM
code. Alternative techniques, such as those refeorred to above, will be
cvaluated and incorporated into future versions of FEHM an needed.

Particle-tracking model. The RTTF particle-tracking modeling
approach in FEHM differs from mont groundwater particle-tracking
algorithms reported in the literature (e.g., Tompson nnd Gelhar (1990); Lu
(1994)). These methods require that the velocity vector be resolved accurately
at cach location in the model domain, Doing this usually involves an
interpolation methad to abtain the veloeity at any position needed based on the
values computed from a flow simulation (at cell faces or nodes, for example),

o
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The alpgorithm then consists of marching forward in small time steps, computing
the trajectory and o new laeation of the particle at the new time, Equilibrium,
lincar sorption ix modeled by introducing a retardntion foctor Lo reduce the
particle velocity, Dispernion is handled usingt o random-walk upproach that
displaces the particle n certain amount during cach time step so that the
particle samples a different veloeity ficld than it would have in the absence of
dispersion,

e d

By contrast, the approach uked in the FEHM particle-tracking algorithm
uses the fTuid mass {Tuxes from node to node as the basis for moving
particles. These are the quantities thut are actually known in integrated
finite-difference and finite-clement caleulations, whereas the velocity
voctors are interpolated results, Thus, the implementation of the RTTF
technique in un existing code like FIEHM is straightforward, Another
practical advantuage is that the computations are extremely fast:
simulations with several million particles are practical using conventional
workstations, One compromise in the approach is the limitation to
advection-dominated transport systems, This war thought to be a
reasonable compromise, expecially in the context of a code that already haw
n reactive-tronsport module that casily handles svstems with high
dispersion coelficients,

8.4 Constitutive Relationships
8.4.1 Purpose

The densities, viscasities, and enthalpies of water, water vapor, and air are
required for the simulation of Now and encrgy tronsport in o porous
medium, These conatitutive relations depend on temperature and
pressure. To be computationally efficient, the form of these relations must
be cany to compute and accurate, To satinfyv these needs, rutional
polynominl fits to the National Burcou of Standards Steam Tables are
used, The models require the pressure und temperature of a node as input,
and they output the densities, viscositien, nnd eathalpies of the phases,

Assumptions and limitations

At present, several fits of the data are available to the user, These ullow
usage of the relntions for temperatures up to 360°C and pressures up to
110 MPa. If the variable exceeds the limits of the data, the FEHM code
will restary the time step with o smaller time-step size and try to keep the
variable within the bounds of the data.

Derivation

Pressure- and temperature-dependent fluid propertics, A porous
flow simulator, rueh an FEIIM, with heat- and mass-transfer capubilition
requires the funclional dependence of the phane densities, the phase
enthalpies, and the phase viscosition on temperature (7) und pressure (P),
Because FEMM is an implicit code that uses a Newton-Rophson iteration,
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derivatives of the thermodynamic {unctions with respect to P and T are
also required.

Rationul-function approximuations are used to estimate the thermodynamic
variables in FEHM, where the rational functions are a ratio of' polynomials,
Complete polynomials of order throee are used in both the numerator and
denominator, For oxample, the denaity is approximated as

. Y(P,T)
P' r = ' 4
p(P.T) ) (104)
where
Y(P.T) = Yo ¥\ P e Yo P w ¥ PP ¥ T VT
Y T° % YoPT & Y P T + Yo PT (106)
and
Z(P.T) = Zyw Zy P+ ZoP" + 2P+ 2T Z,T"
Z,T> & ZoPT o+ ZyPT + ZoPT™ (106)

This type of relationship has been shown by Zyvoloski and Dash (1991) to
provide an accurate method for determining purameter values over u wide
range of prossures and temperatures, as well as allowing derivatives with
respect to pressure and temperature to be computed casily.

Polynominl coefTlicients were obtainod by fitting data from the National
Bureau of Standards OQSRD databasc 10, the database used for the NBS/
NRC Steam Tables (Huarr ot al. 1984), The datn fits result in crrors less
than one percent und often less than 0.1 percent, The coefficients that are
uscd in FEHM are valid over the pressure and temperatuge ranges

0.001 s 75 110.0 MPa and 0.001 £ 7€ 360°C. Polynomial cocfficicnts for
the enthalpy, density, and viscowity {unctiona ure given in Table IIT in the
Appendix.

Pressure as a function of saturation temperature and temperature
as a function of saturation pressure. Thoe equation for the suturation
line i important {or the determination of the phase state of the liquid-
vapor system. The saturation line may be deseribed in a water-only nystem
as the pressure above which boiling occurs. In a mixture of air or other
noncondensible gas, the saturation line is simply the partial pressure of
watcr or the vapor pressure of water, Rational-function approximations
are also used for the saturation-line equations:

™ .. Y(P,
PT) = ;{% I'(pP,) = 2'('5% . (107)
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where
Y(X) = Yo+ Y X+ Y2 X 4 1 X 4 v X (108)
and
Z(X) = Zy+ Zy X+ ZaX w2 X+ Z,X" (109)

Here, X represents temperature or pressure in the respective relationships,
Polynomial coefficients for the snturation functions are given in Table [Vin
the Appendix,

FEIIM alko allown for the inclusion of n vapor-pressure-lowering term,
which may be important in situations in which high capillary forces are
present, The modified vapor pressure is given by

. , P, )
Po (T Py = P DD et J . (110)
pR (T +273.15)

L]
where P, ix the new vapor pressure of water, £, i the capillary
pressure, and A is the gas constant divided by the moalecular weight of

water,

Properties of air and air-vapor mixtures. Appropriate thermodynamic
information for air and air-vapor mixtures are provided. The density of air
in assumed to obhey the ideal gas law, Using atmospheric conditions as the
reference state, we have

(111D

273.15 \[ P, J

pa = ].292864[
T +273.15 A0.101325

where p, has units of kg/m¥, Tix in °C, and P is in MPa. The mixture
denwity is given by
Py = Py w*Py > {112)

where P, , is the density of water vapor,

The enthalpy of air, &, (MJ/kg), i specified as a function of temperature
only:

hy = €, (T+107) (113)

where ¢p, it the heat capacity of air (Md/kg °C) and is given by

" 7,3
Cpa = 1003.7+0.0256567 +0.000454577° ~2.7107x 1077 . (114)
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The parameters in Eqn. (114) were obtained by regrossion of a more
complex correlution found in Sychev et al, (1988). The mixture enthalpy for

the vaper phasc is
h, = h, (=M)+hnm,, (116)

whero A1, ., is the enthalpy of stoar and 1, is the mass-(raction of air in the
vupor phase, The mixture enthalpy of the liquid phase is given by

hy=h =P+, (116)

whore /1, , is the enthalpy of liquid water and 1); is the muss-fraction of air
in the liquid phase. ,

Ansuming idoal gar behuvior, the mass-fraction of air in the vapor phase
may be exprossed as

n, = Pu 117

The mass-raction of air in the liquid phase is arsumed to obey Henry's Law or

n' = K”'up (118)

d 1]

where Ky , is the Henry's Law conatant for air (K, ,» 1611 x 104 Pa'l)
and P, ia the partinl prossure of air.,

The viscosity of the vapor phase is assumed to be a lincur combination of
the air viscosity and the water viagonity:

“'p = p'v. w(l —np) +* uunv J (119)

whore [y, is the steum viscosity and is obtained from steam data. The
vizcosity of air is assumed constant:

M, = 182x10™ ¢ (120)
m
The liquid-phane viacosity is assumed to be independent of the amount of
dissolved air and is obtained from a rational-function approximation like
thosc specified above.
Relative-permeanbility and capilliry-pressure functions, Relative
permeabilitios and capillary preasures can bo strong functions of
saturation, Several well-known rolative-permoability functions are
available to the user. They are the simple lincar functions, the Corey
(1954) relationships, and the van Genuchten (1980) functions. Composite
relative-permeability curves, as described by Klavestor and Peters (1986),
are also u user option,
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The lincar functions are given by a)
Al
Oq S, S SI'. L&[
7
R = 4ol s o5 < d (121 "
=8 -5, P9I <Omgy AN ) p
Imux Ir ~
o,
N -
L ‘SI 2 Slma.r
O' Sv S Svr
Sv - Svr
Rv =N Svr( Sv < Swnur ' (122)
bvmm‘ ~d,, '
{ ]‘ Sv 2 Svmu.\'

where 8}, is residual liquid saturation, 8, i residual vapor saturation, Sp,,.
i muximum liquid saturation, and §,,,,, i¥ maximum vapor saturation,

The Corey relative-permeanbility functions are given by
ad
R, = §) and (123)

R,=(1=8)"(1-8)) . (124)
. S5 =5,~-S
where 8 = --l——h:--ﬂ
, I- blr,- Sy
saturations, respectively.
The van Genuchten relative-permeubility functions are deseribed by the
following formulac:

and §), and S, are the residual liquid and vapor

and (125)

DT 2.
{1.0-[1.0-'x J“&' $1<S

1.0, S/ EN) Imax

R, =10-R,, (126)

. S,=-5 .
where § = .._!.._’"_.. und A = | —l (n is an experimentally determined
‘Slma.r" r n
parameter),
R;and R, are restricted by the requirement that 0.0 S K, S 1.0 and
0,05 R, S 1.0, The relative-permeability functions ure truncated to the
approprinte value if these conditions are violated,

14
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The capillary functions conaidered are the linear function and the van
Genuchten capillary-pressure model, Our terminology follows that of

Pruess (1991),
The linear capillary-function model is given by the following equations:

P 5,58,

capmax*

Slma.\' - SI

capmax >t
P Slma.t"‘blr

0.0, 512 Spa

Slr <Sl < Slmux

where Pegpm,, I8 the maximum capillary pressure, §), is the residual liquid
saturation, and §},,,, i8 the maximum liquid saturation. The restriction
Simax > S| is also necessary,

The van Genuchten functions (van Genuchten 1980) for capillary prossure
are described by the following equations:

P capmaxt P capl 2P capmax
P = 4P capl® P capi <P capmux
0.0, SI N imax

« SN §~$

where P,n) = Pyl S T=10 .S=,—-’-—-—£-:-.P0=L9.nnd

bImax - Slr g
A= - (n and ¢tg are experimentally determined parameters).
The van Genuchten capillary-pressure curves approach an infinite value as
S) approaches 0 and 1, which roquires the use of extrapolation techniques,
At low saturations, both linenr and cubic {its are available. At high
suturations, a lincar {it is used,
Stross-dependent properties. Often, it is necessary to accommodate
changes in the rock porosity and permeability duc to changes in effeetive
wtress coused by tomperature and poro-{luid pressure changos, A linour
and nonlincar model are incorporated in the code for thin purpose,

The lincar porespressure modol for porosity is given by

o= Og+a, (PP, (129)

where ¢ is the porosity at pressure P, Qg in the poronity at pressure Py, and
¢, is the aquifcr compressibility,

The nonlincar model of {racture poronity (Gangi 1978; Appendix) is given
by
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% I

.

(130)

44 58 A L

£ RN

P, = 6-P-aEAT, (181)

£

where P, is the closure stross, G is the in situ stress (ansumed isotropic), O
is the cocfficient of thermal expansion of the rock, £ is Young’s modulus,
AT is the temperature change of the rock, and P, and m are parameters in
the model,

For the Gangi Madel, the effect of stress and temperature changes on
permeability are modeled with

k = ko(—(p—)s '

where Ag is the permeability at porasity ¢y,

Variable thermul conductivity. The thermal conductivity of the solid is
often more accurately characterized as o function of temperature or liquid
saturation. A linear temperature-dependent model and a relation based
upon the sgquare root of liquid saturation are incorporated in the code {or
this reason,

The lincar temperature-dependent model is given by
K:r = Kr"r"' K“.(T"" Tﬂ'f) ' (133)

where Kypis the temperature-dependent thermal conductivity, an in the
thermal conductivity at the reference temperature Tn-j’ and K| is the
slope of the linenr relation,

The saturation-dependent thermal-conductivity model is given by

Koy = Kppt Ky (NS (134)

where K, in the saturation-dependent thermal conductivity, K, is the
conductivity at zero saturation, and K, , is the slope of the lincar
relationship, Note thut the conductivity at complete saturation is

Ko+ K s

Application

The Constitutive Relationships discussed in Section 8.4 deseribe

parameters that are used in the models deseribed in provious sections, The
discussion provided in Scction 8,1.4 is also applicable here.

drey
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8.4.5

8.4.6

8.4.7

8.4.8

8.4.9

Numerical method type

The Newtons-Raphson method is uscd to calculate saturation and
temporature as n function of pressure, Tho method has beon previously
describod in Soction 8.1.6.

Derivation of numerical model

The relative-permoability and capillary functions ropresent the most
nonlincar parts of FEHM, and speciul consideration has been given to
thom. A procedure similar to that used by Nitao (1988) is used to restrict
the van Genuchten capillary function, Eqn. (128), to finite values when
approaching zero saturation, Tho procedure is simple, At a low saturation,
usuanlly input by the user, the van Genuchten functions are replaced with
lincar fits that match the van Genuchten function at the spocified
aaturation value and attain a maximum value, usually twice the value at
the specified saturation, at zero saturation, This new capillary pressure is
then used in the caleulation of the relative permeability. The formulation
in FEHM diffors from Nituo's implementation in that it usos a cubic spline
fit to match both the value and the slope at tho specified saturation, At
zero saturation, the cocfficients of the spline are adjusted so that a zero
slope and a zoro second derivative are achieved. This approach assures a
monatomically increasing function for the capillary pressure,

Location

The Constitutive Relationships arc used to obtain the parameters that
define the Flow- and Energy-Trunsport Equations. Referring to Fig. 1
(page 14), the box labeled “Got thermodynamic parameters” reprosents
calls to routines that form the Constitutive Relationships.

Numerical stability and accuracy

The formulation of the Constitutive Relationships is directly related to the
overall aceuracy of the FEHM application. The accurate formulation of the
water proportios described in Section 8.4.3 was motivated by the need to
have accurncy combined with computability. The discunssion in

Section 8.4.6 showed the neod to have continuous and finite values of the
constitutive functions. The authors believe thero i still much work to be
done in the area of extending the range of the functions as woll as finding
representations that will allow better convergence of the Newton-Raphson
itoration -

Alternatives

FEHM usos analytic derivatives of the constitutive {unctions deseribed in
Section 8.4. The TOUGH code described by Pruess (1991) and the variant
of TOUGH used by Nitno (1988) use numerical differcnces of the fluid- and
cnergy-balance cquations in the Newton-Raphson iteration, Both of the
mothods have morit. The numerical-derivative appronch allows for
possibly faster incorporation of new fluid physics models, wheroas the
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analytic-derivative approach uses fewer iterntions on tested problems
{Reeves 1993).
The functional representation of the constitutive models could be replaced
by o tubular formulation. Several available codes have used tabulur input
for capillary and relative-permenbility data. FEHM will alse incorpornte
tabular representations in future versions,

EXPERIENCE

The FEHM computer ¢ode and its predecensors have been used on a wide variety of
problems ranging {from geothermal to cnvironmental remedintion and radionctive
transport. When used in conjunction with its nvailable grid-peneration package and
postprocessing tools, it has been o successful tool for modeling very complex geological
settings and coupled-fluid processen, When benechmorked ngninst other codes, it has
been shown to be extremely campetitive (Reeves 1993,
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Summary o! Models and Mothods for the FEHM Application

Table V. Polynomiai coefficients for saturation functions

eyttt

T ] Pressure T Temperature
_ Yo 0.71725602¢-03 -0.250481210-05
_8 3 Y, 0.226075160-04 0.452495840-02
g é Ys 0.261785560-05 0.335515280+00
?-.o: 3 Yz -0.105163350-07 0.10000000e+01
© Yy 0.631670280-09 0.122547860+00
- Zg 0.100000000+01 0.208898416-06
pE Z -0.224600120-02 0.115875440-03
:g' g 7 0.302344920-05 0.31934455¢-02
‘g, E Z3 -0.32466525¢-09 0.455381510-02
© Zy 0.0 0.23756593¢-03

Pressure range
Temperature range

0.0U123 = 14,59410 MPa

10 -340°C
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