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cis-trans isomerization (23, 24), while experi­
mental (26) and theoretical (27) studies on 
reactions involving more butadiene molecules 
are limited. These reactions seem to occur 
through conical intersections between the ener­
gy surfaces of the S I (21 AJ and the So states 
(24,25, 27), explaining the efficient nonradia­
tive decay and the low selectivity (large number 
of products) of the photo-induced reactions. 

The mechanism of the high-pressure poly­
merization can be pictured as follows. In the SI 
state, the outer C1-C2 and C3-C4 backbone 
bond lengths increase by ~10% compared with 
the ground state and become larger than the 
C2-C3 bond length (28, 29). This structural 
change is accompanied by a lowering of the 
torsional barrier such that a nearly free rotation 
of the terminal -CH2 groups is possible 
(Scheme 2). The geometry changes, together 
with the long liff~time of the 8 1 state, which 
allows collisions with the nearest neighbor mol­
ecules, mvor a development of the reaction 
along the molecular backbone and, at the same 
time, prevent the dimerization, which requires 
an overlapping of 11' bonding electron densities 
of nearest neighbor molecules. 

The present experiments give clear evidence 
that laser irradiation plays a fundamental role in 
the activation of the polymerization that pre­
vails over the competing dimerization process. 
The obtainment of pure trans-polybutadiene is 
indeed a remarkable result. As a whole, the 
high-pressure reaction studied in the present 
report has several interesting features including 
the high selectivity of the process, the easy 
switching from one pathway to the other, and 
the full transformation into the product with the 
absence ofsolvents and catalysts, thus fulfilling 
several of the requirements for a green chem­
istry process (30). 
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Chromium Isotopes and the 
Fate of Hexavalent Chromium 

in the Environment 
Andre S. Ellis,1 Thomas M. Johnson,'· Thomas D. Bullen2 

Measurements of chromium (Cr) stable-isotope fractionation in laboratory exper­
iments and natural waters show that lighter isotopes reacted preferentially during 
Cr(VI} reduction by magnetite and sediments. The S3Cr/S2Cr ratio of the product 
was 3.4 :'.: 0.1 per mil less than that of the reactant. S3Cr/S2Cr shifts in water 
samples indicate the extent of reduction, a critical process that renders toxic 
Cr(VI) in the environment immobile and less toxic. 

Chromium is a common contaminant in sur­ industries and occurs naturally at high con­
face water and groundwater (1, 2) because it centration in ultramafic rocks. Under oxidiz­
is used widely in electroplating and other ing conditions, Cr is highly soluble and mo­
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