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Abstract 

BackglVund: Many experimentally-derived data sets are generated in the practice of clinical chemistry. Graphical presentation is essential to 
asscss the data distribution. The distribution must also be assessed quantitatively. These approaches will detennine if the data is Nonnal or 
not. Finally the results of these tests of Normality must be shown to be free of sample size effects. 
Methods: Four cxperimentally-derived data sets were used. They represented nonnal. positive kurtotie. positive- and negatively-skewed 
distributions. These data sets were examined by graphical techniques. by moment tests. by tests ofNonnality, and monitored for sample size effects. 
Results: The preferred graphical techniques are the histogram and the box-and-whisker plots that may be supplemented, with advantage, by 
quantile quantile or probability - probability plots. Classical tests of skewness and kurtosis can produce conflicting and often confusing 
results and. as a consequence. the alternative use ofthe newer L-moments is advocated, Nornlality tests included the Kolmogorov Smimov 
(Lilliefors modification), Cramer-von Mises and Anderson- Darling tests (empirical distribution function statistics) and the Gan"" Koehler. 
Shapiro-Wilk, Shapiro- Francia, and Filliben tests (regression/correlation techniques). Of these only the Anderson -"Darling, Shapiro - Wilk, 
and Shapiro- Francia tests correctly c1assitied all four test samples. The effect of sample size on the resulting p-valuc was investigated using 
Royston's V' / v' graphical test. 
Conclusions: A systematic approach to Nonnality testing should follow the route of graphical presentation. the use of L-moments, the use of 
Anderson Darling, Shapiro- Wilk, or Shapiro-- Francia testing, and Royston's sample size monitoring. 
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1. Introduction

The usual processes in the statistical assessment of a data

set are:

& screen the data for outliers or blunders;

& plot the data to detect asymmetry and tail weight;

& calculate the indices of sample shape (i.e., skewness and

kurtosis);

& perform test(s) of Normality;

& if the data is Normal use parametric statistics for further

analysis;

& if the data is non-Normal analyze the data by non-

parametric statistics including the bootstrap or, if possible,

utilize suitable transformations to obtain Normality

followed by back-transformation after statistical analysis;

& if the data is transformed and tested for Normality, that

test result becomes conservative. This effect was

demonstrated by Linnet [1].

There are two circumstances in the practice of clinical

chemistry when such testing is necessary during the

statistical analysis of experimentally-derived data sets or

the generation of population reference ranges [2–4]. In the

first situation the experimenter is free to use a variety of data

manipulations to statistically analyze the data. In the second

situation there are several constraints—sample size, trans-

formations, and tests for Normality (in the case of RefVal

[5] the only permitted test of Normality is Anderson–

Darling (see Empirical Distribution Function (EDF) statis-

tics, below) as recommended by the IFCC and CSLI [2,3]).

However, alternative strategies have been advocated by, for

example, Wright and Royston [4].

This review addresses some of the more common

procedures that may be used to assess the Normality of an

experimental data set. The main sources used in this review,
in addition to the primary literature, were the two mono-

graphs Goodness-of-fit techniques [6] and Thode’s Testing

for normality [7]. Thode considered forty tests for Normality

in his extremely wide-ranging monograph—although there

were some surprising omissions, which are discussed here,

such as the treatment of L-moments and estimating depar-

tures from Normality—but he remarked that there were very

many more such tests in the statistical literature.

Many comprehensive and extensive comparisons of tests

of Normality have been reported that are discussed in Power

comparisons of tests for Normality, below. Therefore, for

illustrative purposes, I have used just four test samples (Fig.

1) derived from unpublished serum amylase quality

assessment results and from a study of serum creatine

kinase activities following myocardial infarction [8]. These

four experimental data sets could be considered as

representative of data types commonly experienced in the

practice of clinical chemistry. The determination of popu-

lation reference intervals will not be discussed as it is

adequately addressed elsewhere [2–4].

In exploring Normality testing I used S-Plus, version 7.0

(Insightful Corporation) and R, version 2.1.1 [9] with their

associated libraries including the car library [10] in S-Plus

and the fBasics and nortest packages in R. The majority of

the programs used in this review are available in these R

packages; all others are listed later. It should be noted that R

is freely available [9] and contains a vast resource of

statistical libraries.
2. Graphical tools

Tukey’s much quoted comment [11]—there is no

excuse for failing to plot and look—is a useful starting

point for assessing the Normality of data. Pearson and

Please [12] provide an extensive diagrammatic review of
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Fig. 1. Sample 1 (A) is essentially Normal (n =89, mean=506, SD=21, skewness=0.12, and kurtosis=2.7), sample 2 (B) has a positive kurtosis (n =40,

skewness=2.2, and kurtosis=8.2), sample 3 (C) has a positive skew (n =83, skewness=1.0, and kurtosis=3.1), and sample 4 (D) has a negative skewness

(n =17, skewness=�0.9, and kurtosis=2.8). Skewness and kurtosis were calculated using Eqs. (3) and (7), respectively.
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population distributions. Essentially, graphical methods

provide a qualitative assessment of a sample’s Normality.

The most frequently used plot is the histogram (Fig. 1); it

gives an indication of the symmetry and spread of the sample.

A Normal distribution like Fig. 1A (this assumption of

Normality will be tested later) can be compared to the other

three figures that are clearly non-Normal. Fig. 1B (with

positive kurtosis) and Fig. 1C are positively skewed while

Fig. 1D has a negative skew. Note also that Fig. 1B contains

two obvious outliers. An alternative to the histogram is the
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Fig. 2. Boxplots of the data displayed in Fig. 1. The boxes show the lower quartile

difference between the upper and lower quartiles is the inter-quartile range (IQR

indicated by the small horizontal bars at the end of the whiskers (outliers expecte
simpler stem and leaf plot [11] that provides the same

information. The box-and-whisker plot (Fig. 2) provides

more information than the histogram. Skewness is more

easily detected by this type of plot. Outliers (defined as 1.5-

fold the IQR) are shown as symbols (Fig. 2B).

The quantile–quantile (Q–Q) plot (Fig. 3) compares the

ordered distribution of a test sample with the quantiles of a

standard Normal distribution indicated by the straight line

(other distributions may also be used). If the sample is

Normally distributed the points will lie along this line (Fig.
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Fig. 3. Quantile–quantile (Q –Q) plots of the data displayed in Fig. 1. The 95% confidence intervals are indicated by the dotted lines.
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3A) and would usually lie within the 95% confidence

interval. Departures from Normality result in S-curves (Fig.

3D) or banana shapes (Fig. 3B andC) and points lying outside

the respective 95% confidence intervals. Note the appearance

of the outliers in Fig. 3B. The Q –Q plot is an excellent

graphical test of the Normality of a sample and is commonly

used for that purpose. The probability–probability (P–P)

plot (Fig. 4) compares the probability distribution of a test

sample to that of a standard Normal probability distribution

indicated by the straight line (other distributions may also be

used). Its interpretation is similar to that of the Q –Q plot;

indeed note the similarity of the plot patterns except for

detecting abnormal deviations in Fig. 4D. Again, note the

value of providing the 95% confidence intervals.

Finally, the cumulative distribution plot (Fig. 5) displays

the cumulative probability of a test sample. Typically, a

Normal distribution has an S-shaped form as shown in Fig.

5A. This type of plot is helpful as regards probabilities in

the tails of the sample distribution such as the deviations

seen in Fig. 5B and D. Note that the theoretical curves in

Fig. 5B, C, and D deviate markedly from that of Fig. 5A.

In summary therefore, the histogram or box-and-whisker

plots are most useful in assessing the distribution of a sample.

Both Q –Q and P –P plots with appropriate confidence

intervals provide useful, semi-quantitative, evidence of

departures from Normality. Of the five graph types the

cumulative distribution plot is probably the least useful.
1 When the mean value of an estimator is equal to the value of the

population parameter the estimator is described as unbiased.
3. Tests using moments

The graphical examination of sample distributions,

although essential, does not permit quantitative assessment
of deviations from Normality. One such approach utilises

the calculation of various moments—(3.1) Central moments

(C-moments), (3.2) Linear moments (L-moments), and (3.3)

Absolute moments.

3.1. Central moments or C-moments (moments about the

mean)

The kth sample moment (m) about the sample mean [7]

is (Eq. (1)):

mk ¼
Xn
i¼1

xi � x̄xð Þk=n ð1Þ

where xi are the n observations, x̄ the sample mean, and

k�2. This expression is rendered dimensionless [7] by

division bym2 to give the standardized moment test (Eq. (2)):

gk ¼
mk

m
k=2
2

: ð2Þ

Note that m2 is similar to the sample variance except that

the denominator for the latter is (n�1): thus m2 is a biased

estimator.1

3.1.1. Skewness

The third moment test [13], the coefficient of skewness

(Eq. (3)):

g1 ¼
ffiffiffiffiffi
b1

p
¼ m3

m
3=2
2

: ð3Þ

Asymptotically g1 of a Normal distribution has a mean of

0 and variance of 6 /n. For finite samples (note here that
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Fig. 4. Probability–probability ( P –P) plots of the data displayed in Fig. 1. The 95% confidence intervals are indicated by the dotted lines.
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ffiffiffiffiffi
b1

p
refers to the population while

ffiffiffiffiffi
b1
p

refers to a sample)

the variance [13] (Eq. (4)):

var
ffiffiffiffiffi
b1

p� �
¼ 6 n� 2ð Þ

nþ 1ð Þ nþ 3ð Þ : ð4Þ

Values of skewness are symmetrically distributed about

zero. Negative values indicate a skew to the left (left-tail or

negative skewness) while positive values indicate skewing

to the right (right-tail or positive skewness).

There are three definitions of the third central

moment. Equation (3) is the most commonly encountered

(i) biased definition but there is also an (ii) unbiased
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probability calculation.
form [14] used, for example, in the CBStat program

(Eq. (5)):

c1 ¼
m3

SD3
: ð5Þ

Finally there is the (iii) unbiased Fisher definition [13]

derived from cumulant theory [14,15] (Eq. (6)):

G1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n� 1ð Þ

p
n� 2

g1: ð6Þ

This is available in SAS, SPSS, MINITAB (version 14),

S-Plus (the default, although
ffiffiffiffiffi
b1
p

is available as an option),

Excel, Quattro Pro, Analyse-it, and MedCalc.
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rived from the samples’ mean and SD values using the standard cumulative



Table 1A

C-moments indices of skewness and kurtosis for the test samples

Sample Indices of skewness Indices of kurtosis

g1 (Eq. (3)) c1 (Eq. (5)) G1 (Eq. (6)) b2 (Eq. (7)) g2 (Eq. (9)) c2 (Eq. (10)) G2 (Eqs. (11) and (12))

Normal 0.12 0.12 0.12 2.7 �0.30 �0.36 �0.25
Positive kurtosis 2.22 2.14 2.31 8.23 5.24 4.83 6.12

Positive skewness 1.01 0.99 1.03 3.13 0.13 0.05 0.21

Negative skewness �0.93 �0.85 �1.02 2.79 �0.21 �0.53 0.17
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3.1.2. Kurtosis

The fourth moment test [13], the coefficient of kurtosis

(Eq. (7)):

b2 ¼
m4

m2
2

: ð7Þ

Asymptotically b2 for a Normal distribution has a mean

of 3 and a variance of 24 /n. For finite samples (note here

that b2 refers to the population while b2 refers to a sample)

the mean and variance [13] are (Eq. (8)):

mean b2ð Þ ¼
3 n� 1ð Þ
nþ 1

and var b2ð Þ

¼ 24n n� 2ð Þ n� 3ð Þ
nþ 1ð Þ2 nþ 3ð Þ nþ 5ð Þ

: ð8Þ

Values of kurtosis range from 0 to V. A value <3

indicates a flat-topped distribution (platykurtic which has

heavy shoulders), values >3 indicate a ‘‘pointy’’ distribution

(leptokurtic having no shoulders), and a value of 3, as

obtained from a Normal distribution, is described as

mesokurtic.

There are four definitions of the fourth central moment.

The (i) biased coefficient of kurtosis (Eq. (7)) is the

definition that occurs frequently in the statistical literature.

The second (ii) biased definition [13] (Eq. (9)):

g2 ¼ b2 � 3 ð9Þ

while its (iii) unbiased equivalent [14], used by the CBStat

program, is centered on zero (Eq. (10)):

c2 ¼
m4

SD4
� 3: ð10Þ

Thus, Eqs. (9) and (10) define kurtosis as zero for a

Normal distribution. This usage is confusing unless the

reader is advised that the reported kurtosis index is not

centered on the value 3.

The fourth (iv) unbiased definition, Fisher’s G2, derived

from cumulant theory [14,15] is the form most commonly

used in statistical programs (Eq. (11)) as noted above for G1:

G2 ¼
n� 1

n� 2ð Þ n� 3ð Þ nþ 1ð Þg2 þ 6f g; ð11Þ

or in the alternative format incorporating b2 (Eq. (12)):

G2 ¼
nþ 1ð Þ n� 1ð Þ
n� 2ð Þ n� 3ð Þ b2 �

3 n� 1ð Þ
nþ 1

�
:

�
ð12Þ
Joanes and Gill [16] drew attention to a problem seen

with small or moderate sample sizes when using these

various kurtosis definitions. They used a Normally-distrib-

uted sample (n =20) with an Anderson–Darling (see

Empirical Distribution Function statistics, below) test result

of A=0.376 ( p-value=0.38). The following kurtosis results

were obtained: b2=2.92 (Eq. (7)), g2=�0.07 (Eq. (9)),

c2=�0.36 ((10)), and G2=0.27 (Eq. (11)). The indices b2
and g2 are obviously equivalent but the unbiased estimates

disagree. Thus three indices indicate that kurtosis is negative

but G2 is positive. This is confusing. These authors do point

out, however, that the differences between the various

kurtosis definitions are unimportant with respect to large

samples.

Joanes and Gill [16] also compared measures of sample

skewness and kurtosis by examining their mean-squared

errors (MSE) [17] of small to moderate sized Normal and

simulated non-Normal samples (Eq. (13)):

MSE ¼ var sampleð Þ þ bias sampleð Þð Þ2: ð13Þ

When the estimator is unbiased the MSE is equal to the

variance of the estimator and it should be noted that values

of a biased variance will always be smaller than the values

of unbiased variances thus off-setting to an extent the effect

of the bias.

Thus, in the case of the unbiased skewness indices c1
and G1 of a Normal sample the following relationship

occurs:

MSE c1ð Þ < MSE G1ð Þ:

Whereas with the kurtosis indices only G2 is unbiased

but it has the largest variance thus:

MSE g2ð Þ < MSE G2ð Þ

Non-Normal samples were simulated from chi-squared

distributions. For both skewness and kurtosis Joanes and

Gill [16] found that the MSE’s were smallest for both G1

and G2. Thus the choice of the appropriate skewness and

kurtosis indices to use (i.e., possessing the smallest MSE

values) depend on the type of sample distribution.

The skewness and kurtosis indices of the four test

samples are listed in Table 1A. Note the directional

agreements between the various indices with the exception

of the G2 value for the negative skewed sample. This is
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similar to the previously noted effect observed by Joanes

and Gill [16].

3.1.3. Probability estimates

In order to determine if a sample skew and kurtosis are

significantly different from a Normal distribution it is

necessary to determine the standard score or deviate (z-

statistic) of the data (Eq. (14)):

z ¼ observed value� expected value

SD of observed value
: ð14Þ

This approach, however, depends on the values of both

sample skewness and kurtosis being Normally distributed.

However, the sample size must be appreciably large (for

example, even when the sample size is 5000 a Normal

approximation of b2 may be inappropriate [7]) before both

indices are asymptotically Normal.

However, exact expressions of the moments of the

sampling distributions of skewness and kurtosis are known

in the case of a Normal distribution thus permitting the

construction of tables of critical values. For example,

D’Agostino [18] lists an extensive set of tables as regards

both sample values of n and percentage points.
Table 1B

Probability values for the skewness and kurtosis indices for the test samples

Sample Skewness Kurtosis

z-value p-value z-value p-value

Normal 0.48 0.36 �0.38 0.37

Positive kurtosis 4.59 <0.0001 3.56 0.0007

Positive skewness 3.5 0.0009 0.6 0.33

Negative skewness �1.85 0.07 0.39 0.37
Alternatively, the development of a transformation to

Normality of the null distribution of skewness by D’Agos-

tino [19], for n�8, and to a Normal approximation of the

null distribution of kurtosis by Anscombe and Glynn [20],

for n�20, avoids the use of tables. These transformations

produce z-statistics (Fig. 6) that are converted to probabil-

ities by reference to a table of the standard Normal

distribution (i.e., N(0,1)) or by calculation [21] (Eq. (15)):

p zð Þ ¼ 1ffiffiffiffiffiffi
2k
p e

�z2
2 : ð15Þ

The associated probabilities of these z-statistics can be

used to test the two-sided composite Null hypothesis2

illustrated in Fig. 6A (H0: the tested samples have

skewness and kurtosis not significantly different from a

Normal population (i.e., p (|z| <1.96) at the 5% level of

significance. The alternative hypothesis (H1) is that the

sample belongs to any non-Normal distribution). As will

become evident later, the use of a one-sided (in this case

upper-tailed) or directional test (such as
ffiffiffiffiffi
b1

p
and b2) can

also be used to test a one-sided composite Null hypothesis

(Fig. 6B).

The results of these tests are listed in Table 1B. Where

the p-values are >0.05 the Null hypothesis (H0) is

accepted so that the index is compatible with Normality.

Thus the sample with negative skewness is compatible

with Normality despite the indices of skewness (Table 1A)
2 A composite hypothesis refers to the situation where one or more of the

parameters of the distribution are unspecified whereas a simple hypothesis

refers to the situation where all parameters of the distribution are specified
.



A.R. Henderson / Clinica Chimica Acta 366 (2006) 112–129 119
being ��1. This result is consistent with the appearance

of Figs. 3D and 4D.

Are there any advantages to the use of these indices? Apart

from their being deeply embedded in classical statistical

thought, are very easy to calculate, and are universally

available in statistical packages there are probably none.

Are there disadvantages to the uses of
ffiffiffiffiffi
b1

p
; b2;

ffiffiffiffiffi
b1
p

, and

b2? There are several. Neither
ffiffiffiffiffi
b1
p

nor b2 are Normally

distributed until the sample sizes are quite large [7] so that

sample transformations are necessary before Normality of a

sample can be ascertained using these indices [22].

Secondly, these conventional indices are bounded and

cannot attain the full range of values available to the

population indices. For example, sample skewness is

bounded [23,24] by (Eq. (16)):

��� ffiffiffiffiffi
b1

p ���V n� 2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þ

p ð16Þ

so that the true value cannot be achieved in finite samples.

Sample kurtosis is not limited as it is bounded by �n [25].

Other disadvantages are listed in Table 2 and have been

derived from Balanda and MacGillivray [26], Hosking [27],

Royston [29], and Hosking and Wallis [30].

3.2. L-moments

In 1990 Hosking [27] published a review advocating a

unified approach to the use of order statistics for the

statistical analyses of univariate probability distributions. He

suggested that as L-moments are linear functions of the data

(hence the use of ‘‘L’’) they are superior to conventional

moments (C-moments) because they suffer less from the

effects of sampling variability, are more robust to the effects

of outliers, and are more reliable for making inferences from

small samples.
Table 2

The disadvantages associated with the use of C-moments

& Neither
ffiffiffiffiffi
b1

p
nor b2 nor have an intuitively clear meaning as a feature of

distributions

& Both
ffiffiffiffiffi
b1

p
and b2 are very sensitive to small changes in the tails of the

distribution

& Both
ffiffiffiffiffi
b1
p

and b2 are unreliable for small sample values and may show

marked biases

& Identification of the parent distribution by the joint C-moments

of the observed random sample is often not useful

& The divisor, m2, gives relatively more weight to the largest differences

due to the squared power

& Both
ffiffiffiffiffi
b1
p

and b2 are susceptible to even moderate outliers as they involve

the cube and fourth powers, respectively, of extreme deviations

&
ffiffiffiffiffi
b1
p

can take arbitrarily large positive or negative values as some

heavy-tailed distributions can have values approaching infinity

&
ffiffiffiffiffi
b1
p

is sensitive to extreme tails and is difficult to estimate when the

distribution is markedly skewed

& b2 and b2 have no unique interpretation and the standard concepts

of peakedness of a distribution or as tail weight only apply to closely

defined families of symmetric unimodal distributions
Hosking [27], Royston [29], and Hosking and Wallis

[30] discuss, in detail, the definitions and basic properties

of the population L-moments so it is unnecessary to

mention them here except to comment on the principle and

mention the notation for the population L-moments

(location, k1; scale, k2; CV, s; skewness, s3; and kurtosis,

s4). L-moments may intuitively be understood [31] as

follows—one value in a sample gives a notion of the

magnitude of the random variable while the difference

between two values gives a sense of how varied the random

variable is. When there are three values in a sample they

give an indication of how asymmetric the distribution is

(i.e., a measure of skewness. When there are four values in

the sample they give a notion as to the ratio of the peak to

the tails of the distribution (a measure of kurtosis). When

many such values are considered the sample’s L-moments

can be calculated.

Hosking [27] derived L-moments indirectly using prob-

ability weighted moments [28] and these have to be

introduced when the method of L-moments is described.

Thus how L-moments are estimated appears to be unrelated

to how L-moments are defined [31]. Accordingly, Wang

[31] derived direct estimators of L-moments from their

definitions thus eliminating the need for probability

weighted moments.

3.2.1. Sample L-moments

The details of the calculation of sample L-moments are

now described. These are derived from chapter two of the

Hosking and Wallis monograph [30]. By analogy with the

classical definitions of moments these are location (l1 or

mean), scale or dispersion (l2), L-CV (t or coefficient of L-

variation), L-skewness (t3, a scale-free ratio measure of

skewness), and L-kurtosis (t4, likewise a scale-free ratio

measure of kurtosis). The values l2, t3, and t4 are nearly

unbiased estimates unlike their moment equivalents. Eq.

(17) defines the calculation of l2:

l2 ¼ 2b2 � l1 where b2 ¼
1

n n� 1ð Þ
Xn
j¼2

j� 1ð Þxj:n: ð17Þ

Eqs. (18) and (19) define the calculations for l3 and l4:

l3 ¼ 6b3 � 6b2 þ l1 where b3

¼ 1

n n� 1ð Þ n� 2ð Þ
Xn
j¼3

j� 1ð Þ j� 2ð Þxj:n ð18Þ

l4 ¼ 20b4 � 30b3 þ 12b2 � l1 where b4

¼ 1

n n� 1ð Þ n� 2ð Þ n� 3ð Þ
Xn
j¼4

j� 1ð Þ j� 2ð Þ j� 3ð Þxj:n:

ð19Þ



Table 3

L-moments for the test samples

Sample L1 L2 L-CV L-

skewness

*L-

skewness

L-

kurtosis

Normal 506.2 12.2 0.0241 0.0287 1.0591 0.1185

Positive kurtosis 33.7 15.9 0.473 0.4249 2.4777 0.2483

Positive

skewness

874 417.7 0.4779 0.2734 1.7524 0.0696

Negative

skewness

1567.4 33.38 0.0213 �0.2899 0.5505 0.0925

3 Hosking [27] provides an approximation for var(t3)=0.1866n
�1+

0.8n�2. However there is presently no approximation available for var(t4
thus it requires calculation from large-sample simulation. Note that the

value for var(t3) obtained by simulation gives exactly the same result as the

formal equation.
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Eq. (20) displays the calculation for the coefficient of L-

variation (L-CV) that ranges in value between 0 and 1:

L-CV ¼ l2

l1
: ð20Þ

The dimensionless measure of L-skewness (Eq. (21)):

t3 L-skewnessð Þ ¼ l3

l2
: ð21Þ

The values of population and sample L-skewness are

limited to lie within the interval (�1,1) for all distributions.
As a Normal distribution has a t3 value close to zero it

follows that positive and negative skew distributions will

have t3 values, respectively, above and below zero. Clearly

it is easier to interpret a value for t3 than for
ffiffiffiffiffi
b1
p

which may

take arbitrarily large values. Hosking [32] provides some

examples; it is evident that there is a poor relationship

between these two indices of skewness.

Royston [29] suggests (Eq. (22)) the use of an alternative

skewness index (t3*) that is identical to the ‘‘shape’’ index

suggested by Efron and Tibshirani [33] as a measure of the

asymmetry of a confidence interval.

t43 ¼
1þ t3ð Þ
1� t3ð Þ : ð22Þ

For symmetric, positively skewed, and negatively

skewed distributions this alternative index of skewness

takes values of 1, >1, and <1, respectively.

Eq. (23) displays the calculation for the dimensionless

index of L-kurtosis:

t4 L ¼ kurtosisð Þ ¼ l4

l2
: ð23Þ

The value of population and sample L-kurtosis is �1

for all distributions. Clearly it is easier to interpret a

value for t4 than for b2 which may take arbitrarily large

values. A Normal distribution will have a t4 value close

to 0.1226 and distributions with negative or positive

kurtosis will have t4 values respectively less than or

greater than this value. Hosking [32] compares conven-

tional kurtosis to L-kurtosis values for a range of

symmetric and asymmetric distributions; again it is evident

that there is a poor relationship between these two indices

of kurtosis.

Table 3 lists the L-moments for the four test samples. The

normal sample conforms closely to the expected values

noted above. Royston’s skewness index appears an easier

index to review than the L-skewness index itself. When

interpreting the L-kurtosis index it has to be recalled that a

Normal distribution has a value close to 0.1126. Thus the

positive kurtosis sample has a marked kurtosis while the

other two samples have a smaller degree of kurtosis than a

Normal distribution.
A Monte Carlo simulation (10,000 replications) of the

Normal sample (Fig. 1A) was used to compare the

distributions of the C- and L-moments (Fig. 7). While the

L-moments (Fig. 7B and D) appear Normally distributed (as

does the C-moment skewness) it is evident that the C-

moment kurtosis distribution has a marked positive skew-

ness (Fig. 7D) even after 10,000 replications.

3.2.2. Probability estimates

Hosking has suggested the use of z-scores as an overall

test statistic for the L-moments. Eq. (24) is used when

examining a sample that might correspond to a Normal

distribution (t3=0 and t4=0.1226):

statistic ¼ t3ð Þ2

var t3ð Þ
þ t4 � 0:1226ð Þ2

var t4ð Þ
ð24Þ

approximated by a v2-distribution with two degrees of

freedom. This statistic may also be applied to the individual

indices using a v2-distribution with one degree of freedom.

It is necessary to perform a Monte Carlo simulation (10,000

replications) using a distribution appropriate to the test

sample.3 In the present instance the normal test sample can

be simulated using a random Normal distribution. The

statistic had a p-value of 0.99 as did the individual indices

indicating that the test sample was indeed Normal. Hosking

and Wallis [30] provide, in an extensive Appendix, the L-

moments for many specific distributions thus allowing

appropriate values of t3 and t4 to be incorporated into

Eq. (22).

3.2.3. Advantages of L-moments

Hosking [27] states, for most distributions, that the asymp-

totic biases are negligible for sample sizes of 20 or more. For

example, the Normal distribution (s3=0 and s4=0.1226) has
a t4 asymptotic bias of 0.03 n�1. However, outliers may have

an undue influence on L-moments leading to the develop-

ment of trimmed L-moments [34] that are much more robust

to outliers. When a sample’s L-skewness is plotted against L-

kurtosis (the L-moment diagram) it is possible to discriminate
)
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Fig. 7. 10,000 simulations of the data shown in Fig. 1Awere used to calculate the replicates of the C-moments (plots A and C) and L-moments (plots B and D)

of skewness and kurtosis.
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among alternate distributional hypothesis [27,35]. Hosking

[27] also suggests the use of L-skewness as a test for

Normality against skew alternatives. Advantages of L-

moments, listed in Table 4, have been derived from Hosking

[27], Royston [29], and Hosking and Wallis [30].

Royston [29] has suggested that the single disadvantage

to using L-moments in place of conventional moments is the

complexity of the calculations. However, Hosking has made

available an R/S-Plus implementation adapted from his

LMOMENTS Fortran package [36]. This program can be

obtained directly [37] or by searching the R site [9] with the

search term ‘‘samlmu’’. That program only provides l1, l2,

t3, and t4 but can be readily modified to include the indices

L-CV and Royston’s t3*. Wang [31] also provides a Fortran

program based on the direct estimation of the L-moments.

Wang’s program is available in an R/S-Plus version that

provides all the previously-noted L-moment indices.
Table 4

The advantages of using L-moments

& L-moment indices are easy to interpret

& Sample L-moments are not bounded — they can take any values found in

the corresponding population

&L-moments of an observed random sample can identify the parent

distribution (see text)

& Asymptotic approximations to sampling distributions are superior to C-

moments

& Robust to outliers (but see text)

& Approximately normally distributed so that transformations are

unnecessary unlike C-moments

& Unbiased even for small samples

& Can indicate the type of departure from normality
3.3. Population absolute moments

The quantity (Eq. (25)):

mc ¼
Z V

�V
jx� ljcdF ð25Þ

is called the absolute moment of order c about l [14]. The

cth sample absolute moment is (Eq. (26)):

mc ¼
Xn
i¼1
jxi � x̄xjc=n: ð26Þ

It is thus possible [7] to define absolute test statistics (Eq.

(27)):

a cð Þ ¼ mc=m
c=2
2 ¼ mc=m

c=2
2 ; cm0 or 2: ð27Þ

A test based on absolute moments, where c =1, was

proposed by Geary [38] in 1935.
4. Geary’s test

Geary’s test [38,39] is the ratio of the mean deviation to

the unbiased standard deviation that can be used as a test for

Normality (Eq. (28)):

a ¼ 1ffiffiffi
n
p

Xn
i¼1
jxi � x̄xj

= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi � x̄xð Þ2
s

ð28Þ

The asymptotic mean is
ffiffiffi
2
k

q
¼ 0:797885 and SD 0:2123=ffiffiffi

n
p

. Geary [38] provided a table of upper and lower 1%
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and 5% probability points for sample sizes from 6 in

intervals to 1000. In a later publication [39] he provided

two graphs covering values of n from 11 to 1000 and a

table in which upper and lower 10%, 5%, and 1% critical

values were listed.

D’Agostino and Rosman [40] pointed out that Geary’s

test had not been subjected to comparative studies like many

other tests of normality (see Power comparisons of tests for

Normality, below) and they performed a comparison

between the Shapiro–Wilk, Shapiro–Francia, D’Agostino’s

D-test, and Geary’s one- and two-sided tests.

The use of the Geary graphs or tables described above

does not provide a p-value. Accordingly, D’Agostino [41]

described a transformation (Eq. (29)) of ‘‘a’’ to standard

Normality thus providing a p-value for the test:

z ¼
ffiffiffi
n
p

a� 0:7979ð Þ
0:2123

: ð29Þ

The probability is then calculated from Eq. (15). Eq. (29)

is less reliable for the range 11�n�31 but is better for

n�41 as it then approximates to the critical values provided

by Geary’s probability table [39].

The four test samples were assessed using the Geary test

and the results tabulated (Table 5). It is evident that this test

detects a Normal sample distribution and sample kurtosis

but fails to identify obvious positive or negative skewness.
5. Chi-square (c2) goodness-of-fit test

The chi-square test can be applied to discrete or

continuous, univariate or multivariate data. It is the oldest
Table 5

Results of Geary, EDF, and Regression tests for univariate Normality

Test Sample typeY Normal

Absolute moment test

Geary a 0.8037

p-value 0.386

Empirical distribution function tests

Kolmogorov–Smirnov D 0.0452

(Lilliefors modification) p-value 0.9252

Cramér–von Mises W2 0.0179

p-value 0.9829

Anderson–Darling A2 0.123

p-value 0.9868

Regression/correlation tests

Gan–Koehler ko
2 0.9978

p-value >0.10

Shapiro–Wilk W 0.9948

p-value 0.9811

Shapiro–Francia WV 0.9967

p-value 0.9943

Filliben r 0.9984

p-value <0.01
goodness-of-fit test and was described by Karl Pearson [71].

The test compares observed and expected (i.e., the

hypothesised distribution) frequencies for individual cate-

gories, where m is the number of cells or bins, thus (Eq.

(30)):

X 2 ¼
Xm
i¼1

observedi � expectedið Þ2

expectedi
: ð30Þ

Note that the observed data is collected in a series of

bins or cells. Because of the relationship [14,42] between

the v2 distribution and the sum of squares of the

individual z-scores (as defined by Eq. (14)) where

‘‘expected value’’ is the sample mean) of the individual

cells, the following alternative relationship can be used

(Eq. (31)):

X 2 ¼
Xm
i¼1

z-scoreið Þ2: ð31Þ

This formulation was used by Hosking (see Eq. (24)) for

assessing the probability value of the L-moments. As the

chi-square test partitions the data into cells it looses

available information. Indeed, Moore [43] recommends that

the test not be used on univariate distributions in favour of

special purpose tests of fit or tests based on empirical

distribution function (EDF) statistics.
6. Empirical distribution function statistics

Empirical distribution function statistics (EDF) refer to

‘‘a step function, calculated from the sample, which
Positive

kurtosis

Positive

skewness

Negative

skewness

0.6976 0.8258 0.8237

0.005 0.194 0.352

0.1954 0.1533 0.1657

0.0005 0.0001 0.2463

0.5104 0.5363 0.1144

<0.01 <0.01 0.0644

3.0069 3.2977 0.728

<0.01 <0.01 0.0465

0.8536 0.9245 0.9236

<0.01 <0.01 >0.05

0.7422 0.8758 0.8859

<0.01 <0.01 0.0397

0.7337 0.8807 0.8927

<0.01 <0.01 0.0502

0.8556 0.9388 0.9451

<0.01 <0.01 <0.01
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estimates the population distribution function. EDF statistics

are measures of the discrepancy between the EDF and a

given distribution function.’’ (Stephens [44]). There are two

classes of EDF statistics—the Kolmogorov–Smirnov type

and the Quadratic type.

6.1. Kolmogorov–Smirnov type

6.1.1. Kolmogorov–Smirnov test

This test is based on the maximum vertical difference

between the EDF and the Normal cumulative distribution

curve (when the null hypothesis is that the EDF demon-

strates normality). The sample values are ordered, then

(Eq. (32)):

Dþ ¼ maxi¼1;...;n i=n� p ið Þ
� 	

D� ¼ maxi¼1;...;n p ið Þ � i� 1ð Þ=n
� 	

D ¼ max Dþ;D�½ � g ð32Þ

D+ and D� are, respectively, the largest vertical

distances above and below the Normal cumulative distri-

bution curve. The Kolmogorov–Smirnov statistic is D. The

null hypothesis (Normality) is rejected when the value of D

does not exceed the particular chosen critical value, i.e., an

upper-tailed test. These critical values are provided in tables

but Stephens [46] has provided a modification for all

sample sizes for a range of critical values for a range of

significance points that obviates the need to consult tables

(Eq. (33)):

D4 ¼ D
ffiffiffi
n
p
� 0:01þ 0:85=

ffiffiffi
n
p
 �

ð33Þ

The critical values of D for the significance points 0.1,

0.05, and 0.01 are 0.819, 0.895, and 1.035, respectively. The

Kolmogorov–Smirnov test is ‘‘intended for use only when

the hypothesized distribution function is completely spec-

ified, that is, when there are no unknown parameters that

must be estimated from the sample. Otherwise the test

becomes conservative’’ [45]. In accord with Stephens’

remark, Massey [47] suggests that the critical value of D

is reduced if the parameters of the distribution must be

estimated from the sample as the probability of a type 1

error (a) will be smaller than that given in the tables of D.

Massey further notes that the conventionally used Kolmo-

gorov–Smirnov test has superior power to the chi-square

test.

6.1.2. Kolmogorov–Smirnov (Lilliefors modification) test

As a consequence of the foregoing, Lilliefors [48]

revised the Kolmogorov–Smirnov tables for samples with

mean and variance unknown using a Monte Carlo procedure

(1000 or more samples) for each value of n. The table

covers the levels of significance (0.2, 0.15, 0.1, 0.05, and

0.01) for sample sizes from 4 to 30. For n =31 onwards the

provided values of D have to be divided by
ffiffiffi
n
p

. The

Lilliefors table has subsequently been revised by Mason and

Bell [49] who used a more extensive Monte Carlo
simulation. For comparison, the calculation of the critical

value of D is (Eq. (34)):

D ¼ critical value for n � 31ffiffiffi
n
p
� 0:01þ 0:83=

ffiffiffi
n
p

ð Þ : ð34Þ

Dallal and Wilkinson [50] have also provided an

extensive corrected table of critical values and Iman [51]

has prepared graphs for tests at the 0.1, 0.05, and 0.01 levels

of significance.

The Lilliefors testing procedure is identical to that for the

Kolmogorov–Smirnov test (Eq. (30)), but must have >4 test

samples. However, the z-statistic is calculated as part of the

procedure (Eq. (35)):

z ið Þ ¼ x ið Þ � lP
� �

= rP : ð35Þ

Lilliefors demonstrated the superior power of his

modification compared to the Kolmogorov–Smirnov test

[48].

6.2. Quadratic type

6.2.1. Cramér–von Mises test

This test was developed due to the contributions of

Cramér [72], von Mises [73], and Smirnov [74]. The test

samples (>7), mean and variance unknown, are ordered

and the statistic, W2, calculated as follows (Eqs. (36) and

(37)):

pi ¼ U xi � x̄xð Þ=rð Þ ð36Þ

W 2 ¼ 1

12n
þ
Xn
i¼1

p ið Þ �
2i� 1ð Þ
2n

�
 2

: ð37Þ

Here Eq. (36) is the cumulative distribution function of

the standard Normal distribution. Stephens [46] has

provided a modification for all sample sizes for a range

of critical values for a range of significance points (Eq.

(38)):

W 24 ¼ W 2 1:0þ 0:5

n

��
ð38Þ

The calculation of the respective p-values is as follows:

when W 24 < 0:0275

p-value ¼1� exp
�
� 13:953þ 775:5�W 24

� 12542:61� W 24

 �2�

when W 24 < 0:0051

p-value ¼ 1� exp
�
� 5:903þ 179:546�W 24

� 1515:29� W 24

 �2�



A.R. Henderson / Clinica Chimica Acta 366 (2006) 112–129124
when W 24 < 0:092

p-value ¼exp
�
0:886� 31:62�W 24

þ 10:897� W 24

 �2�

otherwise

p-value ¼exp
�
1:111� 34:242�W 24

þ 12:832� W 24

 �2�

:

6.2.2. Anderson–Darling test

The Anderson–Darling goodness-of-fit test was intro-

duced in 1952 [52,53]. The test samples (>7), mean and

variance unknown, are ordered and the statistic A2

calculated (Eqs. (36) and (39)):

A2 ¼� n� n�1
Xn
i¼1

2i� 1½ � ln pið Þ½

þ ln 1� p n�iþ1ð Þ

 �	

: ð39Þ

This test differs from the Cramér–von Mises test in the

type of weighting function incorporated in its formulation.

This type of weighting provides more influence to the tails

of the distribution than does the Cramér–von Mises test.

Stephens [44] described a modification to obtain critical

values for all sample values (Eq. (40)):

A24 ¼ A2 1:0þ 0:75=nþ 2:25=n2

 �

ð40Þ

The calculation of the respective p-values is as follows:

when A24 < 0:2

p-value ¼ 1� exp
�
� 13:436þ 101:14� A24

� 223:73� A24

 �2�

when A24 < 0:34

p-value ¼ 1� exp
�
� 8:318þ 42:796� A24

� 59:938� A24

 �2�

when A24 < 0:6

p-value ¼ exp 0:9177� 4:279� A24 � 1:38� A24

 �2� �

otherwise

p-value ¼exp
�
1:2937� 5:709� A24

þ 0:0186� A24

 �2�

:

6.3. Summary of test results

Results of the three EDF tests (Lilliefors, Cramér–von

Mises, and Anderson–Darling) on the four test samples are

listed in Table 5. All three tests correctly identify the

normal, positive kurtosis, and positive skewed samples.

However, only the Anderson–Darling test correctly identi-

fies the negatively skewed sample.
7. Regression/Correlation tests [54]

7.1. Gan–Koehler tests

The Gan–Koehler tests [55] are two goodness-of-fit

statistics based on measures of linearity for standardized P–

P plots. Their second test statistic is (Eqs. (36), (41), and

(42)):

pi ¼ i= nþ 1ð Þ ð41Þ

k20 ¼

Xn
i¼1

zi � 0:5ð Þ pi � 0:5ð Þ
" #2

Xn
i¼1

zi � 0:5ð Þ2
Xn
i¼1

pi � 0:5ð Þ2
" # : ð42Þ

Note that zi is defined by Eq. (35) and k0
2 is a modified

squared correlation coefficient. Critical values for k0
2 are

calculated for the lower pth percentiles from Eq. (43):

critical k2p ¼ 1� ap þ nbp


 ��1
: ð43Þ

The terms, a and b, are provided, in a table for several

percentiles, by Gan and Koehler.

7.2. Shapiro–Wilk test

The Shapiro–Wilk test was introduced in 1965 [56].

Essentially the test statistic W is the square of the Pearson

correlation coefficient computed between the order statistics

of the sample and scores that represent what the order

statistics should look like if the population were Gaussian.

Thus, if the value of W is close to 1.0 the sample behaves

like a Normal sample whereas if W is below 1.0 the sample

is non-Gaussian.

The original formulation of the W-test [56] was limited

to sample sizes of n =3(1)50 tabulated for percentage

points of the null distribution for p-values of 0.01, 0.02,

0.05, 0.1, 0.5, 0.9, 0.95, 0.98, and 0.99. Calculation, and

interpretation, of the W-test required the use of tables.

Subsequently, Shapiro and Wilk [57] proposed a normal-

izing transformation for W in the region n =7(1)50

although tables were still required for n =4(1)6. In 1982

Royston [58] produced an extension to the W-test allowing

sample sizes up to 2000; subsequently, he raised this limit

to 5000 [59,60].
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The Shapiro–Wilk test statistic is defined as (Eq. (44)):

W ¼ 1

D

Xk
i¼1

ai x n�iþ1ð Þ�x ið Þ

 �" #2

ð44Þ

where D is (Eq. (45)):

D ¼
Xn
i¼1

xi � x̄xð Þ2 ð45Þ

and k (Eq. (44)) is approximately n / 2 and the ai
coefficients represent what the statistics would look like

if the population was normal. These are obtained from

volume two of the Biometrika Tables [61] by entering the

value of n.

The p-value ofW is calculated (Eqs. (46) and (15)) where

the values for b, c, and d are obtained from Biometrika

Tables [61] by entering the value of n:

z ¼ bn þ cn ln
W � dn

1�W


 �
: ð46Þ

As noted, the original configuration of the W-test

required the use of tables. Royston [58] developed an

approximate Normalizing transformation suitable for com-

puter implementation that calculated the W value and its

significance level for any sample size between 3 and 2000

[62]. Later an improved algorithm was published that

covered the range 3�n�5000 [60].

7.3. Shapiro–Francia test

The Shapiro–Francia WV-test test was described in

1972 [63]. Like the W-test it is the square of the Pearson

correlation coefficient computed between the order statis-

tics of the sample values and the expected Normal order

statistics (as illustrated by the straight line in Fig. 4A).

The WV test is readily calculated unlike the more complex

calculation of the ai coefficients in the W-test. Because of

this difference between the W and WV-tests, the values of

W and WV differ slightly (see Table 5). The major

advantage of the WV-test, over the original formulation

of the W-test, was that it was not limited to a sample size

<51.

Royston [64,65] proposed an easy-to-calculate approxi-

mation to the Shapiro–Francia test and its p-value for

sample sizes 5�n�5000. The value of WV was first

calculated as noted above and the p-value was obtained as

follows (Eq. (47)):

z ¼ ln 1�W Vð Þ � l̂l½ �=r̂r ð47Þ

where (Eq. (48)):

l̂l ¼ � 1:2725þ 1:0521 m� uð Þ
r̂r ¼ 1:0308þ 0:26758 mþ 2=uð Þ
where u ¼ ln nð Þ and m ¼ ln uð Þ g ð48Þ
and the p-value is calculated using Eq. (15). Note that z

refers to the upper tail of the distribution.

7.4. Filliben’s r test

In 1975 Filliben [66] described the probability plot

correlation coefficient as a test for the composite hypothesis

for Normality. He used the correlation between the sample

order statistics and the estimated median values of the

theoretical order statistics.

The data is sorted in ascending order and indexed (i). The

uniform [0,1] order statistic medians (mi) are calculated

where n is the number of data samples (Eq. (49)):

mi ¼
1� 0:5 1=nð Þ i ¼ 1

i� 0:3175ð Þ= nþ 0:365ð Þ i ¼ 2; 3; . . . ; n� 1

0:5 1=nð Þ i ¼ n

8<
:

ð49Þ

The Normal N (0,1) order statistic medians Mi are next

computed (Eq. (50)):

Mi ¼ U�1 mið Þ ð50Þ

The Pearson correlation coefficient was then calculated

using the values of the original data and Mi. The critical

values for the percentage points 0.005, 0.01, 0.025, 0.05,

0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.975, 0.99, and 0.995 are

provided by Filliben for values of n from 3 to 100.

Filliben suggested that the advantage of the r-test lay in its

conceptual simplicity—the use of the probability plot and the

correlation coefficient. Both the W- and WV-tests rely on the

equivalence of two measures of variation—the squared slope

of Normal probability plot regression line and the residual

mean square of the regression line. Further he showed that the

power of the r-test compared well with the W- and WV-tests.

7.5. Summary of test results

The Gan–Koehler test correctly classified the normal,

positive kurtosis, and positive skewed samples. However, it

did not detect the abnormality in the negatively skewed

sample. By contrast, the Shapiro–Wilk and Shapiro–Francia

tests correctly classified all four test samples. The Filliben test

correctly classified the three non-Normal samples but unac-

countably classified the normal test sample as non-Normal.
8. The effect of sample size on the resulting p-value

Using a random Normal population, N(0,1), of varying

sample sizes it is possible to detect changes in the p-values

as the sample sizes increase calculated from the D’Agostino/

Anscombe and Glynn transformations [19,20]. In contrast,

using the same Normal population, and the Hosking’s

statistic (Eq. (24)), the p-values remain constant over the

range 5�n�1000.
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Fig. 8. Royston’s v plots for the data displayed in Fig. 1. The quantiles of the standard normal distribution are plotted against Royston’s v V. The horizontal line
indicates the respective 95th centiles for VV.
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Royston [67] pointed out that the p-values obtained from

the Shapiro–Francia WV or Shapiro–Wilk W tests are not

quantitative measures of departures from normality. Indeed,

‘‘samples of differing size drawn from the same non-Normal

distribution could result in p-values respectively above and

below the magic 0.05 level’’. He proceeded to derive two

indices based on the WV and W tests with their associated

plots [67]. Only the index VV and the vV-plot used with the

Shapiro–Francia test will be briefly described and utilized

here. In essence, VV is the sample residual variance of the

differences between the ordered data and their expected

values assuming normality. It is thus an index of departure

from normality that the Shapiro–Francia test is not. Royston

showed that the 95th centile of the VV index from a Normal

population (identical to that used earlier) varied little (2.8 to

2.04) over the range of sample sizes 5 to 1000 whereas the

95th centile of 1�WV (a surrogate index of WV) varied by a

factor of >70-fold. p-values varied between 0.554 (i.e.,

Normal) and 0.026 (non-Normal). Royston used the vV-plot
(Fig. 8) to determine if the sample departs significantly from

Normality by the plotted points exceeding the 95th centile

(i.e., the value of WV is significant at the 0.05 level). Clearly,

plot A is Normal while both plots B and D are definitely

non-Normal. Observe that plot C is just within the 95th

centile although all EDF and Regression/Correlation tests

(Table 5) showed the distribution to be non-Normal.
4 Otherwise known as the range test defined as: u ¼ xmax � xminð Þ=SD:
5 A scale-contaminated distribution is composed of two superimposed

normal distributions with the same means but differing SD’s. A location

contaminated distribution is composed of two normal distributions with the

same SD_s but differing means.
9. Power comparisons of tests for Normality

Several extremely comprehensive studies of the com-

parative effectiveness of various tests of normality have
been published [56,68,69,46,40,66,70,55] (those men-

tioned, but not discussed here, are described in Thode’s

monograph). Many of these studies have been compre-

hensively summarized by Thode [7]. Generally the studied

distributions fell into three main categories—long-tailed

symmetric, short-tailed symmetric, and asymmetric. Sam-

ple sizes generally ranged from 10 to 100. Shapiro and

Wilk [56] studied the empirical power of nine test

procedures (
ffiffiffiffiffi
b1

p
; b2 u,4 Kolmogorov–Smirnov, Cramér–

von Mises, Anderson–Darling, chi-squared, and Shapiro–

Wilk tests) on fifteen non-Normal populations. The more

extensive 1968 study (Shapiro et al. [68]) compared the

power of these nine test procedures using 45 distributions

in twelve families for several sample sizes (n =10, 15, 20,

35, and 50). They concluded: that the Shapiro–Wilk test

provided a generally superior measure of non-Normality,

that the u statistic was excellent against symmetric short-

tailed distributions but insensitive to asymmetry, and whileffiffiffiffiffi
b1

p
and b2 were sensitive their performance was usually

dominated by the Shapiro–Wilk test. Chen [69] demon-

strated that the Shapiro–Wilk test showed adequate

sensitivity when applied to scale- or location-contaminated

Normal distributions.5

Stephens [46] studied power comparisons (n =10, 20, 50,

100, and 8) of seven tests (D’Agostino D, Cramér–von

Mises, Anderson–Darling, Shapiro–Wilk, Shapiro–Fran-
-
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cia, Kuiper, and Watson tests under three situations—where

the hypothesised distribution (of which there were nine) is

completely specified or one or more parameters require to

be estimated. When both the mean and SD have to be

estimated Stephens reported that the Anderson–Darling and

Cramér–von Mises tests appeared to possess the highest

power. However, both the Shapiro–Wilk and Shapiro–

Francia tests were reported to have a superior performance

to these EDF tests.

D’Agostino and Rosman [40] observed that Geary’s a-

test was not included in the earlier noted set of comparisons.

They performed comparisons with sample sizes of 20, 50,

and 100 on ten distribution types and concluded that

Geary’s test matched the Shapiro–Wilk and Shapiro–

Francia tests as a two-sided test on symmetric distributions

but performed better as a one-sided test. With the present

availability of small-sample points of b2 there is no re-

quirement for Geary’s test as a test for kurtosis. Also

Geary’s test does not perform as well as the Shapiro–Wilk

or Shapiro–Francia on skewed distributions (a finding

confirmed here). Finally,
ffiffiffiffiffi
b1

p
usually exceeds Geary’s test

for all sample sizes as do the other tests on contaminated

Normal distributions.

Filliben [66] compared the power of his r-test to several

tests including Shapiro–Wilk, Shapiro–Francia, and

D’Agostino’s D statistic using samples sizes of 20, 50, and

100. He used varieties of three distribution types—(i) short-

tailed symmetric, (ii) long-tailed symmetric, and (iii) skewed.

He concluded that, in comparison with the Shapiro–Wilk

test, the r-test was poorer for type (i), marginally better for

type (ii), and marginally poorer for type (iii).

Pearson et al.[70] compared the powers of some

omnibus (K2, R [70],6 Shapiro–Wilk’s W, and D’Agosti-

no’s D) and directional (
ffiffiffiffiffi
b1

p
(upper tail), b2 (upper and

lower tail), and D’Agostino’s D (upper and lower tail))

tests. They used 58 non-Normal populations derived from

12 distributions (almost equally divided between symmet-

rical (of which 9 were scale-contaminated) and skewed (9

location-contaminated populations) for samples of n =20,

50, and 100. The sampled populations were classified, in

the symmetrical group, by their degree of kurtosis (ranging

from 1.6 to infinity) and by both
ffiffiffiffiffi
b1

p
and b2 with the

former ranging from 0.7 to 6). Interestingly, given the

complexity of the results, the authors emphasized the

difficulty in disentangling the relationship between partic-

ular tests and their power. For symmetric platykurtic

(b2<3) populations the Shapiro–Wilk (W) test was the

best omnibus test while the best directional test was the

lower tailed b2 test but overall this test had superior power

to the W-test. For symmetric leptokurtic (b2>3) popula-
6 The K2 test is a graphical test showing the bivariate relationship

between the indices of skewness and kurtosis using a series of contours for

a range of sample sizes. The R test is a sequential procedure that estimates

the likely maximum number of outliers before calculating a trimmed mean

and variance. The R value is compared to a table of critical values to

determine whether any outliers exist in the original sample.
tions the omnibus K2 test was best but for long-tailed the

directional tests b2 and D’Agostino’s D test were equally

good. For the skewed populations the best test is the

upper-tailed
ffiffiffiffiffi
b1

p
when the population is positively

skewed (
ffiffiffiffiffi
b1

p
> 0) while the lower-tailed

ffiffiffiffiffi
b1

p
test is

better. The above noted conclusions applied to sample

sizes of 20 and 50. The comparative results on samples of

100 were quite different as many tests showed powers of

100% or so and because values of
ffiffiffiffiffi
b1

p
and b2 were not

recorded the authors concluded that the findings for sample

sizes of 20 and 50 applied to symmetric leptokurtic

populations and to skewed populations.

Gan and Koehler [55] described two goodness-of-fit tests

based on measures of linearity for standardized P–P plots

(see Regression/Correlation Tests, above) and compared

their performance with Filliben’s r, Shapiro–Wilk, Ander-

son–Darling, Cramér–von Mises, Watson, R, and Kolmo-

gorov–Smirnov tests using 91 distributions with sample

sizes of 20, 50, and 100. They showed that Shapiro–Wilk

was the best overall test for Normality and that the

Kolmogorov–Smirnov test was the weakest. The r test is

useful for heavy-tailed distributions that are either symmet-

rical or not too skewed but is poor for distributions with

b2<3. The Anderson–Darling, Cramér–von Mises, Wat-

son, and R tests performed well and the Gan–Koehler tests

were slightly less powerful than the Cramér–von Mises test.

Unlike the considerable literature reviewing the compar-

ative performance of C-moments and tests of Normality

there are only two articles reviewing the comparative

performance of L-moments [32,29]. These authors took

diametrically different approaches—Hosking [32] using a

series of simulated distributions and Royston [29] using

three medical data sets.

Hosking used 21 distributions (n =20) derived from the

Gan and Koelher collection [55] that were symmetric and

long-tailed and compared b2 (with values�3) and s4 values
against the Shapiro–Wilk W test results. Likewise he

compared the power of the Shapiro–Wilk test with theffiffiffiffiffi
b1

p
, b2, s3, and s4 values of 31 skewed distributions

(n =20) also derived from the Gan and Koehler collection.

An analysis of Hosking’s data tabulations follows. The

L-kurtosis values of the symmetrical distributions correlated

well (r =0.985) with the power of the Shapiro–Wilk test

while the correlation with the kurtosis values was poor

(r =0.3). Plots of the skewed distributions (L-skewness/

power and skewness/power) displayed a U-shaped relation-

ship although each arm showed a superior correlation for the

L-skew values (r =0.9 and 0.99) than for the skew values

(r =0.66 and 0.95). Hosking concluded that the L-moments

were more concordant with the power of the Shapiro–Wilk

results than were the C-moments.

Royston [29] examined three data sets comparing C-

moments with L-moments. He demonstrated, using 15 sets of

highly-skewed and leptokurtic maternal serum–fetoprotein

results, that C-moment skewness and kurtosis varied 30- and

300-fold, respectively, whereas L-skewness and L-kurtosis
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vales were tightly controlled. A second data set, possessing a

single outlier, was randomly sampled obtaining subsamples

of a range of percentages of the original sample (n =251).

While C-moment skewness and kurtosis showed consider-

able variability both the L-skewness and L-kurtosis showed

less variability especially when the sample size increased.

The third data set—a skewed distribution of 216 bilirubin

values—was used to illustrate the bias in C-moment

skewness and kurtosis in small to moderate size samples as

indicated by Eq. (16). Such a bias is almost negligible in

the L-skewness and L-kurtosis indices. The joint con-

clusions of these authors are listed in Tables 2 and 4

regarding the advantages of L-moments.

It is not easy to draw firm conclusions from the foregoing

regarding the ‘‘best’’ test for Normality. In general, however,

the Anderson–Darling, Shapiro–Wilk, and Shapiro–Fran-

cia tests appear to be the most frequently favoured tests.

Certainly these three tests perform well when used on the

four test samples of the type commonly encountered in

clinical chemistry when studying experimentally-derived

results.
10. Concluding remarks

The following steps are suggested when examining

experimental data for Normality:

& Identify all programs used in the calculations thus

avoiding ambiguity regarding indices of skewness and

kurtosis.

& Plot the data using histograms or box-and-whisker

diagrams and supplwement these withQ –Q orP–P plots.

& Consider the advantages of using L-moments in place of

C-moments.

& Test for Normality with Anderson–Darling, Shapiro–

Wilk, or Shapiro–Francia tests.

& Monitor the effect of sample size on the resulting p-value

using Royston’s V /v or VV /vV tests thus suggesting the

use of the Shapiro–Wilk or Shapiro–Francia tests for

assessing Normality.

The majority of the described programs are available

within the freely-available R site except for Wang’s L-

moments and Royston’s VV /vV. R/S-Plus versions of these

two programs are available on request to the author.

Acknowledgements

I am most grateful to Dr Jon Hosking (IBM Research

Division, TJ Watson Research Center, Yorktown Heights,

NY) for his goodwill and patience in constructively

responding to my questions, and to the technical support

staff at Insightful Corporation for their advice and

assistance.
References

[1] Linnet K. Testing normality of transformed data. Appl Stat 1988;

37:180–6.

[2] Horn P, Pesce AJ. Reference intervals. A user’s guide. Washington,

DC’ AACC Press;, 2005. p. 1–123.

[3] Solberg HE. Chapter 16: establishment and use of reference values. In:

Burtis CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical

chemistry and molecular diagnostics. 4th ed. St. Louis’ Elsevier

Saunders;, 2005. p. 425–48.

[4] Wright EM, Royston P. Calculating reference intervals for laboratory

measurements. Stat Methods Med Res 1999;8:93–112.

[5] Solberg HE. RefVal: a program implementing the recommendations of

the International Federation of Clinical Chemistry on the statistical

treatment of reference values. Comput Methods Programs Biomed

1995;48:247–56.

[6] D’Agostino RB, Stephens MA, editors. Goodness-of-fit techniques.

New York’ Marcel Dekker, Inc.;, 1986. p. 1–560.

[7] Thode HCJ. Testing for normality. New York’ Marcel Dekker, Inc.;,

2002. p. 1–479.

[8] Leung FY, Galbraith LV, Jablonsky G, Henderson AR. Re-evaluation

of the diagnostic utility of serum total creatine kinase and creatine

kinase-2 in myocardial infarction. Clin Chem 1989;35:1435–40.

[9] R Development Core Team. R: A language and environment for

statistical computing. http://www.R-project.org. (Accessed 19-10-

2005).

[10] Fox J. An R and S-PLUS companion to applied regression. Thousand

Oaks, CA’ Sage Publications, Inc.;, 2002. p. 1–312.

[11] Tukey JW. Exploratory data analysis. Reading, MA’ Addison-Wesley

Publishing Company;, 1977. p. 1–688.

[12] Pearson ES, Please NW. Relation between the shape of population

distribution and the robustness of four simple test statistics. Biome-

trika 1975;62:223–41.

[13] Cramér H. Mathematical methods of statistics. Princeton’ Princeton
University Press;, 1946. p. 1–575.

[14] Stuart A, Ord JK. Kendall’s advanced theory of statistics. Distribution

theory, volume 1, 6th ed. London’ Arnold;, 1994. p. 1–676.

[15] Cornish EA, Fisher RA. Moments and cumulants in the specification

of distributions. Rev Int Stat Inst 1937;5:307–22.

[16] Joanes DN, Gill CA. Comparing measures of sample skewness and

kurtosis. Statistician 1998;47:183–9.

[17] Stuart A, Ord JK, Arnold S. Kendall’s advanced theory of statistics.

Classical inference and the linear model, volume 2A.6th ed. London’

Arnold;, 1999. p. 1–885.

[18] D’Agostino RB. Chapter 9: tests for the normal distribution. Goodness-

of-fit techniques. New York’ Marcel Dekker, Inc.;, 1986. p. 367–419.

[19] D’Agostino RB. Transformation to normality of the null distribution

of g2. Biometrika 1970;57:679–81.

[20] Anscombe FJ, Glynn WJ. Distribution of the kurtosis statistic b2 for

normal samples. Biometrika 1983;70:227–34.

[21] Hald A. Statistical theory with engineering applications. New York’

John Wiley and Sons, Inc.;, 1952. p. 1–783.

[22] D’Agostino RB, Belanger A, D’Agostino Jr RB. A suggestion for

using powerful and informative tests of normality. Am Stat

1990;44:316–21.

[23] Kirby W. Algebraic boundedness of sample statistics. Water Resour

Res 1974;10:220–2.

[24] Dalén J. Algebraic bounds on standardized sample moments. Stat

Probab Lett 1987;5:329–31.

[25] Johnson ME, Lowe VW. Bounds on the sample skewness and

kurtosis. Technometrics 1979;21:377–8.

[26] Balanda KP, MacGillivray HL. Kurtosis: a critical review. Am Stat

1988;42:111–9.

[27] Hosking JRM. L-moments: analysis and estimation of distributions

using linear combinations of order statistics. JR Stat Soc B

1990;52:105–24.

http://www.R-project.org


A.R. Henderson / Clinica Chimica Acta 366 (2006) 112–129 129
[28] Greenwood JA, Landwehr JM, Matalas NC, Wallis JR. Probability

weighted moments: definition and relation to parameters of several

distributions expressible in inverse form. Water Resour Res

1979;15:1049–54.

[29] Royston P. Which measures of skewness and kurtosis are best? Stat

Med 1992;11:333–43.

[30] Hosking JRM, Wallis JR. Regional frequency analysis. An approach

based on L-moments. Cambridge’ Cambridge University Press, 1997.

p. 1–224.

[31] Wang QJ. Direct sample estimators of L-moments. Water Resour Res

1996;32:3617–9.

[32] Hosking JRM. Moments or L-moments? An example comparing two

measures of distributional shape. Am Stat 1992;46:186–9.

[33] Efron B, Tibshirani R. An introduction to the bootstrap. New York’

Chapman and Hall;, 1993. p. 1–436.

[34] Elamir EAH, Seheult AH. Trimmed L-moments. Comp Stat Data Anal

2003;43:299–314.

[35] Vogel RM, Fennessey NM. L-moment diagrams should replace

product moment diagrams. Water Resour Res 1993;29:1745–52.

[36] Hosking JRM. Fortran routines for use with the method of L-moments.

http://lib.stat.cmu.edu/general/lmoments. (Accessed 19-4-2005).

[37] Hosking JRM. SAMLMU: estimating sample L-moments. http://www.

r-project.org/nocvs/mail/r-help/2001/6042.html. (Accessed 20-11-2005).

[38] Geary RC. The ratio of the mean deviation to the standard deviation as

a test for normality. Biometrika 1935;27:310–32.

[39] Geary RC. Moments of the ratio of the mean deviation to the standard

deviation for normal samples. Biometrika 1936;28:295–305.

[40] D’Agostino RB, Rosman B. The power of Geary’s test of normality.

Biometrika 1974;61:181–4.

[41] D’Agostino RB. Simple compact portable test of normality: Geary’s

test revisited. Psychol Bull 1970;74:138–40.

[42] van Belle G, Fisher LD, Heagerty PJ, Lumley T. Biostatistics: a

methodology for the health sciences.2nd ed. New York’ Wiley

Interscience;, 2004. p. 1–871.

[43] Moore DS. Chapter 3: tests of chi-squared type. In: D’Agostino RB,

Stephens MA, editors. Goodness-of-fit techniques. New York’ Marcel

Dekker, Inc.;, 1986. p. 63–95.

[44] Stephens MA. Chapter 4: tests based on EDF statistics. In: D’Agostino

MA, Stephens MA, editors. Goodness-of-fit techniques. New York’

Marcel Dekker, Inc.;, 1986. p. 97–193.

[45] Conover WJ. Chapter 6: statistics of the Kolmogorov–Smirnov type.

Practical nonparametric statistics.2nd ed. New York’ John Wiley and

Sons;, 1980. p. 344–93.

[46] Stephens MA. EDF statistics for goodness of fit and some compar-

isons. J Am Stat Assoc 1974;69:730–7.

[47] Massey FJ. The Kolmogorov–Smirnov test for goodness-of-fit. J Am

Stat Assoc 1951;46:68–78.

[48] Lilliefors HW. On the Kolmogorov–Smirnov test for normality with

mean and variance unknown. J Am Stat Assoc 1967;62:399–402.

[49] Mason AL, Bell CB. New Lilliefors and Srinivasan tables with

applications. Comm Stat—Simul 1986;15:451–67.

[50] Dallal GE, Wilkinson L. An analytic approximation to the

distribution of Lilliefor’s test statistic for normality. Am Stat 1986;

40:294–6.
[51] Iman RL. Graphs for use with the Lilliefors test for normal and

exponential distributions. Am Stat 1982;36:109–12.

[52] Anderson TW, Darling DA. Asymptotic theory of certain ‘‘goodness

of fit’’ criteria based on stochastic processes. Ann Math Stat

1952;23:193–212.

[53] Anderson TW, Darling DA. A test of goodness of fit. J Am Stat Assoc

1954;49:765–9.

[54] Stephens MA. Chapter 5: tests based on regression and correlation. In:

D’Agostino RB, Stephens MA, editors. Goodness-of-fit techniques.

New York’ Marcel Dekker, Inc.;, 1986. p. 195–233.

[55] Gan FF, Koehler KJ. Goodness-of-fit tests based on P –P probability

plots. Technometrics 1990;32:289–303.

[56] Shapiro SS, Wilk MB. An analysis of variance test for normality

(complete samples). Biometrika 1965;52:591–611.

[57] Shapiro SS, Wilk MB. Approximations for the null distribution of the

W statistic. Technometrics 1968;10:861–6.

[58] Royston JP. An extension of Shapiro and Wilk’s W test for normality

to large samples. Appl Stat 1982;31:115–24.

[59] Royston JP. Approximating the Shapiro–Wilk W-test for non-

normality. Stat Comput 1982;2:117–9.

[60] Royston P. A remark on algorithm AS 181: the W-test for normality.

Appl Stat 1995;44:547–51.

[61] Pearson ES, Hartley HO. Biometrika tables for statisticians, volume

two, reprinted with corrections. London’ Biometrika Trust;, 1976.

p. 1–385.

[62] Royston JP. Algorithm AS 181: the W test for normality. Appl Stat

1982;31:176–80.

[63] Shapiro SS, Francia RS. An approximate analysis of variance test for

normality. J Am Stat Assoc 1972;67:215–6.

[64] Royston P. A toolkit for testing for non-normality in complete and

censored samples. Statistician 1993;42:37–43.

[65] Royston P. A pocket-calculator algorithm for the Shapiro–Francia test

for non-normality: an application to medicine. Stat Med

1993;12:181–4.

[66] Filliben JJ. The probability plot correlation coefficient test for

normality. Technometrics 1975;17:111–7.

[67] Royston P. Estimating departure from normality. Stat Med

1991;10:1283–93.

[68] Shapiro SS, Wilk MB, Chen HJ. A comparative study of various tests

for normality. J Am Stat Assoc 1968;63:1343–72.

[69] Chen EH. The power of the Shapiro–Wilk W test for normality in

samples from contaminated normal distributions. J Am Stat Assoc

1971;66:760–2.

[70] Pearson ES, D’Agostino RB, Bowman KO. Tests for departure from

normality: comparison of powers. Biometrika 1977;64:231–46.

[71] Pearson K. On a criterion that a given system of deviations from the

probable in the case of a correlated system of variables is such that it

can be reasonably supposed to have arisen in random sampling. Phil

Mag 1900;50:157–75.

[72] Cramér H. On the composition of elementary errors. II: statistical

applications. Skand Aktuartidskr 1928;11:141–80.

[73] von Mises, R. Wahrscheinlichkeitsrechnung. Leipzig-Wein 1931.

[74] Smirnov, NV. Sur la distribution de w2. C R Acad Sci Paris

1936;202:449–52.

http://lib.stat.cmu.edu/general/lmoments
http://www.r-project.org/nocvs/mail/r-help/2001/6042.html

	ERID-100331.pdf
	Testing experimental data for univariate normality
	Introduction
	Graphical tools
	Tests using moments
	Central moments or C-moments (moments about the mean)
	Skewness
	Kurtosis
	Probability estimates

	L-moments
	Sample L-moments
	Probability estimates
	Advantages of L-moments

	Population absolute moments

	Geary's test
	Chi-square (chi2) goodness-of-fit test
	Empirical distribution function statistics
	Kolmogorov-Smirnov type
	Kolmogorov-Smirnov test
	Kolmogorov-Smirnov (Lilliefors modification) test

	Quadratic type
	Cramr-von Mises test
	Anderson-Darling test

	Summary of test results

	Regression/Correlation tests [54]
	Gan-Koehler tests
	Shapiro-Wilk test
	Shapiro-Francia test
	Filliben's r test
	Summary of test results

	The effect of sample size on the resulting p-value
	Power comparisons of tests for Normality
	Concluding remarks
	Acknowledgements
	References





