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Perviously, a new analytical model was proposed by the ntatltor for Ihe delayed rtspo 4

process ch :narterizing flow to a well in an unconfined aquifer. It was shown Intl contrary t o
prevailing belief this process can ho. simulated by using constant values of specific storage
and specific yield without recourse to unsaturated flow theory . In the present work th e
theory is extended to account for the effect of a well partially penetrating a. homogeneou s
:oi .attropic unconfined aquifer . Field and Lbornlory evidence is quoted to suggea that O w
clad-it, storage properice of unconfined nguifrrs may often be much more pronounced tim e
those of deep-mated confined aquifers composed of similar materials . The need for further
research into Ibe mechanical properties of unconfined aquifer : and the, role of un m ounte d
flow in the response process is emphasised .

	

The phenomenon e'ouunnnly known ns 'delayed yield .

	

That the lack of an unsaturated zone has little influenc e

	

that characterizes flow to wells in unconfined aquifers has

	

on the results . In light of these findings as well as thos e

	

often been attributed to ,m :taun ted flow above the water

	

of Brutsaert et o/ . (1471 I we tend to adopt Sb'dIsunde

	

table . Recently, Neuman [1972a, 19731 showed that this

	

11973, p . 2301 statement tha t

phenomenon can he simulated =thematically by using
constant values of specific storage and specific yield withou t
recourse to unsaturated flow theory . The new model treat s
the unconfimsl aquifer as a eontprestihl' system and the
phreatic surface as a moving material boundary . It differs
from that of Bonito'? [1054, 1063, 1070] and Bolton an d
Pollan [1971] in that it is based only on well-define d
physical parameters of the aquifer system . Results fro m
this model suggest that in the absence of vertical recharg e
or plant uptake near the water table, compressibility ma y
often be much more important than unsaturaed flow i n
determining the rate of tintwdmcn in the saturnied zone o f
the aquifer

Concurrently with our work, Streltsova 11972o . b I . part y
in collaboration with Rushton [Strdtseva and Rushton,
1373], was able to develop approximate solutions for th e
fall of the water table, as well as for the average drawdow n
over the entire aquifer thickness, in response to a full y

penetrating well discharging at a constant rate Iler model
has some conceptual similarities to ours because the nn-

tnrated zone is neglected nod 'inirr is released fro m
storage only by compaction of the aquifer material, ex -
pansion of the water, and gravity drainage at the phreati c
surface . In a later work, Streltsova [1973] relied on a

field experiment by Meyer [19621 fo demonstrate the sub-

ordinate role that unsaturated flow plays in the delaye d

yield process . In addition . she showed that. Rotdton's 11934 .
1963] classical convolution integral ran he derived without
considering the unsaturated zone merely by taking int o
account vertical gradients underneath the moving wate r
table . Cooley and Case 119731 showed independently tha t
this convolution integral can also be viewed as the vertica l
recharge into an aquifer overlain by a rigid water tabl e

aquitard when . unsa ht rated flow above the phreatic surfac e

is neglected . They compared the rate of recharge wit h
and without the presence of an unsaturated zone and foun d

Copyright © 1974 by the A i mee ican Geophysical Union .
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The unique linear rel: tionship between the UOat end y
water table heights at any time and the flux at the
water table averaged over the area, which has re-
peatedly been confirmed by experimental results o f
Childs [1960] and Dos Santos awl Youngs 110601, i s

. . actually proof of the constant value of the specifi c
yield . It is the free surface and the flux that, have a n
exponential form of change in time . . . and not th e
toil lieient. R ' . . . .

(In this paper, S, is used instead of S i . )
Another argument concerns the importance of the elastic

storage trot e ri it's of unconfined aquifers due to com-
pressibility . Here we again recall Il'alto's [1960, p . 46]
words, based on field experience, tha t

Unconfined stratified sediments often react to pumpin g
for a short time after pumping begins as would a n
artesian aquifer. Gravity drainage is not immediate
but water is released instantaneously from storage by
the compaction of the aquifer and its associated beds
and by the expansion of the water itself.

Later in our discussion we shall present field and labora-
tory evidence that suggests that unconfined aquifers ma y
often be much more compressible than comparable deep -

seated confined materials .
In this paper the model of Neuman [1972a, 1973] i s

extended to account for the effect of partial penetratio n
on rlrawdowns in an unconfined aquifer . The extende d
model takes into account aquifer anisotropy, and it in-
cludes Hantush's [1964] solution for n compressible con -
fined aquifer and Daparis [1967a, b] solution for a rigi d
water table aquifer as particular cases, When the pumping
well fully penetrates the aquifer, the new solution collapse s

to that of Neuman [1972a . 1973] . Since the results appl y
to both rising and falling water tables, the term `delayed
gravity response' is preferred over the classical delaye d
yield concept .
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THEORETICAL DEVELOPMEN T

Consider ap unconfined aquifer of infinite lateral extent
that rests 'on nn impermeable horizontal layer such as tha t
shown schematically fu Figure 1 . The aquifer material i s
uniform and anisotropie, the principal permeabilities being
oriented parallel to the coordinate axes. A well discharging
at a constant rate Q is open to inflow from a depth d to a
depth l beneath the initially static water table . It is assumed
that water is released from storage by compaction of the
aquifer material, expansion of the water, and gravity
drainage at the free surface .

In the analytical approach it is convenient to treat th e
well as a line sink, i .e ., to neglect, well storage as well as
the presence of a. seepage face . This introduces a certai n
error in the vicinity of the well bore, as has been pointed
out by Kipp [1973], who has solved this problem for a
finite well in a rigid semiinfinite aquifer by neglectin g
the seepage face . The governing equations become [Neuman,
1972a]
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Equations 1-9 can he linearized by using a perturbation
technique similar to that employed by Dadra( [1967a, h ]
provided that the aquifer is thick enough and s remain s
much smaller than Here this technique leads to a first -
order linearized approximation, obtained simply by shifting
the boundary condition from the free surface to the hori-
zontal plane z = b . This eliminates from (1)-(9), an d
in the absence of recharge or plant uptake at the free
surface one obtains

Fig . 1 . Schematic diagram of unconfined aquifer.

s(r, z , 0) = 0

	

(11) : a
s(°' , z, t ) = 0

	

(12)

as/az(r, 0, l) = 0

	

(13 )

Jc (r, b, t ) = –z Jt (r, b, 1 )

A further approximation is introduced by assuming that
flux along the perforated section of the well is uniform,
so that (9) become s

lira
r Or

	

2a1{,(Ql – d) at b – 1 < z < h – d (16)
ass

After applying the Laplace and Ilankel transforms t o
(l0)–(16) and inverting the results, one obtains a first -
order approximation to the original initial boundary value
problem. The mathematics involved are outlined in Ap-
pendix 1 . The final eolntion is capre.>ed in term. of six
dimensionless parameters : a, ,l3, ln . (1n, and t, or . t,, . The
solution has the form

s(r, z, l)
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where
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tt 0(?/) =
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cosh (y0 )

sink (7 0 (1 =do)] —sink [70(1 —ln) 1
(ln – dn) shah (7 0 )
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(?/ + 7„) /a ] cos (Id )

sin [7„(1 — d,,)] — sin [7„(1 —ln) 1
(t — do) sin (7„)

and the terms yn and y„ arc the roots of the equation s

aryn Binh (70) – (Uz – 7a ' ) nosh (70) = 0 7 :e < y' (IS)

at, sin (7.) + (y ' + 7,') en,, (7,,) = 0

	

( 19)
(2c — 0(a/2) < 7,, < nit

	

vt > 1

Since (I7) is the solution to a linear problem, one can
use the principle of superposition to obtain solutions fo r
any. number of pumping or injecting wells in the aquifer. '
In the ease of as fully penotreLing well, (17) reduces to (1 )
of Neuman [19731 .

AVERAGE DnAWDOwN IN OnsERVA'rmN WELL

The drawdown recorded in an observation well that is
perforated between the elevations z, and z, (Figure 1) i s
simply the average over that vertical distance and is given
by

t) = ( 12 - : ,) ' f , se, z, t) dz (20 )

This average drawdown is always greater than the fall o f

(1 )

(6)

E(r , f) = b

	

t)

	

(7 )

(8)

(9)
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the water table at the point of obse r vation . It is easy to verify

	

The sum of (23) and (24) is /la'wtush: s 11064, p . 350, equa-
that

	

can be ealeulated directly from (17) by merely

	

lion 74] solution for partial penetration in a confine d
redefining .t he rxpret.IOns

	

aquifer without leakage .
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ASYMPTOTIC BEHAVIOR AT I :AnOE \ ' ALOES OF
:bat-ipait

	

lbetaN .,toNLu:Vl Ti.

If there is no gravity drainage (Se = (I and o = co),

	

At . large values of dimensionless time t, the solutio n
the aquifer is ;utr ;ian, and (17) should reduce to Ilan-

	

behaves is if the aquifer were rigid and S, were zer o
tash's 11964 solution . From (1K) one has (8, = 0 corresponds to t, = no) . This asymptotic behavio r

is represented hp Ragan'; [11167a, b] solution for partia l
penetration in an incompressible unconfined aquifer . Since
(17) comet be reduced analytically to Dagan's :elution ,
the correspondence between these two solutions at large
values of dinlensiodess time will be demonstrated nu -

	

)

	

merically below .
r,-„

	

(In — r{r,) shill (ry
f

,

it becomes obvious tllal

	

EVALUATION OF ANALYTICAL SOLUTIONS

In order to investigate the efreet of partial penetratio n
on flow in an elastic Imcoulined aquifer, (17) and (20 )
have been evaluated numerically . The numerical approac h
is similar to that described in Appendix I) in Neuman
[1972x], A listing of the computer program complet e
with users' instructions is availalde from the author on
request .

It is inst rile'ive to start our discussion by earn pa rin g
the present delayed response solution with the solution s
ul llarttush [1064] fur n confined elamle aguih•I' and Dagw t

which is the Theis solution with respect to f . .

	

I19fi7a, hi for an unconfined rigid aquifer . For this purpose ;

	

On the other hand . from (19) one has

	

IN us consider a situation in which the pumping wel l
penetrates to a depth of 0 .2b below the initial water table

Ion Y . = are n > I (1 0 = 0 .2) in an aquifer characterized by o = S/S, _
10' . Figure 2 shows the dimensionless time-drawdow n
curves obtained by all three solutions for a fixed point i n
the aquifer, ituated at a radial chat an cc r — (1 .66/vitr2
from the renter of the pumping well (/3 = 0,361 at a n
elevation z = 0 .85b above the bottom of the layer (zn =
0 .55) . The sketch in Figure 2 gives a visual descriptio n
of this situation for the particular ease in which the aquife r

')) r• .u(n_)lain [ns(1 — cl,,)] — + in [nr(f — tn)] )
(y ' + rs 'ar' ) nr ( l o — da )

is isotropic., so that K, = 1 and r = 0 .6h The solution s
of Bantus') and Pagan were evaluated from tables published
by Witherspoon at S. [1967] and Ragan [1967b] .

The time-drawdown curve in Figure 2 suggests tha t
water is released from storage in three stages, as discusse d
by Walton [1960] . At early values of time the curve
approaches Hant-ushs solution and this indicates tha t
water is released from storage primarily by compactio n
of the aquifer material and expansion of the water . During
t lie second stage, gravity drainage becomes important, an d
its effect is similar to that, of leakage from a nearby source .
We showed previously [Neuman, 10720 that the smalle r

(21 )

(22)

ey„= 0

and when it is noted tha t

li en stall )y„(1 — rlrpl - -
.--~---
Binh y„(I — lu) I

------

lie u,,@) = rim g,,(y)

where u',,(U) is the equivalent of a.,(y) for complete pene-
tration (see (l) of Neuman [7973]) . This together with

(22)-(26) of Neuman I1072n1 shows that the first . par t
of (17) mattes to

!2
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-IL f f!l 3 `(Imp ) ,e)(y) d9

	

dy (23)

and lint get: sill (y„) = limn —(g - +
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which means Ih :d
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This togethe r with (CS) in Appendix 3 shoed that th e
second part of (17) reduces t o
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a ie, the larger the effect of gravity drainage is and there -
fore the more pronounced this 'leakage' is .

As time increases, the effect of elastic storage at th e
point considered dissipates completely, and the time-draw-
down curve approaches Dagan's solution asymptotically .
Note that Dagan's solution is expressed in terms of t, ,
whereas Ilantush's solution is expressed in terms of t . .
The delayed response solution, on the other hand, ca n
be expressed in terms of either t, or t,, since these two
parameters are related by t, = at. . Both scales are indi-
cated in Figure 2 ,

We know [see Neuman, 1972a] that when the pumping
well completely penetrates the aquifer, the time-drawdown
curves are bounded by the Theis solution with respect t o
t, during the early stage and by the Theis solution wit h
respect to t y during the late gravity drainage stage . W o
now see that in the case of partial penetration, Ilantush's
solution becomes the envelope at early time and Dagan' s
solution becomes the envelope at later times . It is im-
portant to recognize that when the aquifer is considered
to he rigid, the governing equation becomes elliptic an d
therefore Dagan's solution is discontinuous in time at
t = O. In fact, this solution implies that water levels a t
all points below the phreatic surface must drop insten-
tancously when pumping starts . In Figure 2, for example ,
the dimeosiuGleae druadowe acceding lu Dagmm changes
instantaneously from zero to somewhere between 0 .1 and
0.2 at time t = 0, and its value remains nearly constant
until t, exceeds 10-' . The behavior of Dagan's solution a t
t, < 10' is indicated approximately by the broken curv e
in Figure 2 .

We recall from Neuman [1972a] that the period of tim e
occupied by the early segment of the time-drawdown curv e
at a fixed point in the aquifer becomes less as a decreases .
When o approaches zero, this segment disappears com-
pletely, and hydraulic heads everywhere below the wate r
table drop instantaneously when pumping starts . Thus
Dagan's solution becomes more representative of the actua l
behavior of the aquifer as a decreases, but it becomes
more in error ns a increaaca.

In the literature thorn is an increasing amount of evi-
dence to support the view that the elastic properties of
shallow sandy aquifers may be too important to be ne-
glected . Prickett [1965], after having conducted IS pump-
ing tests in the vicinity of Lawrenceville, Illinois, foun d
that a had exceeded 10' in 14 out of the IS different . test
locations . More recently, Huang [1973] performed a lab -
oratory pumping experiment on a confined sandy aquife r
model 40 inches thick and discovered that the elastic
storage coefficient S was 7 .04 X 10' . This is equivalent to
a specific storage S, of 2 .11 x 10' ft', which is greater
by 2—4 orders of magnitude than numbers usually reporte d
for confined sandy aquifer materials . Huang explained tha t
this difference was ' . . . probably due to the loose name
of the sand and the small overburden pressure employed
in the test .' Vachaud et al . [1971] conducted laborator y

drainage experiments on an unconfined sandy aquifer

model 2 m high, 3 m long, and 5 cm wide with the water
table initially at an elevation of 143 em above the bottom

of the sand . In an attempt . to reproduce their result s

numerically by the finite element method we found [Neu-
man ., 1972b] that the only way to accomplish this wa s
by assigning a specific storage value to the sand of the
order of 1 .5 X 10' This value is even higher than that

reported by Huang and might possibly be due to th e
loosening of the sand during welting and the luck of an y
significant overburden pressure during the tests . On the

basis of such information we are tempted to assert tha t

contrary to prevailing belief the elastic storage propertie s

of unconfined aquifers may he considerably more pro -
'taunted than those of corresponding deep-seated confine d

materials . Additional research is needed to verify thi s

assertion. However, if it is true, then elastic storage mus t

generally be taken into account in dealing with unconfine d

aquifers.
Figure 3 shows how (lie dimensionles drawdown vanes

with elevation and with radial distance from the pumping

well at t, = 1/l3 when the aquifer is isotropic, a = 10 4 ,

and the well penetrates two tenths of the upper origina l

cemented thicknere . Note that nt distances exceeding these
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Fig. : 1 . Dimennioldesi flow pattern around pumping well for o = 10- r , 8 = r'/b2 , l,p = I .(I, 1„ = (12, and d„ = II .
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corresponding to fi = 1 the drawdown at the water tabl e
is teat than the drnwdown nt greater depths . Thou at di
mensionless times less than t, = I the response of the wate r

table lags behind the drawdown in the rest of the aquifer ,
and hence the terms delayed yield, delayed gravity re-
sponse, or delayed response of the water table are derived .

Figure 4 shows how the depth of penetration affects th e
drawdown at the bottom of the aquifer (za = 0) when

•w = 10-` and /3 = 10° . The sketch in Figure 4 depicts a
particular ease in which the horizontal permeability is 1 0
times the vertical permeability and the radial distance i s
r = 0.lb . The Theis solution for t, and Iiantush's solutio n
as obtained from tables published by Blithers pooh et al .

.[1907] are included for reference purposes . Data about
Hantush's solution at 1, = 0 .2 and z„ = 0 are not availabl e
in those tables and are therefore omitted from Figure 4.

It is seen that as the well penetrates nearer to the poin t
of observation, an earlier response is observed and th e
drawdown is greater . Owing to the small value of fi (which

can mean either that the observation point is radially
very close to the well or that tho horizontal permeability
is much greater than the vertical one), the early stage
of elastic response is highly pronounced, and the time-
drawdown curves coincide with the Theis solution whe n
le = I or with 1-lantuslt's solution when l„ < 1 during thi s
stage. The less the depth of penetration is, the earlier the
drawdown deviates from these solutions, an indicatio n
that the importance of gravity effects increases as th e
depth of penetration decreases . This increase is of cours e
expected because gravity is associated with the vertical
component of the flow velocity vector, which becomes more
important when the depth of penetration is small .

The effect of (3 on drawdown in the aquifer at za = 0 ,
when the well either completely or partially penetrates th e
sat oraled zone, is illustrated in Figure 5 for a = 10-' _
The sketch in Figure 5 gives a visual concept of these
situations for the particular ease in which the aquifer is
isotropic and 1(3 '1' is directly proportional to the radial

t r
Sr r
T i

10'

	

I0

	

to

" STI
4 . Effect f penetration depth on tine-drawdown curves for o = 10-•, p = 1tr-', rir, — 0, and ci, — 0 .
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13=10 1

Fig . f . Effect ofd on time-drawdown crave:: for o = 10, , to = 0.2 and 1 .0, e„ = 0, and ze = 11 ,

distance from the pumping well . One notes that the greate r
the value of ia, the Ices the effect of partial penetration
on the drawdown is . The effect of partial penetration de-
creases with time at an increasing rate as /3 become s
larger . When > 1, this effect disappears completel y
at dimensionless time values t, > 10 . This disappearanc e
means that flow at radial distances exceeding r = b/3'" /
K°1'" becomes essentially horizontal whereas the water is
released from storage only by gravity drainage . These re-
sults are consistent with the well-known Dupuit assump-
tions . Figure 5 also indicates that the effect of elasti c
storage decreases with increasing values of it, as one woul d
intuitively anticipate.

If' instead of drawdown at a point one considers the
average drawdown in an observation well that is per-
forated throughout the entire saturated depth of the aquifer,
the results will be as those shown in Figure 6 . A com-
parison of Figures 5 and 6 will demonstrate that partia l
penetration has It much smaller effect on the average

drawdown Ihan on the drawdown at a point . Thus the
time-drawdown curves-are nosror to the Theis solution wit h
respect to t, at early time and to the Theis solution wit h
respect to f, at later times, as previously indicated by
Neuman F19720] . Both Theis solutions are included in
Figure 6 for reference purposes . It appears that the effect
of partial penetration on the average drawdown can be
neglected for all values of /3 > 1 whenever t, > 1 .

COxcLvstoN s

The process of delayed gravity yield in response t o
pumping from a well partially penetrating a homogeneous
anisotropic unconfined aquifer can he simulated by usin g
constant values of specific storage S, and specific yield Sr
A simple mathematical model of the delayer) yield process
is obtained without considering the unsaturated zone merel y
by treating the unconfined aquifer as a compressible syste m
with a moving material boundary at the water table .

Y
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Fig . D . , Effect of s on depth-averaged time-drawdown curves fora = 10-°, Io = 0 .2 and 1 .0, do = 0, and sn — 0 .
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There is an increasing amount of evidence in the litera-
ture to support the view that unconfined aquifers ma y
often be much more cmnpressible than comparable deep -
seated confined aquifers . On the other hand, unsaturated

-flow above the water table appears to have little effec t
onthe drawdown provided that the water table is below
the root zone and the aquifer is not too thin : This suggest s
that one may often he committing a much greater erro r

-in neglecting the elastic properties of unconfined aquifers
than in disregarding the unsaturated zone . Since availabl e
field data are scarce, much additional research is neede d
about the mechanical properties of unconfined aquifers an d
about the effect of unsaturated flow on drawdowns in th e
saturated zone before this conclusion can be properl y
qualified .

The effect of partial penetration on drawdown in a n
unconfined aquifer decreases with radial distance from the
pumping well and with the ratio K,/K, . At distance s
greater than r = h/K0' P this effect disappears completel y
when time exceeds t = 10S,r*/T. The influence of partial
penetration can be minimized by perforating the observa-
tion well throughout the entire saturated thickness of th e
aquifer . Tn such a case the drawdown at distances exceeding

= b/Ko'" will fallow the Theis solution with respect
to t, at times greater than t = S,e/T .

Arvesmx 1

To solve the inil inl boundary value problem posed b y
(10)-(16), it is convenient to divide s into two components ,

s( r , z , 0 = s ,(r , z , t) + s ,( r , z , !)

	

(Al )

Although bout s, and s, satisfy (10)-(13) and (15), ther e
is n change in boundary conditions (14) and (161 . which
now take the form

as,/az (r, b, t) = 0

	

(A2)

as,

	

1 a(s, + s, )
az (r' 6'

t)

	

a t

	

dt

	

(r, li t t)

	

(A3 )

lie r aA' _ -- ~7 - -

	

at b - f < z < b - d
,—o ar

	

2rK,(l - d)
(A4)

limr -Oa,-=0

	

at b - i<z<b-d

	

(A5)
,-m

	

O r

Ilantush [106 .1, pp . 317-360] showed that s, is the sum
of two components,

	

a, = s„ + As,

	

(AO )

where a. represents the Theis equation with reaper' to t i ,

dy

	

(A7 )=

	

f

	

)
4T7 vu, ! l

and Asa is a correction term due to partial penetration ,
given by

Aea = ~~

	

2

	

E - cos [nx(l - z n) l4x7'T(ln - dn) ._, n

pn 'T ' dy

	

4 J

	

J
(A8)

When first Laplace and then llankel transforms are ap-
plied to (AS) and when (CI) and (C4) (Appendix 3 )
are used, one obtains the double transform

Aso*	 - -L--- S i cos [mr(1 - E h ) ]
2TTK0 p T(lu - an) ,.•, n

[sin (nxfn) - sin (nxdn) ]

where if = (a'/Ko) r (P/a.Kn) . A similar procedure
with respect to (A7) leads t o

sn* = Q/2rTKoPn '

	

(Ale)

When the Laplace and I3ankel transforms are applied
to (10)-(12), (A3), and (A5) with respect to a, and th e
particular Hankel transform given by (B3) (Appendix 2 )
is used, the result is an ordinary differential equation i n
terms of z . When this differential equation is solved b y
using (13) and the result is summed with (A9) and,(A10) ,
one obtains the double transform of s ,

s* = (Q/27TK,, q) + e cosh (pz) + Asa*

	

(All )

Tho constant c is determined from boundary condition s
(A2) and (A3) by first transforming these int o

a .s*/az (a , b, p) = -(P/a,)s*(a, 6, p)

	

(Al2)

and then aubatitut ins (All) into (Al2) . The result le

Q

	

I e+ )2xTKnp
~ .

(Al3)

where

	

2

	

sin (nxfn)-_sin (nxdo )
J = rr(ln - rin) a -- n(r18	

+ n 'x'

The tens f can be rewritten in the form

2 _ 1

[sin (nrla) - sin (axdn) I

From tables of Fourier transforms [Churchill . 1958, p .
299] one finds that this is equivalent t o

sinh[bn(1_-/n)) - sinh[b11(1 - d 0) ]
J =

	

nr

	

—

	

0 ( 1 n - dn) sinh (bn)

When f is substituted into (A13), c is solved for, and
the result is inserted into (All), the double transform of
s finally becomes

[sin (nrin) - sin (nxdn)I f

	

[ -au,

(A9 )

r [a,n	 Binh(q6) + cosh (nb) ]
P

	 Q	 I
/ l + p{sinh[bn(l -Ln)] - sinh[6n(1 -dn)11 cosh(nz)

8

	

2,rTKn'P \ n '

	

(ln - dn) shill (6n)[a,n shill Orb) + p cosh (sib))

	

+ As (A14)
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fl)f(r)l = Lin) _ [ r .l„(nr)f(r) dr

	

(131 )

The inverse of this transform is given b y

1I '(!'(n)i = ;(r) _

	

•~.
a .1c(ra)F(a) do

	

(B2)
0

The part ienlar 113:11 nn?hips lad are r,-rd in Ibis Wor k

are

Thn it Mtn Minkel tr nsiorut of order zero Pin) of rt

function f(r) i9 definer) as

fig. i . ( 'onlour of integration used with Mdlitfis inventio n

(a . a, p) — Iiln r d (_

	

s)(r, r, p)

	

(11 :1) formula .

1/110/(0 ' + E4 )I = (— I)•.(z,
IC(rE)

	

(R4)

where is real rnurlant ti. is a uminrgative integer .
The details or the development have been shown else -
where IA,-warm and A ' ilherxpoon, 191191 .

The function q(A) has a removable singularity at X. =1 0
:unl a .+iuplo pule at A t, = —(;f + nrr`)n,f 'i/r' . By
using (Al'1, one find: that the residue of tl(A) al A = A...
i. :

IEen 1 r

with the
atX= 0
End at an
addition ,

(A18)

Ae)enmx

Let (f)(r . p) be Ike Laplace transform of some functio n
f(r, t) . and ter f*(a, p) be the Hankel transform of (f) .
Consider the particular double transform

= Ii(a' +

	

I - '

	

(CI )

where

	

= (p/rr.) + (/C a,2 r/L') . According to (114 )
the inver se Bimini transform „f (CI) is

(f) = K,.(r)fp (C2)

From tables of definite integrals j(h .ndshlitht and Hy'ha . .
1965, p . 340J one finds Ih :d (C2) can be rewritten n s

_ I

	

!3'n4 'r

	

d y
(f)

	

-' ~'„ l xi)

— g

	

(OMO) g

I ) — ,•sl, f—1.$( .v' + „r, .')II(u' + , 02 ,3 ) - 1

and when Cauchy's residue theorem is applied to (CG) ,
I1m resell become.

	

-

_1 ' yi ,,(.9 12
I_— ''-_P I_ 1, (Il'_ ,+ nl'n•')l dy

( (fl )
+ n1 L

By comparing ((41 with (C'TI one obtains Ihr genera l
relationship

vet
y .1„(yd

	

-{- art ig v”

d m 'x dg

	

(C8)

4 9

n1=0, 1, 2, . . .
(( ' 3 )

where U!)(pl = (1 ;`p) asp (—pt'/4,,p) . win . amble, o f
Laplace transforms Churchill, 1954 . p . 3271 are used ,
the inverse o f (('3) becomes

)I q' .1'r,o x(A19)

(A20)

(A21)

(A22)

's residue

(A23)

Ali) rind
L7) .

	 y2 .

a parameter of I l :utkel transform .
b initial saturated thickness of aquifer, L .

	

/3 ut 'r' ~ dy

	

(C4)

	

d vertical distance between top of perforations i u
Ir . < .

	

4 !1

	

Il

	

pumping well and initial position of water table, L .

	

Another wan to oblaio the inverse llauuel Ira,isfurm of

	

do dimensionless d, equal to d/6.

	

(CI) is by using (1121 . which after a (Mango of variables

	

1 net vertical specific rate, of recharge at . the water

11 = at' /,B'” leads to

	

table, LT-I .
.1 ) (x) zero-order IIoeaol Emotion of the first kind .

,r

	

yJ„((((3'_') du„__

	

K, horizontal permeability, LT- I .

	

in[J + m'tr 2 + (p T /a .'$)i

	

((' :i)

	

K- vertical permeabilitt 1 7 '- I .
Kn dimensionless permeability, equal to K,/ K, .

	

:maln„A It (AM the invert ) .glace itm ,fonn nl

	

f vertical distance between bottom of perforations i n((7
(C5) may be written as

		

pumping well and initial position of water table, L .
It, dimensionless f, equal to I/h .

(C6) n, component of unit outer normal iu r direction .

V . eonrpnnent of unit outer nnnnal in z direction .
p parameter of Laplace transform .
(2 pumping rate, L 3 7'- t .
r radial distuuce from pumping well, L .

( =

	

!1 3 n(!1~'r')

	

ti) r1A d y

where g(A( = iexp (Alt — 1 /IA1?i' + ,u"r,' + (Ar '
rc, f3) N, y is a positive real constant, ind A is a complex
variable replacing p .
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The inverse Ifamkel transform of s" is obtained directly from (A14) and (132) in the for m

	 Q	 	 /t 1

	

(sinh (bn(1 —1201 —sink [bn(l —dn)11cosh (nz) aJ0(ra)
da + (Aso)(s)

	

2rTKe, is \P + (1n — ) sinh (nb)[avn sinh (fib )

	

Gib)]

	

n rd2

	

d + -- p cosh

where the angle brackets denote Laplace transforms . If we define a new variable y = ar/131 1 6, the expression above can be
rewritten as

(R)

	

+ [sinh [v(1 —1201 —sinh [v(1 —4)11end, (es .,) y.Io(vf"r) dy + (Clan )
2r7' „0 p

	

( lD — dn) sinh (v)[(ar/b)v sinh (v) + p cosh (v))

	

v

where now v ' = y' + (prr/a,(3).
The inversion of the Laplace transform of s is accomplished by using llelliii s inversion formula written as

1

	

v ."-

s(r' z, l)

	

2Ar L.

	

[ exp (At) — I 1(s)(r , z, X) dA

where 7 is a positive real constant and X is a complex variable replacing p . If one assumes that the order of integration with
respect to X and y is interchangeable, one obtains from (A15) and (AlO)

Q
f

s

	

4aT Jam y•7o(ywv) J

	

si dX dy + Ass

where

	

g (A) =
cap ( t)	 	

~
11

. +
Isia	 R(1 —

2) sinh) (E)Ka,/b)E sinh (E)
+[cosh

cosh (0 1

and E' = y' + (Ar'/a,P) •
The first step is to determine the singularities of g(X) in the complex domain of A. Since g(X) has many similarities with th e

term f(A) in (AlO) of Newman 11972a, Appendix Al, one can immediately deduce that a removable singularity occurs at X = 0
and simple poles at X d,#/O, where E = 0 ; at X . = (7 0 — y')a,Wr', where = 7 6 and yn is the root of (18) ; and at an
infinite uiunber of locations A, _ — (y.'+ y')a,14/r' (n = 1, 2, • ), where. {' = y .' and 7. are the roots of (19) . In addition,
g(X) has infinite number of simple poles at X . = — (y' + m'a0a,(3/r' (m = 1, 2, • • . ), where E e _ —m'a' .

The second step is to determine the residues of g(X) at each pole . Using formul a

Res's_s, = lion (A — A :)g(A )

one finds that

Rods--v'e .en• re 0

Resls_x, = 2u1 ,(y)

ResIs_s . = 2u2 (y )

where u, and u„ have been defined in (17) . In addition ,

( — 1

	

exp [—IA?? +m'x') f fain(maln) —sin (mrrdo)1 cos [m,(1 —zn) )Rees-~ . — -2 '

	

'”

	

y ' + mA '

	

m,r(tn — dn)

To evaluate the complex integral in (A17), the path of integration will be as shown in Figure 7 . According to Cauchy's residue
theorem one has

L in,

	

dX = —lim f A

y~A) dX + 2 E Resks_s, + 2 E Resls_s .

The integral on the right-hand side of this expression vanishes as R--. . Therefore suhstituting (A20)-(A23) into (Al?) and
using (C8) 'to eliminate As . and the terms arising from the residues at X — Xs lead to the final nolution an given by (17) .
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transmissivity K,b, L1 T-l .
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elevation of water table above bottom of aquifer, L.
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