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Abstract. The rise and decay of the water table in response to deep percolation depends 
on the shape of the recharging area, among other factors. SolutioWi describing this phenome­
non when the recharging area is rectangular or circular in shape are developed for the case 
where the underlying aquifer is effectively infinite in areal extent. The solution when the 
recharging area is circular is given in terms of a function that can be easily tabulated for a 
practical range of the parameters. Approximate solutions in terms of already tabulated func­
tions are presented also. The solution when the recharging area is rectangular is obtained in 
terms of a function that depends on two parameters. This function is tabulated for a wide 
range of the parameters. This tabulation, as well as approximate relations, affords a means 
for relatively simple calculation. The solutioWi are applicable if the rise of the water table 
relative to the initial depth of saturation does not exceed 50%. (Key words: Groundwater; 
hydraulics; recharge) 

INTRODUCTION 

Analytical expressions for the formation of 
groundwater ridges and mounds beneath spread­
ing basins are available for several cases of this 
flow phenomenon. Among these are those pre­
sented by Baumann [1952], Bittinger and Tre­
leaae [1960], and Glover [1961]. Experimental 
studies have verified the usefulness of these solu­
tions [Baumann, 1952; Marmion, 1962]. In ad­
dition to the u.sual assumptions with regard to 
the homogeneity, isotropy, vertical recharge, and 
the constancy of the formation coefficients, all 
these solutions assume that the rise of the 
water table relative to the initial depth of 
saturation is less than 2%. A solution in terms 
of the head averaged over the depth of satura­
tion has been obtained by Hant'U8h [1963] for 
the case of an infinitely long recharging area. 
Experiments using viscous-flow models have 
shown [Manno, 1965, 1967] that this solution 
is applicable, with relative deviations not ex­
ceeding 6%, even when the rise of the water 
table relative to the initial depth of saturation 
is as high as 50%. 

Artificial recharge by spreading and applica­
tion of irrigation waters on more or less rectan­
gular or circular areas is not uncommon in 
practice. The rise and fall of the water table 
beneath such areas is, therefore, of practical in­

terest. Solutions describing the rise and fall of 
the water table in response to deep percolation 
from such areas are developed in the subsequent 
sections. 

ANALYSIS 

Rectangular Recharging Area 

Figure la is a diagrammatic representation of 
a water-table aquifer receiving deep percola­
tion from a rectangular area. The aquifer is ef­
fectively infinite in areal extent. Unless other­
wise stated, the aquifer is homogeneous, iso­
tropic, and resting on a horizontal impermeable 
base; the formation coefficients are constant in 
time and space; and the constant rate of deep 
percolation relative to the hydraulic conduc­
tivity is so small that the vertically downward 
percolation is almost completely refracted in the 
direction of the tilt of the water table. 

Because of the symmetry of the flow, the 
main groundwater divides (boundaries across 
which no flow takes place) lie along the :t and 
yaxes. 

Statement of the problem. The problem is to 
determine the rise of the water table in re­
sponse to a vertically downward uniform rate 
of percolation that is supplied from a rectangu­
lar spreading basin. The water table is assumed 
to remain below the bottom of the spreading 
basin. 
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Fig. 1. Diagrammatic representation of groundwater mounds beneath a) rectangular recharg- 
ing area, b) circular recharging area. 

This flow problem can be approximated by 
the following [see Figure la for coordinate sys- 
tem] boundary-value problem' 

O•Z/Ox • + O•Z/Oy • + (2w/K)/(x, y) 
= (lb) OZ/Ot (1) 

Z(x, y, O) = 0 (2) 
OZ(O, y, OlOx = Oy(x, O, OIOZ = 0 (3) 

OZ(m, y, t)/Ox = OZ(x, •, t)/Oy = 0 (4) 
in which 

Z h •' h• •' = - = (5) 

[(x, y) = •,(y) 0 < x < l 
(d) 

=0 x>l 
with 

fl(y) = 1 O<y<a 
(7) 

=0 y>a 

where h(x, y, t) is the height of the water table 
above the base of the aquifer, K and • are, re- 
spectively, the hydraulic conductivity and the 
storativity (the specific yield in this instance) 
of the aquifer; w denotes the constant rate of 
percolation; h•(x, y, ro + t) is the height of the 
water table that would have prevailed if deep 
percolation did not occur, assumedly a solution 
of (1), with h• replacing Z and w = 0; ro is 
the instant at which percolation occurs; t de- 
notes the time since the incidence of percolation; 
2l and 2a are the dimensions [see Figure la] 
of the rectangular strip; and • is a constant of 
linearization [Hantush, 1964, equation 93] that 
can be approximated by 

• -- 0.5[hi(O) + h(tl)] (8) 
where t• is the period (or subperiod, if it be- 
comes necessary to use the method of successive 
approximation) at the end of which h is to be 
estimated. 
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Solution o] the problem. Successive applica- 
tions of the Laplace transformation with respect 
to t and the Fourier cosine transformation, with 
respect to x, then with respect to y (see, for ex- 
ample, Carslaw and Jaeger [1959] for the 
definition and related relations of these trans- 
formations), will ultimately yield 

Z•(x, •, 0 

2 yAsin•afo'{erf(l_']- x I 
-]- erf l -- x exp (--yr• 2) dr (12) 

in which eft(x) = I --erfc(x), err and erfc be- 
ing the error function and its complement, re- 
spectively. 

Applying the inversion formula of the Fourier 
cosine transform (with respect to y) on (12) 
and interchanging the order of integrations will 
yield 

2x•(•o /•, p) 2 A sin •ol sin fla ' :; po,•(p/• + •' + •S •'] (9) 
in which 

A = 2w/K 

and 2,• is the Fourier cosine transform with 
respect to y of the Fourier cosine transform with 
respect to x of the Laplace transform with 
respect to t of the function Z(x, y, t), and/•, 
and p are, respectively, the parameters of these 
successive transformations. 

Application of the inversion formula for the 
Fourier cosine transform (with respect to x) on 
(9) will give 

2•(x,/•, p) = 2 A sin flw •/2-• • p• 

fo © sin •l cos wx dw ß •[• + (p/• + •)] 
which, after evaluating the •ite integral 
[Erdelyi, 1954], becomes 

1 • sin fla &(•, •, p) = • • p•(p/• + •) 
ß {exp [--(x -- l)•P/y + •] 

-- exp [--(/+ x)•p/y + •]} if 1 < x 
(10) 

or 

_ _1 d A sinBa - 2 p•(p/• + •) 

ß { 2 -- exp [-- (l -- x) %/pfi, q- tS •] 

-- exp[--(/q- x) X/pfi, q-•al} if l> x 
(11) 

The inverse Laplace transform of (10) or 
(11) can each be shown, using the translation 
theorem, the convolution theorem, and a table 
of inverse transforms, to be given by 

Z(x, y, 0 

_2 exp (--•r/• •') sin '•r /• ' cosily dl• dr 
which, after evaluating the infinite integral 
[Erdelyi, 1954], can be written as 

Z(x, y, t) 

•A t (1 q- x) 1-- x -2 fo Ierf\•/-]- erf(•-•r•)l 
(a + Yl a -- y 

Water-table rise. After changing the varia- 
ble of integration from ß to t• in (13), the 
water-table rise can be finally expressed as 

= (•/2•)(•0 

.{s,/•_ + _• 
a-- y +s* z+• _•_•) •;•' 

1-x a_ ___+ y) + 
•_•, (14) 

where the function S • is defined by 

S*(a,/•) = erf a ß erf /• dr (15) 
a function that can be integrated by parts to 
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I 

o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

o o ß ß ß o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

o ß ß ß ß ß ß * ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

o o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

o ß ß ß ß - ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

0 eeeee eeeee eeeee eeeee eeeee eeeee eeeee 

o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

0 eeeee eeeee eeeee eeeee eeeee eeeee eeeee 

.............................. dJJdd 

o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 
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• ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

ß 

• ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

• ß ß ß ß ß ß ß ß ß ß ß ß ß ß . ß . ß ß ß ß ß ß ß ß ß ß ß . . ß ß ß ß ß 

• ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

• ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß . ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

ooooo ooooo ooooo ooooo ooooo ooooo 

o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 
ooooo ooooo ooooo ooooo ooo'oo ooooo 

ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß . ß ß ß . ß ß ß ß ß ß ß ß ß 

o ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 

, 

ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß ß 
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yield an expression in terms of tabulated func- 
tions [see (23) ]. However, computation in the 
resulting expression is cumbersome. To obviate 
this cumbersomehess, Table I is provided, with 
a wide range of a and •. For values of a •d • 
beyond •he range of Table 1, •he function can 
be evaluated by the relations subsequent to 
(•). 

Water-table decay. If percolation ceases at 
the •stant t• s•ce •cidence, the water-table de- 
cay can be obtained by superpos•g hypotheti- 
cally on the flow system at t -- to a rate of uni- 
fo• discharge equal to that of the unifo• rate 
of percolation. This is possible, s•ce the dif- 
ferential equation is l•ear in h •. Thus, the decay 
of the water table is given by 

h'-- h,'= Z(x, y, t) -- Z(x, y, t-- to) (16) 
where Z(x, y, t) is the right-hand member of 
(14). 

M•imum height o/water-table. The maxi- 
mum height of the water table in the flow sys- 
tem of Figure 1 occurs underneath the center of 
the recharging area. Thus, from (14• and (16), 
with x -- y -- 0, the maximum height of the 
water table during its rise and decay is given, 
respectively, by 

h• • -- h• • 

= (2w/K)ytS*(1/•• a/•) (17) 
and 

h•-- hi •: (2w/K){•tS*( 1 a 
• •• (lS• 

in which t' -- t -- t• and h• is the maximum 
height of the water table. 

Solution •or an infinitely long recharging strip. 
Fluctuation of the water table beneath an in- 

finitely long recharging strip is a special case 
of (14). When a becomes infinitely large, the 
flow is effectively in the x direction. Since 

S*(a, m) • err (a/•) dr 

= 1 -- 4i • erfc (a) (19) 
and 

S*(-a, m) - -- erf a dr 

= -- 1 -]- 4i a erfc (a) (20) 
where i • erfc is the second repeated integral of 
the error function [see Carslaw and Jaeger, 
1959, for tables], equation 14 with a -) •, for 
x < l, will become 

h a-- h a(w/K)•t{2 4i a erfc 1 -- x 

a result that has already been obtained [Han- 
tush, 1963; Marino, 1967]. 

The function $•(•, fi). Integrating by parts, 
(15) can be put as 

s.(.. •) = •r•(.) •r•(f) + (4/•).• •(• + •') 

-•- (2/•;) [ae -•' err (•) + •e -•' err (a)] 
- •[.•.(•/...•) + •*(./•. •) (•) 

where W(x) is the well function for nonleaky 
aquifers, •o• in the mathematical literature 
as the negative exponential integral of (--x), 
and M•(a, •) is a function de•ed by 

•*(-. •) 

• dy (24) = • exp [--fi(1 • y•) 1 • y 
and is available in tabular form [Hant•h, 
1967]. 

For values of • and fi beyond the range of 
Table 1, the following relations and approxima- 
tions for S • (a, •), in addition to (23), are use- 
ful for practical computations: 

s*(-.. •) = s*(.. -•) = -s*(.. •) 

s*(-.. -•) = s*(.. •); s*(•. •) = s*(•..) 

s*(o. •) = s*(•. o) = o 
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S*(a, O) '•' 1 -- 4i z erfc (0), if a •_ 3 

S*(a,/•) ----- 1 -- 4i z erfc (a), if • 2 3 

S*(a,•)• 1, if a • 3 and • • 3 

i• d+ • • O.lO (•) 

Circular Recharging Area 

The flow unde•eath a circular unifo•ly 
charging area can be approximated [see Figure 
lb] by the following boundary-value problem' 

O•Z I OZ 2W I OZ (26) o• • • • • • • •(•) - • 
z½,o) :o 

oz(o, O/o•: o 

•(•,0 •o 
in which 

and 

Z h 2 hi • = -- v = K•/• 

f(r) = i 0 • r • R 

=0 rHR 

where R denotes the radius of the circular re- 

charging area, r is the radial distance to any 
point measured from the center of the recharg- 
ing area, and other symbols have been defined. 

Water-table rise. The preceding boundary- 
value problem is solved by using the Laplace 
and the zero-ordered Hankel transformations 

[see for example, Carslaw and Jaeger, 1959]. 
The final result can be put as 

fo © h"- ho" - 2V (1 -- e-qø')Jl(fl)Jo(pfl ) •K 

= (2 V/wK)f(q, p) (27) 
. in which 

V = unrR 2 q = vt/R • o = r/R 

and Jo, J• are, respectively, the zero and first 
ordered Bessel functions of the first kind. 

The function i(q, p) is not available in tabu- 
lar form. It can, however, be easily tabulated 
for a practical range of q and p. 

Maximum height o• water-table. The maxi- 
mum height of the water-table takes place be- 
neath the center of the recharging area. From 
(27), with r -- 0, the solution (using Laplace 
transformation in evaluating infinite integrals) 
can finally be reduced to 

h,• 2 - hi 2 
V 

2•rK [W(uo) + (1 -- e-•'ø)/Uo] (28) 
which, if Uo _• 0.05, can be written as 

h,,, •'-- h,' = (V/2•rK)[W(uo) + 1] 

= (V/27rK)In (6.11vt/R') (29) 
where 

Uo = •/ 4•t ( •o) 
and W(u) is the well function for nonleaky 
aquifers. 

Approximate water-table rise. When t _• 0.5 
r•/v (that is, u _• 0.5), the water-table rise (us- 
ing Laplace transformation in evaluating in- 
tegrals) can be approximated for r < R by 

h2 -- hi2 -- 2wK W(uo) -- e -uø 

+ • (1 - e-•ø)} (•) Uo 

and, for t • 0.5 R•/r and r > R, by 

• - n,• = (r/2•){ re(u) + O.Suo• -•} (•2) 
where 

u = r2/4vt 
and other symbols have been defined. 

Water-table decay. The principle used in 
obtaining (16) can be used to obtain the water- 
table decay beneath a circular recharging area. 
This decay is given by 

•"- •,"= z½, t) - z½, t- to) 
in which Z (r, t) is the right-hand member of the 
pertinent expression for the water-table rise, and 
to is the period of continuous recharge. When 
using (31) and (32) in the preceding equation, 
the time criteria become, respectively, (t -- to) 
> 0.5 r•/v and (t -- to) > 0.5 R•/v. 
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CONCLUDING REMARKS 

The solutions presented previously provide a 
means, not only for forecasting the rise and de- 
cay of the water table, but also for determining, 
through analyses of observed water levels, two 
of the three flow parameters if one of these 
parameters is known. The three parameters are 
the rate of uniform recharge, the storativity, 
and the hydraulic conductivity. The classical 
procedure of type-curve methods [see, for ex- 
ample, Todd, 1959; Hantush, 1964; De Wiest, 
1965; Davis and De Wiest, 1966] that are used 
in analyzing data from pumping tests can be 
adapted to analyze observed profiles and fluc- 
tuations of water levels beneath recharging 
areas when suitable expressions for such profiles 
and fluctuations are available. For the cases 

treated in the present study, the pertinent ex- 
pressions are those given by (14), (21), (22), 
(27), (31), and (32). 

When the recharging area is near other bound- 
aries such as impermeable boundaries and/or 
lines of constant head, the method of images 
[see, for example, Todd, 1959; Hantush, 1964] 
can be applied to obtain the required solutions 
near such boundaries, by using the solutions for 
aquifers of infinite areal extent. 
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