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[I] Numerical Monte Carlo simulation is considered to be one of the main tools to be 
used in groundwater hydrology (1) to quantify the uncertainty in the flow predictions due 
to imperfect knowledge of aquifer architecture, hydraulic parameters, and forcing tenns or 
(2) to assess the reliability of approximated moment-based equations for flow and/or 
transport. While the Monte Carlo framework is conceptually straightforward and very 
flexible, it is recognized as lacking well-established convergence criteria. Here we propose 
a methodology for convergence analysis of Monte Carlo simulations and therefore for the 
reliability assessment of the inferred statistical moments. The methodology, based on 
simple rules of statistical inference, is described with reference to a typical groundwater 
flow problem and can be extended to different application fields. INDEX TERAIS: 1829 
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1. 	 Introduction number of Monte Carlo simulations. The authors consider 
the process to have reached convergence when the spatial [2] Numerical Monte Carlo (MC) simulation is consid­
average of 62Xn over the whole computational domain ered to be the main tool to be used in groundwater 
vanishes. Once the maximum acceptable average value for hydrology and in the oil industry to quantifY the uncertainty 
62Xn is defined, this procedure is a quantitative transposition in flow and transport predictions due to uncertain aquifer 
of the visual judgment of the stabilization of the average architecture, hydraulic parameters, and forcing terms. 
sample moment curves. Results from MC simulations, based on a limited number 

[4] Here we propose a methodology for convergence of synthetic realizations of the random parameters of 
analysis of Monte Carlo simulations and therefore for the interest, are also used as ground truth against which to 
reliability assessment of the computed statistical moments. assess the reliability of approximated moment-based equa­
The methodology will be described with reference to the tions for groundwater flow and/or transport [e.g., Hassan et 
first two (ensemble) moments (mean and variance) ofal., 1998; Riva et al., 2001; Guadagnini et aI., 2003; Li et 
hydraulic head in a typical steady state groundwater flow al., 2003]. [t is also well recognized that MC-based simu­
problem, but can be extended to other statistical quantities lations still lack well-established convergence criteria. Be­
(for example to global indicators) as well as to different cause of the interest and practical use of Monte Carlo 
fields where Monte Carlo simulations are used, such as river simulations, we believe there are strong theoretical and 
hydraulics, sediment transport, hydraulic structures [e.g.,pragmatic reasons to propose a simple and effective method 
Johnson, 1992; Yen and Tung, 1993; van Vuren et al.,to analyze the convergence of Monte Carlo-based ensemble 
2002].moments and to identifY a criterion to reliably terminate the 

Monte Carlo process at a desired level of accuracy. 
[3] Stability of the computed moments is usually assessed 2. Methodology 

by plotting the sample moments of the target variable [5] We start by briefly recalling some basic definitions 
evaluated at specific points as a function of the number of and properties of sample moments ofa random variable, 'R,
Monte Carlo simulations performed. These graphs are which will be then used in the analysis of corresponding
usually presented in natural scale and very rarely show sample moments resulting from MC simulations. It is well 
more than a few hundreds of realizations [Johnson, 1992; known [e.g., Mood et al., 1974] that the sample mean, 
Riva et al., 1999; Li et al., 2003]. Convergence of results is ERn *'L ERj , computed on the basis of n reali7..ations ER j

then assessed qualitatively on the basis of the fact that the 
(i I, i~.l~: n) of the random variable ER with probability sample moment curve has reached a more or less flat region. 
density function J{), in general does not coincide with the Bellin et al. [1994] propose a convergence criterion based 
ensemble mean, fL (ER), of the process. The same holds for on the quantity 62Xn (Xn - xn~li, where Xn is a target 
the sample variance, S,~ = n 'L nR; - ~,i, and sample sample moment at a point, and n is the sample si7.-C, Le., the 

i=1.17 

-
-
-
-

kurtosis M4 = 1 "" (ER ~,i, which do not coincide , ,11 n Lot 1 
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kurtosis, m4 = h(< � m)4i, respectively. It is therefore
common to interpret the sample moments as random quan-
tities and to relate them to their ensemble counterparts.
[6] The sample mean of < has the following properties:

<n

� �
¼ m; var <n

� �
¼ 1

n
s2 ð1Þ

Furthermore, if < is normal, i.e., < � N(), then

<n � m
s=

ffiffiffi
n

p � N0;1ðÞ and
<n � m
Sn=

ffiffiffi
n

p � tn�1ðÞ 8 n ð2Þ

where N0,1() is the standard normal distribution and tn�1() is
the Student distribution with (n–1) degrees of freedom.
Equation (1) tells us that we can take <n as an estimator for
m; var[<n] is an indicator of the uncertainty of such an
estimation. A more precise indication of the uncertainty is
given by the evaluation of confidence intervals; these can be
derived from the second of (2) whenever is normal:

Pr <n � tn�1 1� a
2

� � Snffiffiffi
n

p � m � <n

	
þtn�1 1� a

2

� � Snffiffiffi
n

p


¼ 1� a

ð3Þ

where 1-a is the probability that the value of the process
mean m lies within the confidence interval around the
sample mean <n. More in general, if < follows a generic
(unknown) probability distribution, confidence intervals for
<n can be (over)estimated via Chebyshev inequality:

Pr <n � a
sffiffiffi
n

p � m � <n þ a
sffiffiffi
n

p
	 



 1� 1

a2
ð4Þ

where (1 � 1/a2) is an (under)estimation of the probability
that the value of the process mean m lies within the
confidence interval around the sample mean <n. Equations
(3) and (4) show that Sn/

ffiffiffi
n

p
, which is an estimator for s/

ffiffiffi
n

p
,

is the scaling factor of the confidence intervals amplitude of
the mean for any given probability value.
[7] The sample variance of< has the following properties:

S2n
� �

¼ s2; var S2n
� �

¼ 1

n
m4 �

n� 3

n� 1
s4

� �
ð5Þ

Furthermore, if < � N(), then

var S2n
� �

¼ 2

n� 1
s4 ð6Þ

X
i¼1;n

<i � mð Þ2

s2
� c2

nðÞ and

X
i¼1;n

<i �<n

� �2
s2

¼ n� 1ð Þ S
2
n

s2
� c2

n�1ðÞ 8 n
ð7Þ

where cn
2 () is the chi-square distribution with n degrees of

freedom. It follows that

Pr
n� 1

c2
n�1 1� a=2ð Þ

S2n � s2 � n� 1

c2
n�1 a=2ð Þ

S2n

	 

¼ 1� a ð8Þ

Equation (5) states that Sn
2 is a possible estimator for s2. If the

sample variance Sn
2 and kurtosisM4,n are used in equation (5)

instead of their ‘‘exact’’ counterparts, s2 and m4, one can
obtain an indicator of the uncertainty of the estimation of s2

by means of Sn
2. For the case of normally distributed

variables it can easily be shown from equation (8) that the
width of the confidence intervals of the variance, for any a
value, scales with Sn

2/n for n!1. Again, Chebyshev
inequality can be used to estimate the confidence interval
for Sn

2 when < is not normally distributed.
[8] For easier evaluation of the confidence intervals (3)

and (8), it is useful to point out that both the tn() and the
cn
2() distributions can be approximated via the normal

distribution when n is sufficiently large (say, n 
 30), being

tn() ffi N0,1() and
ffiffiffiffiffiffiffiffiffiffiffiffi
2c2

nðÞ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1

p
ffi N0,1().

[9] Equations (1)–(8) express well known properties of
statistical inference. Their application to the evaluation of
the degree of convergence of Monte Carlo results is
straightforward. As MC realizations are used to estimate
ensemble moments, the uncertainties of these estimates can
be evaluated as a function of the values of the sample
moments and of the size of the sample, i.e., of the number of
process realizations.

3. Application Example

[10] The methodology is here applied to a simple two-
dimensional convergent flow example taken from the
literature [Riva et al., 2001]. We consider steady state
incompressiblehorizontal flow toawell of zero radius, located
at the center of a circular (random, scalar) transmissivity
domain having radius L. The well pumps at a constant
deterministic rate,Q, and isassumedas theoriginofaCartesian
coordinate system (x, y). The head at the outer circular
boundary remains at a constant, deterministic value,HL.
[11] We performed numerical Monte Carlo simulations

using the same code which was employed by Riva et al.
[2001] for steady state flow in a square domain with 100
rows and 100 columns of uniform size (Dx = Dy = D). A
circular boundary of radius L = 50D was defined about the
well by designating all cells outside it as inactive. We
modeled the log hydraulic transmissivity, Y = lnT, as a
statistically homogeneous and isotropic random function
of space with Gaussian covariance. The hydraulic head,
HL, along the circular boundary was set equal to 80 (in
consistent units). A pumping well at a constant rate Q = 15
was placed at the central node of the grid. Gaussian
sequential simulation (based on the code SGSIM [Deutsch
and Journel, 1998]) was used to generate random realiza-
tions of Y on the above defined two-dimensional grid. Each
realization constituted a sample from a multivariate Gauss-
ian, statistically homogeneous field, Y, of zero mean, hYi =
0, and with the target isotropic Gaussian covariance of unit
variance, sY

2, and unit correlation length, l.
[12] An extensive suite of 200,000 Monte Carlo flow

simulations was performed, to obtain relatively stable
values of the sample moments of interest and verify the
method of investigation. In the following we focus on the
analysis of the first and second moments of the hydraulic
head, h, at a point with coordinates (x/L = �0.44, y/L = 0).
In order to better grasp the relative uncertainties, we will
consider the head drawdown, Dh = HL � h, from the
undisturbed condition.
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[13] Figure 1 depicts the sample mean, Dhn, and variance,
Sn
2, of head drawdown computed at the monitoring point.

We consider a log n-axis to be preferred to a linear axis for a
visual assessment of convergence. As previously discussed,
the root mean square (RMS) of the estimators for the mean
and the variance scales with 1/

ffiffiffi
n

p
. This implies that, for a

number of Monte Carlo simulations n = 100, one needs to
add about 300 more realizations in order to halve uncer-
tainty. However, 3000 additional realizations are needed for
the same reduction when analyzing moments obtained by
n = 1000. This behavior is automatically reproduced by the
log scale, while the natural scale stretches oscillations and
trends, thus leading to an overestimation of convergence
rates. It can be noted that increasing the number of MC
simulations from 1000 to 2000 to obtain a better stabiliza-
tion of the results, as it is often done in the literature, has
basically no effect on the overall convergence of the
process, as one should change order of magnitude to clearly
see significant effects.
[14] The qualitative convergence analysis is then fol-

lowed by the quantification of the uncertainty associated
with the computed sample moments. This is accomplished
by analyzing their coefficients of variation, CVmean =

RMS[Dhn]/Dhn and CVvar = RMS[Sn
2]/Sn

2, respectively.
When the numerators of the two coefficients of variation
are estimated upon substitution of the sample second and
fourth moments in the second of (1) and (5) we obtain the
corresponding estimated values CV *mean and CV *var. The
coefficients of variation are depicted in Figure 2 as a
function of the number of Monte Carlo simulations, at the
chosen monitoring point. Figure 2 also reports the ‘‘exact’’
values CVmean and CVvar, computed by using the sample
moments from the whole set of 200,000 MC realizations.
As n increases, values of CV* become increasingly accurate
estimates of the corresponding CV. These graphs can
provide information about the order of magnitude of the
uncertainty associated to moments estimated by a given
number of Monte Carlo simulations, even though this
cannot be strictly translated into a confidence interval. This
can also provide an estimate about the number of simula-
tions required to refine the accuracy of our predictions by a
given percentage and allows one to effectively plan the
number of Monte Carlo needed.

[15] These aspects are also emphasized in Figures 3a
and 3b, depicting profiles along the axis y = 0 of differences
between the mean head drawdowns computed after 100 and
2,000 MC simulations and what we assumed to be the
ground truth, i.e., the mean head computed after n =
200,000. The corresponding ±2 Sn/

ffiffiffi
n

p
intervals are also

reported. We can clearly see how the 2 Sn/
ffiffiffi
n

p
intervals vary

with distance from the well and that their width decreases as

Figure 1. Convergence of the sample mean and variance
of head at the monitoring point as functions of the number
of Monte Carlo simulations.

Figure 2. Coefficients of variation for the sample mean
and variance of head at the monitoring point as functions of
the number of Monte Carlo simulations.

Figure 3. Differences between the mean head drawdowns,
eh = h(n) � h(n = 200,000). Dashed curves indicate the
±2Sn(x/L, y/L = 0)/

ffiffiffi
n

p
intervals. (a) n = 100; (b) n = 2,000.
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the number of MC simulations increases. The width of the
radial oscillations of differences is coherent with the local
scale of the 2 Sn/

ffiffiffi
n

p
bounds.

[16] Values of estimator variance can be related to con-
fidence intervals if the shape of the probability distribution
of the estimator itself is known. This is the case if the

hydraulic head is normally distributed (equations (2) and
(7)). Figure 4 depicts the cumulative distribution of
hydraulic head computed at the monitoring point, after
n = 60,000. The corresponding normal distribution is
reported, computed with the same sample mean and vari-
ance. Shapiro-Wilkins test of the null hypothesis that these
60,000 Monte Carlo-generated heads are Gaussian was
negative at a significance level of 5%. The result of the
test shows that the hydraulic head cannot be considered
normally distributed from a statistical point of view; how-
ever, Figure 4 shows that the departure from normality is
not too large. We can therefore expect equations (3) and (8)
to give reasonable approximations for confidence intervals.
The significance of such approximation can be judged
from Figure 5a, depicting the stabilization analysis of the
mean hydraulic head drawdown Dhn at the monitoring
point. We have here reported (1) the set of curves one
would obtain upon breaking down the sample of n =
200,000 into 100 subsets, each one comprising 2,000
simulations, (2) the stabilization curve obtained for the
complete set of 200,000 simulations (the same as in
Figure 1), and (3) the 95% estimated confidence intervals
(a = 0.05). The latter have been computed on the basis of
the standard deviation obtained after n = 200,000. In order
to verify the approximation of the computed confidence
intervals, Figure 5b depicts the cumulative distribution of
the normalized variable (Dhn � m)/(Sn/

ffiffiffi
n

p
), as obtained

Figure 4. Cumulative distribution of hydraulic head
drawdown at the monitoring point (solid line) compared
to the corresponding normal distribution for the same mean
and variance values (dashed line).

Figure 5. Dependence of convergence of (a) sample mean and (c) variance of head on the number
of Monte Carlo simulations. The data set of n = 200,000 (thick solid line) is subdivided into 100 series of
n = 2,000 each (shaded lines). Cumulative distributions (for the 100 subsets) of the estimates for (b) mean
and (d) variance of head drawdown for n = 100. Corresponding Student and c2 distributions are shown
(dashed lines).
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from the 100 subsets created, and the corresponding tn�1( )
distribution, at n = 100. The corresponding depictions for
the hydraulic head variance, Sn

2, at the same location are
reported in Figures 5c and 5d. In Figure 5d, for the sake of
comparison, the c2

n�1( ) distribution has been juxtaposed to
the empirical distribution of (n � 1) Sn

2/s2. The values for
m and s2 are those computed after n = 200,000. Visual
inspection of Figure 5 reveals that the computed confidence
intervals are indeed meaningful, in that they provide the
order of magnitude of the uncertainty associated with the
first and second moments one evaluates on the basis of a
finite number of Monte Carlo realizations.

4. Conclusions

[17] Our work leads to the following major conclusions.
[18] 1. Assessment of convergence of Monte Carlo sim-

ulations must be performed both qualitatively and quanti-
tatively. A qualitative analysis is more meaningful when
plotting the results in semi-log scale. A local quantitative
analysis can be performed by means of simple relationships,
based on rules of statistical inference.
[19] 2. It is possible to identify the order of magnitude of

the uncertainty associated with the first and second moments
of a state variable of interest when these are evaluated on the
basis of a finite number of Monte Carlo runs.
[20] 3. From a practical viewpoint, it is possible to obtain

an estimate of the number of Monte Carlo iterations
required to refine the accuracy of our predictions by a given
percentage.
[21] 4. Although the methodology has been described

with reference to the first two (ensemble) moments of
hydraulic head in a typical groundwater flow problem, it
can be extended to other statistical quantities as well as to
different application fields where Monte Carlo simulations
are used.
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chastic Analysis of Wellhead Protection and Risk Assessment).
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