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Maximum likelihood Bayesian averaging
of uncertain model predictions
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Abstract. Hydrologic analyses typically rely on a single conceptual-mathematical
model. Yet hydrologic environments are open and complex, rendering them
prone to multiple interpretations and mathematical descriptions. Adopting only
one of these may lead to statistical bias and underestimation of uncertainty. A
comprehensive strategy for constructing alternative conceptual-mathematical
models of subsurface flow and transport, selecting the best among them, and
using them jointly to render optimum predictions under uncertainty has recently
been developed by Neuman and Wierenga (2003). This paper describes a key
formal element of this much broader and less formal strategy that concerns
rendering optimum hydrologic predictions by means of several competing
deterministic or stochastic models and assessing their joint predictive
uncertainty. The paper proposes a Maximum Likelihood Bayesian Model
Averaging (MLBMA) method to accomplish this goal. MLBMA incorporates both
site characterization and site monitoring data so as to base the outcome on an
optimum combination of prior information (scientific knowledge plus data) and
model predictions. A preliminary example based on real data is included in the

paper.

Keywords: Uncertainty, Conceptual modeling, Model structure, Bayesian averaging,
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Introduction

Hydrologic analyses typically rely on a single conceptual model of site hydrog-
eology. Yet hydrologic environments are open and complex, rendering them
prone to multiple interpretations and mathematical descriptions. This is true
regardless of the quantity and quality of available hydrologic data. Focusing on
only one conceptual-mathematical model may lead to Type I model errors, which
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arise when one rejects (by omission) valid alternative models. It may also result in
a Type II model error, which arises when one adopts (fails to reject) an invalid
conceptual-mathematical framework. Indeed, critiques of hydrologic analyses,
and legal challenges to them, typically focus on the validity of the underlying
conceptual (and by implication mathematical) model. If severe, these may
damage one’s professional credibility; result in the loss of a legal contest; and lead
to adverse environmental, economic and political impacts.

Analyses of model uncertainty based on a single hydrologic concept are prone
to statistical bias (by committing a Type II error through reliance on an invalid
model) and underestimation of uncertainty (by committing a Type I error
through under sampling of the relevant model space). The bias and uncertainty
that result from reliance on an inadequate conceptual-mathematical model are
typically much larger than those introduced through an inadequate choice of
model parameter values. Yet most hydrologic uncertainty analyses ignore the
former and focus exclusively on the latter. This often leads to overconfidence in
the predictive capabilities of the model, which the available hydrologic data
seldom justify.

It is argued by Beven and Freer (2001) “that, given current levels of under-
standing and measurement technologies, it may be endemic to mechanistic
modeling of complex environmental systems that there are many different model
structures and many different parameter sets within a chosen model structure
that may be behavioural or acceptable in reproducing the observed behaviour of
that system.” They attribute to Hornberger and Speer (1981) the notion that this
is not simply a problem of identifying a correct or optimal model given limited
data. Instead, this is a generic problem which Beven (1993) calls equifinality and
attributes to (Beven, 2000) limitations of current model structures in representing
heterogeneous surface and subsurface flow systems, limitations of measurement
techniques and scales in defining system characteristics including initial and
boundary conditions for a model, and the uniqueness of individual sites. He
points out that to do detailed measurements throughout a site is both impractical
and unfeasibly expensive. The unique characteristics of a site are therefore
inherently unknowable. All that can be done is to constrain the model repre-
sentations of the site to those that are acceptably realistic, usually in the sense of
being consistent with the data.

There is no established literature on ways to construct alternative concep-
tual-mathematical models of site or regional hydrology, select the best among
them, use them jointly to render optimum hydrologic predictions, and assess
the uncertainty of such predictions. Useful philosophies of model building
under uncertainty may be found in Gauch (1993), Burnham and Anderson
(1998) and Christakos (2000, 2002a,b, 2003a,b). A comprehensive strategy for
constructing alternative conceptual-mathematical models of subsurface flow
and transport, selecting the best among them, and using them jointly to render
optimum predictions under uncertainty has recently been developed by Neu-
man and Wierenga (2003). The strategy embodies a systematic and compre-
hensive approach to hydrogeologic conceptualization, model development and
predictive uncertainty analysis. It is comprehensive in that it considers all stages
of model building and accounts jointly for uncertainties that arise at each of
them. These stages include regional and site characterization, hydrogeologic
conceptualization, development of conceptual-mathematical model structure,
parameter estimation on the basis of monitored system behavior, and assess-
ment of predictive uncertainty. In addition to parameter uncertainty, the
strategy concerns itself with uncertainties arising from incomplete definitions of



(a) the conceptual framework that determines model structure, (b) spatial and
temporal variations in hydrologic variables that are either not fully captured by
the available data or not fully resolved by the model, and (c) the scaling
behavior of hydrogeologic variables.

The strategy of Neuman and Wierenga (2003) encourages exploration of
varied conceptual frameworks and assumptions at all stages of hydrogeologic
model development through a comprehensive evaluation of a broad range of
regional and site data, their translation into coherent and internally consistent
conceptual-mathematical models, and computation and visualization based on
these data and models. Included among these frameworks and assumptions are
various model simplification and abstraction schemes. The strategy recognizes
that site characterization and monitoring data are expensive and difficult to
collect, leading to a ubiquitous scarcity of hard site information. It is therefore
critically important to assess the role that such data play in rendering the
hydrogeologic performance analysis credible. The strategy stresses the role of
characterization and monitoring data in helping one identify and test alter-
native conceptual models, make rational choices among them, gauge and
reduce model bias and uncertainty through proper model selection and cali-
bration, assess the reliability of model predictions, and confirm the assessment
through independent peer review as well as at least some degree of direct
verification.

The report of Neuman and Wierenga (2003) includes several detailed, real-
world examples of situations in which more than one conceptual-mathematical
model is supported by available data and how to proceed when this happens. The
present paper describes a key formal element of their much broader and less
formal strategy, which concerns rendering optimum predictions by means of
several competing deterministic or stochastic models and assessing their joint
predictive uncertainty. The paper proposes a Maximum Likelihood Bayesian
Model Averaging (MLBMA) method to accomplish this goal and illustrates the
idea with a preliminary example based on real data. Like the underlying strategy,
MLBMA incorporates both site characterization and site monitoring data so that
the outcome is based not only on model predictions but also on prior infor-
mation (scientific knowledge and data) entering into the model.

2
Prediction and uncertainty analysis based on single model

2.1

Deterministic model

A traditional approach to hydrologic prediction and uncertainty analysis has been
to postulate a deterministic model structure and treat its parameters as being
imperfectly known. To quantify this imperfect knowledge, one must postulate a
prior parameter uncertainty model. When model parameters are measurable and
available in sufficient quantity, one could postulate a Type A probabilistic model
of prior parameter uncertainty based on statistics derived from these data. When
no such data are available in statistically significant quantities, one has the option
of postulating a Type B model of prior parameter uncertainty on the basis of
subjective probabilities. Such a model should always be suspected of suffering
from an unknown amount of statistical and personal bias. Intermediate between
Type A and Type B parameter uncertainty models is the case where indirect
information about the parameters is available, from which relevant prior statistics
can be derived formally. Such information may include parameter measurements
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in other similar hydrologic environments and/or surrogate data (for example,
pedologic or geophysical data that are indicative of hydrologic parameters).
Statistics derived from data collected elsewhere are potentially biased due to a
lack of site- or region-specific information about mean parameter values and
incompatibility of scale. The associated variance may be too small or too large,
depending on the quantity and quality of such data. Statistics derived from
surrogate data may suffer from poorly defined correlations and incompatibility of
scale.

The traditional approach to reduce parameter bias and uncertainty has been
to calibrate the model against observed system behavior by means of a suitable
inverse method. The last thirty years have seen major advances in the
development of theories and algorithms for the estimation of deterministic
model parameters. Many (though not all) of these theories and algorithms are
“statistical” in that they include analyses of parameter estimation uncertainty.
Such analyses typically accept, but do not necessarily require, information
about prior parameter statistics as input. The output includes posterior sta-
tistics of parameter estimation errors, which are generally less biased and
smaller than the prior estimation errors. A recent summary and comparison of
various statistical inverse methods for groundwater flow models has been
published by Zimmerman et al. (1998). A detailed set of guidelines for the
effective calibration of deterministic groundwater flow models has been
prepared by Hill (1998).

The most common way to propagate input errors through an otherwise
deterministic model is by means of Monte Carlo simulations. This is done by
generating multiple, equally likely sets of randomized inputs; computing deter-
ministically a set of corresponding model outputs for each; and analyzing the
resultant multiple, equally likely random output sets statistically. Another ap-
proach is to associate the predictions with approximate error bounds, or confi-
dence limits, computed on the basis of linear regression theory applied to the
(typically nonlinear) inverse model (Hill, 1998).

2.2

Stochastic model

Hydrologic parameters exhibit both systematic and random spatial (and possibly
temporal) variations on a multiplicity of scales. Traditional deterministic models
capture at best the larger-scale, systematic components of these variations. They
however fail to resolve smaller scale variations or account for their uncertain
nature. The emphasis is therefore shifting from deterministic to probabilistic
methods that are better suited for these needs. The trend has become to describe
the spatial variability and scaling of hydrologic parameters geostatistically, and to
analyze hydrologic systems stochastically. This trend has been documented in a
number of recent books including those by Dagan and Neuman (1997) and Zhang
(2001).

The most common method of stochastic analysis is high-resolution compu-
tational Monte Carlo simulation that produces a large number of equally likely
results. These nonunique results are summarized in terms of statistically averaged
quantities, their variance-covariance, and perhaps higher moments of the cor-
responding sample probability distributions. Results that honor measured values
of medium properties are said to be conditioned on these data. Upon condi-
tioning the simulations on measured values of parameters in space, one obtains
(among others) conditional mean flow and transport variables that constitute
optimum unbiased predictors of these unknown random quantities. One also



obtains conditional second moments (variance-covariance) that provide a mea-
sure of the associated prediction errors. To condition the predictions on observed
system behavior, one must either discard random simulations that do not
reproduce the observations, or employ an inverse procedure of the kind devel-
oped for this purpose by Gomez-Hernandez et al. (1997).

Monte Carlo analysis requires knowing the multivariate probability distribu-
tion of relevant hydrologic parameters, which is difficult to infer from commonly
available data. To achieve a high space-time resolution of relevant stochastic
phenomena, it requires the use of large space-time grids with very small dis-
cretization intervals. To yield sample statistics that converge to their theoretical
(ensemble) counterparts requires numerous repetitions (realizations). The net
result is a large amount of computational time and storage, which are considered
uneconomical for many practical applications.

This has given impetus to the development of alternative stochastic methods
that allow one to compute the conditional mean, variance and covariance of
hydrologic system states directly, without Monte Carlo simulation. This is done
on the basis of moment equations conditional on parameter measurements as
illustrated for example by Guadagnini and Neuman (1999) and Ye et al. (2002).
Conditioning additionally on observed state variables requires an inverse
procedure (Hernandez et al., 2003).

3
Prediction and uncertainty analysis based on multiple models

3.1

Previous hydrologic approaches

Carrera and Neuman (1986b) have noted that an inadequate model structure
(conceptualization and mathematical description) is far more detrimental to its
predictive ability than is a suboptimal set of model parameters. This helps
explain why the National Research Council (1999) has listed as second
among four recommended research directions in subsurface science the
development of tools and methodologies for conceptual modeling with
emphasis on heterogeneity, scale and uncertainty bounds on the basis of
field experimental data.

Recently, a panel was convened by the National Research Council (2001) to
describe the process through which conceptual models of flow and transport in
the fractured vadose zone are developed, tested, refined and reviewed. The panel
concluded that development of the conceptual model is the most important part
of the modeling process. The conceptual model is the foundation of the quanti-
tative mathematical representation of the field site (i.e., the mathematical model),
which in turn is the basis for the computer code used for simulation. Reasonable
alternative conceptualizations and hypotheses should be developed and evalu-
ated. In some cases, the early part of a study might involve multiple conceptual
models until alternatives are eliminated by field results.

According to the panel, it is important to recognize that model predictions
require assumptions about future events or scenarios, and are subject to uncer-
tainty. Meaningful quantification of uncertainty should be considered an integral
part of any modeling endeavor, as it establishes confidence bands on predictions
given the current state of knowledge about the system. A suite of predictions for a
range of different assumptions and future scenarios is more useful than a single
prediction.
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It was noted earlier that there is uncertainty not only about the parameter
values that should enter into a given model (as characterized by its structure), but
also about the very structure (conceptual and mathematical) of the model that
should represent the hydrologic system of interest. The traditional approach to
model uncertainty analysis, which considers only a single deterministic model
structure, fails to adequately sample the complete space of plausible hydrologic
models. As such, it is prone to modeling bias and underestimation of model
uncertainty.

An example of how one could account quantitatively for structural model
uncertainties was given by James and Oldenburg (1997). They investigated the
uncertainty of simulated TCE concentrations, at the point of potential human
exposure, due to uncertainty in the parameters (permeability, porosity, diffu-
sivity, solubility, adsorption) and variations in the conceptual-mathematical
model (injection rate of TCE source; initial TCE source saturation; regional
groundwater flow; heterogeneity of permeability). The authors used the three-
dimensional code T2VOC to simulate three-phase (gas, aqueous, NAPL), three-
component (air, water, VOC) nonisothermal flow based on an actual site with a
25 m thick vadose zone and a saturated zone. To assess parameter uncertainty
associated with a given model, they used the inverse code ITOUGH2. Their final
step was to assess the range of outcomes that one obtains with the entire set of
alternative conceptual-mathematical models. James and Oldenburg found that
uncertainties in their model outcomes span orders of magnitude, and that both
parameter and model uncertainty contribute significantly to this wide range of
outcomes. They concluded that “risk assessment and remediation selection ... is
meaningful only if analysis includes quantitative estimates of ... uncertainty” in
both the parameters and the conceptual-mathematical models.

A similar approach has been advocated more recently by Samper and Molinero
(2000). The authors consider the main uncertainties in predicting groundwater
flow and transport to be those associated with the selection of future scenarios,
choice of model structure and assignment of model parameters. The authors
consider parameter uncertainty to be minor in comparison to structural (i.e.
conceptual) model errors. They suggest to evaluate model predictive uncertainty
by calibrating a number of conceptual-mathematical models against available
monitoring data, to retain those calibrated models that can adequately reproduce
past observations, to assess the predictive uncertainty of each model due to the
uncertainty of its parameters, to treat the predictive uncertainty of each model as
being equally likely, and to produce a single combined range of predictive
uncertainties.

Rather than relying on model calibration and treating the outcomes of different
structural models as being equally likely, Beven and Binley (1992) have proposed
a strategy to which they refer as GLUE (Generalized Likelihood Uncertainty
Estimation). The strategy calls for the identification of several alternative struc-
tural models and the postulation of a prior probabilistic model of parameter
uncertainty for each. Each structural model, coupled with its corresponding
parameter uncertainty model, is used to generate Monte Carlo realizations of past
hydrologic behaviors and to compare the results with monitored system behavior
during the same period. Likelihood measures are defined to gauge the degree of
correspondence between each simulated and observed record of system behavior.
If a likelihood measure falls below a subjectively defined “rejection criterion,” the
corresponding combination of model structure and parameter set are discarded.
Those combinations which pass this test are retained to provide predictions of
system behavior under selected future scenarios. Each prediction is weighted by a



corresponding normalized likelihood measure (so as to render the sum of all

likelihood measures equal to one), to produce a likelihood-weighted cumulative
distribution of all available predictions. For recent discussions of GLUE and its
applications the reader is referred to Beven (2000) and Beven and Freer (2001).

A Bayesian approach to the quantification of errors in a single groundwater
model was recently proposed by Gaganis and Smith (2001). Like GLUE, it relies
on Monte Carlo simulations without model calibration and on subjective criteria
of “model correctness.”

It must be understood that the set of predictions one produces with any given
choice of alternative structural models and parameter sets, by whatever method,
is conditional on the choice of models and the data used to support them. As
such, these predictions do not represent all possibilities but only a limited range
of such possibilities, associated with these models and data. Any change in the
latter would generally lead to a different assessment of predictive model uncer-
tainty. There thus appears to be no way to assess the uncertainty of hydrologic
predictions in an absolute sense, only in a conditional or relative sense.

4
Proposed approach

Bayesian model averaging

At the heart of the approach I propose is the concept of Bayesian Model Aver-
aging (BMA), described with clarity in a recent tutorial by Hoeting et al. (1999).
According to these authors, “standard statistical practice ignores model uncer-
tainty ... leading to over-confident inferences and decisions that are more risky
than one thinks they are. ... (BMA) provides a coherent mechanism for
accounting for this model uncertainty.” They introduce BMA by noting that if A
is a quantity one wants to predict, then its posterior distribution given a discrete
set of data D is

=

p(AD) =~ p(A[My, D)p(M;|D) (1)

k=1

where M = (M, ..., M) is the set of all models (or hypotheses) considered, at
least one of which must be valid. In other words, p(A|D) is the average of the
posterior distributions p(A|My, D) under each model, weighted by their posterior
model probabilities p(M|D). The posterior probability for model My is given by
Bayes’ rule,

_ p(D|My)p(My)
POIID) = S o Dl p(ar) )
where
p(DIMy) = / p(D[0k, M)p(05|My) do 3)

is the integrated likelihood of model M, 0y is the vector of parameters associated
with model My, p(6x|My) is the prior density of 6; under model My, p(D|0k, My) is
the joint likelihood of model My and its parameters 0k, and p(My) is the prior
probability that My is the correct model. All probabilities are implicitly condi-
tional on M.
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The posterior mean and variance of A are (Draper, 1995)

E[A|D] = E[A[D, Mj]p(M;|D) (4)
=1
Var[A|D] = Y "{Var[A|D, M) + E[A|D, M]* } p(M;|D) — E[A|D]* . (5)

=1

According to Hoeting et al. (1999), there is considerable empirical evidence that
averaging over all models in this fashion provides better average predictive ability
than relying on a single model, My, conditional on M. However, they list a number
of factors that render the application of BMA to complex systems (such as those
encountered in hydrology) difficult: (a) The number of potentially feasible models
may be exceedingly large, rendering their exhaustive inclusion in (1) infeasible;
(b) integrals of form (3) may be hard to compute; and (c) the specification of
prior model probabilities p(My) is challenging, having received little attention.

A practical way to eliminate the first difficulty is to average over a manageable
subset of models that are supported by the data. The strategy being developed by
the author promotes the idea of Occam’s window (Madigan and Raftery, 1994)
according to which averaging is limited to a relatively small set of the most
parsimonious models that are most strongly supported by the data while
remaining hydrologically plausible.

Maximum likelihood Bayesian model averaging
To render BMA computationally feasible, I adopt a suggestion by Taplin (1993)

that p(A|My, D) in (1) be approximated byp(A‘Mk,ék,D) where 0y is the
maximum likelihood estimate of @ based on the likelihood p (D’@)k, Mk>. Hoeting

et al. (1999) note that Draper (1995), Raftery et al. (1996) and Volinsky et al.
(1997) have shown this to be useful in the BMA context.

Methods to evaluate 0 by calibrating a deterministic model M against hy-
drogeologic data D, which may include prior information about the parameters,
are described by Carrera and Neuman (1986a,b) and Carrera et al. (1997). The
same can be done with a stochastic model based on moment equations in a
manner similar to that of Hernandez et al. (2003). The approach yields a negative
log likelihood (NLL) criterion that includes two weighted square residual terms: a
generalized sum of squared differences between simulated and observed state
variables, and a generalized sum of squared differences between posterior and
prior parameter estimates. The first is weighted by a matrix proportional to the
inverse covariance matrix of state observation errors. The second is weighted by a
matrix proportional to the inverse covariance matrix of prior parameter esti-
mation errors. The corresponding constants of proportionality are estimated
jointly with other model parameters by maximum likelihood. Including prior
information in the calibration criterion allows conditioning the parameter esti-
mates not only on site monitoring (observational) data but also on site charac-
terization data from which prior parameter estimates are usually derived. When
both sets of data are considered to be statistically meaningful, the posterior
parameter estimates are compatible with a wider array of measurements than they
would be otherwise and are therefore better constrained (potentially rendering
the model a better predictor).

Maximum likelihood estimation yields an approximate covariance matrix for
the estimation errors of 6. Upon considering the parameter estimation errors of



a calibrated deterministic model My to be Gaussian or log Gaussian, one easily
determines p(A‘Mk, 0, D) by Monte Carlo simulation of A through random
perturbation of the parameters. The simulation also yields corresponding
approximations E[A‘Mk, 0., D} of E[A|M, D], and Var [A‘Mk, 0, D} of
Var[A|Mg, D], in (4) and (5). If My is a stochastic model based on moment
equations, it can yield E [A’Mk, 9;(, D} and Var [A‘Mk, 9k7 D] directly without
Monte Carlo simulation (Hernandez et al., 2002).

To eliminate the need for computer intensive integration according to (3), I
propose to evaluate the weights p(M;|D) in (1) and (4)-(5) based on a result due
to Kashyap (1982). The author considers a set My, ..., Mk of mutually exclusive
models so that any set of observational data could have originated from only one
of them. I interpret this to mean that only one of the models is correct even in the
event that some yield similar predictions for a given set of data (in which event
the degeneracy could be resolved by prior information about which model
“makes most sense,” parsimony, and/or additional data for which the predictions

would differ). The models may be linear or nonlinear, Gaussian or non-Gaussian.
Kashyap proves that, under some fairly standard conditions,

In p(Mi|/D) =1n Ci +1n p(D‘@k,Mk> +1In p(ék\Mk> +%ln (i\?)

—%m)Fk(D‘ék,Mk)‘ +R(N) (6)

where Cy = cp(My), p(My) being the prior probability of model My and c a
constant that can be evaluated from

> p(MiD) =1, (7)
=1

Ny is the dimension of ék, N is the dimension of D, Fy is the normalized (by N)
observed (as opposed to ensemble mean) Fisher information matrix having
components

%1 O,
Feij = _% i pa(;?@’:jk Mk) ®

and NR(N) tends to a constant almost surely as N — oc.

Kashyap (1982) suggests that, in the absence of any contrary information, the
models be assigned equal prior probabilities, yielding C, = C = constant for all k.
The assumption that all models are a priori equally likely is considered by
Hoeting et al. (1999) to be a “reasonable ‘neutral’ choice” when there is insuffi-
cient prior reason to prefer one model over another. Draper (1999) and George
(1999) express concern that if two models are near equivalent as concerns pre-
dictions, treating them as separate equally likely models amounts to giving double
weight to a single model of which there are two slightly different versions, thereby
“diluting” the predictive power of BMA. One way to minimize this effect is to
eliminate at the outset models that are deemed potentially inferior. Another is to
retain only models that are structurally distinct and non-collinear. Otherwise, one
should consider reducing (diluting) the prior probabilities assigned to models
that are deemed closely related.

299




300

Kashyap’s (1982) purpose in developing (6) was to derive an optimum
decision rule for selecting one among several competing models, unrelated to
BMA. Since the first term on the right hand side is constant and the last is
asymptotically zero, Kashyap proposed to select that model which minimizes
the KIC criterion

di = —1In p(D‘ék,Mk> —In p(?)k\Mk> —%ln (?) +%1n‘Fk(D‘ék7Mk>‘
©)

Increasing the number of parameters Ny allows —In p (D’()k, Mk) to decrease and
Niln N to increase. When Ny is large, the rate of decrease doe$ not compensate
for the rate of increase and dj grows while p(M|D) in (6) diminishes. This means
that a more parsimonious model with fewer parameters is preferred by (9) and

assigned a higher probability by (6). On the other hand —In p(D‘ék,Mk)

diminishes with N at a rate higher than linear so that as the latter grows, there
may be an advantage to a more complex model with larger Nj.

The last term in (9) reduces the relative emphasis on model fit as the infor-
mation content of the data diminishes. As illustrated by Carrera and Neuman
(1986b), it may cause one to prefer a simpler model that leads to a poorer fit with
the data over a more complex model that fits the data better. The term tends to a
constant as N becomes large, so that dx becomes asymptotically equivalent to the
Bayes information criterion BIC derived by Akaike (1977), Rissanen (1978) and
Schwarz (1978) on the basis of different considerations. Raftery (1993) proposed
adopting the asymptotic BIC approximation

mpwwgzmdw%Mo—%mN (10)

for BMA (see also Raftery et al. 1996; Volinsky et al. 1997; Hoeting et al. 1999).
To my knowledge, the nonasymptotic expression (6) has not been previously
incorporated into BMA. I propose to do so because environmental models seldom
satisfy the assumption that N is large. To render the use of (6) in BMA compu-
tationally feasible, I propose to follow the approach of Carrera and Neuman
(1986a) who incorporate in D both observational data such as head and prior
estimates of the parameters, and treat the two sets as being mutually uncorrelated
while allowing internal correlations between members of each set. This allows

them to incorporate In p <9k|Mk> into the log likelihood function In p (D‘@k, Mk)

and to compute Fy (D‘éth) in a straightforward manner (also Carrera et al.
1997).

5

Preliminary example: alternative geostatistical models of spatially varying data
The following example illustrates preliminary steps toward a potential application
of MLBMA. The example concerns single-hole pneumatic injection tests con-
ducted by Guzman et al. (1994, 1996) in unsaturated fractured tuff at the Apache
Leap Research Site (ALRS) in central Arizona. Spatially distributed log air per-
meability data obtained from a steady state interpretation of 184 such tests, in
1-m borehole intervals (Fig. 1) along 6 vertical and inclined (at 45°) boreholes,
were subjected to geostatistical analysis by Chen et al. (2000). The authors
compared three different conceptual-geostatistical models of spatial variability



Locations of 1.0 m Air Permeability Measurements

(Circles do not indicate sphere of influence)

(w) sV Z

Fig. 1. Center locations of 1-m
single hole pneumatic test inter-
vals; overlapping circles indicate
retested locations (after Chen et al.,
2000)

for these data: (1) a fractal power-law variogram model, (2) an exponential
variogram model with linear drift, and (3) an exponential variogram model with
quadratic drift. Variogram parameters were estimated using a maximum likeli-
hood cross-validation (MLCV) method developed for this purpose by Samper and
Neuman (1989a, b), coupled with a generalized least squares drift removal ap-
proach due to Neuman and Jacobson [1984]. MLCV estimates variogram
parameters by maximizing the likelihood of kriging (geostatistical interpolation)
cross validation errors. As MLCV assumes that the variogram model is known, it
leads to optimum parameters for a given model structure without regard to the
question how well this model represents the real system. All three models yielded
comparable kriged estimates of log permeability but very different estimation
variances in three dimensions. This is illustrated along a vertical cross-section for
models 1 and 3 in Fig. 2. The negative log likelihood model fit criterion, NLL, in
Table 1 is seen to be very similar for all three variogram models, implying that
they fit the data almost equally well.

A number of model discrimination criteria have been developed in the context
of maximum likelihood estimation theory, which allow one to rank the three
variogram models. Among these criteria are AIC (Akaike, 1974), BIC (Akaike,
1977), HIC (Hannan, 1980) and KIC (Kashyap, 1982). BIC and KIC are defined,
respectively, in (10) and (9). All four criteria support the principle of parsimony
in that, everything else being equal, they favor the model with the smallest
number of parameters. Kashyap’s criterion favors the model that is least probable
(in an average sense) of being incorrect. Stated otherwise, the criterion minimizes
the average probability of selecting the wrong model among a set of alternatives.
While it favors the simpler model, KIC nevertheless allows considering models of
growing complexity as the database improves in quantity and quality. In other
words, KIC recognizes that when the database is limited and/or of poor quality,
one has little justification for selecting an elaborate model with numerous
parameters. Instead, one should then prefer a simpler model with fewer parameters,
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Table 1. Discrimination among log permeability variogram models. After Chen et al.
(2000)

Drift Model No Drift 1st order 2nd order
polynomial polynomial
NLL 665.8 665.1 655.8
Variogram model of residuals Power Exponential Exponential
Number of parameters 2 6 12
Variance (scaling coefficient 0.2715 0.5807 0.495
for power model)
Integral scale (power for 0.4475 1.665 1.2602
power model)
AIC (Rank) 669.8 (1) 677.1 (2) 679.8 (3)
BIC (Rank) 677.2 (1) 696.4 (2) 718.4 (3)
HIC (Rank) 672.4 (1) 684.9 (2) 695.5 (3)
KIC (Rank) 680.0 (1) 690.1 (2) 700.9 (3)

which nevertheless reflects adequately the underlying structure of the rock and
the corresponding flow and transport regime.

Table 1 shows that, whereas the exponential variogram model with a quadratic
drift fits the data best (as measured and implied by the smallest negative log
likelihood model fit criterion, NLL), all four model discrimination criteria (AIC,
BIC, HIC, KIC) consistently rank the power model as best, and the former model
as least acceptable. The reason is that whereas all three models fit the data almost
equally well, the power model is most parsimonious with only two parameters,
and the exponential variogram model with second-order drift is least parsimo-
nious with twelve parameters.

This consistent ranking notwithstanding, the model discrimination criteria in
Table 1 are very close to each other and it is therefore not clear that one vario-
gram model must be preferred over the others. An alternative approach would be
to consider all three, and perhaps additional, variogram models jointly in the
context of MLBMA. Work along these lines is underway.

6

Conclusion

Bayesian model averaging (BMA) provides an optimal way to combine the pre-
dictions of several competing conceptual-mathematical models and to assess their
joint predictive uncertainty. It can be made computationally feasible by basing it
on a maximum likelihood approximation due to Kashyap (1982) and the
parameter estimation method of Carrera and Neuman (1986a). The resulting
maximum-likelihood Bayesian model averaging approach (MLBMA) incorporates
both site characterization and site monitoring data in a way that bases the out-
come on an optimum combination of prior information (scientific knowledge
plus data) and model predictions.
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