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Abstract 

In the last few decades hydrologists have made tremendous progress in using dynamic simulation models for the analysis and under­
standing of hydrologic systems. However, predictions with these models are often deterministic and as such they focus on the most prob­
able forecast, without an explicit estimate of the associated uncertainty. This uncertainty arises from incomplete process representation, 
uncertainty in initial conditions, input, output and parameter error. The generalized likelihood uncertainty estimation (GLUE) frame­
work was one of the first attempts to represent prediction uncertainty within the context of Monte Carlo (Me) analysis coupled with 
Bayesian estimation and propagation of uncertainty. Because of its Ilexibility, ease of implementation and its suitability for parallel 
implementation on distributed computer systems, the GLUE method has been used in a wide variety of applications. However, the 
MC based sampling strategy of the prior parameter space typically utilized in GLUE is not particularly efficient in finding behavioral 
simulations. This becomes especially problematic for high-dimensional parameter estimation problems, and in the case of complex sim­
ulation models that require significant computational time to run and produce the desired output. In this paper we improve the compu­
tational efficiency of GLUE by sampling the prior parameter space using an adaptive Markov Chain Monte Carlo scheme (the Shuffled 
Complex Evolution Metropolis (SCEM-UA) algorithm). Moreover, we propose an alternative strategy to determine the value of the cut­
off threshold based on the appropriate coverage of the resulting uncertainty bounds. We demonstrate the superiority of this revised 
GLUE method with three different conceptual watershed models of increasing complexity, using both synthetic and real-world stream­
flow data from two catchments with different hydrologic regimes. 
© 2007 Elsevier Ltd. All rights reserved. 

Keywords: Hydrologic modeling; Uncertainty estimation; Generalized likelihood uncertainty estimation (GLUE); Markov Chain Monte Carlo; Rainfall­
runoff models; Calibration 

1. Introduction and scope 

It is an accepted fact that a hydrologic model prediction 
should not be deterministic, most-probable representation, 
but should also explicitly include an estimate of uncer­
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tainty. Uncertainty in model predictions arise from mea­
surement errors associated with the system input (forcing) 
and output, from model structural errors arising from the 
aggregation of spatially distributed real-world processes 
into a mathematical model and from problems with param­
eter estimation. Realistic assessment of these various 
sources of uncertainty is important for science-based deci­
sion making and will help direct resources towards model 
structural improvements and uncertainty reduction. 

31115 

111111111111 11111 11111/111111111111 

http:vrugt{fl;lanl.gov
www.elsevier.comlloca
http:www.sciencedirect.com


R.-S. Blasone et al. / Advances in Water Resources 31 (2008) 630–648 631
Recent years have seen an explosion of methods to
derive meaningful uncertainty bounds on our model
predictions. Methods to represent model parameter,
state and prediction uncertainty include classical Bayes-
ian [30,54,57], pseudo-Bayesian [3,15], set-theoretic [26,28,
52,56], multiple criteria [19,62,7,34,35,58], sequential data
assimilation [36,59,42] and multi-model averaging methods
[17,1,60]. These methods all have strengths and weak-
nesses, but differ in their underlying assumptions and
how the various sources of error are being treated and
made explicit. Among these methods, the generalized like-
lihood uncertainty estimation (GLUE) methodology of
Beven and Binley [3], inspired by the Hornberger and Spear
[23] method of sensitivity analysis was one of the first
attempts to represent prediction uncertainty. This method
maps the uncertainty in the modeling process onto the
parameter space and operates within the context of Monte
Carlo (MC) analysis coupled with Bayesian estimation and
propagation of uncertainty. The GLUE approach calls for
rejecting the concept of a unique global optimum parame-
ter set within some particular model structure, instead rec-
ognizing the acceptability, within a model structure, of
different parameter sets that are similarly good in produc-
ing fit model predictions. This concept, defined as equifinal-
ity, is directly addressed by the evaluation of different sets
of parameters within a pseudo-Bayesian MC framework.
The outputs of the GLUE procedure are parameter distri-
butions conditioned on the available observational data
and associated uncertainty bounds.

Since its introduction in 1992, the GLUE framework
has found widespread application for uncertainty assess-
ment in environmental modeling, including rainfall-runoff
modeling [3,15,31], soil erosion modeling [8], modeling of
tracer dispersion in a river reach [20], groundwater model-
ing and well capture zone delineation [13,24], unsaturated
zone modeling [40], flood inundation modeling [50,2],
land-surface–atmosphere interactions [14], soil freezing
and thawing modeling [21], crop yields and soil organic
carbon modeling [61], ground radar-rainfall estimation
[53] and distributed hydrological modeling [39,44]. The
popularity of GLUE is probably best explained by its
conceptual simplicity, relative ease of implementation
and use and its ability to handle different error structures
and models without major modifications to the method
itself.

Despite this progress made, various contributions to the
hydrologic literature have criticized GLUE for not being
formally Bayesian, requiring subjective decisions on the
likelihood function and cutoff threshold separating behav-
ioral from non-behavioral models, and for not implement-
ing a statistically consistent error model [54,38,41,11].
Moreover, in most GLUE applications a rather simplistic
MC sampling scheme is used to sample from the prior
parameter distributions (with some notable exceptions that
will be discussed later) and to find a well-distributed set of
behavioral models and their associated predictive simula-
tion uncertainty. While this approach may be adequate
for relative simple low-dimensional sampling problems, it
is unlikely to result in stable and consistent estimates of
the set of behavioral models (and thus parameter distribu-
tions) for relatively high-dimensional and complex estima-
tion problems. To compensate for this drawback, the LHS
method typically requires many thousands of model simu-
lations [39,43,41,46]. However, various contributions to the
hydrologic literature have demonstrated that even at this
extreme only very few behavioral models are found. In
those situations, one should be particularly careful not to
infer erroneous conclusions about parameter identifiability
and equifinality [7,57].

In a separate line of research, Markov Chain Monte
Carlo (MC2) methods have been developed to locate the
high probability density (HPD) region of the parameter
space efficiently. These methods generate a random walk
through the parameter space and successively visit solu-
tions with frequency proportional to their weight in the
posterior PDF. To do so, MC2 methods use information
from accepted solutions found in the past to improve their
search efficiency and converge to the posterior PDF of the
parameters.

In this paper, we examine the use of adaptive MC2 sam-
pling within the GLUE methodology to improve the sam-
pling of the HPD region of the parameter space. A few
papers do discuss the use of MC2 sampling in GLUE for
generating the initial sample (e.g. [37]), but this approach
has not become common practice. The concept is to con-
struct the initial sample using the Shuffled Complex Evolu-
tion Metropolis (SCEM-UA) global optimization
algorithm and derive the associated model output estimates
(as the median of the distribution) and uncertainty bounds
(as percentiles of the output prediction) using the GLUE
method. By using an algorithm designed to find the global
optimum in the parameter space, we believe that this
revised GLUE method should locate behavioral models
more efficiently, thereby improving the computational effi-
ciency and robustness of the so-derived uncertainty
bounds.

This paper is structured as follows. Section 2 briefly
describes the GLUE methodology and discusses the LHS
and SCEM-UA methods for sampling of the prior param-
eter distribution. In Section 3, we discuss the three concep-
tual watershed models and catchments used to test the
revised GLUE methodology. Section 4 discusses the results
of the analysis, comparing the LHS method and SCEM-
UA algorithm for generating the initial sample and exam-
ining the influence of model complexity on the sampling
and GLUE-derived median forecasts and uncertainty
bounds. Finally, Section 5 summarizes the most important
findings.

2. Methods

In this section we briefly discuss the GLUE methodol-
ogy and describe the LHS and SCEM-UA algorithms for
sampling of the prior parameter distribution.
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2.1. The GLUE methodology

The GLUE procedure is a Monte Carlo method, the
objective of which is to identify a set of behavioral models
within the universe of possible model/parameter combina-
tions. The term ‘‘behavioral” is used to signify models that
are judged to be ‘‘acceptable,” that is, not ruled out, on the
basis of available data and knowledge. To implement
GLUE, a large number of runs are performed for a partic-
ular model with different combinations of the parameter
values, chosen randomly from prior parameter distribu-
tions. By comparing predicted and observed responses,
each set of parameter values is assigned a likelihood value,
i.e. a function that quantifies how well that particular
parameter combination (or model) simulates the system.
Higher values of the likelihood function typically indicate
better correspondence between the model predictions and
observations. Based on a cutoff threshold, the total sample
of simulations is then split into behavioral and non-behav-
ioral parameter combinations. This threshold is either
defined in terms of a certain allowable deviation of the
highest likelihood value in the sample, or sometimes as a
fixed percentage of the total number of simulations. The
likelihood values of the retained solutions are then rescaled
to obtain the cumulative distribution function (CDF) of
the output prediction. The deterministic model prediction
is then typically given by the median of the output distribu-
tion and the associated uncertainty is derived from the
CDF, normally chosen at the 5% and 95% confidence level
in most of the published GLUE studies. These respective
bounds are called 90% confidence bounds or prediction
limits, based on the fact that they are created by using
the retained solutions covering 90% of the posterior prob-
ability. It should be pointed out that these so-derived
GLUE uncertainty bounds are not confidence bounds in
a statistical sense, i.e. they are not expected to include a
given percentage of the observations.

While the GLUE method has found widespread imple-
mentation for predictive uncertainty analysis in environ-
mental modeling, the method has several drawbacks that
have been well pointed out and discussed in the literature
[55,38,41,11]. Perhaps most importantly, the GLUE
derived parameter distributions and uncertainty bounds
are entirely subjective and have no clear statistical mean-
ing. This is because the method uses an informal likelihood
to extract information from the observational data and
implements a subjective cutoff threshold to separate behav-
ioral from non-behavioral models. So, strictly speaking, the
method is incoherent and inconsistent from a statistical
point of view, although some easy adjustments to GLUE
can be made so that the method adheres to formal Bayes-
ian theory [5].

Although GLUE can be criticized for not being properly
Bayesian, it is not particularly easy to develop a likelihood
measure that properly accounts for input, output, parame-
ter and model structural error within a single performance
measure [32,29]. This has been the subject of much research
in many different fields of study, but no universal applicable
likelihood measure has yet been developed (and perhaps
might not exist!) that properly extracts information from
observational data in the presence of different sources of
uncertainty. Approaches that do implement formal likeli-
hood measures for inference such as sequential data assim-
ilation methods [59,42], multi-model averaging approaches
[1,60] and recent extensions to BATEA (Bayesian total
error analysis) [25] have their own weaknesses. For
instance, they essentially rely on Gaussian or Gamma prob-
ability distributions to characterize and propagate various
sources of errors. These distributions seem incomplete and
inappropriate, particularly for real-world applications.

In the absence of a formal likelihood measure that
incorporates all sources of uncertainty, or error models
that appropriately characterize input, output, parameter
and model structural error within a Bayesian framework
(and within the context of streamflow forecasting), we here
focus instead on improving the computational efficiency of
GLUE to increase applicability of the method to relative
high-dimensional parameter estimation problems and com-
plex simulation models that require significant computa-
tional time to run and produce the desired output. One
might argue that the main problem with GLUE is not to
find an efficient sampling strategy and that it would be
more productive if we would focus our research efforts
on the development of statistically proper likelihood mea-
sures. Nevertheless, we believe that improving computa-
tional efficiency is a necessary developmental step to
further increase applicability of uncertainty estimation
methods such as GLUE to complex inference problems
[43]. Hence, irrespective of the likelihood measure used,
successful application of GLUE essentially relies on the
identification of a well-distributed set of behavioral solu-
tions in the parameter space that appropriately captures
and reports uncertainty.

2.2. Parameter sampling strategy

To sample the prior parameter distribution, practitio-
ners of the GLUE methodology generally implement a sim-
ple random sampling, or in some cases the more efficient
Latin hypercube sampling (LHS) strategy [12,44]. Random
sampling methods, though relatively simple to implement,
are unlikely to densely sample the parameter space close
to the global optimum with a dense distribution of points.
Our conjecture is that considerable improvements in sam-
pling can be made by using an adaptive sampling method
that uses information from past draws to update the search
direction. Such a method would probably result in param-
eter and prediction uncertainty estimates that are more
robust.

In this paper, we explore the use of the SCEM-UA algo-
rithm to achieve this improvement. Instead of randomly
sampling the prior parameter space, the SCEM-UA algo-
rithm generates a random walk through the parameter
space so that the posterior PDF is approximated with a
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sample of parameter sets. In contrast to LHS, the SCEM-
UA algorithm is an adaptive sampler that periodically
updates the covariance (size and direction) of the sampling
or proposal distribution during the evolution of the sam-
pler toward the HPD region of the parameter space, using
information from the sampling history induced in the tran-
sitions of the Markov Chain. Experiments using synthetic
mathematical test functions have demonstrated that the
SCEM-UA algorithm provides a close approximation of
the HPD region of the parameter space, but is significantly
more efficient than traditional Metropolis–Hastings sam-
plers [57].

In the SCEM-UA algorithm, a predefined number of
different Markov Chains are initialized from the highest
likelihood values of the initial population. These chains
independently explore the search space, but communicate
with each other through an external population of points,
which are used to continuously update the size and shape
of the proposal distribution in each chain. The MC2 evolu-
tion is repeated until the R-statistic of Gelman and Rubin
[16] indicates convergence to a stationary posterior distri-
bution. An extensive description and explanation of the
method appears in [57] and so will not be repeated here.
The SCEM-UA method was implemented using standard
values for the algorithmic parameters presented in [57].
Moreover, in the absence of reliable prior information
about the location of the HPD region in the parameter
space, we assume a uniform prior for each of the individual
parameters in all our SCEM-UA optimizations. This is a
typical assumption in hydrologic modeling and frequently
used in the SCEM-UA algorithm to approximate the pos-
terior PDF of the model parameters.

The rationale for adopting this sampling strategy in the
GLUE methodology rests on arguments of the generation
of representative results, as well as on computational effi-
ciency. Because the SCEM-UA algorithm provides an ade-
quate sampling of the HPD region of the parameter space,
it will find a greater number of behavioral solutions,
thereby yielding more robust estimates of parameter and
prediction uncertainty. Also, because the SCEM-UA
method is well suited for searching high-dimensional
parameter spaces, far fewer model evaluations will be
needed to provide a good approximation of the posterior
PDF. Finally, although the equifinality method that
inspired the GLUE method downplays the importance of
finding the global optimum in a global search procedure
(e.g. [4]), we believe that it is logical to take steps to ensure
that the global optimum is contained in the family of
behavioral models. The SCEM-UA algorithm is designed
to find this optimal parameter set.

2.3. Choice of the likelihood function

Various likelihood functions have been proposed in the
literature (e.g. [3,49,11,42]) as measures that quantify the
closeness between model simulations and observations.
Most of these functions are considered pseudo-likelihood
functions because they do not adhere to formal Bayesian
statistics, but instead are designed to implicitly account
for errors in model structure and input data and to avoid
over-conditioning to a single parameter set. In this study
we implement the following commonly used likelihood
function:

LðhijY Þ ¼ expf�N � r2
i =r

2
obsg ð1Þ

where L(hi|Y) is the likelihood measure for the ith model
conditioned on the observations Y, r2

i is the error variance
for the ith model (i.e. the combination of the model and the
ith parameter set) and r2

obs is the variance of the observa-
tions. The exponent N is an adjustable parameter that sets
the relative weightings of the better and worse solutions:
higher N-values have the effect of giving more weight to
the best simulations, thus increasing the difference between
good and bad solutions [15]. Small values for N result in a
flat likelihood function with significant probability mass
extending over a large part of the parameter space. On
the contrary, relatively high values for N will result in a
peaked likelihood function, with a well-defined global opti-
mal solution.

This likelihood function was chosen principally because
it is commonly used within the GLUE methodology, so
using it facilitates comparison with other studies. It can
assume values between 0 and 1. The closer to 1 the likeli-
hood is, the better the simulations are, thus this quantity
has to be maximized in selecting the behavioural GLUE
solutions. Of course, we could have implemented a classical
likelihood function with SCEM-UA so that this method
operates within a formal Bayesian framework and statisti-
cally sound inferences can be made about parameter uncer-
tainty, correlation and identifiability. However, it has been
shown [57] that the use of a formal likelihood measure
within the context of streamflow forecasting results in
uncertainty bounds that are too small and do not appropri-
ately capture the measured discharge data (compare the
dark grey uncertainty bounds in Fig. 11 of their paper with
the observed streamflow values). This is because the cur-
rent generation of adaptive MC2 samplers (such as the
SCEM-UA algorithm) typically maps all the uncertainty
in the modeling process onto the parameter space, effec-
tively neglecting the influence of input and model structural
errors. To avoid this overconditioning of the posterior
PDF to a too small region in the parameter space, and thus
implicitly handle the effect of other sources of error, we
therefore implement the likelihood function in Eq. (1). Fur-
thermore, varying N in Eq. (1) is a simple and flexible way
to test the influence of the shape of the likelihood function
on the efficiency of the LHS and SCEM-UA algorithm for
sampling of the prior distribution. In this paper we provide
a comparison assessment of LHS and the SCEM-UA algo-
rithm for different N-values ranging from 1 to 100. Note,
that when using SCEM-UA with an informal likelihood
measure (as is done here), the method does no longer
adhere to classical statistics and like GLUE should now
be referred to as pseudo-Bayesian.
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In principle, there is no need to run the samples
derived with the SCEM-UA method through the GLUE
method, as the SCEM-UA method already results in an
approximation of the posterior PDF for a given likeli-
hood function. This distribution can be used to directly
construct parameter distributions and associated uncer-
tainty bounds. However, for a fair comparison between
LHS and adaptive MC2 sampling it is desirable to have
Fig. 1. GLUE flowchart with SCEM
all elements in the inference similar, so that we can
directly compare the number of retained solutions and
spread and sharpness of the uncertainty bounds derived
with both sampling methods. We therefore postprocess
both the LHS and SCEM-UA generated samples with
the GLUE method. The flowchart in Fig. 1 illustrates
how the different sampling procedures are incorporated
in the GLUE framework.
-UA and LHS sampling schemes.
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2.4. Choice of the cutoff threshold for the behavioral

simulations

One criticism of the GLUE methodology is that the
uncertainty bounds are subjective, based on an arbitrary
cutoff to differentiate between behavioral and non-behav-
ioral simulations. Ideally, the prediction uncertainty spread
should be as small as possible, but consistent with observa-
tions, so that the predictive PDF is as sharp as possible
[18]. Stated differently, if the model is required to generate
a probabilistic forecast at a given confidence level, say,
95%, then the predictions should encompass 95% of the
observations. Unfortunately, most formulations of the
GLUE methodology do not guarantee that the appropriate
percentage of the observations lies within the uncertainty
bounds. In this study, instead of using predefined quantiles
from the GLUE derived output CDF, we tune the uncer-
tainty bounds so they exhibit the appropriate coverage.
For all case studies we use 90% uncertainty intervals. These
intervals are found by a trial-and-error method in which
the acceptance criterion (i.e. the number of behavioural
solutions) is adjusted and the coverage is computed over
a fixed calibration period.

It should be underlined that this approach, which is
common in GLUE applications, estimates the total simula-
tion error based on parameter variability only. In this way
other sources of uncertainty are accounted for by the
GLUE uncertainty bounds only implicitly.

3. Case studies

In this section we describe the three conceptual
watershed models used in our comparison analysis and dis-
cuss the synthetic and measured streamflow data used.

3.1. Models used and prior uncertainty ranges

Three conceptual watershed models of increasing com-
plexity are used in the present study: HYMOD [6], NAM
[45,22] and the Sacramento Soil Moisture Accounting
Model (SAC-SMA: [10,9]). Brief descriptions of each model
are presented in the following three sections. These models
differ in their structure, simulated hydrologic processes and
number of calibration parameters, thereby allowing us to
examine how model complexity affects the results of our
sampling and uncertainty assessment analysis.

3.1.1. The HYMOD model

The HYMOD (HYdrologic MODel) model consists of a
relatively simple rainfall excess model, associated with two
series of linear reservoirs: three identical reservoirs generat-
ing the quick flow response and a single reservoir for the
slow response. A slightly different version of HYMOD is
employed in this study: two identical reservoirs in series
for the quick response and two reservoirs in parallel for
the slow response. The 5 model parameters (summarized
in Table 1) assessed in this work are the same as those con-
sidered in the studies reported in [58] and [41]. The last col-
umn in Table 1 lists the prior uncertainty ranges used to
generate the initial sample.

3.1.2. The NAM model

The NAM model (from the Danish: ‘‘Nedbor-Afstrom-
nings-Model”, which means precipitation-runoff-model) is
a deterministic, lumped, conceptual rainfall-runoff model
originally developed at the Technical University of Den-
mark [45,22]. It has been used in many different applications
and studies [51,33,34,27]. The NAM model describes, in a
simplified quantitative form, the behavior of the different
land phase of the hydrological cycle, accounting for the
water content in different mutually interrelated storages.
These storages are the surface zone storage (water content
intercepted by vegetation, in surface depression and in the
uppermost few centimeters of the ground), the root-zone
storage, the ground-water storage and the snow storage.
The river routing is done through linear reservoirs that rep-
resent the overland flow (two identical linear reservoirs in
series), the interflow (a single reservoir) and the baseflow
(a single reservoir), each characterized by a specific time
constant. The NAM model specifies 10 parameters that need
to be determined by calibration against a historical record of
streamflow data. A description of these parameters, includ-
ing their prior uncertainty ranges is given in Table 1.

3.1.3. The sacramento soil moisture accounting (SAC-

SMA) model

The Sacramento soil moisture accounting model, SAC-
SMA, is a lumped conceptual watershed model developed
by Burnash et al. [10] (see also [9]). It is currently used by
the National Weather Service River Forecast System
(NWSRFS) centers to perform real-time river and flood
forecasts as well as long term predictions.

The SAC-SMA model distributes soil moisture in vari-
ous depths and energy states of the soil with a network
of interconnected tanks. It is constituted by an upper and
a lower zone, each including tension and free-water storag-
es. These storages interact with each other and with the
other catchment components through the processes of
evapotranspiration, vertical drainage (percolation) and
generation of five different runoff components. In the origi-
nal Sacramento model, the runoff components combine to
produce the river runoff through a unit hydrograph rout-
ing. In the version of the Sacramento model used in this
study, the routing module is replaced with a series of three
linear Nash-Cascade reservoirs, all characterized by the
same retention coefficient, RTCOEF. This formulation of
the SAC-SMA model does not require independent deriva-
tion of the unit hydrograph and therefore provides a more
flexible formulation for application in different watersheds.
In this study, the parameters SIDE, RSERV and RIVA
were fixed at values recommended in [47]; this leaves a total
of 14 parameters in our analysis. Table 1 provides a con-
densed overview and description of the SAC-SMA calibra-
tion parameters, including their prior uncertainty ranges.



Table 1
Parameters of the models used and their prior uncertainty ranges

Parameter Unit Range Description

HYMOD

Cmax [mm] 1–500 Maximum storage capacity in the catchment
bexp [–] 0.1–2 Degree of spatial variability of soil moisture capacity within the catchment
A [–] 0–0.99 Factor distributing the flow between the two series of reservoirs
Rs [day] 0–0.1 Residence time of the linear slow response reservoir
Rq [day] 0.1–0.99 Residence time of the linear quick response reservoir

NAM

Umax [mm] 1–50 Maximum water content (size) of the surface storage
Lmax [mm] 50–1000 Maximum water content (size) of the root zone storage
CQOF [0,1] 0–1 Fraction of excess rainfall that contributes to the overland flow
CKIF [h] 0.01–2000 Time constant for drainage of interflow
CK12 [h] 3–100 Time constant for routing interflow and overland flow; it determines the shape of hydrograph peaks
TOF [–] 0–0.99 Threshold value for overland flow, which is generated only for relative moisture content of the lower zone

higher than TOF
TIF [–] 0–0.99 Threshold value for interflow (similar effect on interflow as TOF has on overland flow)
TG [–] 0–0.99 Root zone threshold value for recharge (similar effect on recharge as TOF on overland flow)
CKBF [h] 0.01–5000 Time constant for baseflow, it determines the shape of the hydrograph in dry periods (exponential decay)
Csnow [mm/�C/

day]
0.5–10 Degree–day coefficient for determining snow melting

SAC-SMA

UZTWM [mm] 1–150 Upper zone tension water capacity
UZFWM [mm] 1–150 Upper zone free water capacity
UZK [day�1] 0.1–0.5 Upper zone free water lateral depletion rate
PCTIM [–] 0.000001–0.1 Fraction of the impervious area
ADIMP [–] 0–0.4 Fraction of the additional impervious area
ZPERC [–] 1–250 Maximum percolation rate coefficient
REXP [–] 0–5 Exponent of the percolation equation
LZTWM [mm] 1–500 Lower zone tension water capacity
LZFSM [mm] 1–1000 Lower zone supplementary free water capacity
LZFPM [mm] 1–1000 Lower zone primary free water capacity
LZPK [day�1] 0.0001–0.25 Lower zone primary free water depletion rate
LZSK [day�1] 0.01–0.25 Lower zone supplementary free water depletion rate
PFREE [–] 0–0.6 Fraction percolating from upper to lower zone free water storage
RTCOEF [day�1] 0–1 Retention coefficient of routing linear reservoirs
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3.2. Hydrologic systems and data used

We compare the usefulness and power of our revised
GLUE method (using SCEM-UA) to the traditional GLUE
approach (using LHS) by application to two different catch-
ments with significantly different hydrologic regimes. The
first is the Tryggev�lde catchment, located in the eastern
part of Denmark. This catchment, which has an area of
approximately 130.2 km2, consists of predominantly clayey
soils and has an average daily river discharge of about 1
m3/s. For the period between January 1, 1975 and Decem-
ber 31, 1984, available data for this catchment includes the
mean areal precipitation (mm/d), potential evapotranspira-
tion (mm/d) daily average temperature (�C) and discharge
(m3/s). To reduce sensitivity to state value initialization, a
one-year warm up period was used in which no updating
of the likelihood function was performed.

The second system studied is the Leaf River catchment,
located in southern Mississippi. It is a principal tributary of
the Pascagoula River, which flows to the Gulf of Mexico. It
is a humid watershed, with an area of about 1944 km2. The
available data record consists of mean daily precipitation
(mm/d), potential evapotranspiration (mm/d) and daily
streamflow (m3/s). The Leaf River data have been dis-
cussed and used extensively in previous studies. In the pres-
ent study, data in the period between July 28, 1952 and
September 30, 1962 are used, with a warm-up period of
65 days.

The Tryggev�lde and Leaf River watersheds have quite
different hydrologic regimes, thereby providing diverse
data sets for testing the revised GLUE method. For exam-
ple, the average daily runoff of the Leaf River (27.13 m3/s)
is much higher than that of the Tryggev�lde catchment
(0.99 m3/s). In addition, the Leaf River data set includes
a relatively large number of significant rainfall-runoff
events, with streamflow values up to about 800 m3/s.

Before analyzing the measured data sets, described in
this section, initial benchmarking analyses were performed
using corrupted synthetic data to test the performance of
our sampling methods in the presence of data error only.
The synthetic streamflow data was generated by calibrating
the HYMOD, NAM and SAC-SMA model using the
SCEM-UA algorithm, then using these parameter values
in a forward model run to represent catchment behavior.
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This synthetic time series of streamflow data was then cor-
rupted by adding a normally distributed white-noise error
with standard deviation equal to 10% of the simulated
value.

3.3. Implementation details

For the data sets considered in this paper, the GLUE
methodology is applied for the likelihood function defined
in Eq. (1), using the initial sample of simulations derived
with either the LHS and SCEM-UA sampling schemes.
The analysis uses a total of 10,000 parameter combinations
for the HYMOD model and 20,000 for the NAM and
SAC-SMA models. Initial analyses have demonstrated that
these numbers are sufficient and result in stabilized and
robust estimates of parameter and prediction uncertainty.
After sampling, the GLUE-derived model prediction is
then given by the median of the output distribution and
the associated uncertainty is derived from tuning the uncer-
tainty bounds to obtain an approximate coverage of about
90% of the observations.

4. Results and discussion

This section presents analyses for the synthetic and mea-
sured data sets for the three different conceptual watershed
models. The presentation is organized by starting with the
synthetic data sets, discussing the GLUE results for: (i)
median prediction, (ii) uncertainty bounds and (iii) param-
eter uncertainty and correlation. We then repeat this pro-
cess for the measured data sets.

4.1. Synthetic data sets

4.1.1. Median GLUE prediction

Table 2 lists the likelihood values for different values of
N of the best streamflow simulation from the initial sample
generated with the LHS and SCEM-UA algorithm for the
Tryggev�lde watershed. Though we restrict attention to
this catchment, similar results are found for the Leaf River
watershed. When looking at Table 2, it should be noticed
that increasing N will naturally result in lower likelihood
functions. Therefore the likelihood function values calcu-
lated using different N are not directly comparable, unless
Table 2
Likelihood of the best runoff simulation from the initial sample generated
with the LHS and SCEM-UA algorithm for different values of N:
Tryggev�lde watershed – synthetic data

N SCEM-UA LHS

HYMOD NAM SAC-SMA HYMOD NAM SAC-SMA

1 0.9798 0.9614 0.9760 0.9784 0.9527 0.9698
5 0.8995 0.7652 0.8552 0.8964 0.7847 0.8578

10 0.8177 0.6837 0.7324 0.8035 0.6158 0.7357
20 0.6827 0.4754 0.5982 0.6456 0.3792 0.5413
50 0.3888 0.1031 0.2659 0.3349 0.0885 0.2156

100 0.1609 0.0475 0.1681 0.1122 0.0078 0.0465
a proper transformation is applied to get rid of the expo-
nential effect of N. The results in this Table clearly demon-
strate the advantages of the SCEM-UA algorithm for
sampling the prior parameter distribution. The algorithm
generally finds better values of the likelihood function than
LHS, with differences becoming larger with increasing N-
values and model complexity. Small values of N result in
a flat posterior distribution with probability mass extend-
ing over a large range of the parameter space. Even with
random sampling, it is then likely to find a parameter com-
bination that reasonably fits the data. For increasing N-
values the posterior distribution becomes peakier and it is
increasingly important to have the search capabilities of
the SCEM-UA algorithm to find acceptable solutions. In
addition, note that, as expected, increased modeling com-
plexity will further reduce the chance of finding preferred
solutions with random sampling (see, for example, the
results of HYMOD, NAM and SAC-SMA for N = 100).
Similar results have been reported in [15].

To verify whether the quality of the initial sample is
influencing the deterministic forecast of the GLUE meth-
odology, consider Table 3, which presents the likelihood
value of the median prediction of the GLUE-derived
CDF for the synthetic Tryggev�lde data set using the
HYMOD, NAM and SAC-SMA models. Consistent with
the previous results, the median GLUE prediction derived
from the initial samples created using the SCEM-UA algo-
rithm is generally better than its counterpart derived using
LHS. Adaptive MC2 sampling improves the quality of the
initial sample and therefore the results derived with the
GLUE method. Also notice that the GLUE derived
median prediction is generally a better predictor than the
best individual simulation in the initial sample (compare
Tables 2 and 3). This is particularly true for the
SCEM-UA created initial sample and suggests that averag-
ing of predictions of different parameter combinations
increases predictive capabilities, something that is com-
monly observed with ensemble forecasting [48,60]. Again,
differences between the LHS and SCEM-UA algorithm
increase with increasing N-value and complexity of the
catchment model.
Table 3
Likelihood value of the median runoff estimate from the posterior CDF
derived with the GLUE methodology: Tryggev�lde watershed – synthetic
data

N SCEM-UA LHS

HYMOD NAM SAC-SMA HYMOD NAM SAC-SMA

1 0.9815 0.9655 0.9771 0.9803 0.9276 0.9063
5 0.9112 0.8112 0.8883 0.9055 0.8263 0.8825

10 0.8246 0.7055 0.7995 0.8201 0.6854 0.7798
20 0.6899 0.5263 0.6370 0.6730 0.4752 0.6101
50 0.3826 0.2271 0.3515 0.3725 0.1514 0.2854

100 0.1546 0.0799 0.1420 0.1401 0.0018 0.0653

The output CDF was tuned to contain 90% of the streamflow
observations.



Fig. 2. Tryggev�lde watershed – NAM model: likelihood of the median
GLUE estimates obtained from the LHS and SCEM-UA samples versus
number of retained solutions. Plots correspond to different values of the
exponent of the likelihood function, N: (a) N = 1; (b) N = 5; (c) N = 10;
(d) N = 20; (e) N = 50; (f) N = 100.

Fig. 3. Leaf River watershed – NAM model: likelihood of the median
GLUE estimates obtained from the LHS and SCEM-UA samples versus
number of retained solutions. Plots correspond to different values of the
exponent of the likelihood function, N: (a) N = 1; (b) N = 5; (c) N = 10;
(d) N = 20; (e) N = 50; (f) N = 100.
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Next, the dependency of the goodness-of-fit of the
GLUE-derived median streamflow estimate as function of
the number of retained or behavioral solutions is analyzed.
Plots of likelihood function versus the number of retained
solutions are presented for the Tryggev�lde and Leaf River
data sets in Figs. 2 and 3, respectively, for the NAM model.
First, note that accepting a relatively small number of solu-
tions as behavioral generally produces the closest corre-
spondence of the GLUE median output estimate with the
observed streamflow data. On the order of 20 individual
streamflow simulations (about 0.1% of the total sample)
is required for accurate streamflow forecasting, whereas a
larger sample of retained solutions decreases the good-
ness-of-fit of the median GLUE output estimate. However,
a large sample improves the accuracy of the uncertainty
bounds, as will be shown later. Thus, there is a consider-
able trade-off between accuracy and precision when select-
ing the appropriate number of behavioral solutions. Given
this situation, it is pertinent to point out that for the
SCEM-UA sample, the likelihood value of the GLUE
derived median output estimate appears to be less affected
by the number of behavioral samples. The SCEM-UA
algorithm provides a denser sampling in the vicinity of
the HPD region of the parameter space and thus yields a
higher frequency of good solutions.

Finally, the plots show that the relative difference
between the likelihood of the estimated median hydro-
graph from the LHS and SCEM-UA sampling methods
increases with increasing value of the exponent N of the
likelihood function. This trend, found for both data sets,
can be explained by the increased performance of the
SCEM-UA algorithm in cases with a well-defined HPD
region. In contrast, the SCEM-UA algorithm will not have
good convergence properties when a large part of the
parameter space exhibits similar performance in producing
the observed data (i.e. for low values of N). Thus, in these
situations LHS might suffice to generate the initial sample.
However, increasingly peaked likelihood functions, require
optimization-based algorithms to locate and visit solutions
in the HPD region.



Fig. 4. Tryggev�lde watershed – NAM model: percentage of runoff
observations outside GLUE LHS and SCEM-UA uncertainty intervals
versus number of retained solutions. Plots correspond to different values
of the exponent of the likelihood function, N: (a) N = 1; (b) N = 5; (c)
N = 10; (d) N = 20; (e) N = 50; (f) N = 100.

Fig. 5. Leaf River watershed – NAM model: percentage of runoff
observations outside GLUE LHS and SCEM-UA uncertainty intervals
versus number of retained solutions. Plots correspond to different values
of the exponent of the likelihood function, N: (a) N = 1; (b) N = 5; (c)
N = 10; (d) N = 20; (e) N = 50; (f) N = 100.
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4.1.2. GLUE uncertainty bounds

In this section we address the uncertainty bounds
derived with the GLUE methodology for the LHS and
SCEM-UA sampling methods. Accurate probabilistic fore-
casting requires that the uncertainty bounds are statisti-
cally meaningful and exhibit the appropriate coverage.
Instead of focusing on the goodness-of-fit of the median
output estimate of the GLUE-derived CDF, we examine
the statistical properties of the ensemble of retained
solutions.

Figs. 4 and 5 are plots of the percentage of observations
falling outside the uncertainty bounds versus the number of
retained parameter sets for the NAM model. For a given
number of retained solutions, the GLUE-derived uncer-
tainty bounds using LHS are generally larger than their
counterparts derived from GLUE implemented with the
SCEM-UA algorithm. The GLUE method implemented
with SCEM-UA exhibits better predictive performance,
resulting in less spread of the uncertainty bounds. This is
further demonstrated in Fig. 6, which depicts the average
width of the streamflow uncertainty bounds as function
of the number of retained solutions for different values of
N.

To examine this behavior further, consider Fig. 7 (SAC-
SMA model, Tryggev�lde watershed) and Fig. 8 (NAM
model, Leaf River catchment) time-series plots of observed
versus predicted streamflow data for a representative por-
tion of the historical record. The top panels in both figures
present the measured hyetograph, whereas the bottom two
panels illustrate the GLUE-derived 90% uncertainty
bounds for the predicted hydrographs for three different
values of N (1, 20 and 100) using the (b) SCEM-UA and
(c) LHS methods for sampling the prior parameter
distribution.

The results for both sampling methods are qualitatively
similar and appear relatively unaffected by the choice of
the value of the exponent N in the likelihood function.
Although the uncertainty bounds exhibit the appropriate
coverage and are generally centered on the observations,
they do not accurately reproduce the real uncertainty



Fig. 6. Leaf River watershed – SAC-SMA model: width of the uncertainty bounds as a function of the number of retained solutions: (a) SCEM-UA and
(b) LHS results.

Fig. 7. Tryggev�lde watershed – SAC-SMA model: hyetograph (a) and hydrographs including the uncertainty bounds containing the 90% of the
observations generated by GLUE from SCEM-UA (b) and LHS initial samples (c). The error bars in these plots represent the error properties of the
streamflow data: the boxes correspond to the 5th and 95th percentiles of the error distribution, while the vertical lines extend up to the 0.5th and 99.5th
percentiles.
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and they appear to be too large, especially for the SAC-
SMA model for low flows. This is a limitation of the
GLUE method, caused by the way the method treats
uncertainty. The total uncertainty is mapped onto the
parameters, without explicitly accounting for input and
model structural errors. More accurate and much tighter
uncertainty bounds that still exhibit the appropriate cov-
erage can be obtained by using a formal Bayesian likeli-
hood function (in the case of synthetic data), or by
accounting for input and model structural errors using
state-space filtering methods such as the Ensemble Kal-
man Filter [59], or by fitting weighted probability distri-
butions around the predictions of individual models
(Bayesian model averaging [60]).



Fig. 8. Leaf River watershed – NAM model: hyetograph (a) and hydrographs including the uncertainty bounds containing the 90% of the observations
generated by GLUE from SCEM-UA (b) and LHS initial samples (c). The error bars in these plots represent the error properties of the streamflow data:
the boxes correspond to the 5th and 95th percentiles of the error distribution, while the vertical lines extend up to the 0.5th and 99.5th percentiles.
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4.1.3. Parameter uncertainty and correlation

In this section we compare the GLUE-derived posterior
parameter PDFs from the LHS and SCEM-UA derived
initial sample using the two sampling techniques. The
GLUE-derived parameter PDFs for different values of N

are presented for the parameter Lmax in the NAM model
(Fig. 9) and the parameter LZFSM in the SAC-SMA
model (Fig. 10). This selection of parameters and models
is representative of the entire set of results.

First, note that the LHS and SCEM-UA derived PDFs
are qualitatively similar for the NAM model, but different
for the SAC-SMA model. For models of higher dimension-
ality, random sampling does not provide a sufficiently large
sample of solutions within the HPD region of the parame-
ter space. Second, with respect to the parameter N, the
PDFs become narrower and peakier with increasing N-val-
ues. However, the LHS derived PDFs remain multi-modal,
while the SCEM-UA derived histograms become Gauss-
ian-like with a single well-defined mode (the desired result).
Finally, note that the mode of the LHS and SCEM-UA
derived PDFs are different, with the SCEM-UA result con-
verging to the true value of the parameter used to generate
the synthetic data, but the LHS-derived result deviating
from the true value.

As illustration, Fig. 11 presents correlation plots
between the parameters in the HYMOD model using syn-
thetic streamflow data for the Tryggev�lde watershed.
These plots correspond to the GLUE-derived posterior
PDF using the SCEM-UA derived initial sample for
N = 100. Most plots show very low correlations, with the
exception of the {Cmax, bexp} panel, which exhibits a linear
dependency, with correlation coefficient of about 0.75. This
correlation plot is consistent with previous results pre-
sented in [58]. Correlations between parameters in other
models were typically low, but increase with increasing
N-value for the SCEM-UA sampling.

4.2. Measured data sets

4.2.1. Median GLUE prediction

When measured streamflow observations are used, the
presence of model error and forcing input error adds addi-
tional uncertainty into the modeling process. The main
effects of these errors become apparent when deriving
uncertainty bounds that contain a prescribed percentage
of the streamflow observations (90% in this study). A much
larger number of solutions need to be retained for real
applications, compared to the synthetic data cases previ-
ously discussed. This is true regardless whether the LHS
or SCEM-UA method is used for sampling of the prior dis-
tribution and reflects an inability of the GLUE method to
properly treat input and model structural error, by consid-



Fig. 9. Posterior distribution of parameter Lmax for Tryggev�lde watershed – NAM model obtained from SCEM-UA (a) and LHS dataset (b). Real value:
Lmax = 121.1.
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ering only parameter variability. Table 4 summarizes these
results for N = 1 and lists the percentage of observations
included within the uncertainty bounds and the associated
number of retained solutions.

For increasing N-values, the narrowing down of the
bounds causes depletion of the coverage of the observa-
tions by the uncertainty intervals. Table 5 compares likeli-
hood values of the median deterministic GLUE forecast
between the LHS and SCEM-UA sampling for different
values of N for the Tryggev�lde catchment. As in the syn-
thetic data experiment, the predictive capability of the
median GLUE forecast is generally higher when sampling
the prior distribution with the SCEM-UA algorithm than
when using LHS to derive the initial sample. Also note that
the relative differences in likelihood values between the
methods become larger with increasing values of N. As
mentioned earlier, the reason for the latter tendency is
explained by the better performance of the SCEM-UA
method in sampling the HPD region of the parameter
space, when using a peakier probability distribution.
Finally, note that when explicitly dealing with model and
input errors, the likelihood values of the median determin-
istic GLUE forecast are significantly lower than for the
synthetic experiment. Similar tendencies are found for the
Leaf River dataset.

The dependency of the likelihood value of the GLUE-
derived median estimate of the hydrograph on the number
of retained solutions shows similar patterns as previously
found and discussed in our synthetic experiment. A similar
trade-off between the predictive quality of the median
GLUE estimate of the runoff and the number of retained
solutions is also visible when analyzing measured stream-
flow data. Furthermore, the GLUE-derived median esti-
mate of the hydrograph appears less affected by the



Fig. 10. Posterior distribution of parameter LZFSM for Tryggev�lde watershed – Sacramento model: obtained from SCEM-UA (a) and LHS dataset (b).
Real value: LZFSM = 438.85.
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number of retained solutions when deriving the initial sam-
ple with the SCEM-UA algorithm.

4.2.2. GLUE uncertainty bounds

As previously mentioned, the presence of input and
model structural error reduces the coverage of the observa-
tions by the uncertainty intervals, thus making it more dif-
ficult to produce meaningful probabilistic predictions.
However, Table 4 shows that percentages of observations
close to the 80% can be included within the bounds, if a very
large number of solutions are retained. Figs. 12 and 13 show
the percentage of solutions included within the uncertainty
bounds and the width of these bounds, respectively, as func-
tions of the number of retained solutions. Given a pre-spec-
ified number of retained solutions, the GLUE-derived
uncertainty bounds are generally smaller for the SCEM-
UA algorithm than for LHS. For the SCEM-UA-derived
sample, the average distance to the optimal model is small,
resulting in relatively small uncertainty bounds. In contrast,
the inability of the LHS method to adequately sample the
HPD region of the parameter space results in a rapid
increase in average width of the uncertainty bounds with
increasing number of retained solutions (Fig. 13).

In addition, note that the slopes of the curves decrease
with increasing N-values. While retaining more solutions
will extend the extreme tails of the GLUE CDF streamflow
output distribution, it hardly affects the size of the 95%
uncertainty bounds, as most of the probability mass is
located within the desired confidence interval. Further-
more, smaller values of N result in larger uncertainty
bounds, because the likelihood function causes the proba-
bility mass to be spread out over a large part of the param-
eter space, resulting in a wide variety of simulations that
are considered to be behavioral.



Fig. 11. HYMOD model – Tryggev�lde river: correlation plots of normalized parameters from posterior distributions obtained from SCEM-UA sample
with likelihood function exponent N = 100. Diagonal: histograms of parameter distribution.

Table 4
Percentage of observations contained within the GLUE uncertainty
intervals and number of retained solutions (in parentheses)

Model Tryggev�lde Leaf River

SCEM-UA LHS SCEM-UA LHS

HYMOD 71.1 (2596) 74.0 (2800) 84.6 (2032) 87.9 (2000)
NAM 86.3 (2143) 87.7 (2600) 88.8 (2507) 90.8 (2200)
SAC-SMA 78.2 (5148) 77.8 (2800) 87.7 (1822) 89.6 (1800)

Results correspond to the Tryggev�lde and Leaf River data sets using the
LHS and SCEM-UA methods (likelihood exponent N = 1).

Fig. 12. Leaf River watershed – SAC-SMA model: percentage of
solutions included within the uncertainty bounds as a function of the
number of retained solutions.
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4.2.3. Parameter uncertainty and correlation

As mentioned earlier, fewer observations are covered by
the uncertainty intervals when the measured streamflow
data is used. Moreover, there is a decrease in the coverage
for increasing value of N. While the uncertainty intervals
generated with the LHS and SCEM-UA samples include
between 75% and 90% of the observations for N = 1, these
percentages, for all the models and data sets considered,
range between 83% and 40% for N = 100. Thus, it is not
always possible to generate uncertainty intervals with a
reliable probabilistic meaning and appropriate coverage
Table 5
Likelihood of the best runoff simulation from the initial sample generated with
data set

N SCEM-UA

HYMOD NAM SAC-SMA

1 0.7024 0.7138 0.7170
5 0.1712 0.1944 0.1919

10 0.0298 0.0379 0.0369
20 0.00088 0.00159 0.00134
50 2.326E � 08 7.169E � 08 8.341E � 08

100 5.810E � 16 1.310E � 14 7.164E � 15
of the observations. Nevertheless, the analysis of the distri-
butions of the available parameters fully confirms the
results for the artificially generated data sets. This is also
the LHS and SCEM-UA algorithm: Tryggev�lde watershed – measured

LHS

HYMOD NAM SAC-SMA

0.7025 0.7196 0.7175
0.1711 0.1929 0.1901
0.0293 0.0372 0.0361
0.00086 0.00139 0.00131
2.149E � 08 7.152E � 08 6.163E � 08
4.618E � 16 5.115E � 15 3.799E � 15



Fig. 13. Leaf River watershed – SAC-SMA model: width of the
uncertainty bounds as a function of the number of retained solutions.
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exemplified in Fig. 14, a plot of the GLUE-derived poster-
ior PDFs obtained from the LHS and SCEM-UA samples
for the parameter LZFSM of SAC-SMA model applied to
the Leaf River watershed. First, note that the parameter
distributions get narrower and peakier for increasing
N-value. Moreover, while the PDFs inferred from the
SCEM-UA sample show a well-defined peak, those from
the LHS dataset generally exhibit multimodality. This fea-
ture, caused by the peculiarities of the initial random sam-
ple, reduces the reliability of the parameter estimates. Also,
similar to what was found for the synthetic streamflow
data, the difference between the PDFs obtained from the
LHS and the SCEM-UA initial samples increases with
increasing model complexity.

Finally, no relevant correlations were found among the
parameters of the various models, with the exception of the
Fig. 14. Posterior distribution of parameter LZFSM for Leaf River and Sac
number of observations contained within the uncertainty interval ranges from
parameters Cmax and bexp of the HYMOD model, which
have a correlation coefficient of about 0.78 when the model
is applied to the Tryggev�lde watershed. In this case, sim-
ilarly as before, this correlation is found within all the LHS
datasets as well as from the SCEM-UA sample, but, in this
last case, only when N = 100.

5. Summary and conclusions

Most applications of GLUE reported in the literature
implement a rather simplistic MC sampling scheme to sam-
ple from the prior parameter distributions and to find the
set of behavioral models and their associated predictive sim-
ulation uncertainty. While this approach may be adequate
for relative simple low-dimensional sampling problems, it
is unlikely to result in stable and consistent estimates of
the set of behavioral models (and thus parameter distribu-
tions) for relatively high-dimensional and complex infer-
ence problems. In this paper we have demonstrated the
potential of improving the GLUE method by employing
the Shuffled Complex Evolution Metropolis (SCEM-UA)
global optimization algorithm for sampling the prior distri-
bution of the model parameters. The SCEM-UA algorithm
is an adaptive Markov Chain Monte Carlo (MC2) sampler
that periodically updates the size and direction of the pro-
posal distribution. This feature enables it to visit solutions
in the HPD region of the parameter space with higher fre-
quency than a random sampling scheme. Through a com-
parison of the GLUE results using LHS and SCEM-UA
sampling for creating the initial sample, we demonstrated
the following conclusions:

1. The combined SCEM-UA–GLUE method provides bet-
ter predictions of the model output than a classical
GLUE procedure based on random sampling. This
ramento model obtained from LHS (a) and SCEM-UA dataset (b). The
82% to 90% in this case.
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improvement is obtained for the median GLUE esti-
mates and best parameter estimates from the initial sam-
ple. At the same time, the Markov Chain sampler yields
a reduction in the uncertainty of the output estimate,
providing narrower confidence intervals than those
obtained from the LHS dataset. The differences in the
results from the two sampling methods increase with
the model complexity and with N, the exponent of the
likelihood function.

2. When using SCEM-UA sampling, the GLUE-derived
median output estimate and associated uncertainty
bounds are less affected by the number of retained solu-
tions in the analysis. The SCEM-UA-derived initial
sample contains numerous solutions in the HPD region
of the parameter space, so that the average distance of
the various parameter combinations to the optimal
model is small. This results in uncertainty bounds that
are less dependent on the number of retained solutions.
In contrast, the inability of random sampling to closely
sample the HPD region of the parameter space results in
a widening of the uncertainty bounds when a larger
number of solutions are retained.

3. The SCEM-UA algorithm will likely be able to find the
global optimum in the parameter space. In contrast,
random sampling can require an unmanageably large
number of model simulations to attain a sufficient
number of behavioral parameter sets. The LHS scheme,
used frequently in the GLUE method and implemented
in this paper, finds solutions well removed from the
best attainable model. Therefore, the GLUE method
with SCEM-UA sampling should be superior for mak-
ing conclusions about parameter identifiability and
equifinality.

4. The efficiency of the SCEM-UA algorithm is controlled
by the shape of the likelihood function used in the
GLUE analysis. Likelihood functions for which signifi-
cant probability extends over a large range of the prior
parameter space will adversely affect the search and
explorative capabilities of the SCEM-UA algorithm.
The sampler will have difficulty converging under these
circumstances. On the contrary, in situations in which
the likelihood function is peaked and significant proba-
bility mass is associated with a small interior region of
the parameter space, the SCEM-UA method will signif-
icantly improve the quality of the GLUE results. This
conclusion has been demonstrated in this paper through
comparisons of results for different values of the param-
eter N.

5. The results presented in this paper, along with addi-
tional analyses not presented, show strong consistency
between results derived for synthetic and measured data
sets, for models of two watersheds with significantly dif-
ferent hydrologic characteristics. This result demon-
strates that our findings on the usefulness of our
revised GLUE method are quite general.

6. Our approach for discriminating between behavioral
and non-behavioral solutions using information from
the coverage of the uncertainty bounds results in repre-
sentative uncertainty intervals. This approach therefore
provides an adequate and satisfactory solution to the
often criticized subjectivity involved in the choice of
an appropriate cutoff value on the retained solutions
(or on the likelihood function value). Nevertheless,
even with the implementation of a more objective
approach to separate between behavioral and non-
behavioral solutions, a strong trade-off appears
between the accuracy of the median GLUE forecast
and precision of the uncertainty bounds. It is shown
that the best output estimates are obtained when a rel-
atively small number of solutions are retained, whereas
a large number of solutions must be retained to gener-
ate uncertainty bounds with a sufficient coverage of the
observations.

7. Adaptive MC2 sampling of the prior parameter distribu-
tion improves the efficiency and robustness of the
GLUE methodology. SCEM-UA reached convergence
with less model simulations than the maximum number
chosen for each model. On the other side, a denser sam-
pling of the parameter space would have been necessary
for LHS to effectively sample the solution space and
obtain similar posterior distributions than SCEM-UA.
This result is especially important for complex environ-
mental models with a relatively large number of model
parameters and likelihood functions that assign signifi-
cant probability to a relatively small region interior to
the plausible model or parameter space.
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