Available online at www.sciencedirect.com

scmncs@ulnsc:'r@

Advances in Water Resources 29 (2006) 503-314

1022722

Advances in
Water Resources

www.elsevier.com/locate/advwatres

Evaluation of the uncertainty of groundwater model
predictions associated with conceptual errors: A per-datum
approach to model calibration

- a, . . b
Petros Gaganis “*, Leslie Smith
* Department of the Environment, University of the Aegean, University Hill, Xenia Building, 81100 Mytilene, Greece
® Department of Earth and Ocear Sciences, University of British Columbia, V6T 1Z4 Vancouver. Canada

Received 21 January 2005; accepted 20 June 2005
Available online 3 August 2005

Abstract

The effect of systematic model error on the model predictions varies in space and time, and differs for the flow and solute trans-
port components of a groundwater model. The classical single-objective formulation of the inverse problem by its nature cannot
capture these characteristics of model error. We introduce an inverse approach that allows the spatial and temporal variability
of model error to be evaluated in the parameter space. A set of solutions for model parameters are obtained by this new method
that almost exactly satisfies the model equation at each observation point (per-datum calibration). This set of parameter estimates
are then used to define a posterior parameter space that may be translated into a probabilistic description of model output to rep-
resent the level of confidence in model performance. It is shown that this approach can provide useful information regarding the

strengths and limitations of a model as well as the performance of classical calibration procedures.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There are two types of error associated with mathe-
matical modeling of hydrologic systems: (i} parameter
error that is mainly produced from uncertainties related
to defining the effective values of the hydraulic or trans-
port parameters of a groundwater model, and (ii) model
error (or conceptual error) that results from an incorrect
model structure. The parameters of a groundwater model,
such as hydraulic conductivity, are always uncertain
because of measurement error, heterogeneity, and scal-
ing issues (e.g., [2]). The quantification and propagation
of parameter uncertainty has been studied extensively in
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the past three decades leading to the development of
various stochastic methods for assessing the impact of
input parameter uncertainty on model predictions (see
[12,13,17,407). There are at least three important sources
of model error. First, mathematical and modeling limi-
tations result in all models being simplifications and
approximations of reality [34]. This source of model
error is related to such issues as the use of one-dimen-
sional or two-dimensional models to describe three-
dimensional processes, parameterization scheme,
description of heterogeneity, zonation of recharge areas
or mapping of source zones at contaminant sites, the
assumption of isothermal conditions or steady-state
flow, the use of the Fickian model to quantify the disper-
sive flux, and the use of a finite domain. Second, the
existence of knowledge gaps regarding the natural pro-
cesses involved will also lead to uncertainty in model
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prediction. An example of this source of model error is
the representation of multiple processes as a single pro-
cess when there is little information on their mathemat-
ical description. The mathematical definition of such
processes is often empirical and speculative. The release
function of contaminants into a flow system can be also
cited as an example. The source concentration and its
temporal and spatial distribution can be the result of
complex serial or parallel processes. Such processes
may involve mechanical and chemical weathering, bio-
chemical and biological influences on the form of each
component, infiltration and dissolution rates, and flow
and transport through the unsaturated zone. Detailed
modeling of all these processes is practically impossible.
Third, our inability to predict how physical or chemical
characteristics of the hydrogeological system might
change in the future will give rise to additional uncer-
tainty. In the common practice of extrapolating from
the past to the future, there is not only uncertainty from
the imperfect description of the past, but also uncer-
tainty about how much the future will be like the past
[27]. Model error arising from sources one and two
can be reduced with further research and more detailed
modeling. However, the third source of model error
should be distinguished from the other two as being irre-
ducible even in principle. This source of error defines the
limits of prediction reliability when modeling physical
systems.

The development of a simulation model to aid in the
solution of a groundwater problem can be broadly
viewed as a procedure that includes four sequential
steps: (1) model construction, (2) model calibration,
(3) model selection from among alternative calibrated
models, which in a sense is equivalent to model valida-
tion, and (4) model prediction of system behavior under
changed conditions or in the future. Step 1 begins with
the formulation of an appropriate conceptual model,
which is then translated into a mathematical model. In
step 2 and step 3, the appropriate conceptual model
and parameter values are selected by minimizing the
model misfit to field data through an iterative (inverse)
exercise. There are several criteria suggested during the
last three decades for selecting among alternative con-
ceptual models (e.g., [11,6,24,30,32]) or combinations
of several model structures and parameters sets
[3,29,39]. More detail on the main model selection meth-
odologies as well as their strengths and limitations can
be found in [16]. For a review and comparison of the
most important approaches to model calibration the
reader is referred to [5,26,41]. Typically, the goodness
of fit between model output and field data is used as a
measure for judging not only the performance of model
calibration and model selection but also the effectiveness
of the selected model as a predictive tool (step 4). How-
ever, the primary goal of a groundwater modeling exer-
cise is to obtain reliable model predictions, ideally in the

form of a probability distribution for the dependent
variables such as hydraulic head and/or solute concen-
tration to be used, for example, in a decision process.
Hydrogeological decision models provide a framework
to take explicit account of the uncertainty in model pre-
dictions during the evaluation of different management
alternatives (e.g., [15,33]). Typically, the more informa-
tive the probability distribution for the dependent vari-
able (i.e. the model prediction), the more likely it is
that a clear and unequivocal determination of the pre-
ferred management alternative will be achieved. Model
calibration and model selection (step 2 and step 3) rep-
resent the means to this goal. Although there have been
a number of successes in applying mathematical models
in such hydrologic problems, failure or inconsistency of
such applications is not uncommon [4]. Application of
model selection and model calibration methodologies
may not necessarily justify high confidence in the predic-
tive capability of a groundwater model. This point is
illustrated with several case histories in [4,23]. It is fur-
ther argued in [34] that, when a complex hydrogeologic
system is described by a simplified numerical model, it is
more likely that errors in the model structure represent a
main cause of failure of a model application. In such
applications, it is critical that the use of a simulation
model in predictive modeling (step 4), be accompanied
by a realistic evaluation of prediction uncertainty associ-
ated not only with parameter error (due to uncertainty
in parameter values) but also with errors in the structure
of the model itself [16,21].

Model error and parameter uncertainty are interre-
lated. The quantification of model error is a prerequisite
for a meaningful analysis of parameter uncertainty.
Alternatively, parameter uncertainty, which is large in
most hydrogeologic problems, obscures the impact of
model error on model predictions [16]. It is our view that
an approach that could lead to distinguishing model
error from parameter error should address the reduction
of parameter uncertainty and be based on realistic
assumptions regarding the statistical characteristics of
model error. There are two ways to reduce parameter
uncertainty in a modeling exercise: (i) by model calibra-
tion, which brings in all the information on the param-
eters that is embedded in a set of measurements of the
dependent variables, and (ii) by reducing the size of
the prior parameter space @ (i.e. region in the parameter
space that contains all possible combinations of feasible
parameter values) with more measurements on the real
system. The evaluation of model error by means of
updating the prior parameter space @ through collection
of additional field data on the parameters was presented
in [16] within a Bayesian framework for model selection.
The quantification of the effect of model error through a
model calibration procedure will be investigated in this
paper. The objective of this paper is to develop a general
approach, which may be complementary to classical
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inverse procedures, to extract useful information on er-
rors in model structure from the data and to project
their effect onto model predictions. The potential advan-
tage of such a methodology is that it would provide the
means for assessing the prediction uncertainty associ-
ated not only with parameter uncertainty, but also with
errors in the structure of a model and it would offer a
more informative picture of the real hydrologic situation
for decision making. An application of both the Bayes-
ian framework and this model calibration approach to a
real world pollution problem and decision analysis that
explores the utility, and the conceptual and philosophi-
cal differences between the two approaches will be pre-
sented in a forthcoming publication.

2. A synthetic example

To illustrate our approach a simple two-dimensional
synthetic flow system is constructed (model 1). This flow
problem was also used in [16]. The flow system is
600 m x 600 m and contains two homogeneous and
isotropic transmissivity zones, one zone of enhanced
recharge and two specified head boundaries (Fig. 1).
The rest of the model boundaries are no flow bound-
aries. The flow system is assumed to be at steady state.
For the contaminant transport problem, solute is intro-
duced at the source area along the upstream constant
head boundary. Hydraulic heads and solute concentra-
tions are measured at 15 sampling locations equally dis-
tributed throughout the flow domain. Observed (free of
measurement error) values of hydraulic heads and solute
concentrations are simulated by running a forward
deterministic simulation using the true parameter values
shown in Table 1, and calculating them at the 15 sam-
pling locations. The true contaminant release function
is assumed to be linear between a normalized concentra-
tion value equal to 1 at time zero and 0 at 500 days. The
true concentration distribution for the synthetic example
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Fig. 1. True geometry and boundary conditions of the synthetic flow
model.

Table 1
True parameter values in deterministic simulation
Parameter Value
Recharge (m/day) 0.0004
Porosity
Transmissivity zone 1 0.2
Transmissivity zone 2 0.2
Transmissivity (m?/day)
Transmissivity zone 1 20
Transmissivity zone 2 2
Dispersivity (both zones) (m)
Longitudinal 10
Transverse

at time 500 days is shown in Fig. 2. Adding Gaussian er-
rors to the simulated true observations with a standard
deviation of 10 cm for the hydraulic head and 5.0% of
the concentration values generated the observed data
values, subject to measurement error.

Two other models are constructed by introducing
model error to the true model described above. Model
2 assumes a uniform contaminant source release func-
tion. A constant contaminant concentration equal to 1
is introduced into the system for 250 days. The source
duration is designed to introduce the same solute mass
into the system as that of the true model. Only the solu-
tion of the transport problem of model 2 is influenced by
the model error, the flow problem is not. In model 3, the
recharge area is expanded in the horizontal direction
from 200 m to 300 m. This increase in recharge will
affect both the flow and the solute transport parts of
the problem. The true linear source function is used in
model 3. For all models, only the two transmissivities
are considered uncertain and are estimated.

Prior information on the effective values of the two
transmissivity zones is incorporated into our analysis
by defining a range of feasible parameter values (prior
parameter space) within the parameter space of the
model (Table 2). For the given example problem, our
analysis is not sensitive to the adoption of a greater prior
parameter space. Therefore, a relatively small parameter
range is assigned to the uncertain parameters to reduce
the computational cost. The prior parameter distribu-
tions are assumed uniform. It is realistic that, even when
prior information is limited, we can usually specify
upper and lower bounds to constrain the prior parame-
ter space. Although there may be more appropriate
ways to include prior information in inverse procedures
(e.g., [6,7,9,10]), this way (specified bounds) is adopted
here primarily for demonstration reasons.

3. Quantification of model error via inversion

The forward problem that describes the relation be-
tween the values of a dependent variable observed in
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Fig. 2. True concentration distribution at 500 days.

Table 2

Prior distributions assigned to uncertain parameters

Parameter Distribution Lower Mean Upper
bound bound

Transmissivity (m?/day)
Zone 1 Uniform 10 20 30
Zone 2 Uniform 1 2 3

the field and model predictions may be represented with
an equation in the following form:

d = f(0) + Er(0) ()

where d and 0 are the vectors of observations and model
parameters respectively, f'is the forward equation repre-
senting the mathematical model and the vector Er(0) is
a residual which describes the deviation between mea-
sured and predicted values of the dependent variables.
Vector 0 includes all uncertain model parameters that
describe properties of the physical system or their asso-
ciated spatial variability. Each component of Er(0) ac-
counts for measurement error eo; as well as for model
imperfections [er{(0) = eo; + em;], where em; is the model
error and j=1,...,m is the number of available obser-
vations of the dependent variable. In groundwater
hydrology the forward equation is typically the ground-
water flow or/and advection-dispersion equations,
subject to initial and boundary conditions. Inverse pro-
cedures define an inverse estimator f that connects the
observations d to “good” estimates 6 of the parameters
of interest:

0 = £[£(0) + Er(0)] 2)

The approach that is traditionally used to solve this
problem is the classical single-objective formulation of
the inverse problem. In the single-objective formulation
of the inverse problem, a solution (the parameter vector
0) is typically obtained by (i) making some assumptions
regarding the statistical distribution of erf0), (ii) apply-
ing maximum likelihood or Bayesian theory to construct
an objective function that computes some weighted sum
of the residual quantities er/0), and (iii) optimizing this
function (minimizing the measure of residual sum) with
respect to 0 in such a way that the distribution of model
output residual approximates the assumed error statisti-
cal distributions. A second objective, that of physical
plausibility, may also be included to the objective func-
tion by adding to the terms that penalize deviations of
predictions from observations a second term that penal-
izes deviations of estimated parameter values from prior
parameter estimates (e.g., [6,7,9,10,22,28]). A review and
comparison of the most important inverse methods the
reader can be found in [5,26,41]. A detailed set of guide-
lines for the effective calibration of groundwater models
is presented in [20]. For joint parameter estimation using
hydraulic heads, solute concentrations and prior infor-
mation on the parameters, a general form of the sin-
gle-objective optimization problem is:

min(with respect to 0) [(dy — £4(0))" V; (dy — f2(0))

+ (de = £e(0)) VS (de = £:(0))

+ (0, = 0)'V,'(0, - 0)] 3)
where the subscripts h and ¢ denote those terms relating

to hydraulic head data and solute concentration data
respectively, and the subscript ‘p’ denotes the terms
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relating to prior information. Matrices V}, and V. define
the covariances among the hydraulic head and concen-
tration data respectively, and the matrix V, represents
the accuracy of prior information and weights the third
term against the first two. Once the “best” parameter
estimates 0 are computed using an objective function
like (3), they may be used in the forward equation f{0)
to calculate the model prediction of the dependent vari-
able(s). Prediction uncertainty may be also quantified
using either linear or non-linear approximations, or
Monte Carlo methods [5]. The magnitude of prediction
uncertainty is related to the parameter estimation error
which is, in turn, related to parameter sensitivity and
to the standard error of the inverse procedure (value
of the objective function (3)) [20,26]. The “size’ of these
errors is often measured in terms of their variances or
covariance matrices.

In the case that model error is small or somehow ab-
sorbed into the error residual (model error behaves sta-
tistically in the same manner as the assumed error
statistical distribution), the above procedure, which is
based on the single-objective calibration, may be effec-
tively applied in assigning the correct prediction inter-
vals and probabilities to future response of a
hydrogeologic system (e.g., [8]). However, there are four
serious limitations associated with this formulation of
the inverse problem that are enhanced in the presence
of substantial model error or/and measurement error
that does not follow the assumed statistical distribution:

(1) Model error may not be random, and therefore
may not have any probabilistic properties [18]. For
example, when error is introduced by overestimating
the strength of the contaminant source in a solute trans-
port model, the estimated solute concentrations by this
model will be systematically higher than the observa-
tions, and the risk of contamination will be consistently
overestimated. Model error also varies with location and
time and may be different for the flow and the solute
transport components of the model [16]. For example,
model error introduced by incorrectly specified bound-
ary conditions will be greater at locations closer to this
boundary and may not influence the flow solution but
only the model’s transport component. These character-
istics of model error cannot be captured by an objective
function like Eq. (3), which is based on assumptions for
error statistical distributions. The effect of model error
in (3) appears in both the residual quantity and the
parameters estimates, which are forced to compensate
for errors in model structure that are not taken into ac-
count [1].

(2) The inclusion of prior information in (3) even
though it decreases the ill-posedness of the inverse prob-
lem, may not solve the problem of non-uniqueness of
the parameter estimates [7]. Multiple minima in the
objective function may also arise from errors in model
structure. This point is demonstrated in Fig. 3 for the
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Fig. 3. Response surface for parameters using concentration data
at sampling locations 7 and 13 at time = 500 days: (a) true model,
(b) model 2.

case where the number of unknowns and the number
of observations are equal. Concentration data at only
two sampling locations (locations 7 and 13 at 500 days)
are used in parameter estimation. These concentration
data are corrupted with measurement error. For this
example, no hydraulic head data are incorporated in
the inversion. The response surfaces (plots of the objec-
tive function into the parameter space) of the true model
and model 2 are shown in Fig. 3a and b, respectively.
In these figures, the parameter values in both axes are
scaled to their respective true values to better represent
the relative uncertainties in the parameter estimates.
Because of the scaling, the true parameter set coincides
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with the point in the normalized parameter space
T, =T,=1. In model 2, the different magnitudes of
model error at sampling locations 7 and 13 result in
the development of two local minima in the solution
of the objective function. The true model structure, on
the other hand, produces a unique minimum. When
hydraulic head and concentration data at all 15 sam-
pling locations are used, the algebraically overdeter-
mined inverse problem yields the same unique solution
for the true model and a unique but different solution
for model 2.

(3) Different inverse approaches may result in differ-
ent parameter estimates due to linearizations and vari-
ous assumptions regarding statistical distributions (see
[41]). The model error resulting from these approxima-
tions is impossible to quantify in a practical sense.

(4) It is typically difficult, if not impossible, to find a
unique statistically correct optimal choice for model
parameters. Each data set can be fitted in different ways.
For example, a parameter set can match the early time
data better than another parameter set that provides
better predictions at late times. The criteria used for
selecting the weights assigned to each data set in (3)
may also result in significantly different parameter esti-
mates [37]. Furthermore, the “optimum” parameter set
may also be different when a different performance crite-
rion is adopted [18].

The systematic nature of model error and the above
limitations of the classical single-objective formulation
of the inverse problem lead us to the same conclusion
as in [18] that “...the model calibration problem is
inherently multi-objective and that any attempt to con-
vert it into a single-objective problem must necessarily
involve some degree of subjectivity”. The reliability of
model predictions strongly depends on the magnitude
of model error. Because model error varies in space
and time and does not have any inherent probabilistic
properties, the reliability of a model will also exhibit
the same behavior. Therefore, it is our premise that
model reliability should be evaluated in terms of each
model prediction of a dependent variable at each specific
location and time, which is equivalent to evaluating the
effect of model error at each data point. Such an evalu-
ation of model error requires a per-datum (at each data
point) solution to the inverse problem, therefore, the
adoption of a multi-objective formulation of the inverse
problem such as that stated in [18]:

min(with respect to 0) |Er(0)]|
= {leri(0)]; ..., lern(0)} 4)

where |er(0)| is the absolute value of er;, The problem
described in (4) may have a unique solution only when
model and measurement errors do not exist. In the pres-
ence of those errors, the solution will consist of a set of
probable (weighted according to the quality of the data)

solutions in the prior parameter space @ that corre-
spond to the different magnitude of measurement and
model errors at the given location, time and measured
dependent variable. A discussion on the solution of (4)
is presented in the next section. Note that our rationale
for multi-objective set of probable solutions is different
than the rationale for the “pareto optimal” solutions
of [18]. They based their argument on the multiple ways
in which the best fit of model predictions to observations
can be defined. Our argument, however, is based on the
exploitation of the spatial and temporal characteristics
of model and measurement errors.

4. Solution of the multi-objective inverse problem

As mentioned earlier, the evaluation of the effect of
model error in terms of each data point requires a per-
datum (at each measurement of the dependent variable)
solution to the inverse problem. Then, the goal of model
calibration as stated in (4) may become that of finding a
set of values for the model parameters 6 that contain the
m solutions to the inverse problem associated with each
measurement d; (i=1,2,...,m) of the dependent vari-
able. Furthermore, each per-datum solution may be cal-
culated such that the model simulated dependent
variable exactly match one of the m experimental mea-
surements at a specific location and time. In terms of
model error quantification, such a formulation of the in-
verse problem (driving the residual quantity to zero), of-
fers the advantage of including all information regarding
eo and em within the parameter estimates. The estimated
model parameters are now functions of model and mea-
surement errors and the inverse estimator f in (2) that
connects each of the observations d to “good” estimates
0 of the parameters of interest becomes:

0,(eo;,em;) = £f(0), + Er(0),], Er(0), =0
forj=1,...,m (5)

However, the per-datum formulation (5) to the inverse
problem is always algebraically underdetermined, there-
fore, it does not have a unique solution. It will result in
m response surfaces (defined as plots of the objective
function into the parameter space) that each one of them
contains multiple minima and, in turn, each of these
minima corresponds to an exact solution @j of (5) at
the respective data point. In order to proceed we must
set some criteria and define the properties of the set of
equally probable (or weighted according to the quality
of the data) solutions of (5):

1. We define the posterior parameter space @, as the
sub-region of the prior parameter space @ that con-
tains at least one solution 0; of (5) associated with
each data point.
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2. In order for model predictions to be informative, pre-
diction uncertainty, or equivalently, the posterior
parameter space @, should be as small as it is allowed
to be by the presence of model and measurement
errors. In this case, ©,, will represent the limits of pre-
diction uncertainty reduction that can be achieved by
model calibration given the presence of those errors.

The minimization of the posterior parameter space of
acceptable values @,, is adopted here as the criterion for
obtaining a set of m unique per-datum solutions to the
inverse problem (5). This type of criterion (e.g., mini-
mum volume of the parameter confidence region) is
often used to assign appropriate weights to data sets in
the single-objective calibration [35] and to discriminate
among competing models in experimental design [19].

The above statements allow the inverse problem (5)
to be solved at each data point d(,;,, where v specifies
the dependent variable (e.g., hydraulic head or solute
concentration), / specifies the location and ¢, the time
of each available measurement. If we include prior infor-
mation on the parameters (although it is not required),
for example in a form of specified bounds of acceptable
values, a unique set of maximum likelihood per-datum
(for each data point) parameter vector OL = 0;?_’1’[)
(€014, em(, ) may then be obtained by using the
following two criteria:

P(0101) = Gld(wis) — f(0)10] — Inpy(0) = 0 (6a)
min(with respect to (9(9,,7,)) [@p(@(v,/,;))] (6b)

where ®(0,,,) is the per-datum objective function, G is
the performance criterion that measures the deviation of
model response from the observed dependent variable,
and py(0) is the (uniform) prior probability density of
0, which is equal to 1 when 0,,, lies within the bounds
and 0 when it lies outside. The probability (second) term
on the right-hand side of (6a) enforces the constraints
imposed by prior information on the parameters by
assigning an infinite penalty on estimates lying outside
the feasible range ©. It follows that Eq. (6a) may not
have a solution within @. This property of (6a) offers
a first test regarding the magnitude of model error.
Given the correctness of ® and a small measurement
error, when a solution @(U_,,,[) does not exist within @, it
indicates that the model fails to meet the requirement
of physical plausibility, or equivalently, that the degree
of model error at that specific location and time is unac-
ceptable and restructuring the model must be consid-
ered. Another important aspect of Eq. (6a) is that it is
independent of any weighting criterion. No weights have
to be assigned. Furthermore, the same results will be ob-
tained for any performance criterion G (i.e. the square
difference or the absolute difference or the difference of
the logarithms of the predicted and measured values).
It must be mentioned here that throughout our analysis

the prior parameter space, that represents the feasible
range of parameter values, is assumed to be correctly de-
fined. For a discussion on the use of prior information
and the factors that may influence its correctness, the
reader is referred to [2,36]. Criterion (6b) solves the
problem of non-uniqueness of Eq. (6a) by providing
the means for selecting a unique 0 (v.1,) from all possible
solutions 9”, at each data point. It selects a set of
m = v X [ Xt parameter vectors (a unique 0 (w1 for each
measurement of the dependent variable) which are con-
tained in the smallest volume, therefore, have the small-
est spread in the parameter space. There are several
mathematical expressions that may be used to approxi-
mate the size of the posterior parameter space @,. Most
of them measure the spread around some average quan-
tity. Such an expression, which can be used as a minimi-
zation quantity in (6b), is the average square distance
from the “center of gravity”, the so-called radius of
gyration [14]:

. . - 2
min(with respect to 64,...,6,) R,

1 m m . .
:wZZ(Hi_08)27 i#g (7)
=1 g=1

where R, is the radius of gyration, and m is the number
of data on the dependent variables. However, the choice
of the average quantity in these measures of spreading is
found to have only a minor 1mpact on the selection of
the per-datum parameter vectors 0 (0.l0)*

In this study, in order to provide a more informative
comparison of the proposed per-datum calibration to
classical single-objective inversion, the criterion (6b) is
approximated with the following minimization problem:

min(with respect to @“,) G|@ olt) — @| (8)

Criterion (8) minimizes @, and selects a unique 0 (0.10)
from all possible solutlons 0 (i) at each data point by
minimizing the spreading of () (1) around a parameter
vector 0 estimated with classical calibration using an
objective function of the form of criterion (3). A concep-
tual diagram that graphically describes our multi-objec-
tive formulation of the inverse problem (per-datum
calibration) in a two-dimensional parameter space for
three data points is shown in Fig. 4. The crosses and
xs represent the non-unique solution to criterion (6a).
The three highlighted values are the three unique per-
datum parameter estimates selected by criterion (8) by
minimizing the distance R between each per-datum
parameter estimate and the solution to classical calibra-
tion. The vector er, represents the deviation of the per-
datum parameter estimates derived for measurement 2
from the true parameter values; it reflects the cumulative
influence of both model error and measurement error.
The dashed-line rectangle represents an approximation
of the posterior parameter space @, The number of
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Fig. 4. Conceptual diagram of per-datum calibration for three
measurements of the dependent variable.

the estimated parameter vectors using (6a) and (8) is
equal to the number of measurements available. For
example, 10 measurements of solute concentration at
two different times will result in 20 sets of parameter
estimates. These parameter vectors are contained in
the smallest possible region @,, allowed by the magni-
tude of both measurement and model errors that repre-
sents the limits of prediction uncertainty reduction
imposed by the presence of those errors to model cali-
bration. It follows that the uncertainty in model predic-
tions associated with @, also represents the minimum
expected range of values of model output, given the exis-
tence of model error in addition to measurement error.

5. Demonstration and discussion

The synthetic problem presented in Section 2 (Fig. 1)
is used to demonstrate the concepts presented in the pre-
vious section. The objective function (3) is used for solv-
ing the joint parameter estimation problem for models 2
and 3 to obtain the most likely parameter values 6. To
establish approximately equal weights for the hydraulic
head and concentration data sets, the logarithm of the
concentration values is used instead of the actual values,
which vary by orders of magnitude. Concentration mea-
surements at both 250 and 500 days are used in the joint
inversion. Models 2 and 3 are then “calibrated” at each
of the 15 data points using the criteria (6a) and (8) to
estimate the “best” values @:U‘ 1 for the two transmissiv-
ity zones. The solution to the per-datum inverse problem
is approximated using a Monte Carlo technique. The
prior parameter space is sampled using a Latin Hyper-
cube Sampling method [25]. Then, Monte Carlo forward
simulations are used to calculate the values of the depen-

dent variables that correspond to these parameter sets.
To closer approximate the continuous solution space
for hydraulic heads and solute concentrations, a total
of 10,000 deterministic simulations were used for each
model. The selection of the unique per-datum 0”1
(criteria (6a) and (8)), and the analysis was performed
using a Fortran code developed for this reason. A
Monte Carlo method was selected here for solving the
inverse problem because (i) it is easy to understand,
(i1) it does not require assumptions regarding statistical
distributions, and (iii) it directly yields a probability dis-
tribution [5]. Drawback of the method is that (i) it can
be computationally intensive and might not be possible
to apply it to complex problems, and (2) it is difficult to
assess the required number of simulations, which de-
pend on the nature of the problem and the size of the
prior parameter space. However, this problem may be
also solved using the developed fortran code in conjunc-
tion with a standard optimization model, such as
UCODE [31] by randomly selecting different starting
parameter values, or using an existing multi-objective
optimization algorithm, such as MOCOM-UA [38] after
some modification.

The estimated parameter values 9( 1 and 0 for mod-
els 2 and 3 are shown in Fig. 5a and b, respectively. We
refer to 0 as the “solution to classical calibration” in
Fig. 5. The dashed rectangle in each of these figures,
which contains all per-datum parameter estimates, de-
fines the posterior space of acceptable parameter values
©,. A model calibrated using the joint data set (criterion
(3)) provides a closer match to field measurements in
some regions of the model domain than others. The
residual R at each specific location and transport time
can be measured in the parameter space by measuring
the deviation of each 9 (o1 frOm 0 (Fig. 5a and b). The
location of () o1 Within the parameter space relative to
0 accounts for the information regarding model and
measurement errors contained in the residual of (3). In
the case of small model error and Gaussian measure-
ment error, 0 will be close to the true parameter vector
(e.g., Fig. 5a). In such cases, applying the single-objec-
tive calibration may be effective and the confidence
intervals obtained by an analysis of the residual of (3)
(e.g., [30]) may be correct. However, the true parameter
vector and 6 may not coincide because of a substantial
non-Gaussian model error (e.g., Fig. 5b). Then, the devi-
ation of each 0 (0.1 from 0 (vector R) is not equal to the
sum of measurement and model error (vector Er), which
is the distance of the per-datum parameter estimates
from the true parameter values (Fig. 4), and assigning
confidence intervals on model predictions based on the
residual of (3) may be unrepresentative of the real
situation.

With the residual driven to zero, the per-datum
parameter estimates are forced to fully compensate for
the error in model structure and measurement error at
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Fig. 5. Parameter estimates obtained by per-datum calibration (Egs.
(6) and (7)) for (a) model 2 and (b) model 3.

each data point (Egs. (6)). In the presence of model
error, the estimated values of the most sensitive para-
meters are forced to adjust to the greatest degree during
the calibration. The relation between the location in @
of these parameters, expressed as their deviation from
the true parameter value in the normalized parameter
space, and model error is shown in Fig. 6. The influence
of model error is measured as the percent difference be-
tween the predicted concentration values (using the true
parameter values in models 2 and 3), and the error-free
observations at each sampling location, derived from the
true model. Only those measurement locations that are
reached by the plume at 250 days or 500 days are in-
cluded in the plot. The effect of model error on 9260‘/,;)
is apparent in the observed positive correlation between

model error and the distance of each 9:& 1 from the true
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Fig. 6. Relation between model error and location of 0, ) for model 2

(vt
using concentration data at 500 days and model 3 using concentration

data at 250 days. Model error is measured as the per cent difference
between model predictions with the true parameter values at each
sampling location, and the true concentrations at the same locations
and time.

parameter values. In the region where the effect of model
error is smaller than 15% (equal to 3 standard deviations
of measurement error), which represents the locations
where the predicted concentrations are not sensitive to
the errors in model structure, the effect of measurement
error becomes dominant. These areas of small sensitivity
to model error are located near the boundaries of the
contaminant plume for model 2 (at 500 days), while
for model 3 (at 250 days) the single, low sensitivity site
is located close to the center of the plume.

Since the spreading of 0,,,, within the parameter
space is dictated by the magnitude of model and mea-
surement errors, the size of the posterior parameter
space @, that contains all per-datum parameter vectors
will represent the uncertainty due to these errors. In
practice, the errors in model structure rather than mea-
surement errors are considered more important since
they are the main cause of possible failure of a model
application [34]. We suggest that the size of @, is inver-
sely proportional to the correctness of the model struc-
ture and represents the level of uncertainty in the
parameters imposed primarily by the magnitude of
model error. For example, the larger @, for model 3
indicates that model 3 is subject to greater model error
that model 2. A comparison of the magnitude of the cal-
culated true model error for models 2 and 3 with the size
of @, associated with these models (Fig. 5) demonstrates
this statement. This relation between the size of @, and
model error may provide a useful tool for evaluating
alternative conceptual models (model discrimination).
The size of the posterior parameter space @, may also
offer a reasonable basis for selecting a “best” solution
of the minimization problem of classical calibration in
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the case that (3) does not have a unique minimum. Each
of these possible solutions can be used in criterion (8) to
select the unique per-datum parameter estimates. The
resulting volume of the posterior parameter spaces can
then be compared to determine the preferred solution
of (3).

The rectangular @, shown in Fig. 5 is a crude
approximation of the posterior parameter space. A more
informative probabilistic description of @, can be ob-
tained by a statistical analysis of the locations of 0, ,
in @. The statistical distributions of the per-datum
parameter estimates for model 3 are shown in Fig. 7.
Since the proposed methodology does not require any
assumptions to be made regarding the probabilistic
properties of the error, these distributions may be used
in testing the validity of the normality assumption and
the performance of the joint parameter estimation.
The parameter estimates from classical calibration
(shown as arrows in Fig. 7) are the (weighted) average
of all 0,,,. This figure demonstrates the influence of
the weights assigned to different data in classical calibra-
tion. Assigning higher weights to the hydraulic head
data will result in greater values of parameter estimates.
The parameter estimates will be smaller if concentration
data are weighted more than the hydraulic head data. As
suggested earlier in Section 3 (see Fig. 3), Fig. 7 also sug-
gests that the problem of non-uniqueness of the single-
objective inverse procedures may be a result of error
in the model structure. As can be seen in this figure
(see distribution of T), certain weights assigned to mea-
surements of the dependent variables may result in two
local minima in the objective function of the classical
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Fig. 7. Statistical distributions of the per-datum estimates of trans-
missivity 1 and 2 for model 3. The arrows show the location of the
solution of the classical calibration (Eq. (3)).

calibration. The location of these local minima in the
parameter space will coincide with the two peaks in
the distribution of the per-datum parameter estimates
for Ty. When the model structure is correct (for example
the flow solution of model 2), the posterior parameter
space is normally distributed around the true parameter
values since it is subject only to measurement error
(Fig. 8).

The posterior parameter space €, may be used in sto-
chastic modeling to assess the prediction uncertainty
associated with model and measurement errors. How-
ever, using @,, to evaluate the uncertainty in model pre-
dictions may result in assigning a level of uncertainty
imposed by the maximum model error within the model
domain on all sampling locations. Because model error
is spatially distributed, location-specific uncertainty lev-
els on the parameters would be more appropriate. We
adopt the latter approach. A posterior feasible parame-
ter space is estimated for each sampling&ocation based
on the range of the per-datum estimates 0, , , associated
with this location. For example, the posterior parameter
space associated with sampling location 15 is estimated
as the region in the parameter space that contains the
three per-datum estimates that correspond to the mea-
surements of steady-state hydraulic head and concentra-
tion at times of 250 and 500 days at this location. From
these three values, upper and lower bounds are identified
for T, and T,. The location-specific parameter uncer-
tainty is then propagated through the model using these
values to identify upper and lower bounds on the (loca-
tion-specific) model predictions for models 2 and 3.
These bounds are shown in Figs. 9 and 10, respectively.
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Fig. 8. Statistical distributions and location in the parameter space of
the per-datum parameter estimates of transmissivity 1 and 2 for model
2 (hydraulic head data). Note that the flow solution of model 2 is
subject only to measurement error.
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Fig. 9. Concentration estimates for model 2 at time 750 days. The
error bars show the range of prediction uncertainty associated with
accounting for model and measurement errors. Sampling locations are
shown in Fig. 1.

Model 3
1.E+00
c
S 3 b I I I
®
S
E § I T ?
o 1.E-01
g s t
~ i
T
(]
N
® 1.E-021
£ a
E
o .
2 © True concentrations
A Calibrated model based on classical inversion
1.E-03 T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sampling location

Fig. 10. Concentration estimates for model 3 at time 750 days. The
error bars show the range of prediction uncertainty associated with
accounting for model and measurement errors. Sampling locations are
shown in Fig. 1.

Note that, in this simple example, a uniform probability
distribution is assigned to the location-specific parame-
ter uncertainty because of the small number of per-
datum parameter estimates associated with each location.
The availability of a greater number of location-specific
data will allow a more informative probabilistic descrip-
tion of parameter and prediction uncertainty at a given
location. Figs. 9 and 10 do not include the sampling
locations 2 and 5 because no concentration data were
available at these locations as they were not reached
by the contaminant within the time frame of 500 days
used for model calibration. Although the parameter vec-
tor 0 is used for the estimation of é(vm, it is not taken
into account in evaluating the posterior parameter space
associated with each location. As a result, the predic-
tions of the models calibrated using the joint data set
(Eq. (3)) are not necessarily included within the esti-
mated range of concentration values at 750 days (e.g.,

Fig. 10—locations 1, 8 and 14). These are the locations
that contribute the most in the residual of the minimiza-
tion problem (3).

Model predictions presented here as a range of
equally probable values (Figs. 9 and 10) are based on
information on model error for the calibration time
frame. In other words, our predictions of probable fu-
ture responses of the true system are based on an anal-
ysis of model error using past data. However, the
ability of the model structure to describe the physical
system may deteriorate with time. This behavior may re-
sult in prediction bounds that do not bracket the true
values (Fig. 9—Ilocations 11 and 14). In sampling loca-
tions 11 and 14, the effect of errors in model structure
for model 2 on concentrations predicted at 750 days is
greater than their effect during the calibration period
that was evaluated. Updating the analysis as new data
become available may (even partially) resolve this prob-
lem. Uninformative (highly uncertain to unacceptable
levels) predictions indicate the need for model structure
refinement. Refining the model structure will result in a
smaller posterior parameter space and lead to a reduc-
tion of the prediction uncertainty.

6. Summary and conclusions

Errors in model structure (model error) cannot be
avoided because they arise from our limited capability
to exactly describe the complexity of a physical system.
These errors have a significant impact on uncertainty
analyses, parameter estimation and model predictions
and therefore, they cannot be ignored. A model calibra-
tion procedure, complementary to classical inverse
methods, that takes model error into account has been
presented in this paper. This procedure is based on the
concept of a per-datum calibration for capturing the
spatial and temporal behavior of model error. A set of
per-datum parameter estimates rather than a point esti-
mate is obtained by this new method. These parameter
estimates define a posterior parameter space that may
be translated into a probabilistic description of model
predictions. The resulting prediction uncertainty mea-
sures the level of confidence in model performance eval-
vated in terms of each model prediction. It may
represent a more accurate reflection on model predic-
tions of the available information, which is required
for decision making.

Through a simple example we have shown that per-
datum calibration may also provide the means for: (1)
evaluating the performance of classical calibration in
terms of the predictive capability of the model, (2) test-
ing the validity of assumptions regarding error statistical
distributions underlying the estimation of parameters
and their confidence intervals in classical single-objec-
tive calibration, (3) selecting the best solution of the
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minimization problem of classical calibration in the case
that it does not have a unique solution, and (4) evaluat-
ing alternative conceptual models in terms of the cor-
rectness of the model structure.
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