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Methods arc presented for computing three types of simultaneous confidence and prediction intervals 
(exact, likelihood ratio, and linearized) on output from nonlinear regression models with normally 
distributed residuals. The confidence intervals can be placed on individual regression parameters or on 
the true regression function at any number of points in the domain of the independent variablea, and the 
prediction intervals can be placed on any number of future observations. The confidence intervals are 
analogous to simultaneous Scheffe intervals for linear models and the prediction intervals arc analogous 
to the prediction intervals of Hahn (1972). All three types of intervals can be computed eJ1i.clently by 
using the same straightforward Lagrangian optimization scheme. The prediction intervals can be treated 
in the same computational framework as the confidence intervals by including the random erron as 
pseudoparameters in the Lagrangian scheme. The methods are applied to a hypothetical groundwater 
model for ftow to a well penetrating a leaky aquifer. Three different data sets are used to demonstrate the 
effect of sampling strategies on the intervals. For all three data sets, the linearized confidence intervals are 
irtferior to the exact and likelihood ratio intervaJs, with the latter two being very similar; however, all 
three types of prediction intervals yielded similar results. The third data set (time drawdown data at only 
a sini\e observation well) points out many of the problems that can arise from extreme nonlinear 
behavior ofthe regression model. 

INTRODUCTION 

Nonlinear regression modelins has become a valuable tool 
for investigating complex physical systems in which uncer­
tainties in describing and measuring the system preclude the 
use of a deterministic modeling scheme. The nonlinear regres­
sion model supposes that a set of observations {Y" 1 SIS II} 
of the physical system are related to a p x 1 vector of un­
known parameters Pthrough the stochastic model 

Y = IlP) + £ (1) 

where Y is an II x 1 observation vector, and II is an II x 1 
vector of random variables assumed to satisfy the distri­
butional structure 

(2) 

where Q) is a known II x II, positive definite, reliability matrix. 
The vector of regression functions IlP) will depend on 
measurements of one or more independent variables, but for 
notational convenience we do not explicitly denote this depen­
dence in (1). We are concerned mainly with models that are 
nonlinear in aU of the parameters p. Although the methods 
presented in this paper remain valid for models that are linear 
in a subset of the parameters, in such cases more efficient 
procedures could be developed to take advantage of the par­
tial linearity of the model (see, for instance, Williams [1962] 
and Halperin [1963]). 

Consider the problem of statistical inference for (1). The 
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investigator is usually interested in estimating a set of scalar 
functions of the parameters {gl(P), g2(P), ..• }. where a typical 
g,<P) might be a single component of II. the expected value of 
an observation Yl[ at a particular settins of the independent 
variables (Le.,! ~P», or some other function of interest. A point 
estimate of g.<P) is a single random variable Ii, that is the best 
estimate of I1'<P) according to certain criteria. Optimally, one 
would like to have 9, be unbiased (EI, = I1'<P» and have the 
smallest variance among all unbiased estimators. If (1) were 
linear in Pand g,<') a linear function of P. then 91 =11,(6) is the 
minimum variance unbiased estimator of g.<P), where' is the 
weighted least squares (WLS) estimator of p. However, for 
nonlinear models. the WLS estimator is biased and g,(') may 
not be a linear function of p. Hence the statistical properties of 
11'<') may be difficult to obtain and, if the model is highly 
nonlinear, 11.(6) may, in fact, be a poor estimator of 11'<'). 

A set of (1 - «) 100% simultaneous confidence intervals for 
111 (P), I1z(P), ... is defined as a set of intervals (L,. 0,) such that 
the probability is 1 - IX that g,(P) lies within (LI, OJ for all i 
simultaneously, no matter how many intervals are computed. 
Because they include information on model reliability, simul­
taneous confidence intervals on g.<P) are much more informa­
tive than point estimates. Hence it may not be crucial to solve 
the difficult problem of determining statistical properties of 
point estimators for nonlinear models provided efficient meth­
ods for computing simultaneous confidence intervals can be 
developed. In the framework of a linear regression, simulta­
neous confidence intervws are known as SchetTe intervals. 
They can be easily computed (see, for instance, Graybill [1976, 
pp. 198-200]), and the point estimates g,(6) lie in the center of 
the intervws. For a nonlinear model, g,(6) may not lie in the 
center of the interval, and formulas for (LI, OJ are not avail­
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able. The usual procedure to obtain approximate intervals is 
to replace the nonlinear model with a linearized approxi- 
mation in the vicinity of b, then proceed with the linear analy- 
sis. In the context of groundwater models, this is the only type 
of analysis that has been published [Yeh, 1986-1, although 
Cartera [1984, pp. 65-68] has outlined a possible procedure 
for partially correcting the linear intervals for the effects of 
nonlinearity. 

In this paper, we present new methods of calculating true 
nonlinear confidence intervals. In addition, we extend the 
methods to allow computation of simultaneous prediction in- 
tervals on any number of future observations from (1). Com- 
putation of the confidence and prediction intervals involves 
finding extreme values of the functions gi([•) over a joint confi- 
dence region on [•. Three different joint confidence regions are 
employed, one exact region (the lack of fit region) and two 
approximate regions (the likelihood ratio and linearized re- 
gions). The three regions are reviewed in the next section. 
Under mild conditions to be explained below, determining 
extreme values of gi([•) over the various joint confidence re- 
gions can be reduced to a simple general type of Lagrangian 
optimization problem with a single constraint. Calculation of 
simultaneous prediction intervals can also be placed in the 
same simple framework by including the random errors as 
pseudoparameters in the Lagrangian formulation. The method 
that we develop to compute the confidence and prediction 
intervals can easily be imbedded in a standard nonlinear re- 
gression algorithm. In the present study we use the Gauss- 
Newton optimization method. Because the optimization prob- 
lem is nonlinear, convergence problems sometimes arise. Thus 
we present some conditioning and oscillation-dampening pro- 
cedures to minimize these difficulties in the numerical imple- 
mentation of the scheme. Finally, we apply the techniques to 
calculate simultaneous confidence and prediction intervals on 
the output from a hypothetical groundwater model for flow to 
a well penetrating a leaky aquifer. 

SOME TYPES OF NONLINEAR CONFIDENCE REGIONS 

In this section we review several methods for obtaining joint 
confidence regions on the parameters of (1). Confidence re- 
gions on I• may be classified into exact regions and approxi- 
mate regions. An exact (1 - •) 100% confidence region for I• is 
a region in p-dimensional Euclidean space, say, R•, that de- 
pends on Y and for which Prob [l• e R•-I = 1 - • holds exact- 
ly. An approximate (1 - •) 100% confidence region for I•, say, 
R•*, satisfies lim,__,• Prob [l• e R•*-I = 1 -•, but for finite n 
the true confidence level may be different than 1- •. We 
consider first exact regions. 

Exact Regions 

Let X be the sensitivity matrix 

X = {t9f•(b)/t9b•) (3) 

which is n x p and, in general, depends on b. We assume 
throughout that X is of full column rank and that n > p + 1. 
Define a symmetric idempotent matrix of rank p, 

P = •o•/2X(XT•oX)- •XT•o •/2 (4) 

where •o is defined in (2). Note that the marix I- P is sym- 
metric idempotent of rank n- p, and P(I- P)--0. Hence 
from Graybill [1976, theorems 4.4.1 and 4.5.3], 

or-•I-Y- f([•)-ITm•/•Pm•/•I-Y -- f([•)-I "• Z:(P) (5) 

independently of 

a-•[Y - f([•)]rm•/•(l -- P)m•/•[Y -- f([•)] "• z:(n -- p) (6) 

where U--• •2(k) means that the random variable U has a •2 
distribution with k degrees of freedom. Since the ratio of two 
independent •2 random variables standardized by their de- 
grees of freedom has an F distribution, a (1 --•) 100% exact 
confidence region for [• is given by the set of values b satisfying 

[Y -- f(b)]rm•/2Pm•/Z[Y -- f(b)] p 
[y _ f(b)]TmX/2(l _ p)mX/2[y _ f(b)] - n - p 

(7) 

where F•(p, n -- p) denotes the upper • probability point of an 
F distribution with p and n - p degrees of freedom. 

Basing confidence regions on (7) with P defined by (3) and 
(4) is called the lack of fit method. The properties of the lack 
of fit confidence region and its advantages and disadvantages 
over other exact methods have been investigated in detail in 
many previous studies (see, for example, Donaldson and Schna- 
bel [1987], Sundararaj [1978], Wallace and Grant [1977], and 
Gallant [1976]). One advantage is that the boundary of the 
lack of fit confidence region often coincides closely with a 
contour of the sum of squares function, S(b) -- I-Y - f(b)]r•o[Y 
- f(b)], or equivalently, a contour of the likelihood function: 

1 f 1 (2/1:•72)n/2 I•ol •/2 exp --- I'Y -- f(b)]r•o[Y - f(b)] 2or 2 
(8) 

Thus values of b that fall in the confidence region tend to 
result in a smaller sum of squared error and greater likelihood 
than those values outside the confidence region. Another ad- 
vantage of the lack of fit method is that the only calculations 
involving the regression model are the calculations to obtain 
the sensitivities, which are also needed for some of the com- 
monly used iterative nonlinear regression routines. 

Lack of fit confidence regions have two principal draw- 
backs. First, they automatically include all critical points of 
S(b), even relative maxima. Hence if S(b) has multiple critical 
points, the confidence region could consist of several disjoint 
regions, some of which result in a poor fit to the data. The 
second drawback is that the sensitivity matrix depends on b, 
unless the model is linear. This may cause the computational 
requirements for finding the boundary of the region to become 
large. 

Another method of obtaining an exact or nearly exact confi- 
dence region for parameters was suggested by Hartley [1964]. 
Hartley's method is based on obtaining a reparameterization, 
say, •(b), under which the model is nearly linear; that is, for 
which 

f(b) •_ X*x(b) (9) 

with X*= {t9f•(b)/t9zjd•b)} independent of b. Hartley points out 
that the boundary of the confidence region for •(b) obtained 
by this reparameterization method will coincide closely with a 
contour of S(b), with exact coincidence for models in which the 
reparameterization is exact. This method has a major compu- 
tational advantage over the lack of fit method in that X* does 
not depend on b. However, determination of a proper choice 
for •(b) may be quite difficult. If, in a particular case, there is 
an obvious reparameterization that results in a linear (or 
nearly linear) model, the investigator might consider this 
method. 
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Approximate Regions 

An approximate region may be obtained by using the likeli- 
hood ratio method. It is based on the fact that for large n, 
[(n--p)/p][S(l•)--S(•)]/S(•) has an approximate F distri- 
bution with p and n-p degrees of freedom ['see Rao, 1973, 
pp. 417-419]. Thus a (1 -- or) 100% likelihood ratio confidence 
region for • is given by 

S(b)_< S(fi)[ p F•{p,n--p)+ 11 (10) n--p 

exact simultaneous (1- cz) 100% confidence interval on f•ll) 
is given by 

(m2n fg(b ), max fg(b)) be R• (13) b 

where b e R• signifies that b may range over the entire exact 
confidence region defined by (3), (4), and (7). The resulting 
interval is a simultaneous, rather than individual, interval be- 
cause (13) can be computed at any number of points to yield 
simultaneous (1 - cz) 100% confidence intervals on the regres- 
sion function. Hence the probability that an individual value 

The boundary of this region always coincides with a contour f•(l•) falls within its interval may exceed 
of the sum of squares function. 

The simplest method for obtaining an approximate confi- 
dence region is the linearization method. It is based on ap- 
proximating the nonlinear function f(b) contained in $(b) = [Y 
- f(b)]rm[Y - f(b)] by its first-order Taylor series expansion 

in the neighborhood of fi, the weighted least squares estimator 
of I•. That is, 

f(b) -• f(fi) + X(b - fi) (11) 

where • is the n x p sensitivity matrix evaluated at b = fl. The 
linearized confidence region is derived by using (11) in (10) 
and is given by all b for which 

(b -- fi)r•rmX(b - fi) _< ps2Fa(P, n -- p) (12) 

where s2= S(fi)/(n- p). The boundary of (12) forms an ellip- 
soid centered about fl. 

Based on Monte Carlo studies (see, for instance, Donaldson 
and Schnabel [1987]) the actual probability that • lies within 

To derive simultaneous prediction intervals, consider first 
the case of placing a prediction interval on a single future 
value of the dependent variable at point K: 

= f/,(p) + e,, (14) 

To simplify the derivations that follow, we assume that the 
random error eg is independent of e in (1); that is, 

Var = 0 '2 
/•K (-OK 

(15) 

In this case, toga-28K2 has a X2 distribution with one degree of 
freedom and is clearly independent of (5) and (6). Therefore the 
quantity 

{(p + 1)-X{EY -- f(p)]ro•X/2Po•X/2[Y -- r(p)] + 

ß {(n -- p)-1[y _ f(ll)]rm1/2(l _ p)ml/2Ey _ f(ll)]}- 1 (16) 

the likelihood ratio region (10) generally coincides closely to has an F distribution with p + 1 and n - p degrees of freedom 
the specified probability level of (1 - or). In contrast, the actual and a (1 -- or) 100% prediction region for the vector (pt, e•)r is 
probability that • lies within the linearized region (12) may given by 
differ considerably from (1- cz). The key to this difference 
between the two regions is that the boundary of (10) is a true 
probability contour {that is, a contour of equation (8)), while 
the boundary of (12) is not a true probability contour because 
it involves assuming that the contours of (8) are elliptical in 
the vicinity of • [Draper and Smith, 1981, pp. 472-473]. 

[Y- f(b)]ro)X/2po)X/2[Y-f(b)] + COKeK 2 
[Y -- f(b)] rm 1/2(I -- P)co x/2 [y _ f(b)] 

NONLINEAR CONFIDENCE AND PREDICTION INTERVALS 

In a nonlinear regression analysis, the investigator is inter- 
ested not only in obtaining confidence regions on model pa- 
rameters, but also in obtaining simultaneous confidence inter- 
vals on various functions of the model parameters, such as the 
expected value of the dependent variable (i.e., f(l•)) at several 
points in the domain of the independent variables. In addition, 
simultaneous confidence intervals on several future observa- 

tions of the dependent variable Y or of some other quantity 
such as a flow rate may be desired. The latter intervals are 
called simultaneous prediction intervals, since they place prob- 
ability limits on the values of a set of random variables, rather 
than fixed quantities. In this section, we show how the exact 
and approximate joint confidence regions on parameters de- 
veloped in the previous section may be used to derive simulta- 
neous confidence intervals and prediction intervals. In the fol- 
lowing sections, we give operational methods for actually 
computing the nonlinear intervals. 

Exact Intervals 

Let f•(l•) be the true value of the regression function at any 
fixed point in the domain of the independent variables. An 

p+l 
F•{p + 1, n- p) 

n-p 

(]7) 

where eg is the dummy value for eg. A (1 -cz) 100% predic- 
tion interval for Yg is then obtained by finding extreme values 
of fg(b) + eg over the region (17). Note that the resulting pre- 
diction interval is conservative. That is, the probability that an 
individual observation Yg falls within its prediction interval 
may exceed (1 - cz) because the underlying interval on fsr(ll) is 
simultaneous. Methods for calculating the interval are ex- 
plained in the following section. 

To obtain simultaneous prediction intervals on m future 
observations, the right-hand side of (17) needs to be replaced 
with a value such that the probability is (1 - •) that the state- 
ment holds simultaneously for all m points. The correct value 
may be obtained quite simply via Monte Carlo simulations as 
follows. 

1. Generate a set of mutually independent random vari- 
ables {U, V, Wl,-.., Win} , where U ~ X2(p), g ~ )•2(n- p), 
and W• ~ X2(1)for 1 < i < rn. 

2. Compute M = (U + max x.<i.<m Wi)/V. 
3. Repeat (1) and (2) a large number of times and find the 

value M•(p, n, rn) such that a proportion (1 --cz) of the com- 
puted values of M are less than M•(p, n, m). The resulting 
value of M•(p, n, rn) may be substituted for the right-hand side 
of (17) for each of the m points, and (17) may then be used to 
determine extreme values for each of the observations. Once 

again, the details are explained in the next section. 
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Approximate Intervals 

A (1 -- •) 100% approximate simultaneous confidence inter- 
val for ff(P) can be obtained by finding extreme values offK(b) 
over the likelihood ratio region (10) or the linearized region 
(12). The resulting intervals hold simultaneously for any 
number of points. To obtain approximate prediction intervals 
based on the likelihood ratio method, note that (10) is based 
on the fact that •-2(S(p) - S(fi)) is approximately Z2(p) distrib- 
uted (for large n) independently of a-2S(fi) which is approxi- 
mately g2(n- p) distributed. Hence by similar arguments to 
those used in obtaining (16), 

(p + •)-•ES(P)- s(fi) + •o,•,• 2] 
(n - •)-•s(fi) (•8) 

min •(b), max •(b)l (22) b b 

subject to 

qr(y; b)Aq(Y; b) •_ dx_a 2 (23) 

where b is a dummy set of parameters. For notational con- 
venience, from here on we will drop the explicit functional 
dependence on Y and write q(b) instead of q(Y; b). Under the 
mild condition that the gradient of g(b) with respect to b be 
nonzero within the closed region (23) [see Cooley and Vecchia, 
1987] the complicated nonlinear optimization problem posed 
by (22) and (23) may be replaced by the Lagrangian problem 
of finding the extreme values of 

has an approximate F distribution with p + 1 and n-p de- 
grees of freedom. Hence a (1 --•) 100% approximate predic- 
tion region for (pt, e•)r then becomes 

S(b)+ fo•e•2 _< S(fi)[: +1 F•(p+l,n--p)+ 1] (19) --p 

To obtain approximate simultaneous prediction intervals for 
m future values, (19) should be replaced by 

S(b) + co•eK 2 < S(fi)[m•(p, n, m) + 1] (20) 

where M•(p, n, m) is obtained from steps (1)-(3) of the above 
algorithm. 

Confidence regions based on linear approximations involve 
replacing the nonlinear model (1) with a linear approximation 
in the neighborhood of fl. Simultaneous prediction intervals 
for the resultant linearized models maybe obtained using re- 
sults of previous studies, such as Lieberman [1961] or Hahn 
[1972]. For an explanation of how these methods may be 
applied in a groundwater modeling framework, see Cooley and 
Naff[1985, chapter 5]. 

GENERAL METHOD FOR COMPUTING 

CONFIDENCE INTERVALS 

In this section we describe briefly a general method for 
using a joint confidence region on the parameters to compute 
nonlinear confidence intervals on various functions of the pa- 
rameters. In the following section, the general method is 
specialized for application to the nonlinear confidence inter- 
vals developed in the previous section. It is also straightfor- 
ward to apply the method to nonlinear prediction intervals. 
The procedures used here are similar to those used in a pre- 
vious paper [Cooley and Vecchia, 1987] to obtain intervals on 
output from hand-calibrated groundwater models. 

Let a scalar function of parameters for which a confidence 
interval is desired be given by g(p), and let a problem- 
dependent continuous vector function of the parameters and 
data be given by q(Y; p). (The term "problem-dependent" is 
used to describe a quantity whose precise definition depends 
on the particular situation to which the general method is to 
be applied.) Finally, define a (1 -•z) 100% confidence region 
forp by 

Prob [qT(y; I•)Aq(Y; I•) < dl-• 2] = 1 --• (21) 

where A is a problem-dependent, symmetric matrix that is not 

L(b, 2')= g(b) + 2'qr(b)Aq(b) (24) 

subject to 

qr(b)Aq(b) = dl_• 2 (25) 

where it' is the Lagrange multiplier. 
Differentiating (24) with respect to b and setting the result 

to zero yields 

ZrAq(b) = -ha (26) 

where 

1 
it - (29) 

Simultaneous solution of (25) and (26) yields two sets of ex- 
treme values b = b e from which the desired confidence interval 
may be calculated. 

As in the previous paper [Cooley and Vecchia, 1987], we 
adopt an iterative solution method for solving (25) and (26) by 
replacing the nonlinear quantity q(b) with its linear approxi- 
mation about b o [-see Cooley and Vecchia, 1987, equations (11) 
and (16)] to yield 

ZorAZo(be- b o) = -ZorAq(bo)- ita o (30) 

it = _+ {[d•_• 2 -qr(bo)Aq(bo) + qr(bo)ArZo(ZorAZo)-• 

ß ZorAq(bo)]/aor(ZorAZo) -•ao }•/2 (31) 

where b o is a fixed point and Z o and a o are evaluated from 
(27) and (28) with b = b o. Recursive solution of (30) and (31) is 
obtained by setting b o = b e at the end of each iteration and 
resolving for b e again on the next iteration, until convergence 
is achieved. Two separate problems must be solved to obtain 
the two sets of values be, one using the plus sign in (31), the 
other using the minus sign. Because ihe optimization problem 
is nonlinear, it is possible that solutions to (25) and (26) corre- 
sponding to local extremes in (24) may exist. To guard against 
obtaining such a local extreme, the optimization problem 
should be solved with several different starting values b o to 
check that the same extreme sets b e are obtained from each 

a function of p, and 1- •z is the probability level. The run. 
problem-dependent quantity dl 2 is defined relative to the 
other terms in (21) to make the probability statement true. APPLICATION OF THE GENERAL METHOD 
Then, a (1 -- •) 100% simultaneous confidence interval on g(l•) The general method of the previous section is now applied 
may be computed as to finding a simultaneous (in contrast to individual) confidence 
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TABLE 1. Definitions for Variables in (30) and (31) 

Exact Likelihood Linearized 

Region, Region, Region, 
Equation Equation Equation 

(36) (37) (38) 

q(b) Y - f(b) Y - f(b) b - 6 
A •x/2[p 0 __ D2(i __ po)]•x/2 • •T• 

dx_• 2 0 s(•X D2 -i- 1) S(6)D 2 
•(b) b,, fs:(b)* b,, fs:(b)* b,, fs•(b)* 
Z 0 - X o - X o I• x • 
a 0 i, XOK TM i, XOK TM i, •K TM 

*The first entry is for an interval on •i, and the second entry is for 
an interval on f•(p). 

interval on any parameter fii or on f•c(P), the mean of the 
dependent variable at a fixed point K in the domain of the 
independent variables. In particular, for a groundwater flow 
model, fs:(P) is the hydraulic head computed at point K. We 
can also find confidence intervals on other output quantities 
from models, but only intervals on fii and fs:(P) are considered 
in the present paper. 

Equations used to compute the confidence intervals are 
based on equa.tions for the boundaries of the confidence re- 
gions on parameters that have been put in the form of (25). By 
using these equations and the quantities on which the confi- 
dence intervals are desired (fii and f•:(p)), definitions of q(b), A, 
dx_: 2, and g(b) can readily be obtained by inspection. Based 
on these definitions, specialized forms'of (30) and (31) are then 
computed using definitions (27) and (28). 

Boundaries of Confidence Regions 

The boundary of exact region (7), with X being the n x p 
sensitivity matrix, satisfies the equation 

[Y -- f(b)-Iro•x/ePo•X/e['Y -- f(b)] p 
- F:(p, n -- p) 

[Y -- f(b)] ro•x/2(l - P)o•x/2[Y - f(b)] n - p 
(32) 

or 

[Y - f(b)JTo•/e['P -- D2(I -- P)Jo•/2[Y -- f(b)] = 0 

The boundary of likelihood region (10) is 

[Y -- f(b)]rto[Y -- f(b)] 

where 

D 2 = P F•(p, n -- p) 
n--p 

=S(•)[ p F•{p,n--p)+ 11=s(•XD2+l ) (37) 
Finally, the boundary of linearized region (12) is 

(b - •)r.'•rto.'•(b - •) = ps2F:(p, n -- p) = S(•)D 2 (38) 

Equations for Confidence Intervals 

Table 1 gives definitions for quantities in (30) and (31) based 
on comparison of (25) and boundaries (36)-(38). All quantities 
in Table 1 except i have been defined previously. Vector i is 
defined as 

i=[0,0,..., 1,0,--.It (39) 

where the one is in row i. For all regions, Zo was derived by 
straightforward differentiation of el(b) using (27) evaluated at 
b - b o. For both the exact and likelihood regions a o was simi- 
larly obtained by differentiating b i or f•c(b) directly using (28). 
For the linearized region, bi was also differentiated directly for 
the interval on •, but, because the linearized region is based 
on linearized model (11), a o for the interval on f•c(P) had to be 
obtained as follows: 

.•fs:(b) aø= t Oh, Ib=bo} --• {•b• [fg(fi) + •"(b-fi)]} (40) 

By substituting the appropriate quantities from Table 1 into 
(30) and (31), the equations for both the exact and likelihood 
regions are derived as 

X0To)X0(be -- bo)= Xo T{.o[Y -- f(bo)] - 2ao (41) 

). = q- {[dx_• 2 -- (Y -- f(bo))TA(y -- f(bo) ) + (Y - f(bo))TtoX/2 

ß poto•/2(y _ f(bo))]/[aor(XortoXo) - •ao]}•/2 (42) 

(33) Appropriate definitions for A and a 0 are obtained from Table 
1 depending on the type of interval desired. 

The confidence interval on fii is obtained as the two values 
of bi e from the two solutions of (41) and (42) (one solution 

(34) using the plus sign in (42) and one using the minus sign), and, 
similarly, the confidence interval on fs:(P) is obtained as the 

Equations (25) and (33) have the same general form. However, two values of fro(be). The values of fro(be) are directly calculated 
if (33) were used to calculate confidence intervals, then, con- following solution of (41) and (42). As a final note, when the 
trary to assumption, A, which would be given by ½o•/2[P iterative process based on the exact region converges, b e -• b o 
-- D2(I -- P)]½o x/2, would be a function of b, because the sensi- so that Po is computed nearly at be. This agreement of b used 
tivities contained in P are functions of b. This problem may be in f(b) and b used in P means that the resulting interval corre- 
avoided by fixing the point at which the sensitivities are com- sponds with the standard lack of fit region defined by (7). 
puted in each iteration. By choosing this point as bo, it will be The linearized interval on/5• is 
seen in the development to follow that an interval based on •ro.}•(be- bo)= --•ro•(bo- fi)- 2i the lack of fit region results. The matrix P computed at point 
b o will be referred to as Po and is defined as or 

Po = {øl/2Xo(XoTø-}Xo) - 1XoTO)I/2 (35) 

where X o is the n x p sensitivity matrix evaluated at b = b o. 
Boundaries for the exact, likelihood, and linearized regions 

may be stated as follows. From (33) (with P = Po) the bound- 
ary of the exact region is 

b e -- fi-/•,(•To.}.•)-•i (43) 

,• = q- {d,_•2/[iT(•Tto•) - 'i]}'/2 (44) 

The ith equation in the combination of (43) and (44) gives the 
desired confidence interval on fii, or 

[Y -- f(b)]Tto1/2[P o -- D2(1 -- Po)]tox/2[Y -- f(b)] = 0 (36) bi e = •i q- d•-•[iT('•T{o'•) - •i] •/2 (45) 
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Equations analogous to (43) and (44) are obtained for a 
confidence interval on fK(P): 

b e -- fi- •(RTo,}R) - I•KT (46) 

• = q- {d• _•2/[RK(RTo,}R )- 1RKT]} 1/2 (47) 

By using the linearized model 

fK(be) '• fK(fi) + •,K(be -- fi) (48) 

and premultiplying (46) by R K, (46) and (47) can be combined 
to give 

f•(be) =fK(fi) q- d•_,[RK(RrO•R)-•RKT]•/a (49) 

Note that (49) is the standard Scheft6 interval for a linear 
model (see, for example, Graybill [1976, p. 200]). 

Numerical Implementation 

The linearized intervals may be directly computed so no 
further discussion concerning numerical implementation of 
them is needed. The exact and likelihood intervals are nonlin- 

ear, and convergence of the iterative procedure is not always 
obtained with (41) and (42). In particular, the matrix XoT0•Xo 
sometimes became ill-conditioned and even, on occasion, 

singular for the test problem employed. Thus conditioning 
and oscillation-dampening procedures had to be used to aid 
convergence of the ill-conditioned cases. The cases that were 
singular had to be addressed differently, which is explained 
further on. 

Matrix xT0•x often has entries that are of greatly differing 
magnitudes, which can lead to significant accumulation of 
round-off error during solution of (41) and (42) [Draper and 
Smith, 1981, p. 258]. To reduce this source of round-off error, 
(41) and (42) are scaled. The scaling is accomplished by defin- 
ing scaling matrix C as the diagonal matrix whose diagonal 
elements are composed of the square roots of the inverses of 
the diagonal elements of XoT0•Xo . Then, by letting 

fi = C-•(b e - bo) (50) 

S O - XoC (51) 

Po = Cao (52) 

(41) and (42) are modified to become 

Sorø•So 8 = Sorø•[ Y - f(bo)] - •'Po (53) 

,• = ___ {[-d•_• 2 -- (Y - f(bo))rA(Y -- f(bo) ) 

+ (Y- f(bo))rø•/2Poø•/2(Y- f(bo))]/[Por(So%•So) - •Po]} •/2 
(54) 

The result of the scaling is that matrix Soro•So has retained 
the symmetry of Xoro•Xo but has diagonal elements that are 
all unity. 

The method employed for the ill-conditioned cases was 
derived by adding a term to qr(b)Aq(b) that drops out when 
the process converges. The effect of this term is to transform 
matrix Soro•So to become Soro•So + kI, where k is a parame- 
ter to be determined. Thus if we define 

FY - f(b)l q(b) = [_ bo _ b _] (55) 

A* 1 (56) A= O(P x P) kC_ 2_j 

where A* is either ½.o•/2Fp o -- D2(I- Po)]½.o •/2 or o•, as appro- 
priate, then 

zo: 
By using (55) through (57) in (30) and (31) and scaling the 
results, the following equations are derived to replace (53) and 
(54)' 

(Soro•So + kI)fi = Soro•[Y - f(bo) ] - '•Po (58) 

• = +_ {Ed• _•2 __ (y_f(bo))rA,(y_f(bo)) 

+ (Y--f(bo))t•oSo(Sot•oSo + kl)-•SoT•o(Y - f(bo))] 

+ [pot(SotO•So + kI)-lPo]} 1/2 (59) 

Depending on the values in bo, the numerator in (59) may 
become negative so that ,• is imaginary. This means that 

d•_• 2 - [Y -- f(bo)]tA*EY -- f(bo)] < 0 (60) 

Equation (60) implies that S(bo) is much too large and should 
be reduced. This reduction can be accomplished by setting 
2 - 0 for the affected iteration. 

Parameter k is similar to the Marquardt parameter [Mar- 
quardt, 1963]. It is computed using the philosophy and 
method given in the work by Cooley and Naff [1985, pp. 
167-170]. That is, if the angle between the negative of the 
gradient (the right-hand side of equation (58)) and the search 
vector • is greater than a specified angle (usually around 80 ø- 
85ø), then k > 0 is computed to make the angle smaller. Dam- 
pening of oscillations was accomplished by using the under- 
relaxation method given by Cooley and Vecchia [1987]. 

The final method used to control the effects of ill- 

conditioning was to employ the recommendations of Stewart 
['1973, pp. 225-228] concerning precision. All manipulations 
involving matrices Soro•So and Soro•So + kI, including as- 
sembly, were performed using double precision arithmetic, 
whereas the remaining arithmetic operations including com- 
puting X o were performed using single precision. 

Note that the final algorithm is just a modified (scaled, 
conditioned, and dampened) Gauss-Newton algorithm in 
which the gradient of the sum of squares surface has been 
augmented by the term q- •Po- Thus instead of converging to a 
point where the gradient is zero, the procedure converges to a 
point where the gradient has the value q-•Po. For this reason, 
the same computer program can be used to compute both fi 
and b e. 

Computation of Prediction Intervals 

Exact and likelihood confidence regions on (pt, eK)r are 
given by (17) and (19), respectively. Boundaries of these re- 
gions can be written in the following forms. For the exact 
region 

[Y - f(b)]T½.ol/2Fp o -- D2(I -- Po)J½.ol/21-y -- f(b)] + O)KCK 2 = 0 
(61) 

and for the likelihood region 

[Y- f(b)]To•[Y -- f(b)] + coKeK 2 = S(•)(D 2 + 1) (62) 
where 

D2_P+ 1 -• F•(p + l, n -- p) m= 1 

D 2 = M•(p, n, m) m > 1 
(63) 
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TABLE 2. Equations for Confidence and Prediction Intervals 

Exact Region Likelihood Region Linearized Region 

Interval (58), (59) (58), (59) (45) 
on/•i 

Interval (58), (59) (58), (59) (49) 
on ftc(l•) 

Interval (71), (72) (71), (72) (75) 
on Y• 

Note that % at some probability level • can be regarded as 

The boundary of the linearized region can be written using 
(62) as 

(b - fi)r•rto•(b - fi) + o•tcetc 2 = $(fi)D 2 (74) 

because S(b) - S(fi) = (b - fi)r•rto•(b - fi). By following the 
same procedure as used to obtain (49), we obtain 

YK e •.•.fK(fi) 4'- Mi_ot[•K(•To,)•)-I•KT '4'- (-DK- 1] 1/2 (75) 

Note that (75) has the form of the intervals given by Lieber- 
man [ 1961]. 

a fixed value, just like the values in [•. Hence we may consider Summary 
% to be a psuedoparameter as was done by Cooley and Vec- 
chia [1987]. Based on this idea we augment parameter set b to 
include es:. We must also augment the equation set (1) to 
include (14), which yields the following definitions' 

q(b, e•:)= [Y- f(b)• (64) etc 1 

A = ) (65) 
0(1 x n) COte 

Because the prediction interval is on Y•:, 

g(b, e•:)=f•t(b) + e•: = Y•: (66) 

Differentiation of q(b, er) and g(b, er) to obtain Z o and ao 
must be with respect to both b and er. Thus from (64) and 
(66), 

[-Xo 0(n•,,• (6•, Zø = 0(• •.) 1 

,o = (68) 

By using (64) through (68) in (30) and (31), we obtain 

Xor•Xo(b•- bo) = Xor•[Y - f(bo)] - 2Xo• r 

•KeK e • • • 

•= • {[a•_•-(v- f(•o))•A*(V-f(•o)) 

+ (y_ f(bo))r•/2Po • 

(v - f(•o))]/[Xo•(Xo %Xo)- •Xo• • + •- •]} •/• (70) 

where er • is an extreme value of er corresponding to b•. Scal- 
ing and conditioning may be applied in the present case in an 
analogous fashion to that given previously. These procedures 
modify (69) and (70) to become 

(So/•So + &l)• = So/•[Y - f(bo)] - 2So• / 
(7•) 

wrer • = _2 

• = • {[a•_•: - (v - f(•o)VA*(V - f(•o)) 

+ (v- f(•o))%So (So%So + •)- •So•V-f(•o))] 

• [po t(So tmSo + kI)-•Po +wr-•]} •/2 (72) 

Note that the only difference in form between (59) and (72) is 
the addition of wr- • to the denominator of (72). Also, note 
that the second of (71) has to be solved for er • only after 
convergence of the iterative procedure. The extreme value of 
Y•, and Yr•, is then obtained as 

Yr• =f•(b•) + e• • (73) 

Table 2 gives the equations to solve to obtain the various 
confidence and prediction intervals. In the equations cited in 
this table, Po is given by (52), and the appropriate values for a o 
in (52) are given in Table 1. Also, A* is given by tol/2[P o 
--D2(I- Po)]to •/2 for the exact intervals and by to for the 
likelihood intervals. Finally, d•_• 2 is given in Table 1, and D 2 
is defined by (34) for the confidence intervals and by (63) for 
the prediction intervals. 

SINGULAR CASES 

On several occasions involving computation of exact and 
likelihood intervals for the test problem used here, solutions 
for the extreme sets of parameters b e became singular. That is, 
although XoTtoXo was full rank, p, in the vicinity of fi, as the 
iterations progressed, the matrix became progressively more 
poorly conditioned until at some point it became for all prac- 
tical purposes, singular. A special technique had to be derived 
to address these cases. 

If the rank of XoTtoXo is p -- l, where 1 > 0, then there is no 
unique solution for b e. In this case, the solution is unique for 
only p - I linearly independent combinations of the p original 
parameters. A particular solution may be obtained by holding 
1 of the p parameters fixed, then solving for the remaining 
p- I parameters. In this way a particular exact or likelihood 

(69) interval can be obtained. By changing the values of the pa- 
rameters held fixed during solution, a new particular exact 
interval can be found. This idea may be used as a basis for a 
method of determining whether or not a problem is truly 

TABLE 3. Numerical Information for Example Problem 

Quantity Value 

Aquifer transmissivity, T 
Aquifer storage coefficient, S 
Aquifer leakance, R = K'/b' 
Discharge for pumping period 1, Q x, 

for 0 < t _• 90 days 
Discharge for pumping period 2, Q 2, 

for 90 < t <_ 150 days 
Distances from pumping well, r 
Observation times, t 

Observed drawdowns, Y, 
at r= 100fi 

Observed drawdowns, Y, 
at r = 600 fi 

864 ft2/day 
0.0001. 

0.000002 day- 
19,008 fi3/day 

100 and 600 fi 

0.5, 5, 10, 30, 60, 90, 
90.5, 95, 100, 120, and 
150 days 

11.32, 16.85, 17.60 
16.68, 20.06, 18.10, 
6.03, 2.16, 1.21, 
0.04, and -0.25 fi 

4.88, 8.14, 11.67, 12.54 
12.69, 11.53, 7.47, 2.44, 
2.28, 0.87, and 0.38 fi 

One foot = 30.48 cm' 1 fi2 = 0.093 m 2' 1 fi3 = 0.028 m 3. 
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TABLE 4. Regression Estimates and Confidence Intervals on Parameters 

Regression Estimate Linear Interval Likelihood Interval Exact Interval 

T, 799.50 
S, 0.15184 x 10 -3 
R, 0.47535 x 10 -5 d -1 

T, 776.38 ft2/d 
S, 0.14975 x 10 -3 
R, 0.42010 x 10 -5 d -• 

T, 692.54 ft2/d 
S, 0.32920 x 10-3 
R, 0.19291 x 10 -'• d -• 

Full Data Set 

(639.89, 959.11) (664.64, 986.91) 
(-0.17122 x 10 -'•, 0.32080 x 10 -3) (0.39939 x 10 -'•, 0.39012 x 10 -3) 
(--0.27668 x 10 -5, 0.12274 x 10 -'•) (0.71146 X 10 -6, 0.17736 x 10 -'•) 

Reduced Data Set 

(580.60, 972.16) (616.37, 1007.9) 
(-0.47128 x 10 -'•, 0.34663 x 10 -3) (0.29662 x 10 -'•, 0.44033 x 10 -3) 
(--0.45252 x 10 -5, 0.12927 x 10 -'•) (0.30538 x 10 -6, 0.21895 x 10 -'•) 

Time Drawdown Data Set 

(172.14, 1212.9) (<0.83400 x 10-•, * 1539.7) 
(-0.10282 x 10 -2, 0.16866 x 10 -2) (0.13281 x 10 -6, 0.62542 x 10 -2) 
(-0.91667 x 10 -'•, 0.13025 x 10 -3) (0.53841 x 10 -9, •0.86 x 10 -2') 

(667.73, 982.38) 
(0.40942 x 10 -'•, 0.38349 x 10 -3) 
(0.75205 x 10 -6, 0.17136 x 10 -'•) 

(625.98, 995.69) 
(0.32057 x 10 -'•, 0.42118 x 10 -3) 
(0.35633 x 10 -6, 0.19533 x 10 -'•) 

(<0.77192 x 10-2, * 1661.3) 
(0.47132 x 10 -7, •0.71 x 10-27) 

(<0,'{' •0.89 x 10 -2') 

One fi2 = 0.093 m 3. 

*Became singular for p = 3. 
?Failed to converge in 50 iterations. 

singular or is only poorly conditioned, and, if the latter is true, As a practical matter, if I were greater than one or two, this 
of approximating the unique set b e. The method is to change method would be quite tedious. In the present case l = 1 and 
the parameters being held fixed during a solution so as to the method was applied without difficulty. 
increase the size of the interval from solution to solution. If a For each particular solution, the computational techniques 
unique grand set b e is eventually obtained, then the problem is were unchanged from the standard case. The degrees of free- 
only poorly conditioned, but if it becomes apparent that the dom for F for the likelihood region remain (p, n- p) because 
interval is increasing without bound (or, at least without a all p parameters can be considered to be variables in S(b). It 
practical bound) then the problem is considered to be singular. does not matter how b e is determined as long as the set satis- 
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Fig. 1. Time drawdown plot using the full data set for r -- 100 ft (1 fi -- 30.48 cm). Observations are indicated by an ex, 
and prediction intervals are shown at t -- 90 and t = 150 days. 
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Fig. 2. Time drawdown plot using the full data set for r = 600 fi (1 ft = 30.48 cm). Observations are indicated by an ex, 
and prediction intervals are shown at t = 90 and t -- 150 days. 

ties (37) (or equation (62)) and is the required extreme (if one 
exists). However, the degrees of freedom for the exact region 
are based on the ranks of the quadratic forms (5) and (6) (or 
their counterparts for prediction intervals). If the solution is 
truly singular, then the rank and order of XortoXo for the 
particular solution is p - l, and the degrees of freedom for F 
must be reduced to (p- l, n-p + l). However, in this case 
the size of the interval is not unique so that the degrees of 
freedom used make little difference. 

EXAMPLE PROBLEM 

For an example of finding confidence intervals on output 
from nonlinear regression groundwater flow models, we will 
consider a hypothetical aquifer and aquitard system where the 
aquifer and aquitard are both homogeneous, of constant 
thickness, and infinite in areal extent, and where the specific 
storage of the aquitard is negligible. A single pumping well 
penetrates the aquifer, and the total simulation time was di- 
vided into two pumping periods. There are two observation 
wells, and 11 paired observations in time were taken at the 
wells. Numerical information for the problem is given in Table 
3. Errors • in observed drawdowns were generated to be N(0, 
1 ft 2) (1 ft2= 0.093 m :) random variables. Temporal corre- 
lations in the errors could be incorporated in the analysis 
through the weight matrix to, but to simplify the example 
problem we assume that the errors are uncorrelated. 

The analytical solution of Hantush and Jacob [1955], gener- 

alized to apply for more than one pumping period, forms the 
groundwater flow model from which drawdown, s --f([I), and 
sensitivities were calculated. These were used in the appropri- 
ate equations given in Table 2 to obtain the desired confidence 
intervals. Methods used to obtain the drawdowns and sensiti- 

vities for this leaky aquifer problem are given in the appendix. 
Based on the numerical information given in Table 3, three 

cases were developed: (1) the full data set for which n = 22 
and p = 3; (2) reduced data set constructed by using paired 
observations at t = 0.5, 10, 60, 90.5, 100, 150 days for r = 100 
ft and r = 600 ft, for which n = 12 and p = 3; and (3) time 
drawdown data set constructed by using all time observations 
at r=100 ft, for which n=11 and p=3. Cases 2 and 3 
allowed determination of the effects of the two subsampling 
strategies on the confidence intervals. All confidence intervals 
are based on • = 0.05; that is, they are 95% intervals. 

Regression estimates and confidence intervals on parame- 
ters for the three cases are given in Table 4. Note that all 
corresponding intervals increase in size from cases 1-3. This 
appears to result because of the decreasing number of obser- 
vations from cases 1-3 and because time drawdown data 

alone do not define the parameters as well as time and dis- 
tance drawdown data used together. Linear intervals differ 
from the likelihood and exact intervals for all three cases, and 
the lower linear bounds on S and R become negative for all 
three cases. Corresponding likelihood and exact intervals are 
similar for the first two cases, but differ for the third case. 

Wide intervals and highly nonlinear behavior characterized 
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Fig. 3. Time drawdown plot using the reduced data set for r -- 100 ft (1 ft = 30.48 cm). Observations are indicated by an 
ex, and prediction intervals are shown at t -- 90 and t - 150 days. 

the third case. The upper exact bound on S oscillated about 
the value of ~0.71 x 10-:•, and the solution failed to converge 
in 50 iterations. Because the computed value of F for the last 
few iterations oscillated about the correct critical value, we 
assumed that this approximate bound is close to the correct 
bound. The solution also failed to converge to the lower exact 
bound on R because the bound is apparently less than zero, 
which is outside of the range of validity of the analytical solu- 
tion. The solution procedure continually drove R closer to 
zero, but the computed value of F never became large enough 

tical in all three cases. Furthermore, for cases 1 and 2 the 
linear bounds are almost identical to the nonlinear (exact and 
likelihood) bounds except for times after 115 days for r - 100 
ft and after 95 days for r - 600 ft. 

The effects of nonlinearity are more pronounced for case 3, 
but even in this case they are significant only from 0 to 10 
days and after 95 days, where the nonlinearity is especially 
significant. After 95 days, the lower linear bound is negative, 
and after 120 days the linear interval does not even contain 
the true drawdown. After 95 days the solutions for the lower 

to indicate that the bound had been reached. Singularity of nonlinear bounds become singular. The bounds, which are 
the solution became a problem when trying to determine the 
lower likelihood and exact bounds on T and the upper likeli- 
hood and exact bounds on R. In both instances the singularity 
was caused by the production, by the search procedure, of 
parameter sets for which the computed drawdowns tended 
very quickly to steady state. In this case the storage coefficient 
had negligible influence on the solution, and the problem 
became deficient in rank by one. Therefore bounds were ap- 
proximated by using the search procedure described pre- 
viously. For T, for all practical purposes the bounds approach 
zero, and the search process was terminated at the values 
given in Table 4. For R, the approximate values shown in 
Table 4 were obtained. 

Time drawdown plots for the three cases are illustrated in 
Figures 1 through 5. In spite of any differences in bounds of 
exact and likelihood confidence intervals on parameters, the 
exact and likelihood bounds on drawdown are virtually iden- 

virtually zero, reflect a system that tends to steady state very 
quickly, and, as in the instance of the singular parameter 
bounds, the solutions are deficient in rank by one. 

Carrera and Neurnan [1986] give a two-parameter numeri- 
cal example of a groundwater flow model in which nonlinear 
effects in the likelihood function are reduced by log transform- 
ing the parameters. It is possible that a similar reparameteri- 
zation of the present model, such as log transforming T, R, 
and, perhaps, $, might induce closer agreement of the nonlin- 
ear and linear intervals. However, we consider exploration of 
reparameterization methods to be beyond the scope of the 
present paper. 

For cases 1 and 2, four simultaneous prediction intervals (at 
t = 90 days and t- 150 days for r = 100 ft and r = 600 ft) 
were constructed. To construct these intervals, critical values 

M•(p, n, rn) had to be obtained, as explained previously. In all 
cases 5000 Monte Carlo trials were used. For case 1, Mo.o5(3, 
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Time drawdown plot using the reduced data set for r = 600 ft (1 fi = 30.48 cm). Observations are indicated by an 
ex, and prediction intervals are shown at t = 90 and t = 150 days. 

22, 4) was computed to be 0.764, and for case 2, Mo.o5(3, 12, 4) 
was computed as 2.028. Because only one observation well 
was used for case 3, only two simultaneous prediction inter- 
vals at t = 90 days and t = 150 days were constructed for this 
case. The critical value Mo.o5(3, 11, 2) was computed as 2.175. 
In Figures 1 through 5 corresponding linear and nonlinear 
prediction intervals could not be distinguished for all three 
cases, and the prediction intervals are substantially larger than 
the confidence intervals. The negligible difference between the 
linear and nonlinear prediction intervals, as well as their large 
width, are probably due to the conservative nature of the 
intervals, the assumption of uncorrelated errors, and to the 
rather large assumed error variance. 

SUMMARY AND CONCLUSIONS 

1. Three types of simultaneous confidence and prediction 
intervals (exact, likelihood, and linearized) on output from 
nonlinear regression models such as groundwater flow models 
can be computed by using a straightforward Lagrangian opti- 
mization scheme. These three types of intervals are based on 
the classical exact, likelihood, and linearized confidence re- 
gions on parameters. The same Lagrangian optimization 
scheme can be used to obtain Schcff•-type confidence intervals 
on individual regression parameters based on the exact or 
likelihood regions. 

2. The basic distributional assumption is that the errors in 
the regression model are distributed normally. Correlations 
among the errors or differences among their variances are 

assumed to be expressed in terms of a known weight matrix. 
Hence critical values for the bounds on the confidence inter- 

vals are obtained from the standard F distribution. Critical 

values for simultaneous prediction intervals can be obtained 
through use of a simple, efficient Monte Carlo scheme. 

3. Application of the method to a hypothetical example 
problem based on the Hantush and Jacob [1955] solution for 
flow to a well penetrating a leaky aquifer showed that sam- 
pling a full data set (consisting of 22 paired observations made 
at 11 time points and 2 distances from the pumped well) by 
eliminating every other time observation had little effect on 
either confidence intervals on parameters or confidence and 
prediction intervals on drawdown. For both cases (the full and 
reduced data sets) the linear intervals on parameters were 
somewhat different from the exact and likelihood intervals, 
which were very similar, with the biggest difference being that 
the lower linear bounds for the storage coefficient and leak- 
ance were negative. The linear confidence intervals on draw- 
down were generally different from the nonlinear confidence 
intervals only during the latter parts of the simulations after 
the well discharge ceased; corresponding exact, likelihood, and 
linear prediction intervals were virtually identical. Results of a 
third case, obtained by eliminating one of the observation 
wells to produce time drawdown data only, differed greatly 
from results of the first two cases. Confidence intervals on 

parameters were very large, and linear and nonlinear intervals 
did not correspond well. Also, solutions to obtain the bounds 
became singular in several instances. In these instances, ap- 
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Fig. 5. Time drawdown plot using the time drawdown data set for r = 100 fi (1 fi = 30.48 cm). Observations are 
indicated by an ex, and prediction intervals are shown at t = 90 and t = 150 days. 

proximate bounds were obtained with use of a trial and error 
search technique based on a reduced parameter set. Linear 
and nonlinear confidence intervals on drawdown correspond- 
ed more closely, and the effects of nonlinearity were significant 
only during the latter part of the simulation after the well 
discharge ceased. During this time, the linear intervals were a 
poor approximation of the nonlinear intervals. Linear and 
nonlinear prediction intervals on drawdown for the third case 
were again virtually identical. 

s is drawdown (L); r is distance from the pumped well (L); t is 
time since pumping commenced (T); Q is volumetric pumping 
rate (L3T-a); T is transmissivity (L2T-a); $ is the storage 
coefficient; K' is the vertical hydraulic conductivity of the 
aquitard (LT-a); b' is the thickness of the aquitard (L); and 
Ko( ) is the modified Bessel function of the second kind and 
zero order. ttantush and Jacob [1955, p. 97] also gave a series 
expansion of the integrals in (A1) and (A2), which may be 
written in the form 

APPENDIX 

Hantush and Jacob [1955] gave the following equivalent, 
alternative solutions for flow to a well pumping at a constant 
rate in an infinite, homogeneous, leaky aquifer' 

fu dy Q V2/Y-- Y (A1) s 4•T y 

s=4•-T [2Ko(2V)-- ••e-V2/Y-Y •] (A2) 
where 

r2S 
u - (A3) 

4Tt 

= (r2K"• 1/2 v k,4rb'J (A4) 
K't 

w - (A5) 
Sb' 

•o• dy e - v2/y -- y __ 
y 

= e-" • v2" (-- 1)m(m -- 1)! n=, (n!) 2 E xm -b W(x)lo(2V) (A6) m=l 

where 

© dy W(x) = e -y -- (A7) 
Y 

and Io( ) is the modified Bessel function of the first kind and 
zero order. Substitution of (A6) into (A1) and (A2) gives two 
alternative solutions, one efficient for early time (w < u) and 
one efficient for late time (u < w). For w < u, 

[ Q -u Z v2n (-- 1)m(m -- 1)! s = 4-• e (-•.)2 u m n=l m=l + Wfu)lo(2V)] 
(A8) 
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For u < w, 

s = • 2Ko(2V )-- e -w 
4•T 

' •1 l)2•n • (--1)m(m--1)'_ W(w)Iø(2v) 1 (A9) n= (n !)2 m= 1 wm 

Sensitivities are obtained by differentiating the appropriate 
solutions with respect to the respective parameters. Differ- 
entiation of (A8) and (A9) with respect to T and collection of 
terms yields the following. For w < u, 

• • -u • n•2n OT • s + 4• e n=l 

ß - e -w + W(u) n (nI):j) (A•0) m= 1 •m = 

FoF • • W, 

0S 1{ • I Wn•l nt)2n - s + D(2v) -- e- 0T T 4--• = (n !)2 

Yt2 m -- W(Yt2)n•l (n!):j j (All) m----! = 

where 

D(2v) = v • Ko(2V) (A12) 
Differentiation of (A 1) with respect to S yields, for all u and w, 

Os Q 
- --•e -"-w (A13) 

OS 4•rTS 

Finally, differentiation of (A8) and (A9) with respect to K'/b' 
and collection of terms gives the following. For w < u, 

E or) tt Os Q u E nt)2n (-- 1)m(m -- 1)! -- e- E ttm OR 4nTR n= • ('•.•)2 m= • 

For u < w, 

oo nt;2n 1 
4- W(U)n• • (7.•)2_] (A14) 

E Q D(2v) -- e- (n !)2 _ w E nt;2n 
4nTR n=l 

• (--1)m(m -- 1)! ) •1 ntJ2nl ß --e-u- W(w) n (-•.•)2] m-- 1 Wm 

where R = K'/b'. 
In order to improve the efficiency and numerical per- 

formance of calculating drawdowns and sensitivities, W( ) 
and Ko( ) were approximated with equations given by 
Gautschi and Cahill [1965, p. 231] and Older [1965, p. 379]. 
For 0 • x • 1, 

W(x) = - In (x)- 0.57721566 + 0.99999193x- 0.24991055x 2 

+ 0.05519988x 3-0.00976004x 4 +0.00107857x 5 + e(x) (A16) 

where I(x)l < 2 x 10-v. For 1 • x < •, 

e -• [x•+a•x3+a2x2+a3x+a•] e -• W(x) = • + • •(x) 
X + b•x 3 + b2 x2 + b3x + x 

(A15) 

(A17) 

where I•(x)l < 2 x 10-* and 

a• = 8.5733287401 

a 2 = 18.0590169730 

a 3 -- 8.6347608925 

a 4 - 0.2677737343 

b• = 9.5733223454 

b 2 - 25.6329561486 

b 3 = 21.0996530827 

b 4 = 3.9584969228 

For0<x<2, 

Ko(x) = --ln (x/2)Io(x) -- 0.57721566 + 0.42278420(x/2) 2 

+ 0.23069756(x/2) 4 + 0.03488590(x/2) 6 

+ 0.00262698(x/2)* + 0.00010750(x/2) •ø 

+ 0.00000740(x/2) •2 + •(x) 

where le(x)l < 1 x 10 -8 

For2<x<c•, 

e-X 

Kø(x) = •xx [ 1.25331414 -- 0.07832358(2/x) + 0.02189568(2/x)'- 
-- 0.0!062446(2/x) 3 + 0.00587872(2/x) '• 

e-X 

- 0.00251540(2/x) 5 + 0.00053208(2/x) 6] + •xx e(x) 
(A19) 

where le(x)l < 1.9 x 10 -?. The term D(2v) was obtained by 
differentiating (A18) or (A19), depending on the value of 2v. 

Although the series solutions for drawdowns and sensiti- 
vities given above are valid for all values of v, evaluation of 
(A6) and the similar forms in the equations for sensitivities 
involves subtraction of two nearly equal large numbers for 
values of v greater than about 2. Hence for v _> 2, (A1) and 
(A2) were numerically integrated with a scheme explained fur- 
ther on. Equation (A1) was used for w < u and (A2) was used 
for u _< w. Sensitivities to T and R derived from (A!) and (A2) 
were also numerically integrated and are as follows. 

For w < u, 

Os 1 

0T T 

For u _< w, 

(A18) 

For u < w, 

Os Q 
OR 4•rTR 

For w < u, 

- s + D(2v) + v 2 e -v2/y-y (A21) 0T T 

Os Q v 2 e •,2/y_y (A22) 
OR 41rTR y2 

[ fw D(2v) + v 2 e_•2/•_ • dy -u-w y2 q- e (A23) 

{ I; © dy Q _•2/,_, __ •_ (A20) s -- 4-• v2 e y2 + e- w 
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Numerical evaluation of the integrals in (A1), (A2), and 
(A20) through (A23) was obtained by using Simpson's rule 
[McCracken and Dorn, 1964, pp. 172-173] in the following 
form: 

I(x) = • T o + 4 • Ta, + 2 • T•i + Tf (A24) i=1 i=1 

where I(x) is the integral being evaluated; x is either u or w; 
T o, T•i, T•i, and Tœ represent the integrand of I(x) at different 
positions, y; T• and T• + • (or T• and T•+ •) are spaced 2Ay 
apart; Ay = 1/2; T O is located at x; T• is located at x + Ay; 
T• is located at x + 2Ay, and Tœ is located at x + 2JAy. The 
point J is determined as the point where 

T• T• < 1 x 10 -• (A25) 
i 

To allow nonconstant pumping rate with time, subdivide 
the total simulation time into k = 1, 2, --., P pumping 
periods, so that during pumping period t•_ • to t• the well is 
pumping at constant rate Q•. Then, by using the principal of 
superposition, write the solution for total drawdown in the 
form 

1 

s = 4•:--• n•x(Qn - Qn- x)L(xn_ •, v •) (A26) 
where L(xn, v:) is the integral in (A1) or equivalent terms in 
(A2), (A8), or (A9); xn is either un or %, as appropriate; 

res 

u• = 4T(t -- t•) t > t• 
(A27) 

u• = oo t < t• 

K'(t- t•) 
wn = Sb' t > tn 

(A28) 
wk=O t_< t k 

Qo = 0 and t o = O. Sensitivities are obtained by superimposing 
appropriate derivatives in the same manner. 
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