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Exact Scheffe-Type Confidence Intervals for Output 

From Groundwater Flow Models 


1. Use of Hydrogeologic Information 
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A new method is developed to efficiently compute exact Scheft'6-type confidence intervals for output 
(or other function of parameters) g(~) derived from a groundwater flow model. The method is general 
in that parameter uncertainty can be specified by any statistical distribution having a log probability 
density function (log pdf) that can be expanded in a Taylor series. However, for this study parameter 
uncertainty is specified by a statistical multivariate beta distribution that incorporates hydrogeologic 
information in the form of the investigator's best estimates of parameters and a grouping of random 
variables representing possible parameter values so that each group is defined by maximum and 
minimum bounds and an ordering according to increasing value. The new method forms the confidence 
intervals from maximum and minimum limits of g(~) on a contour of a linear combination of (1) the 
quadratic fonn for the parameters used by Cooley and Veccbia (1987) and (2) the log pdf for the 
multivariate beta distribution. Three example problems are used to compare characteristics of the 
confidence intervals for hydraulic head obtained using different weights for the linear combination. 
Different weights generally produced similar confidence intervals, whereas the method of Cooley and 
Vecchia (1987) often produced much larger confidence intervals. 

INTRODUCTION 

The degree of uncertainty in results of a groundwater flow 
model is dependent upon the degree of uncertainty in infor
mation on aquifer properties and other quantities (collective
ly termed parameters) used to construct it. It is well known 
[e.g., Dettinger and Wilson. 1981] that this information is 
generally uncertain. This uncertainty is caused mainly by 
inaccuracies and inadequacies in methods of obtaining esti
mates for true values of the parameters and by uncertainty in 
the spatial (and sometimes temporal) variability of the true 
values. Use of single or fixed estimates of parameters that 
are, in reality, uncertain produces model output quantities. 
such as hydraulic heads and fluxes, that are uncertain to an 
unknown degree and thus unreliable. Therefore to produce a 
more reliable model it is necessary to replace the single 
estimates of parameters with a statistical distribution that 
expresses the known degree of uncertainty about the true 
values of the parameters. Then, this distribution of potential 
candidates for true values of the parameters (referred to here 
simply as the distribution of parameters) should be used to 
produce a distribution of model output quantities that ex
presses the degree of uncertainty in output from the model 
[Konikow. 1986, p. 183]. 

In general, the model output quantities are nonlinear 
functions of the parameters, which makes analysis of uncer
tainty in model output difficult [Dettinger and Wilson, 1981; 
Cooley and Vecchia. 1987]. The principal approaches that 
have been used to characterize uncertainty in model output 
resulting from uncertainty and spatial variability of parame
ters were briefly reviewed by Cooley and Vecchia [1987]. 
These approaches were categorized as linearization meth
ods, which compute variances ofdesired model output based 
on linearizations of model equations, and Monte Carlo 
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methods, which approximate the statistical distribution of 
model output by performing numerous model runs. Compre
hensive reviews of stochastic methods of incorporating 
spatial variability of parameters into the theory and analysis 
of groundwater flow and transport have recently been pre
sented by Dagan [1986] and Gelhar [1984,1986]. Application 
of the methods reviewed by these authors to computing 
variances and covariances of model output quantities for 
practical problems again appears to be confined to the 
linearization and Monte Carlo methods. Both of these meth
ods have serious drawbacks. Use oflinearization methods is 
restricted to systems characterized by small parameter vari
ances, and Monte Carlo methods are computationally inten
sive. 

If the assessment of uncertainty in model output is to have 
a probabilistic basis, then confidence and prediction inter
vals for model output should be computed. A confidence 
interval for some function of parameters, such as model 
output, is a range ofthe function such that there is a specified 
probability that the true value of the function lies within the 
range [Graybill, 1976, p. 86]. In contrast, a prediction 
interval is a range of a random variable corresponding to the 
function such that there is a specified probability that a 
future observation of the random variable lies within the 
range [Graybill, 1976, pp. 267-268]. The random variable for 
prediction intervals is generally formed by adding a random 
error (or noise) component to the function of parameters. 
Both types of intervals can be computed using the statistical 
distribution, variances, and co variances of the function. but 
the statistical distribution, variances, and covariances of the 
errors are also required for prediction intervals. 

Approximate confidence and prediction intervals for 
model output can be computed by linearizing the model 
[Seber and Wild, 1989, pp. 191-196; Cooley and NaJf, 1990, 
pp. 172-176]. In this case, variances and covariances of the 
model output can easily be computed, and the statistical 
distributions of model output can usually be derived, at least 
in approximate form. In addition, this method can be ex
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tended to obtain confidence intervals for other nonlinear 

functions of parameters that might be of interest [Seber and 
Wild, 1989, p. 192]. However, parameter variances must 
generally be small for the intervals to be good approxima- 
tions. Better approximations would be obtained using the 
Monte Carlo method or a reparameterization method such 
that the reparameterized function has statistical properties 
that are similar to those of a linear function [Bates, 1992]. 
Only the Monte Carlo method fully accounts for nonlinear- 
ity, and as indicated above, it is computationally intensive. 

Computation of confidence and prediction intervals that 
fully account for the nonlinearity can also be approached as 
a constrained, nonlinear optimization problem. Cooley and 
Vecchia [1987] developed a method of computing these 
types of intervals and applied it using specific bounded 
parameter and model error distributions that were consid- 
ered to reflect commonly available knowledge of parameters 
and model errors. However, the method ignored the bounds 
and so produced intervals that were often conservative (too 
wide) [Hill, !989]. 

Widths of confidence and prediction intervals depend on 
the assumed statistical distribution of parameters. If the 
model were fitted to available data (termed calibration data) 
such as observed hydraulic heads and fluxes, then it would 
probably be observed that certain combinations of parame- 
ter values produce poor fits of the model to the data. In these 
cases the calibration data indicate that these combinations of 
parameter values are unlikely. A statistical distribution of 
parameters that does not directly incorporate model fit to the 
calibration data (such as the one used by Cooley and 
Vecchia [1987]) could easily have a variance-covariance 
structure that allows these combinations to be likely, 
whereas a statistical distribution of parameters that incorpo- 
rates model fit to the calibration data would have a variance- 
covariance structure that makes these combinations un- 
likely. This reduction of likelihood would reduce the sizes of 
computed confidence and prediction intervals. 

Part 1 of this study describes a new method of calculating 
exact confidence intervals using the statistical parameter 
distribution of Cooley and Vecchia [1987]. The methods are 
applied to three example problems to analyze the quality of, 
and major influences on, the confidence intervals. In part 2 
[Cooley, this issue] a method of incorporating calibration 
data is developed and applied to the second and third 
example problems of part 1. 

Prediction intervals are not included in either of the two 
parts. However, the method of Cooley and Vecchia [1987] 
for computing them can easily be adapted to the new 
methods. 

METHODS OF CONSTRUCTING CONFIDENCE INTERVALS 

Assumed Distribution for Parameters 

Definitions of quantities relating to the distribution of 
model parameters are similar to those used by Cooley and 
Vecchia [ 1987]. Assume that a fixed but unknown set of true 
parameters 13 exists. Also define • equal to a fixed estimate 
of 13 resulting from prior (measured and subjective) informa- 
tion and (or) model calibration and B equal to a set of random 
variables from a statistical distribution that describes param- 
eter uncertainty and covers the plausible range for f!; 13 and 
b are regarded as possible realizations of B. 

For this study the statistical distribution assumed for B is 
the one used by Cooley and Vecchia [1987], and this 
distribution is termed the prior distribution. Extreme values 
and ordering of the parameters are assumed to have been 
obtained from measurements and other (perhaps subjective) 
hydrogeological information, possibly augmented by the 
model calibration process. Ordering of the parameters is 
accomplished by identifying parameters that can be grouped 
so that the parameters in each group form an ordered 
sequence. Thus parameters are assumed to exist in k inde- 
pendent groups. The Pt parameters in the/th group (I = 1, 
2, .-., k) form the ordered sequence 

Lt -< bH < hi2 • ß ' ' < blj <' "•< bt•,•<_ Ul (1) 

where b tj is a realization of BIj, Bli is an element of vector 
(Bl•, Bl2, ß ß ' , Btp•) t = Bt, B t is a subvector of vector (B1, 
B2 r, ---, B/)r = B, L t is the lower bound for the group, 
and Ut is the upper bound for the group. 

The probability density function (pdf) for the distribution 
used by Cooley and Vecchia [1987] can be stated for each 
group in the form (A. V. Ve½chia, unpublished manuscript, 
199!) 

ß ' \ rrtt! -- 1 Pt 
(.• b ! l 2 --L !2 ..... ( b l ' j - b lj ) n tj -1 fBl(bl) '= (U l _ gl)ml,•,t+,-1 H + I j= 1 B(m•j, no) 

(2) 

Lt < bll <' ß ß <-- blp • <- U 1 

where B(mlj, no.) is the standard beta function, bt,•,•+l = 
Ui, and m lj and n lj are distributional parameters that satisfy 
mlj > 0, nlj > 0, and 

ml,j + 1 = mlj '{' l•lj (3) 

Specific definitions for m tj and ntj are given by Cooley and 
Vecchia [1987, p. 587] as 

(1 •/;t. --½! • 
rntj ...... c• Ut- Lt (4) 

.... (5) ntj c Ul- Lt 
where 

c 

c? = (6) 
pt+2 

b lj '=- E(B tj) (7) 
In (6), c is a parameter that determines the peakedness of the 
distribution (the smaller the value of c, the more peaked the 
distribution) and must satisfy 0 < c < 1 [Cooley and 
Vecchia, 1987, p. 587]. In (7), E( ) indicates the expected 
value operator. Because the parameter groups are statisti- 
cally independent, the pdf for the distribution of all groups is 

k 

lB(b) = H fB,(b/) (8) 
/=1 

The marginal distribution of each of the elements 
corresponding to (2) is a univariate beta distribution given by 
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Cooley and Vecchia [1987, p. 587]. Therefore (2) (and, by 
extension, (8)) will henceforth be referred to as a multivari- 
ate beta distribution.. 

Cooley and Vecchia [!987] assumed that b was equivalent 
to •, the mean value of B. However, in an actual modeling 
situation, b is interpreted as the set most likely to be close to 
the true parameter set 1•. Hence for this study we assume 
that b is the mode of (8). Because of the asymmetry of (8), 
the mode • may be different from the mean •. It is shown in 
Appendix A that • and • are related by 

• (1 - c)(•'•j - L•) + jc•(U• - L•) 
ld = 1 -- c• + Ll (9) 

Note that when c = 1 the mode drops out of (9). This case 
is an ordered uniform distribution [Cooley and Vecchia, 
1987, p. 584] which has no unique mode. 

Finally, as shown by Cooley and Vecchia [1987, pp. 
587-588], 

Coy (B li, B lj) = c •(t• li - L l) ( U l -- • Ij) i<j 

(lO) 

Coy (B li, B tj) = c •(t• tj - L l) ( U t - 1• li) i>j 

where Coy ( , ) is the covariance operator. Note that 
Coy (B•j, B•j) = Var (Blj), where Var ( ) is the variance 
operator. The full parameter variance-covariance matrix can 
be written as 

Var (B) = diag (Var (B1), .'' , Var (B/), --- , Var (Bk)) 
(11) 

where the block diagonal form results from the k indepen- 
dent groups of parameters and Var (Bt) is a Pt x Pt matrix 
with the (i, j)th element given by (10). For future compact- 
ness define 

V = Var (B) (12) 

¾1 = Var (B t) (13) 

The multivariate beta distribution is not required for the 
general methods developed by this study. It was adopted for 
the specific methods used because of its versatility in de- 
scribing the type of information that is normally available 
about model parameters for a modeling study. Its versatility 
results from use of the peakedness parameter c, parameter 
grouping, and parameter bounds (Lt, Ut). For example, by 
setting c = 1, the distribution of each parameter group is 
ordered uniform [Cooley and Vecchia, 1987, p. 584]. By 
varying the grouping, model parameters can be independent, 
be completely interdependent, or have any degree of inter- 
dependence desired. If parameter bounds are unknown, they 
can be set to yield a large range so that the resulting 
distribution is essentially unbounded. If the peakedness 
parameter is also set to a small value (approximately c -< 
0.01), a distribution that is close to multivariate normal is 
obtained (R. L. Cooley, unpublished manuscript, 1991). 
Finally, parameters for this distribution can be log trans- 
formed so that the resulting distribution is close to multivari- 
ate lognormal. The principal limitations in versatility are that 
strict ordering of parameters within each group is required 
and that the variance-covariance structure for the model 
parameters cannot be arbitrary because it results from the 

particular ordering, bounds, peakedness parameter, and 
parameter set • employed. 

A general multivariate normal distribution is a possible 
alternative to the multivariate beta distribution because it 
contains no ordering assumptions and its covariance struc- 
ture is arbitrary. However, for many modeling studies, data 
of sufficient quantity and quality for the model parameters 
are not available to obtain a good estimate of the variance- 
covariance matrix. If these data are available and the order- 

ing assumption is deemed invalid, then a distribution such as 
the multivariate normal distribution should be used. The 
method of using the multivariate normal distribution is 
sketched further on. 

A good example of use of the ordering concept is based on 
the work of Keidser and Rosbjerg [ 1991]. A geostatistically 
generated transmissivity field was estimated using four alter- 
native inverse methods. Good results were obtained by 
creating transmissivity zones as bands generally paralleling 
contour intervals of the data, then estimating the zonal 
transmissivities using nonlinear least squares. In this case, 
transmissivity values for the zones form an ordered se- 
quence, so that (2) is a natural distribution to describe the 
interrelationships among the zonal transmissivities. This 
idea should apply to any type of parameter data that can be 
contoured and zoned. A parameter group would thus be 
composed of the ordered sequence of all zones for the 
parameter type. Group bounds would either be known or set 
to yield a large range f unknown. Parameter set •t would 
reflect the investigator's best estimate of the set of effective 
values for the zones, and the peakedness parameter could be 
adjusted to yield parameter variances that reflect the inves- 
tigator's uncertainty about [•l- This parameterization as- 
sumes that the general configuration for the spatial distribu- 
tion of a parameter type is known a priori, but the 
quantitative value of a parameter at any point is unknown. 

Confidence intervals computed using the multivariate beta 
or any other prior distribution reflect the investigator's 
understanding of the system and are as subjective as the data 
used to define the distribution. In part 2 of this study, 
calibration data are used to modify, and minimize the 
influence of, the original prior distribution. 

Types of Confidence Intervals 

Cooley and Vecchia [1987, pp. 582,583,588] derived their 
confidence interval as follows. Define g(13) equal to a model 
output or other scalar function of parameters 1• for which a 
confidence interval is desired. Then, define the quantity 
d•2_• by the following probability statement' 

Prob [Q(B) -< d•_ •] = 1 - a (14) 

where 1 - a is the probability level, 

k 

Q(B) = (B - •)rV-'(B - •) = E (B1- •l)rV/-'(Bt- 
/=1 

(15) 

and B is distributed as given by (8). Strictly speaking, (14) 
defines Q(b) -< d•_• as a (1 - a) 100% tolerance region for 
B. However, because 13 is assumed to be a realization of B, 
the region is interpreted as a (1 - a) 100% confidence region 
for I•. Based on (14), the potentially conservative 
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(1 - a) 100% confidence interval for g(13) given by Cooley 
and Vecchia [1987] may be computed as 

(min g(b), max g(b)) (16) 
b b 

subject to the constraint 

Q(b) = d• 2 _ a (17) 

where Q(b) is given by (15) with B replaced by b. A sufficient 
requirement for use of (17) instead of the inequality implied 
by (14) is that the gradient of #(b) with respect to b be 
nonzero within the closed region Q(b) < d• 2_ so that no 
extrema lie within this region [Cooley and Vecchia, 1987, p. 
582]. However, it is only necessary that any local extremum 
of #(b) for b within the closed region Q(b) < d•2_• lie 
between the maximum and minimum values taken by #(b) 
for b along the boundary Q(b) = d•2_•. The confidence 
interval is potentially conservative because (17) does not 
guarantee that b will lie inside of the parameter region given 
by(1). 

The reader will note that the quadratic form (15) is 
generally used in conjunction with a multivariate normal 
distribution for B because (15) is proportional to a contour of 
the log pdf of this distribution. However, any closed contour 
in the region over which (8) applies can be used to define a 
probability statement of the general form of (14) and thus can 
be used to define a confidence interval. Equation (15) was 
used by Cooley and Vecchia [1987] to define the contour 
because of its simplicity and because the multivariate beta 
distribution can be close to normal, as discussed above. 

The solution to (16) and (17) was derived by Cooley and 
Vecchia [1987, pp. 582, 583,588] as a Lagrangian optimiza- 
tion problem in which extreme values of the function 

Lu(b, A •) = g(b) + X 'lt[d• - a -- Q(b)] (18) 

were found with respect to b and the Lagrange multiplier A [,. 
The solution was obtained using a linearization scheme and 
is given in iteration form as 

be = fi + X VZo 

{d' t '/2 x = +_ (20) 
zvz0/ 

where 

Oq 

Z0 = •'• 
b--b 0 

(21) 

1 

= (22) 

and b0 is the set of parameters obtained on the previous 
iteration. Use of the plus sign in (20) yields be corresponding 
to the upper confidence limit, and use of the minus sign 
yields be corresponding to the lower confidence limit. The 
iteration method is considered to have converged when b e • 
b0. Actual implementation of (19) and (20) involves use of a 
damping parameter to reduce oscillations of computed val- 
ues in be. The algorithm is given by Cooley and Vecchia 
[1987, pp. 588-589] with the exception that here the damping 
parameter is set to unity on the first iteration. If g(b) is the 

linear model g(b) = g(fi) + Zo(b - fi), then (19) and (20) can 
easily be combined to yield the standard form [Cooley and 
Vecchia, 1987, p. 588] 

g(be) = g(fi) +- dl+ ,[Var (g(B))] 1/2 
where 

(23) 

Var (t/(B)) = Z0ZVZ0 (24) 
Another confidence interval can be obtained by letting the 

boundary of a closed region analogous to Q(b) < d•2_, be a 
log pdf contour, that is, a contour of -In (fB(b)). (Here and 
elsewhere log pdf means negative log pdf.) This contour can 
be shown to enclose a smaller volume than any other 
contour for a given probability level [Lehmann, 1986, pp. 
330-331]. Thus the confidence region for the parameters 
defined by this contour is at least as small as the confidence 
region given by (14). Although it cannot be shown that 
confidence intervals for arbitrary g(13) are optimal (smallest 
in width) for the log pdf contour, they might often be 
expected to be small because the confidence region for the 
parameters is smallest. This is shown to be true further on. 
However, it should be noted that these confidence intervals 
are generally not much smaller than those based on (14), and 
in one case considered later the confidence interval based on 
the log pdf is much larger. 

From (2) and (8) the log pdf function analogous to Q(b) can 
be defined by 

k 

P'(b) =-Z {(roll- 1)In (bll- Ll) 
1=1 

pl 

- (rnl,p,+ •- 1) In (U l - Zl) + E [(nlJ- 1) 
j=l 

ß In (bt,j + •- blj) - In B(m•j, ntj)]} (25) 
Terms that are not functions of b in (25) have no influence on 
computed confidence intervals. Hence (25) can be rewritten 
in the simplified, scaled form 

k Pl (hi,j+ 1-- blj) P(b) = - • •'• (nlj - 1) In (26) 
/=1/=0 Ut-Lt 

where bl0 = Li and hi0 = ran. The scaling with respect to 
group ranges Ut - L• is employed to keep P(b) positive, 
which was convenient in programming the method for com- 
puter solution. 

The log pdf function P(b) can be treated just as Q(b) was 
to compute a confidence interval for g([•). However, note 
that a confidence interval based on Q(b) and a confidence 
interval based on P(b) can be computed using a single 
function that is a linear combination of Q(b) and P(b). By 
using (15) and (26), the function can be defined by 

k 
a 

S(b) =• Z (b/-•l)rV/-l(b/-•l) 
/=1 

- b •. • (n 6- 1)In b,l'j+l- blj 
l=lj=O UI-L! 

(27) 
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where a -> 0 and b -> 0 are constants that define the weight 
given each function. If a > 0 and b = 0, only the quadratic 
form is present, and if a = 0 and b > 0, only the log pdf 
function is present. For a > 0 and b > 0, (27) is a general 
linear combination of the quadratic form and the log pdf 
function. Use of (27) in the latter context allows the param- 
eter constraints given by (1) to be incorporated into the 
computation of a confidence interval based primarily on 
Q(b). This is accomplished by noting that the log pdf 
function becomes infinite at a constraint boundary, so that if 
b = •, where, is a small number, and a >> ,, the contour 
of S(b) is nearly ellipsoidal except near a constraint bound- 
ary where it is just inside the boundary. In this case the log 
pdf function plays a role similar to that of a penalty function 
[Himmelblau, 1972, chapter 7]. 

In a fashion analogous to (14), the quantity s•_• may be 
defined by the probability statement 

Prob IS(B) < s 1 _,] = 1 - a (28) 

from which the confidence interval (16) subject to 

S(b) < s•_• (29) 

may be derived. Thus S(b) -< s •_• can be interpreted as a (1 
- a) 100% confidence region for It analogous to Q(b) -< 
d•2_•. As before, if there are no extrema of •7(b) for b inside 
the region given by (29), or if any extremum of •7(b) for b 
within this region lies between the maximum and minimum 
values of•7(b) for b along the boundary S(b) = s •_•, then for 
computational purposes (29) can be replaced by 

S(b) = s• _ • (30) 

It is proven in a more general context in part 2 that the 
confidence interval defined by (16) and (28) is a Scheff6-type 
confidence interval analogous to the standard Scheft6 confi- 
dence interval for a linear regression model [Graybill, 1976, 
pp. 198-200]. A Scheff6-type confidence interval for 
holds simultaneously with confidence intervals for all other 
functions of parameters (subject to continuity restrictions 
that allow the functions to be expanded in Taylor series). 
Thus when applied for a specific function, Scheff6-type 
confidence intervals are conservative [Rao, 1973, p. 240]. An 
appropriate use of Scheff6-type confidence intervals is to 
compute one or more of them for one (or more) function •7(1•) 
such as hydraulic head, a model flux, or a model parameter, 
then interpret the intervals to hold simultaneously with all 
other possible confidence intervals for hydraulic heads, 
model fluxes, and combinations of parameters of interest. 
Calculation of individual and finite numbers of simultaneous 

confidence and prediction intervals for general functions 
•7(15) is the subject of ongoing research. 

The confidence interval may be computed using a simple 
Lagrangian scheme analogous to (18)' 

Lp(b, A •) = #(b) + A •[s 1 _ oe - S(b)] (31) 

Solution to (31) is obtained by a variant of Newton iteration 
and is given in Appendix B. It should be noted that the 
solution method is general and can be applied to any 
functions #(b) and S(b) that can be expanded in Taylor series 
in terms of parameters b. The confidence interval found by 
solution of (31) is exact in that (1) model nonlinearity and 
parameter constraints are fully incorporated, and (2) if the 

confidence interval is used in the simultaneous (Scheff•) 
sense, the probability level 1 - a is exact, 

Values for s•_• for the multivariate beta distribution are 
obtained using the same algorithm as given by Cooley and 
Vecchia [1987, p. 587] except that s•_, replaces d•2_, and 
S(b) replaces Q(b). Alternatively, if one desired to obtain a 
confidence interval based on Q(b) and a multivariate normal 
distribution of B, s•_, would be given by a value of the 
cumulative chi-square distribution [Graybill, 1976, pp. 135- 
136]. Specifically, for a = 2 and b = 0 in (27), s•_, = 
X'•2,•_,, where X,•2,•_, is the upper (1 - a) x 100 percentlie of 
the cumulative chi-square distribution with p = 5'.p=• Pt 
degrees of freedom. In this case, variance-covariance matrix 
V could be an arbitrary positive definite matrix, and con- 
straints (1) would not be invoked. 

Contours Q(b) = d• 2_ and P(b) = s• , for two param- 
eters for which L = 0 -< b• -< b2 -< 1 = U are illustrated 
in Figures l a-1 c. In all three figures, a = 0.05. Figure l a 
corresponds to the case where modal values •. (j = 1, 2) are 
given by bi = j(U - L)/(p + 1) = fi3. Direct substitution 
of this expression into (9) verifies that in this case, •j = /•j. 
Because c - 3/11, the mass of the distribution is concen- 
trated near the mode so that the entire ellipse Q(b) = d•_,• 
lies inside of the parameter constraint boundary. Note also 
that the elliptical and log pdf confidence regions are similar 
in size, shape, and area. However, whether or not this 
similarity would cause the two types of confidence intervals 
for g(15) to be similar for any particular flow model would 
also depend on values of the gradient 0g/0b near one or more 
of the constrained maxima and (or) minima that define the 
confidence intervals. For Figure lb the mode is (•'•, •'2) = 
(0.1, 0.9). By employing (9), the mean is calculated as (/•, 
/•2) = (0.15122, 0.84878). Again, because c = 3/!1, the 
mass of the distribution is concentrated near the mode. 

However, in this case the mean and mode are located near 
the constraint boundary so that the ellipse extends outside of 
the constraint boundary and the log pdf contour is located 
very near two sides of the boundary. Probably because the 
mean and mode are not widely separated, the two regions 
are similar. For Figure 1 c the mode is located in the same 
place as for Figure lb, but because c = 0.99 so that the 
distribution is nearly uniform, the mean is shifted to (/•,/;2) 
= (0.33023, 0.66977). The large value of c causes the mass 
to be distributed evenly so that the ellipse is almost entirely 
outside of the constraint boundary and the log pdf region 
almost contacts the constraint boundary along two sides of 
the boundary. The wide separation of the mean and mode 
coupled with the even distribution of mass causes the two 
regions to be more dissimilar in size and shape than for the 
first two examples. Thus confidence intervals for •7(15) could 
be more dissimilar than for the first two examples, especially 
if the gradient 0•7/0b is large near one or more of the 
constrained maxima and (or) minima that define the confi- 
dence intervals. 

EXAMPLES 

In this section, three hypothetical examples are used to 
illustrate controls on the size and characteristics of the three 

types of confidence intervals' the quadratic-unconstrained 
type, which is the solution to (31) with a = 1 and b = 0 given 
by (19) and (20), the quadratic-constrained type, which is the 
solution to (31) with a = 1 and b = ,, and the log pdf type, 
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Fig. 1. (a) Elliptic (Q(b) = d•2_a) and log pdf (P(b) = sl-•) contours for a two-parameter region 0 <-- bl < b2 < 
1, where c = 3/11 and the mean (circle) and mode (cross) are equal. (b) Elliptic and log pdf contours for the same 
two-parameter region where c = 3/11, but the mean (circle) and mode (cross) are located near the constraint boundary 
and are separated. (c) Elliptic and log pdf contours for the same two-parameter region where c = 0.99, which causes 
the mean (circle) and mode (cross) to be greatly separated. 

which is the solution to (31) with a = 0 and b = 1. A variant 
of a class of methods known as projection methods [Him- 
melblau, !972, pp. 245-271] was developed to check the 
penalty function approach to computing quadratic- 
constrained confidence intervals and to provide a value for s. 
By using a = 1 and, = 1 x 10 -5 the confidence intervals 
computed by the two methods were virtually identical. 
Smaller values of s sometimes caused numerical difficulties 

because constraint boundaries could be approached so 
closely that P(b) became very large. Details of the projection 
method used are available from the author upon request. 

One of the controls on sizes of confidence intervals is the 

assumed value of c. The two values used for testing pur- 

poses by Cooley and Vecchia [1987] were c = 3/11 and c = 
1, the latter of which corresponds to an ordered uniform 
distribution. These values were also selected for use here. 

However, when c = 1, combination of (5), (6), and (9) shows 
that nli = 1. Hence, from (26), P(b) = 0, and confidence 
intervals cannot be computed using the log pdf method. Thus 
instead of c = 1, c = 0.99 was used to give an approxima- 
tion for the ordered uniform distribution. To check this 

approximation, runs for quadratic-unconstrained and qua- 
dratic-constrained intervals (using the projection method) 
were made using both c = 1 and c = 0.99. In all instances 
the difference in width of the confidence intervals for the two 

values of c was less than 1%, which implies that c = 0.99 
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yields a distribution that is very close to ordered uniform. 
Therefore when an ordered uniform distribution is assumed, 
quadratic-constrained and quadratic-unconstrained confi- 
dence intervals are based on c = 1, and log pdf confidence 
intervals are based on c = 0.99. These intervals are referred 
to collectively as the c • 1 case. 

A generic system of units was adopted for the examples. 
Hence lengths and times are not referred to a specific system 
of units. 

Example 1: Flow to a Well in a Homogeneous 
Aquifer 

For the first example a confidence band (a set of confi- 
dence intervals) was computed for drawdown near a well 
pumping from an aquifer receiving uniform recharge. This is 
the same problem analyzed by Cooley and Vecchia [1987, 
pp. 589-591] and Hill [1989, pp. 182-183]. For the problem 
both pumping rate and recharge are time variant in a 
stepwise manner. To allow use of a simple analytical solu- 
tion, the aquifer is assumed to be homogeneous, isotropic, of 
constant thickness, and infinite in areal extent, and the 
drawdown is assumed to be small. The solutions for draw- 

down #(13) and sensitivities O9/Ob are given by Cooley and 
Vecchia [1987, pp. 597-598]. 

Cooley and Vecchia [1987] analyzed a four-parameter, 
four-group problem where all parameters were considered to 
be uncorrelated and a four-parameter, three-group problem 
where the last two parameters were considered to be corre- 
lated. Because of the similarity in results, only the four- 
group problem is considered in detail here. The parameters, 
their ranges, and pumping and recharge rates are the same as 
given by Cooley and Vecchia [1987]. Parameters and ranges 
(Ll, UI) are 

bll '- In T •'11 = 6.8024 

b21 = Sy •"21 = 0.1 

b31 = W 2 

(L1, U1) -- (6.5793, 7.0255) 

(L2, U2) = (0.05, 0.15) 

•'3• = 4 x 10 -4 

(L3, U3)= (2-2 x 10 -4, 5.8 x 10 -4) 

b41 = W1 •"41 = 6 x 10 -4 

(L4, U4)=(5x 10 -4 ,7x 10 -4 ) 

where T is transmissivity (length2/time), Sy is specific yield, 
W• is the recharge rate (length/time) from 0 to 90 time units, 
and W2 is the recharge rate (length/time) from 90 to 360 time 
units, which is the end of the simulation period. 

The total simulation period is composed of three pumping 
periods so that from 0 to 95 time units the pumping rate is 
zero, from 95 to 180 time units the pumping rate (length3/ 
time) is 19,008, and from 180 to 360 time units the pumping 
rate is again zero. A confidence band for drawdown is 
required for a point 175 length units from the pumped well 
and 1500 length units from the center of the recharge area, 
which has a diameter of 10,000 length units. 

Cooley and Vecchia [1987] obtained 95% (a = 0.05) 
quadratic-unconstrained confidence bands for c = 3/11 and 
c = 1 using the algorithm based on (19) and (20). The bands 
were constructed from points in time at 1, 30, 60, 90, 105, 
120, 150, 180, 190, 210, 240, 270, 300, 330, and 360 time 

units. It was noted by Cooley and Vecchia that the confi- 
dence band for c = 3/11 was probably nearly exact because 
the parameters computed to give max #(b) and min #(b) did 
not violate their constraints by a significant amount. In 
contrast, it was noted that the band for c = 1 was probably 
much too conservative because the computed parameters 
violated their constraints by a large amount. Hill [1989] 
subsequently found by using Monte Carlo simulations that 
the band for the four-group case using c = 3/11 was indeed 
exact but that the lower bound for the four-group, c = 1 
band was much too low, often twice as far from the mean as 
it should be, because of the violation of parameter con- 
straints. 

Figure 2 illustrates confidence bands for the four-group, c 
= 3/11 case, and Figure 3 illustrates confidence bands for 
the four-group,. c • 1 case. The confidence bands may be 
compared with the results of Cooley and Vecchia [1987, p. 
592] and Hill [1989, p. 183]. Note that in these previous 
studies the calibrated values were assumed to be the mean fi, 
but in the present work they are considered to be the mode 
b. Because for the four-group case the mode for each 
parameter is centered in its range and all parameters are 
independent, • = fi, so there is no difference in numerical 
values of fi used in the former and present studies. 

The bands for the c = 3/11 and c = 1, quadratic- 
unconstrained cases are the same as the bands obtained by 
Cooley and Vecchia [1987, p. 592]. Figure 2 shows that for c 
- 3/11 the quadratic-unconstrained band is indeed virtually 
the same as the quadratic-constrained and log pdf bands. 
Figure 3 shows that for c = 1 the lower bound for the 
quadratic-unconstrained band is often about twice as far 
from the mode (mean) curve (#(b) as a function of time) as 
the lower bound for the quadratic-constrained band. This 
result accords with the result of Hill [1989, p. 183] to within 
the expected accuracy of the Monte Carlo simulations. 
Finally, note that the quadratic-constrained and log pdf 
bands for c • 1 are very similar. 

For the three-group case the last two parameters are b31 = 
W2 and b32 = W•, and they are correlated, having a range 
of (2.2 x 10 -4, 7 x 10-4). Thus means/331 and/332 had to be 
calculated from modes •'3• and b-32 using (9). The confidence 
bands (not illustrated) are almost the same as the bands for 
the four-group case except that they are a maximum of about 
0.3 length units wider (at the widest part of the c = 1, 
quadratic-unconstrained band) than the four-group bands, 
and the positions of the quadratic-constrained and log pdf 
bounds for c • 1 are reversed. This case was not analyzed 
by Hill [1989] so no comparisons with Monte Carlo simula- 
tions could be made. 

Example 2: One-Dimensional Steady Flow in an 
Aquifer Having Variable Transmissivity 

The second example involves one-dimensional flow in an 
aquifer where the flux qa (leng th2/time) is known as qa = 
0.16 at the inflow end, and the hydraulic head ha (length) is 
known as ha = 100 at the outflow end. The aquifer is 
divided into twenty 1000 length-unit long cells between the 
inflow and the outflow ends, and each cell has a constant 
transmissivity. Modal transmissivity values for the cells are 
given in Table 1, where cell 1 is at the inflow end. 

Parameters are the 20 cell values of the log transform, In T 
of transmissivity T. They comprise one group, L • -< b • <- 
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Fig. 2. Ninety-five percent confidence band for drawdown g(13) for the problem of flow to a well in a homogeneous 
aquifer (example 1), using c = 3/11. The quadratic-unconstrained, quadratic-constrained, and log pdf bands are all 
nearly the same and are plotted as a single band. The mode is #(b). 

b12 -<'" <- b 1,20 -< U1. Cases considered involve two 
different assumed ranges (L •, U•), two different values of c, 
and the three types of confidence intervals (log pdf, qua- 
dratic constrained, and quadratic unconstrained). These 
cases, arranged into 12 different model runs, are given in 
Table 2. Ninety-five percent confidence intervals for the 
hydraulic head at the inflow end of the aquifer were obtained 
for all of the model runs. 

The method employed to solve for hydraulic heads and 
sensitivities is the integrated finite difference method de- 
scribed by Cooley [1985, p. 1526]. Sensitivities were calcu- 
lated using the adjoint state sensitivity method given by 

Sykes et al. [1985, pp. 361-362]. Similar implementation of 
the adjoint state method to compute quadratic-uncon- 
strained confidence intervals based on a different finite 

difference model is described by Hill [1989, pp. 180-181]. 
For the present example, node points were placed at each 
cell boundary, giving a total of 21 nodes along the linear 
aquifer. 

For each model run a confidence interval obtained by 
using the nonlinear model g(b) and a confidence interval 
obtained by using the linear model (B 1) (Appendix B) were 
both computed. To use (B 1) a set of values for the arbitrary 
parameter set b0 had to be chosen. The set chosen was fi 
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Fig. 3. Ninety-five percent confidence ba•ds for dmwdow• g(•) for the problem of flow to • well in • homogeneous 
aquifer (example 1), using c = ]. •he mode is g([). 
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TABLE 1. Modal Transmissivity Values for Example 2 

Cell •, 
Number In T (length2/time) 

1 3.00 20.086 
2 3.05 21.115 
3 3.10 22.198 
4 3.15 23.336 
5 3.20 24.533 
6 3.25 25.790 
7 3.30 27.!13 
8 3.35 28.503 
9 3.40 29.964 

10 3.45 31.500 
11 3.50 33.115 
12 3.55 34.813 
13 3.60 36.598 
14 3.65 38.475 
15 3.70 40.447 
16 3.75 42.521 
17 3.80 44.701 
18 3.85 46.993 
19 3.90 49.402 
20 3.95 51.935 

because (23) shows that quadratic-unconstrained confidence 
intervals for the linearized model are symmetric about the 
point t7(fi). In this study the term nonlinear confidence 
intervals is used for confidence intervals that incorporate 
model nonlinearity, and the term linear confidence intervals 
is used for confidence intervals for which (B 1) is employed, 
although these intervals may contain the nonlinear effects of 
parameter constraints. 

Confidence intervals for the hydraulic head t7(13) at the 
inflow end of the aquifer for all 12 model runs are shown in 
Figure 4. As expected, the larger ranges (L •, U •) and values 
of c, for which parameter variances are•largest, yield the 
largest confidence intervals. The variability in size among 
the confidence intervals resulting from changes in the ranges 
and c is quite large, probably because the ranges in T are 
large (over an order of magnitude) and the one-dimensional 
flow condition causes the hydraulic head to be very sensitive 
to changes in T. Asymmetry in the nonlinear confidence 
intervals is caused by model nonlinearity and the effects of 
parameter constraints, but for the linear confidence inter- 
vals, asymmetry results only from the effects of parameter 
constraints. As expected, both types of linear quadratic 

intervals tend to be more symmetric about g(fi) than g(•). 
Except for the smallest confidence intervals (runs 1-3), all 
nonlinear confidence intervals tend to be asymmetric about 
either g(fi) or g(•) but are more nearly symmetric about g(fi). 
Note that there is a direct relationship between the size of 
the nonlinear confidence interval and its degree of asymme- 
try. The large degree of asymmetry for the large intervals 
reflects a large degree of model nonlinearity resulting from 
the large deviations in hydraulic head from either the ex- 
pected or modal values. 

Finally, with one important exception, quadratic-uncon- 
strained intervals are the largest of the confidence intervals, 
and log pdf intervals are about the same size as the correspond- 
ing quadratic-constrained intervals. The exception is run 10, 
which is the largest of all the intervals and is a log pdf interval. 
A log pdf interval larger than a corresponding quadratic- 
unconstrained interval was not expected and was deemed 
suspicious. The interval of run 10 was recalculated using the 
final sets of parameters produced for the upper and lower limits 
of the confidence interval from run 11 as the corresponding 
initial sets instead of the usual set fl. Then this idea was 
reversed to recalculate the confidence interval for run 11. The 

same intervals as for runs 10 and 11 were obtained, which 
suggests that the interval for run 10 is correct. 

Figure 1 c illustrates how a log pdf interval can be larger 
than a quadratic-unconstrained interval for a two-parameter 
case. If contours of the function g(b) were oriented such that 
the gradient (Og/Ob•, Og/Ob2) was oriented approximately 
along the line b• = b2, then the log pdf interval would be 
larger than either the quadratic-constrained or the quadratic- 
unconstrained interval. 

: 

Example 3. Two-Dimensional Steady Flow 
in a Multizoned Aquifer 

The third and final example concerns two-dimensional, 
steady state flow in a realistic setting. The groundwater flow 
equation assumed for this example is 

02h 02h t 

N 

+ Wj+ • /5(x-xn)/5(y-yn)Qn=O (32) 

TABLE 2. Models Employed for Example 2 

Model Interval 

Run L 1 U 1 c Type* 

1 2.9 4.05 3/11 L 
2 2.9 4.05 3/11 Q-C 
3 2.9 4.05 3/11 Q-U 
4 2.9 4.05 0.99 L 

5 2.9 4.05 I Q-C 
6 2.9 4.05 1 Q-U 
7 2.3 4.4 3/11 L 
8 2.3 4.4 3/11 Q-C 
9 2.3 4.4 3/11 Q-U 

10 2.3 4.4 0.99 L 
11 2.3 4.4 1 Q-C 
12 2.3 4.4 1 Q-U 

*L, log pdf; Q-C, quadratic constrained; Q-U, quadratic uncon- 
strained. 

where 

Tj uniform transmissivity in aquifer zone j (length2/ 
time); 

Rj uniform hydraulic conductance (hydraulic 
conductivity divided by thickness) of sediments 
underlying a stream in aquifer zone j (time-1); 

Wj uniform areal recharge or discharge rate 
(positive for recharge) in aquifer zone j (length/ 
time); 

Y• nN= • /5(X -- X n) $( Y -- Y n) Q n Dirac delta designation for 
N wells, with the nth well pumping at 
volumetric rate Qn (leng th3/time) (positive for 
injection) and located at point (xn, Yn); 

h(x, y) hydraulic head in the aquifer (length); 
H(x, y) hydraulic head at the stream bottom (length); 

x, y Cartesian coordinates (length). 
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Fig. 4. Ninety-five percent confidence intervals for hydraulic head g(ll) at the inflow end of the aquifer of example 
2. Open circles denote the mean g(fi), and crosses denote the mode g(•). Nonlinear confidence intervals are shown as 
solid lines, and corresponding linear confidence intervals are shown as dashed lines. 

In addition, three types of boundary conditions are em- 
ployed: no flux, q• = 0; specified flux q,k (leng th2/time) in 
boundary flux zone k; and specified hydraulic head h,. 
Specified head boundaries are divided into zones such that 
specified head parameters, say h•rn and h B, (where m and n 
are head parameter numbers), bound the string of nodes 
comprising each zone within which hB is a function of h,m 
and h •n. Aquifer zones, boundary flux zones, and boundary 
head zones are independently designated. 

Numerical methods used for the solution are the same as 

used for the second example. The specific model geometry 
and zonation is illustrated in Figure 5, and modal values of 
parameters are given in Table 3. The parameter grouping, 
based solely on prior (such as measured and hydrogeologi- 
cally derived) information, is shown in Table 4. Cases, which 
are arranged into model runs, involve two methods of 
specifying transmissivity parameters (ln T and T), two 
different values of c, and the three types of confidence 
intervals. Ninety-five percent confidence intervals for hy- 
draulic head were obtained at 32 locations indicated in 
Figure 5 for all model runs. Representative nonlinear confi- 

dence interval widths for 11 model runs are shown in Table 

5, and both nonlinear and linear confidence intervals at one 
location for 11 model runs are illustrated in Figure 6. The 
smallest set of confidence interval widths (run 1) is illus- 
trated in Figure 7. 

The six representative confidence interval widths shown 
in Table 5 and the illustration of confidence intervals in 

Figure 6 show that there is less dependence of interval size 
on c than for the first two examples. The largest nonlinear 
intervals (for run numbers 3, 6, and 9) are all of the 
quadratic-unconstrained type, and the remainder, which are 
more uniform in size, are of the other two types. This 
uniformity resulted because parameters having a large effect 
on the size of the confidence intervals were often at or near 

their limits for all values of c. Largely because of model 
non!inearity, all nonlinear intervals are asymmetric about 
both g(fi) and g(•); the largest intervals are the most asym- 
metric. Finally, log pdf intervals are similar to or slightly 
smaller than corresponding quadratic-constrained intervals. 
Thus except for the decreased dependence of interval size on 
c, the results are very similar to the results of example 2. 



COOLEY: EXACT SCHEFFIg-TYPE CONFIDENCE INTERVALS, ! 27 

• • ..... )'//•///////////////////X/// 

15-- 

11-- 

ß 

(T1, Wl ) 

(T2, W2 ) 

qt=o 

? - } •oo 

5--} 1 ,ooo 

3• 

I 3 5 7 

hB1 

hB 2 

9 11 13 15 

Column 

Fig. 5. Zonation and boundary conditions for example 3. Loca- 
tions of confidence intervals are shown by solid circles and locations 
of the two pumping wells are shown by open circles. Numbers 
corresponding to locations are shown in Figure 7. 

As indicated by comparing the nonlinear intervals for runs 
3 and 9, the effect of log transformation of T for c = 3/11 
appears to be to reduce the sizes of nonlinear quadratic- 
unconstrained confidence intervals. However, because of 
the parameter constraints, which are effectively the same for 
both T and In T parameters (see Table 4), quadratic- 
constrained and log pdf confidence intervals are very similar 
for T and In T parameters. 

Solutions for nonlinear quadratic-unconstrained intervals 
based on untransformed transmissivities and c = 1 are not 

reported in Table 5 or illustrated in Figure 6 because 
transmissivity values were negative for at least one limit for 
25 out of the 32 confidence intervals. The reversal of signs of 
transmissivities caused the signs of computed hydraulic heads 
(see (32)) and thus the signs of computed confidence limits to 
reverse. This, in turn, caused the width of the confidence 
intervals to be negative, which is physically impossible. 

TABLE 3. Modal Values of Parameters for Example 3 

Parameter Mode 

qBl 0.50 (length2/time) 
qB2 0.28 (length2/time) 
Q 1 -- 100,000 (length 3/time) 
Q2 -50,000 (length3/time) 
h, 1 10 (length) 
hB2 5 (length) 
hB3 5.5 (length) 
T 3 20* (length 2/time) 
T1 50* (length2/time) 
T2 500* (length2/time) 
W3 0.0002 (length/time) 
W1 0.0003 (length/time) 
W 2 -0.0001 (length/time) 
R 2 0.10 (time -1) 

*Here In •3 = 2.9957, In •l = 3.9120, and In •2 = 6.2146. 

The pattern of confidence intervals shown in Figure 7 
reflects the differing flow conditions in various parts of the 
model area. Near the river and the specified head bound- 
aries, confidence intervals are very small, whereas near the 
pumping wells, near the southern boundary in zone 3, and on 
the northwest boundary in zone 1 they are large. These 
relationships can be explained by noting that large confi- 
dence intervals occur wherever h is free to vary in response 
to flux changes and wherever the total specified flux is large 
relative to transmissivity. Head is constrained at or near 
specified head boundaries and, because R 2 is large, near the 
river, so confidence intervals in these areas are small. In 
contrast, at the pumping wells, relative specified fluxes 
Q1/T 2 and Q2/T2 are large; in zone 3 the ratio of recharge to 
transmissivity (W3/T3) is larger in absolute value than any 
other zonal ratio; and on the northwest boundary the com- 
bined effect of the relative specified fluxes qB•/T1 and 
W1/T1 is large. Forcing functions of the type Q/T, W/T, and 
qB/T appear to have a predominant effect on the size of the 
confidence intervals, and this effect will be explored further 
in part 2 of this study. 

DISCUSSION 

Calculation of the confidence limits generally proved to be 
very efficient for all three types of confidence intervals. 
Often only between two and five outer iterations were 
needed for convergence, and most limits were obtained with 
less than 10 outer iterations. However, in a few cases, 
convergence was difficult to obtain and, rarely, could not be 
obtained with a reasonable number of iterations. In the 

difficult cases the maximum parameter displacement e max of 
Cooley and Vecchia [ 1987, pp. 588-589] had to be reduced to 
0.5 or less, and (or) the value of s •_, had to be increased in 
steps from a small value to its final correct value. 

If numerous confidence intervals were desired for a large 
numerical model, then considerable computational effort 
would be required. This effort could be considerably reduced 
by approximating the nonlinear function g(b) to second 
order, such as was done by Townley [1984]. In this way, 
approximate confidence intervals that are better than linear 
approximations could be obtained. Townley [1984] obtained 
good correspondence of model output means computed by 
the second-order method and those computed by Monte 
Carlo methods, so the approximation could often be good. 
The second-order approximation is still nonlinear in b, so the 
methods used here would still be required to compute the 
confidence intervals. 

The assumption that the most extreme values ofg(b) lie on 
the contour S(b) = s •_. and not in the interior of this region 
might seem to be very limiting. However, if this possibility is 
suspected, then s 1-, can be increased in steps from an initial 
small value to its final correct value. If an interior extreme 

value of g(b) is present, then the sequence of values of g(b) 
computed using the intermediate values of s l_, should 
reflect its presence. In fact, s •_, could be varied manually to 
approximate the extreme value. This is similar in principle to 
procedures used for general penalty function methods [Him- 
melblau, 1972, pp. 307-330] and could be formalized if 
necessary. The manual procedure was used to search for 
interior extreme values for several sample runs, and none 
were ever found. Furthermore, this writer does not believe 
that the condition aglab = 0 inside of the S(b) = s l-a region 
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TABLE 4. Parameter Grouping Based on Prior Information for Example 3 

Group Number in 
Number, I Group Parameter Range* L l Ul 

1 1 qB1 ñ 20% 0.4 0.6 
2 1 qB2 ñ 20% 0.224 0.336 
3 1 Q 1 ñ 6% - 106,000 - 94,000 
4 1 Q2 ñ 6% -53,000 -47,000 
5 1 hal ñ 1 (length) 9 11 
6 2 hB2, ha3 ñ 1 (length) 4 6.5 
7 1 T3 ñ 20%t 10.986•: 36.4115 
8 1 T1 ñ 15%•' 27.805•: 89.9125 
9 1 T2 __ 10%•' 268.58•: 930.82$ 

10 1 W3 ñ 20% 0.00016 0.00024 
11 1 W1 ñ 20% 0.00024 0.00036 
12 1 W2 ñ 20% -0.00012 -0.00008 
13 1 R 2 ñ 20% 0.08 0.12 

*Given as either percentage or actual deviation from the mode. 
•Given as percentage deviation of logarithms of limits from In Tj. 
$Given as transmissivity T. Values for In T are, for I = 7 (2.3966, 3.5949), for I = 8 (3.3252, 4.4988), 

and for I = 9 (5.5931, 6.8361). 

will be common for most functions o(b) of interest in 
modeling studies. If this condition were to exist, then the 
stationary point still might not represent a value more 
extreme than occurs on the contour. 

Another potential problem concerns the possibility of 
multiple stationary points for (31). This is a consequence of 
model nonlinearity and is shared by other schemes for 
finding extreme values of nonlinear functions [Seber and 
Wild, 1989, pp. 91-92]. If it is suspected that a local extreme 
value (and not the global extreme) of 9(b) has been obtained, 
then the initial parameters can be changed to see if a different 
extreme value of g(b) is obtained. This procedure was used 
in several instances where the nonlinear confidence intervals 

were appreciably different from the linear intervals. In all 
cases it appeared that the global minimum was obtained in 
the original run. 

Consideration of the theory and examples used for this 
study indicate that widths of confidence intervals for 9([1) 
are controlled by an interaction of (1) the size and shape of 
the (1 - a) 100% confidence region for [3, (2) whether the 
quadratic-constrained confidence region for [• is being ap- 
proximated by a quadratic-unconstrained confidence region 
for [•, and (3) the variability and degree of nonlinearity of 
9(b) over the parameter space. In turn, the size and shape of 
the confidence region for [3 are controlled by the type of 

confidence region (quadratic constrained or log pdf), the size 
and shape of the parameter constraint boundary, the modal 
values of the parameters, and the peakedness parameter of 
the statistical distribution. Furthermore, the size and shape 
of the parameter constraint boundary, the modal values of 
the parameters, and the peakedness parameter collectively 
determine the parameter covariance matrix, which thus 
becomes an important summary control on the confidence 
intervals. However, in example 3, parameter constraints 
caused similar confidence intervals to be computed even 
when the values of the peakedness parameter and thus the 
magnitudes of the variances were different, which illustrates 
the point that parameter constraints are the ultimate control 
on widths of confidence intervals. 

Quadratic-constrained and log pdf confidence intervals for 
g([3) were often found to be similar for the examples, which 
implies similar positions of contours S(b) - s •_. for these 
two interval types in the vicinity of the maxima and minima 
ofg(b) on these contours. However, in example 2 a log pdf 
confidence interval was much larger than either the corre- 
sponding quadratic-constrained or quadratic-unconstrained 
confidence interval, and Figure 1 c shows how this could be 
accounted for by interaction of the gradient of g(b) with the 
size and shape of the confidence region for [3. This example 
demonstrates an important point: Because it is generally not 

TABLE 5. Models Employed and Respresentative Confidence Interval Widths for Example 3 

Location Number 
Run Interval 

Number c Type* Log T 3 5 10 14 16 3! 

1 3/11 L yes 79.26 3.59 0.03 11.6! 122.52 103.23 
2 3/11 Q-C yes 94.08 4.25 0.04 13.44 137.10 118.70 
3 3/11 Q-U yes 109.44 4.76 0.04 14.76 190.03 140.84 
4 0.99 L yes 96.11 4.72 0.05 16.37 138.10 138.20 
5 1 Q-C yes 96.63 4.84 0.06 16.83 138.72 140.65 
6 1 Q-U yes 260.58 10.97 0.09 32.63 453.28 327.95 
7 3/11 L no 80.93 3.67 0.03 11.89 124.80 105.41 
8 3/11 Q-C no 93.01 4.27 0.03 13.74 136.32 121.04 
9 3/11 Q-U no 314.91 13.97 0.03 36.54 700.00 373.08 

10 0.99 L no 96.24 4.75 0.05 16.48 138.19 138.90 
ll 1 Q-C no 96.63 4.84 0.06 16.83 138.71 140.65 

*L, log pdf; Q-C, quadratic constrained; Q-U, quadratic unconstrained. 



COOLEY: EXACT SCHEFFI•-TYPE CONFIDENCE INTERVALS, 1 29 

c• -300 

ß -400 

ß '• -500 

1 

100 -- 

0-- 

, 

-lOO 

-200 - 

-600 - 

-700 -- 

-8ool 
1 

'5' I '5' 'r' -r i 
! i ! i 

! i 

i 

i 

i 

i 

_, 

I I I I I I I I ...... I, I 
2 3 4 5 6 7 8 9 10 11 

Model run number 

Fig. 6. Ninety-five percent confidence intervals for hydraulic head g(l•) at location 16 for example 3. Open circles 
denote the mean g(•), and crosses denote the mode g(•). Nonlinear confidence intervals are shown as solid lines, and 
corresponding linear confidence intervals are shown as dashed lines. 

possible to predict the outcome of interactions of #(b) with 
confidence region shapes and sizes, it is generally not 
possible to predict which type of confidence interval (qua- 
dratic constrained or log pdf) would be smallest in any 
specific instance. Both types of confidence intervals are 
exact and, for a particular function #(b), differ only because 
of differences in the underlying confidence region for 13. 

Large confidence intervals for #(13) were often computed 
for the examples. For example 3 the largest confidence 
intervals were computed at locations where stress on the 
aquifer and the resulting hydraulic gradients were largest. 
The reason for this can be understood by examining (19). 
From (19), note that the magnitude of be - fi (which is 
directly proportional to the size of the confidence intervals 
for #(13)) is directly proportional to the magnitude of Z, 
which is the vector of sensitivities (or gradient) O#/0b. Thus 
because sensitivities are large for parameters involved in 
producing large stresses, large stresses tend to produce large 
confidence intervals. Equation (19) also shows that the 
magnitude of b e - • is directly related to the parameter 

covariance matrix, so that by manipulating this matrix, 
confidence interval widths can be reduced appreciably. This 
is the topic of part 2 of this study. 

SUMMARY AND CONCLUSIONS 

A new method was developed to compute exact confi- 
dence intervals for some function of parameters #(13) derived 
from a groundwater flow model. This method requires pa- 
rameters to lie within the specified parameter constraint 
region and so is an improvement on the original method of 
Cooley and Vecchia [ 19871, which can compute conservative 
confidence intervals because it uses parameter sets that can 
lie outside of the parameter constraint region. The method 
computes maximum and minimum limits of g(13) on a linear 
combination of (1) the quadratic form for the parameters 
used by Cooley and Vecchia [1987] and (2) the log pdf 
contour of the assumed statistical parameter distribution of 
Cooley and Vecchia [1987]. Confidence intervals based 
entirely on the quadratic form with parameter constraints are 
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Fig. 7. Location numbers and widths of 95% confidence intervals 
for hydraulic head at the locations for run 1 of example 3. 

called quadratic-constrained intervals, and confidence inter- 
vals based entirely on the log pdf function are called log pdf 
intervals. Confidence intervals produced by the original 
method are called quadratic-unconstrained intervals. 

Three example problems demonstrate several characteris- 
tics of confidence intervals for hydraulic head g(l•) at se- 
lected points in the modeled regions. The nonlinear confi- 
dence intervals for the three examples tend to be asymmetric 
about both g(•) and g(fi), in which • is the modal parameter 
set and fi is the expected value parameter set, and the degree 
of asymmetry increases with the size of the interval. Com- 
parison of confidence intervals for nonlinear and linearized 
models shows that the large degree of asymmetry can be 
attributed to the nonlinearity of the dependent variable 
(hydraulic head) as a function of the parameters rather than 
the effects of parameter constraints. Quadratic-constrained 
and log pdf intervals are generally similar, and quadratic- 
unconstrained intervals are generally much larger, although 
in one instance for the second example the log pdf interval is 
the largest of all three. The sizes of the confidence intervals 
are controlled by an interaction of the variability and degree 
of nonlinearity of g(b) over parameter space with the size 
and shape of the confidence region for 

APPENDIX A: EVALUATION OF MODE 

The modal set of parameters • is the set that makes fR(b) 
a maximum. Hence to find this set we may minimize P' (b) 
defined by (25) or, more simply, P(b) defined by (26), with 
respect to b. It follows that the modal set satisfies the 
relationships 

nli- 1 ill,j-l- 1 
=o (A•) 

j=l, 2,'",pt /=l,2,...,k 

or, by making use of (5), 

Cl(bl,j + 1 -- t•U) -- 1 Cl(blj - hi,j-1) -- 1 
bS,j +1 - bqj bqj- bq,j-1 

(A2) 

where b-•o = t3•o = Lt, bt,p,+l = bl,p,+l = UI, nlo = ml•, 
and 

1 m C • 

CI = c'•(Ul - Ll) (A3) 
From (A2) it follows that 

P t(b'•,j + • - •6) = Ct(t3 t,j + • -/3 lj) - 1 (A4) 

j=O, 1,2,...,pt 

where Pt is a proportionality constant. To determine Pt, 
sum (A4) over all j, including zero, to obtain 

Pt Pt 

E P '(bq,j +1 -- bqj) '- Z [Cl(• l,j + , - • lj) - 1 ] 
j=O j=O 

which can be expressed as 

Pt(Ut- Lt) = Ct(Ut - Lt) - Pt - 1 

from which, using (A3) and (6), 

(1 - c)(pt + 2) 
Pt = (A5) 

c(U 1 -- Li) 

To derive the final equation relating/3 tj to fftj, equations of 
the form of (A4) are again summed to obtain 

Z Pl(•li- •"l,i-1) '- E [CI(•li- •3l,i-1) -- 1] 
i=1 i=1 

Hence it follows that 

P l( bqj - L i) -' C l( b lj - L i) -- j 
or 

Pt(blj - L1) + j 
/•tj = + Lt (A6) 

Ct 

which, when the definitions of C t and P l are used, is 
identical to (9). 

A??ENmX B: SOLUTION or (31) 

There are two sources of nonlinearity with respect to b in 
(31), one from the function g(b) and the other from the 
function P(b). The method of solving (31) described in this 
section is a variant of Newton iteration that deals with these 
two sources separately. The iterative solution is obtained 
with an inner iteration loop in which g(b) is treated as if it 
were linear in b (that is, Og/Ob is held constant) and an outer 
loop in which this source of nonlinearity is incorporated. 
Separate parameter sets are used for inner and outer itera- 
tions to facilitate description of the method. In the following 
development the parameter set calculated at the end of the 
previous outer iteration is designated b0, and the parameter 
set calculated at the end of the previous inner iteration is 
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designated b l. All variables calculated using one or the other 
of these parameter sets have a superscript or subscript 0 or 
1, as appropriate. 

To develop an algorithm to solve (3 !), first replace g(b) in 
(31) with the linearized model 

g(b) • g(bo) + Z0r(b - bo) (B1) 

which is obtained by expanding g(b) in a Taylor series about 
b0 and retaining only first-order terms. In (B1), column 
vector Zo is defined by 

Z0 = (B2) 
b--b 0 

Second, obtain a quadratic approximation of S(b) by ex- 
panding S(b) in a Taylor series about bl and retaining only 
first- and second-order terms: 

k k 

S(b) •- S 1 + E G•T•I + { E •fI'lll•l 
/=1 /=I 

(B3) 

where S• = S(bl), 

1 = aV;- + 
1 

•I = bl- b l 

In (B4) v/• is a vector composed of elements 

(B4) 

(B5) 

(B6) 

ntj - 1 rtt,j- 1 
l!j__ 1'" 1 -- '1 1 v bl,j+ 1- blj blj b -- l,j- 1 

(B7) 

and in (B5)'D• is a symmetric, tridiagonal, positive definite 
coefficient matrix in which row j is composed of the follow- 
ing nonzero elements: 

1 

Dl,j- 1 = -- 
rtl,j_ 1 -- 1 
I_bI 2 (blj 1,j- 1) 

1 nl,j-•- 1 nlj- 1 
Dlj = (b b bll, j_ 1) 2 -3- 1 _ b/.1.) 2 -- (bt,j + 1 

(B8) 

1 nlj-1 
DI,j+ 1 = -- (bll, j +1 -- b/}) 2 

In (B8) the usual matrix double index has been suppressed 
for simplicity. Matrix D/• is positive definite because it is a 
Stieltjes matrix [Varga, 1962, p. 85]. 

Equation (B3) may be simplified by defining G1 = 
(G•T, G•T, ..., G•T)T, • = (•, •2•, ... , $•r)r, and H, 
= diag (H•, H2 •, -.', H•). Then, from (B3), 

1 

S(b) = S 1 q- GiT• q- • aTHla (B9) 

Vector G1 is the gradient of S(b), and matrix H• is the 
positive definite Hessian of S(b), both evaluated at point bl. 

Third, substitute (B1) and (B9) into (31), take the deriva- 
tive of the resulting equation with respect to b and X p, and 
set the results to zero to obtain the equations used to 
calculate the correction • to approximate extreme value set 

bl based on the approximations (B 1) and (B9). The equations 
are 

H• = X•oZ 0 - G 1 (B10) 

• r H • • • + GIg + S• = s•_ • (Bll) 

where Ap 1/Ap. 
To solve for Xp, first solve (B 10) for • and substitute this 

result into (B 11) to get 

1 

•' (ApZ 0 + G1) TH•'I(ApZ0 - G•) + S, = s,_ a 
(B12) 

so that 

= + ($1-a -- S1) q- 
Ap - Z0r$ z (B16) 

B = X •,•z - •i v (B 17) 

It was found that an algorithm based directly on (B 14)- 
(B 17) generated unacceptable round-off error whenever the 
log pdf contour S(b) was very near the boundary of the 
parameter region. Small differences of the type b •. - b •j_ • 
appearing in S•, vt • , and D• could not be computed accu- 
rately enough to obtain the solution. Hence equations in 
which these differences appear are written in terms of the 
variable 

I 1 

d•. = blj- bt, j _ 1 (B18) 

New values of the parameter difference dtj b l• - b e , = l,j-1, 
are computed as follows. First, obtain $z and õv from (B 14) 
and (B15). Next, forj = 1, 2, --- , Pt and l = 1, 2, .-- , k 
form 

v v v 

wtj = •lj - •l,j-I (B19) 
z z z 

W l2 = •5 lj - l• l,j - • (B20) 

so that, based on (B !7), 

z v 

wlj = A•wtj - wij (B21) 

where StY0 = 8•0 = 0. Finally, compute dlj from 

Next solve (B12) for A v to obtain 

(2(Sl_•_S1)+GiTH•-•G•) •/2 = (B13) x. +_- za;,z ø 
It is proven later that use of the plus sign leads to the upper 
confidence limit g(be) and use of the minus sign leads to the 
lower confidence limit. Note that because H• is positive 
definite, both quadratic forms in (B 13) are positive or zero. 
Thus if bl is within the feasible region S1 < s i_•, and Z0 • 
0, A• is always real and finite. 

To efficiently employ (B10) and (B13) to solve for •, 
decompose (B 10) into two problems and use these solutions 
in (B13) as follows: 

&z = Hi-•Z0 (B14) 

8 v = Hi-•G1 (B15) 
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1 

dq= pcW(i + dtj (B22) 

where Pc (0 < Pc -< 1) is a damping parameter. New 
parameter set be is computed by solving b t• = dtj + ble,,j_ 1 
recursively for each group l, starting with bfi = dtl + L t. 

Damping parameter Pc is employed to keep updated 
parameter sets b e within constraint boundary (1). It is 
computed using the following method. Set Ptj = l(j = 1, 
2,-'., pt + 1; l = 1, 2, ..., k). IfbJ1 + 8tl < Lt, then 
compute Pll so that b]l + Pn 81• = LI, or 

L,- b]• -d11• 
Ptl ..... (B23) 

IfbJ, j+• + St,j+ • < b} + 8lj for anyj (j = 1, 2, -.., Pl - 
1), then compute Pt,j+i so that b/,j+l + Pt,j+lSt,j+l = bt} + 
Pl,j+ 1 80, or 

I ! I 1 
bl,j + 1 - bid dl,j + 1 -dl,j + 1 

Pl,j+ I -' '- -- • 
8tj- St,y+ 1 8q- 81,j+ 1 why+ 1 

(B24) 

ff bt}, + 80:, • > Ut, then compute P/,p•+l so that b/p t + 
Pl,Pt+ l 81p I = Sl, or 

1 t 1 
Ul- blpt dl,p t+ l -dl,pz+ I 

..... (B25) Pl,p t + 1 •lpt 81p t Wt,pt + 1 
Finally, if mintd pq = 1, set Pc = 1, and if mint, j pq < 1, 
compute 

0.999 min pty (B26) 
l,j 

where the factor of 0.999 is needed because mint,/ Ptj < 1 
implies that at least one constraint is exactly satisfied, which 
would result in taking the log of zero when computing S(d). 
To avoid this problem, Pc must be less than mintd p•j; the 
exact value of 0.999 is arbitrary. 

Because ,•p is computed using (B16) before Pc is com- 
puted, parameters implied by {iz and {iv from (B14) and 
(B15) may lie outside of the constraint boundary so that 
$(be) > s 1-,, which can lead to an imaginary value for 
It is sufficient to check the numerator of (B 16) to see if it is 
positive. If it is not, then Xp may be set to zero, which 
ensures a step {i such that, with sufficient damping, S(b) can 
be reduced. To prove this, note that G i is the gradient of 
S(b) at b = b 1 and that, with Xp = 0, (B10) becomes 

H18 = -G1 (B27) 

Premultiply (B27) by õ r to obtain 

õ rH õ = -8 rG 1 > 0 (B28) 1 

where the inequality follows because Hi is positive definite. 
The term -{irG• is the dot product of the negative of the 
gradient vector and the vector of changes in parameters. 
Because this dot product is positive, the angle between the 
two vectors is less than 90 ø . Therefore with sufficient damp- 
ing S(b) can be reduced compared to S l, as is required. 

Convergence of the inner iteration loop is indicated by 
small absolute values in •, and convergence of the outer loop 
is indicated by small absolute changes in b, (that is, be -- b0) 
over the outer loop. Damping used in the inner iteration loop 

is given by (B23)-(B26). Damping used in the outer iteration 
loop is given by the algorithm of Cooley and Vecchia [1987, 
pp. 588-589] with the exception that here the damping 
parameter is set to unity on the first iteration. 

In summary, the algorithm used to solve (3 I) for the upper 
(Ap > 0) confidence limit .q(b e) is as follows. (The algorithm 
for the lower confidence limit is identical except the negative 
value of Ap is used.) 

1. Define an initial set of parameters bl and set b0 = bl. 
2. Compute Z0. 
3. Compute Hi, Gi, and S1 using (B18) for parameter 

differences. 

4. Compute 8z and 8v using (B14) and (B15). 
5. Compute Ap using the positive value from (B16), 

unless the numerator of (B16) is negative, in which case 
kp = 0. 

6. Compute Pc using (B23)-(B26). 
7. Compute d, which is the vector of elements dq, using 

(B 19)-(B22). 
8. Compute b• using d. 
9. Compute {i using (B 17) and check for convergence. If 

{i is not small enough, return to (3). 
10. Check [b e - b01 for convergence. If this difference is 

not small enough, then use the algorithm of Cooley and 
Vecchia [1987, pp. 588-589] to compute a new, damped 
parameter set be; set b0 = be; then return to (2). Otherwise 
compute the confidence limit 

The condition for (B 10) and (B 13) to lead to a maximum of 
g(b) is g(b) - g(b0) = Z•{i > 0. This condition may be 
specified in terms of (B 10). Solve (B 10) for {i and premultiply 
the result by Z[ to obtain 

g(b) - g(bo)= z0rõ = Z[Hi-l(ApZo - G1) > 0 (B29) 

Thus the condition on A• to lead to a maximum is 

ZoTH•-IG 1 
x. > Z•H/_•Z ø (B30) 

Itis now shown that if (1) the positive root in (B13) is used, 
(2) Z 0 •: 0, and (3) S1 < s 1-., then (B30) is always true. 
Rearrange (Bll) and rewrite it using (B10): 

(ApZ0 + G1) T8 = (I-I18 + 2G1) T8 = 8THi 8 + 2G[8 

= 2(si - a -- S1) 

so that, because {irI-l•{i > O, 

G[{i < Sl - • - S• < 2(s l_ a - Si) 

or by adding G/Hi-lG1 to each side and using (B10) and 
(B13), 

G1Ta + G•H•IGi = (ala + G1)TH?IG pZ•a;1G 1 =X 1 

<2(sl •-S•)+G•H•G 2 • - i = •pZ0H•Z0 

which is the same as (B30). 
The condition for (B10) and (B13) to lead to a minimum is 

a(b) - a(bo) = = Z[nF(X.Z0 - < 0 
(B3•) 

from which the condition on Ap is 
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(B32) X• < Z0riti-•Z0 

An argument similar to that developed for the maximum 
shows that if (1) the negative root in (B13) is used, (2) Z0 v• 
0, and (3) S1 < Sl_s, then (B32) is always true. 
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NOTATION 

a a constant giving the weight applied for Q(B) in 
S(•). 

b a constant giving the weight applied for P(B) in 
S(B). 

B a set of random variables from a statistical 
distribution that describes paramcte• uncertainty 
and covers the plausible range for I•; a subvector of 
B is Bt, where l is a parameter group number. 

b a realization of B; a subvector of b corresponding 
to B l is b t. 

B a fixed estimate of 13 resulting from prior (measured 
and subjective) information and(or) model 
calibration; a subvector of B corresponding to Bt is 

fi E(•) 
b e current estimate of the parameter set for which g(b) 

is either a maximum or a minimum, subject to the 
appropriate parameter constraints. 

c peakedhess parameter of the multivariate beta 
distribution. 

c•=c/(Pl + 2). 
2 di_• critical value of Q(B) defined by Prob [Q(B) < 

d•2_•,] = 1 - a. 
lB(b) prior distribution, defined by (2). 
g(b) model output or other scalar function (of some set 

of parameters b) for which a confidence interval is 
desired. 

k number of parameter groups. 
L I lower parameter bound for parameter group l. 
mij exponent for multivariate beta distribution; defined 

as (1 - c•(•j - Lt)/[c•(Wl - 'Lt)]. 
ntj exponent for multivariate beta distribution; defined 

as (1 - c•(/;l,•+l - t3o)/[c•(U•- L•)]. 
P l number of parameters in parameter group I. 

Q(B)= (B - fi) rV-•(B - fi). 
P(B) scaled log pdf function for the multivariate beta 

distribution of parameters, equal to - Y•= • Z•=•0 
(nlj - 1) In ((Bt,j+• - Btj)/(Ul - Lt)) 

S(B) linear combination aQ(B) + bP(B). 
s•_• critical value of S(B) defined by Prob [S(B) < 

Sl-•] = 1 - c•. 
U• upper parameter bound for parameter group I. 
V Var(B); a submatrix is ¾1 -- Var (B/). 

Z0 sensitivity vector (or gradient of #(b)) 
where b0 is the set of parameters calculated on the 
previous outer iteration. 

a probability that Q(B) or S(B) is greater than critical 
values of d•2_ • or s 1 - •, respectively. 

13 true but unknown set of model parameters. 
X, = 1/(2X[,), where X[, is the Lagrange multiplier for 

confidence intervals based on Q(b). 

A t, = 1/X•o, where X• is the Lagrange multiplier for 
confidence intervals based on S(b). 
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