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Abstract 

Backward location and travel time probabilities, which provide information about the former location of contamination in an 
aquifer, can be used to identify unknown contamination sources. Backward location probability describes the possible upgradient 
positions of contamination at a known time in the past, and backward travel time probability describes the time required for 
contamination to travel from a known upgradient location to an observation point. These probabilities are related to adjoint states 
of resident concentration, and their governing equation is the adjoint of a forward contaminant transport model. Using adjoint 
theory to obtain the appropriate governing equation, we extend the backward probability model for conservative solutes to more 
general non-uniform and transient flow fields. In particular, we address three important extensions, spatially-varying porosity, 
transient flow and temporally-varying porosity, and internal distributed sources and sinks of solute and water. For the first time we 
learn that forward and backward location and travel time probabilities are not necessarily equivalent to adjoint states. but are 
related to them. The extensions are illustrated using a vertically-integrated groundwater model, creating transient flow by a step 
change in pumping and using areal recharge as an internal distributed source. Both the movement and spread of probabilities are 
affected. With internal sources of water, there are two interpretations of backward probability, depending on whether or not the 
source of water is also a source of solute. The results demonstrate how the backward probability model can be applied to other, 
perhaps more important, non-uniform and transient flow conditions, with time- and space-varying water storage, such as time­
varying pumping or unsaturated (or saturated-unsaturated) flow and transport with spatially- and temporally-varying moisture 
content. 
© 2002 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

When contamination is observed in an aquifer, the 
source of contamination is often unknown. To remedi­
ate the aquifer or to assign responsibility we might need 
to identify the contamination source or estimate the 
release time of contamination from a known source. 
Since the source is unknown, this information must be 
inferred from the observed distribution of the contami­
nation using knowledge of the contaminant transport 
processes. For example, one could select several possi­
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ble sources of contamination and individually simu­
late the evolution of a contaminant plume from each of 
these sources, comparing the simulation results with 
the measured data. This approach is computationally 
inefficient because one simulation must be run for each 
source, and the results are limited to only the pre­
selected sources. 

Backward modeling [16,17,23,24] is a more efficient 
approach that can be used to address these and related 
issues, such as well head protection and aquifer vul­
nerability. This method produces backward location or 
travel time probability distributions that can be used to 
characterize the source location and source release time . 
Backward location probability is a probability distri­
bution describing the possible prior positions of the 
contamination (or possible source locations); and 
backward travel time probability describes the time for 
a solute parcel to travel from an upgradient location 
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(possibly the source location) to the observation point.

These probabilities are related to marginal sensitivities.

This can be seen most clearly by first examining their

forward counterparts, forward location and travel time

probabilities, which are often used in forward modeling
to describe solute transport in groundwater [2–4,10,12].

Forward location probability, fxðx; t; x0Þ, describes

the random position, x, of a solute parcel at a fixed time,

t, after its release from a known source at x0 [2–5,12] and

is related to resident concentration [4,12]. For contam-

ination originating from an instantaneous point source

at x0, the probability of finding a solute parcel in a

control volume centered at x at time T is equivalent to
the ratio of the solute mass in that volume to the total

mass of solute in the aquifer; therefore, the location

probability density function at forward time t ¼ T , is
given by

fxðx; t ¼ T ; x0Þ ¼
hðx; T ÞCðx; T Þ

M0

; ð1Þ

where fxðx; t ¼ T ; x0Þ is location probability at time T, x

is the position vector (random variable), Cðx; T Þ is the

distribution of resident concentration at all x at time T

due to the instantaneous point source, x0 is the known

source location, M0 is the source mass, and h is porosity.
Porosity may vary in space due to aquifer heterogeneity

and in space/time due to matrix compressibility, pre-

cipitation/dissolution, or other processes. (In unsatu-

rated flow, h would represent space/time variability

of moisture content.) Rearranging (1), we see that

Cðx; T Þ ¼ ðM0=hÞfxðx; t ¼ T ; x0Þ, leading to dCðx; T Þ=
dM0 ¼ Cðx; T Þ=M0, so the forward location probability

can also be given by

fxðx; t ¼ T ; x0Þ ¼ hðx; T Þ dCðx; T Þ
dM0

¼ hðx; T Þwxðx; t ¼ T ; x0Þ; ð2Þ

where wxðx; t ¼ T ; x0Þ is the state sensitivity of resident

concentration at x to the source mass, M0, at x0. For-

ward location probability at x is proportional to this

sensitivity, and to the porosity at the selected position,
x, and at time t ¼ T . In the special case of constant

porosity, the sensitivity can be taken with respect to

M 0 ¼ M0=h, the measure of source mass used in [17].

Note that if there are multiple sources x0, each has its

own forward location probability.

Through a similar approach we see that forward

travel time probability is related to a different sensitivity.

Forward travel time probability, ftðt; x; x0Þ, describes
the time required (random variable) for a solute parcel

to travel from its source at x0 to a fixed location of in-

terest, x [5,6,10,11], and is related to flux concentration

[19,21]. For an instantaneous point source of contami-

nation at x0, the travel time probability density function

at a specific downgradient location, x ¼ xw, is equiva-

lent to the ratio of mass flow rate at xw to the total mass

in the aquifer, given by

ftðt; x ¼ xw; x0Þ ¼
jqðxw; tÞjAðxwÞCfðxw; tÞ

M0

; ð3Þ

where ftðt; x ¼ xw; x0Þ is travel time probability from the

source at x0 to x ¼ xw, jqj is the local magnitude of the

space- and time-varying specific discharge, Cfðxw; tÞ is

flux concentration, A is the area perpendicular to flow
across which flux concentration is defined, and M0 is the

source mass. (Ref. [17] incorrectly neglects to put the

absolute value on the specific discharge.) Rearranging

(3) shows that

Cfðxw; tÞ ¼
M0

jqðxw; tÞjAðxwÞ
ftðt; xw; x0Þ; ð4Þ

and by taking the derivative of Cf with respect to M0, we

obtain

ftðt; xw; x0Þ ¼ jqðxw; tÞjAðxwÞ
dCfðxw; tÞ

dM0

¼ jqðxw; tÞjAðxwÞwtðxw; t; x0Þ; ð5Þ

where wtðxw; t; x0Þ is the state sensitivity of flux con-

centration at xw, at any time t, to the source mass,M0, at

x0. Forward travel time probability is proportional to
this sensitivity, and to the temporally-varying specific

discharge at xw. Note again that if there are multiple

sources, each has its own forward travel time probabil-

ity, an important concept for capture zone delineation.

These forward probabilities are related to sensitivities

of concentration (C or Cf ) at any location or time to the

source mass at a known source location and release

time; therefore, they are useful if the source is known. In
the problem addressed here, however, the source is un-

known and contamination is observed at one known

location and time. We develop backward probabilities

that describe either the possible source (or prior) loca-

tions of the observed contamination, with x0 as a ran-

dom variable; or the release time of the contamination

from a known source, with the release time as a random

variable. These backward probabilities are related to the
sensitivity of concentration at one known location and

time to the source mass at any random upgradient lo-

cation or random earlier time. These new sensitivities

are, by definition, adjoint states [7], and their governing

equation is the adjoint of a conventional contaminant

transport equation (forward model). The adjoint equa-

tion models the same physical processes as the forward

equation; however, the flow of information is reversed,
so transport is modeled upgradient and backward in

time from the observation to the possible sources or

prior locations. Dispersion increases backward in time.

Unlike the forward modeling approach, this adjoint

(backward) model requires only one model simulation

for each observation to obtain probabilities for all
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possible sources, and therefore is more computationally

efficient.

Backward probabilistic models have seen limited use

in groundwater transport modeling through both ran-

dom walk techniques and continuum methods. Uffink
[22] and Chin and Chittaluru [2] used backward random

walk methods to probabilistically delineate pumping

well capture zones, and Fogg et al. [8] used it for

groundwater vulnerability assessment. Bagtzoglou et al.

[1] used a backward random walk to obtain probability

maps to identify sources of contamination. Wilson and

Liu [13,14,23] used a heuristically-developed backward

continuum model to identify the source of groundwater
contamination observed in a pumping well. They then

tested this heuristic model using results of a field tracer

test at the Canadian Forces Base, Borden, Ont., Canada

[24]. The model results compared well with the tracer

test data, especially for tracers that were injected near

the extraction well; however, no formal justification was

given for their model. Because their continuum model

was developed heuristically, extending their approach to
more complex systems is difficult.

Neupauer and Wilson [16,17] showed that the ad-

joint of a forward model is the appropriate continuum

model for backward probabilities. This provided a

rigorous mathematical approach for obtaining the

backward model for any flow and transport system

modeled with continuum equations. They developed the

backward probability model for steady, uniform flow
fields, and for steady non-uniform flow caused by

spatial variability in hydraulic conductivity or by

pumping. In the special case of constant porosity con-

sidered in [16,17], forward and backward location

probabilities are equivalent for a specific source/obser-

vation pair and are an adjoint state of resident con-

centration; while forward and backward travel time

probabilities are not equivalent to each other, and are
related to, but not equivalent to, an adjoint state of

resident concentration.

In this paper, we develop the continuum backward

probability model for more general non-uniform flow

and for transient flow. In particular, we address three

important extensions: (1) spatially-varying porosity, (2)

transient flow and temporally-varying porosity, and (3)

distributed internal sources and sinks of water and sol-
ute. We illustrate these extensions using a vertically-

integrated model, creating transient flow by a step

change in pumping and non-uniform flow by a distrib-

uted internal source of areal recharge. The results dem-

onstrate how the backward probability model can be

applied to other, perhaps more important, non-uniform

and transient flow conditions such as time-varying

pumping or unsaturated (or saturated–unsaturated) flow
and transport with spatially- and temporally-varying

moisture content. Because the results are easier to

compare in one dimension, we illustrate the approach

for a one-dimensional, vertically-integrated aquifer;

however, the relationships between adjoint states and

probabilities are general to multidimensional systems.

Multidimensional (2-D or 3-D) adjoint equations can be

derived following the approach of [17]. Furthermore,
although our forward contaminant transport model is

a linear partial differential equation, the approach can

also be applied to non-linear problems such as density-

dependent flow. The method is applicable to a wide

variety of physical, chemical, and biological transport

processes that can be modeled as partial differential

equations. In our work, we limit our analysis to systems

that include, at a minimum, advection and dispersion.
We show that in general forward and backward lo-

cation and travel time probabilities are not equivalent to

adjoint states, but are related to them. Earlier work with

constant porosity [16,17] did not encounter this gener-

ality, illustrating the importance of using a robust

mathematical technique to develop the backward model

when adding new complexities, whether using a con-

tinuum or random walk approach. While for each new
situation the adjoint approach must be reapplied to

determine the proper backward continuum model, the

correct backward Fokker–Planck-type equation must

also be rederived for each new backward random walk

model. We also show that with recharge, or with any

other distributed internal source of water, two different

interpretations of backward probability can be made,

depending on whether or not contamination enters
through the source of water, or independent of it.

Although the state variable in the backward proba-

bility model is related to a probability density function,

the model we present here is deterministic, with known

parameter values. The adjoint approach, which we use

here to develop the backward probability model, can

also be applied in a general stochastic framework, ad-

dressing, for example, random permeability fields or
scale-dependent dispersion [25].

2. Backward probability model

The governing equation for the backward probabi-

lity model is the adjoint of the governing equation of

forward contaminant transport. Transport of a con-

servative chemical in a one-dimensional flow field
with spatially- and temporally-varying porosity can be

modeled using the advection-dispersion equation (ADE),

given by

o

ot
ðhCÞ ¼ o

ox
hD

oC
ox

� �
� o

ox
ðhvCÞ þ qICI � qOC; ð6Þ

Cðx; 0Þ ¼ CiðxÞ;

oC
ox

¼ g1ðtÞ at x ¼ x1;
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Cðx; tÞ ¼ g2ðtÞ at x ¼ x2;

where C is resident concentration, t is time, x is the

spatial direction, D ¼ aLjvj is the dispersion coefficient,

aL is the longitudinal dispersivity, v is the groundwater
velocity, h is porosity, qI is the source inflow rate per

unit volume, CI is the source strength, qO is the sink

outflow rate per unit volume, Ci is the initial concen-

tration, x1 and x2 are the boundaries, and g1 and g2 are
known functions. Other boundary conditions can also

be used.

Location and travel time probabilities are related to

sensitivities of concentration to the source mass (see (2)
and (5)), and therefore can be obtained through sensi-

tivity analysis. Neupauer and Wilson [16,17] previously

used sensitivity analysis to obtain the backward model

and probability relationships for the constant-porosity

case; we also use that approach here but with non-

constant porosity. The results for this new derivation are

not an obvious extension of the previous work and lead

to new results.
We begin by defining a performance measure, P, that

quantifies some state of the system, defined as

P ¼
Z Z

x;t
hða;CÞdxdt; ð7Þ

where hða;CÞ is a functional of the state of the system, a
is a system parameter, C is resident concentration, and

integration is over the entire space–time domain. The

marginal sensitivity of this performance measure with

respect to the parameter a is obtained by differentiating

(7) with respect to a:

dP
da

¼
Z Z

x;t

ohða;CÞ
oa

�
þ ohða;CÞ

oC
w

�
dxdt; ð8Þ

where dP=da is the marginal sensitivity, w ¼ oC=oa is

the state sensitivity, and oh=oC is the Fr�eechet derivative
[20] of the performance functional, h, with respect to C.

The choice of performance measure, P, depends on

the type of probability that is desired. From (2), we see

that location probability is related to the sensitivity of
resident concentration at the observation point to the

source mass; therefore, for location probability, the

appropriate performance measure, P, is resident con-

centration at the observation point (P ¼ Cðxw; t ¼ T Þ)
and the appropriate parameter a is the source mass

(a ¼ M0). Inspection of (7) shows that to obtain this

performance measure for location probability, the per-

formance functional must be defined as

hðx; sÞ ¼ Cdðx� xwÞdðsÞ; ð9Þ

where s ¼ T � t is backward time, or time prior to

sampling, and dð�Þ is a Dirac delta function.

Likewise, from (5), we see that backward travel time

probability is related to the marginal sensitivity of flux

concentration at the observation point to the source

mass; therefore, for travel time probability, we define P

to be flux concentration at the observation point (P ¼
Cfðxw; t ¼ T Þ) and a ¼ M0, and the performance func-

tional, h, is defined as

hðx; sÞ ¼ Cfdðx� xwÞdðsÞ: ð10Þ

For both types of probability, a ¼ M0 and (8) reduces

to

dP
dM0

¼
Z Z

x;t

oh
oC

wdxdt; ð11Þ

where w is defined more explicitly now as w ¼ oC=oM0.
Once the state sensitivity, w, is defined, we can use h

from either (9) or (10) in this equation to obtain the

marginal sensitivity; from this marginal sensitivity, we

can calculate either location or travel time probability.

The state sensitivity, w, can be obtained directly from (6)

by differentiating each term with respect to M0 to obtain

a new form of the ADE in terms of the state sensitivity,

w ¼ oC=oM0. The solution of this modified ADE pro-
duces the sensitivity of concentration at any location to

the source mass, M0, at one location. This result is useful

if the source is known; however, if contamination is

observed in the aquifer and the source of contamination

is unknown, we are more interested in the sensitivity of

concentration at a one location (e.g., at xw, the location

of a monitoring or pumping well) to the source mass at

any location. Therefore, we would need to calculate
wðxw; tÞ for many different source locations, which could

be obtained rather inefficiently through repeated simu-

lations of (6) with different x0. The number of simula-

tions needed would depend on the number of possible

source locations and on the spatial discretization of the

problem domain. As a worst case scenario, if no infor-

mation about the source location was available, then (6)

would have to be run once for each cell in the domain,
with the source location in a different cell for each

simulation. Also, to identify the travel time with no in-

formation on the source release time, (6) would have to

be solved once for each time step.

Instead, we take a more efficient approach of re-

placing (11) with an equivalent expression that does not

contain w, but contains an arbitrary adjoint state, w	,

which we later show to be equivalent to the desired
sensitivity (i.e., the sensitivity of concentration at one

location to the source mass at any location). With this

replacement, the marginal sensitivity becomes (see

Appendix A)

dP
dM0

¼
Z
x
ðhw	Þ

����
t¼0

oCi

oM0

dx; ð12Þ

where Ci ¼ Cðx; 0Þ is the initial concentration in (6), and

the adjoint state, w	, is the solution to the adjoint

equation (see Appendix A)
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o

os
ðhw	Þ ¼ o

ox
hD

ow	

ox

� �
þ o

ox
ðhvw	Þ � qIw

	 þ oh
oC

;

ð13Þ
w	ðx; 0Þ ¼ 0;

D
ow	

ox
þ vw	 ¼ 0 at x ¼ x1;

w	 ¼ 0 at x ¼ x2;

where s is backward time representing time prior to
observation, the load term, oh=oC, is the same Fr�eechet
derivative as in (11), and the performance functional, h,

is defined in (9) and (10) for location and travel time

probabilities, respectively. Since backward time s is the

time prior to observation, it increases as forward time t

decreases; thus the time derivatives in this equation and

(6) have opposite signs, allowing for the flow of infor-

mation in reversed time in (13). The other differences
between the forward equation (6) and the backward

(adjoint) equation (13) are the reversal of sign on the

velocity term allowing upgradient flow of information

and the replacement of sources in the forward model

with sinks in the backward model as a consequence of

the flow-field reversal. The sink of solute in the forward

model does not become a source in the backward model.

These differences cause information to be propagated
from the observation back to all possible prior locations.

In other words, with just one simulation of (13), we

obtain information about all possible source locations

for the observed contamination. Recall that obtaining

the same information from (6) would require one for-

ward simulation for each possible source. It is also im-

portant to observe that the dispersion term in (13)

causes spreading of the adjoint states, and therefore of
the backward probabilities, backward in time.

The boundary conditions in the backward model are

different than those of the forward model. In the adjoint

model, all boundary conditions are homogeneous. The

first-type boundaries in the forward model remain first-

type in the backward model; however, the second-type

boundaries in the forward model become third-type in

the backward model, and vice versa [17]. Both (12) and
(13) differ from the equations in [17] by the explicit in-

clusion of the spatial and temporal dependence of po-

rosity.

At this point, we have an efficient approach for cal-

culating marginal sensitivities. We calculate the adjoint

state by substituting the performance functional, h, into

the load term in (13), and then we use the results in (12)

to calculate the marginal sensitivity. The remaining task
is to relate the marginal sensitivity to the probability of

interest. We show how the marginal sensitivities are

related to both forward and backward probabilities.

For location probability, the performance functional

h is (9), leading to oh=oC ¼ dðx� xwÞdðsÞ as the load

term in the adjoint equation. Let w	
x denote the solution

to (13) with this load term and let Ci ¼ ½M0=hðx0; t ¼
0Þ�dðx� x0Þ in (12) for an instantaneous point source of

contamination. The marginal sensitivity from (12)

reduces to

dCðxw; s ¼ 0Þ
dM0ðx0Þ

¼ w	
xðx0; s ¼ T ; xwÞ; ð14Þ

where xw and T are fixed and x0 is random. This adjoint

state, w	
x , describes the sensitivity of the observed con-

centration at xw at s ¼ 0 to a release of mass at any prior

location, x0, at backward time s ¼ T . Contrast this with
the state sensitivity wx in (2) that describes the sensitivity

of concentration at any location and time to a source

mass at a specific x0 and at time t ¼ 0.

Both sensitivities (wx and w	
x) are related to forward

location probability, each with a different point of view.

From (2), forward location probability at xw due to a

source at x0 is

fxðx ¼ xw; t ¼ T ; x0Þ ¼ hðxw; t ¼ T Þ dCðxw; t ¼ T ; x0Þ
dM0ðx0Þ

¼ hðxw; t ¼ T Þwxðxw; t ¼ T ; x0Þ; ð15Þ

representing the probability that contamination from x0
will be at a random xw at time t ¼ T . If we have one

source and many possible observers, it is efficient to

calculate forward location probability using (15) with

wx, the sensitivity of concentration at any location to a
source mass at a known source, since wx can be calcu-

lated from one simulation of the forward model. If we

have many possible sources and one observer, it is more

efficient to use w	
x , the sensitivity of concentration at one

location to a source mass anywhere; w	
x can be calcu-

lated from one simulation of the backward model (13).

Using (14) in (15), the forward location probability is

then given by

fxðx ¼ xw; t ¼ T ; x0Þ ¼ hðxw; s ¼ 0Þw	
xðx0; s ¼ T ; xwÞ:

ð16Þ
Note that the adjoint state and porosity are defined in

terms of backward time s, while the forward location

probability is defined in terms of forward time t.

The adjoint state w	
x is also related to backward lo-

cation probability by

fxðx ¼ x0; s ¼ T ; xwÞ ¼ hðx0; s ¼ T Þw	
xðx0; s ¼ T ; xwÞ;

ð17Þ
where fxðx ¼ x0; s ¼ T ; xwÞ represents the probability

that contamination observed at xw was at x0 (random

variable) at time T in the past. Note the subtle differ-
ences between the expressions for forward and back-

ward probabilities in (16) and (17). They are functions of

the same adjoint state, but they depend on the ‘‘local’’

value of porosity. Forward probability (16) is a function

of the porosity at the observer (prediction location xw
and time t ¼ T ), and backward probability (17) is a
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function of the porosity at the ‘‘source’’ or prior loca-

tion (at x0 and time s ¼ T ). A smaller local porosity

indicates a smaller pore volume and thus a lower

probability of finding the solute parcel in the same bulk

volume of aquifer material. If porosity is uniform, the
two location probabilities are equivalent [17].

Next we show how travel time probability can be

obtained from (12) and (13). For travel time probability,

the performance functional h is (10). Since the load term

in the adjoint equation (13) is the Fr�eechet derivative of h
with respect to C, but (10) is written in terms of Cf , we

must substitute into (10) the relationship between C and

Cf . In one dimension, this relationship is [18]

Cf ¼ C � D
v
oC
ox

: ð18Þ

Substituting this expression into (10) and taking the

Fr�eechet derivative with respect to C, we obtain the load
term for backward travel time probability, given by

oh
oC

¼ dðx� xwÞdðsÞ þ
D
v

d0ðx� xwÞdðsÞ; ð19Þ

where d0ðxÞ is the derivative of the Dirac delta function
with respect to x [16]. We use this load term in (13)

for travel time probability for contamination observed

at a monitoring well, but we use a different load term

for contamination observed at a pumping well. At a

pumping well, we often assume that oC=ox ¼ 0; there-

fore from (18), Cf ¼ C at the well, and the load term in

(13) is

oh
oC

¼ dðx� xwÞdðsÞ: ð20Þ

This is the same load term used for location proba-

bility.
Let w	

s be the solution to (13) with either (19) or (20)

as the load term, and let Ci ¼ ½M0=hðx0; t ¼ 0Þ�dðx� x0Þ
in (12). The marginal sensitivity in (12) reduces to

dCfðxw; s ¼ 0; x0Þ
dM0ðx0Þ

¼ w	
sðx0; s ¼ T ; xwÞ: ð21Þ

The adjoint state, w	
s , describes the sensitivity of flux

concentration at a specific xw to a release of mass at any
prior location, x0. Contrast this with the state sensitivity

wt in (5) that describes the sensitivity of flux concen-

tration at any xw to a release of mass at a specific

location x0.
Both w	

s and wt are related to forward travel time

probability, which represents the probability that con-

tamination from x0 will arrive at xw at time t (random

variable) in the future. From (5), forward travel time
probability is related to the sensitivity, dCf=dM0. Since

this sensitivity can be represented by w	
s or wt (see (5)

and (21)), travel time probability can also be described

using either w	
s or wt. If we have one source and many

possible observers, wt can be obtained with one simu-

lation of a forward model, and forward travel time

probability can be obtained efficiently using wt. On the

other hand, if we have one observer and many possible

sources x0, it is more efficient to use w	
s to obtain forward

travel time probability because w	
s can be obtained with

one simulation of a backward model. From (5) and (21),
these expressions for forward travel time probability are

ftðt ¼ T ; xw; x0Þ ¼ jqðxw; t ¼ T ÞjAðxwÞwtðxw; t ¼ T ; x0Þ
¼ jqðxw; s ¼ 0ÞjAðxwÞw	

sðx0; s ¼ T ; xwÞ:
ð22Þ

Recall that the first expression in (22) is used when
the source is known and there are many possible re-

ceptors; while the second expression can be used if there

are many possible sources x0 (or prior locations), each

with its own possible travel time T.

Note that
R t
0
ftðt0; xw; x0Þdt0 represents the probability

that contamination from a source at x0 will reach xw in

time t or less. In [17], Neupauer and Wilson show that

this integral of forward travel time probability can be
used to delineate a probabilistic capture zone for a

pumping well. In this type of application, we have one

observer (the pumping well) and many possible sources;

therefore, forward travel time probability capture zones

can be obtained efficiently using w	
s .

The adjoint state w	
s is also related to backward travel

time probability by

fsðs ¼ T ; x0; xwÞ ¼ jqðx0; s ¼ T ÞjAðx0Þw	
sðx0; s ¼ T ; xwÞ;

ð23Þ
in a one-dimensional domain, where fsðs ¼ T ; x0; xwÞ,
represents the probability that contamination observed

at xw was at x0 at a random time s ¼ T in the past. Again

note the subtle differences between the expressions for
forward (22) and backward (23) probabilities when ex-

pressed in terms of the adjoint state w	
s . They depend on

the local rate of groundwater flow. Where or when the

flow is slower, the travel time probability decreases.

In the special case of constant porosity, the ADE (6)

reduces to

oC
ot

¼ o

ox
D
oC
ox

� �
� o

ox
ðvCÞ þ qI

h
CI �

qO
h
C; ð24Þ

and the adjoint equation is [17]

ow		

os
¼ o

ox
D
ow		

ox

� �
þ o

ox
ðw		CÞ � qI

h
w		 þ oh

oC
; ð25Þ

with the marginal sensitivity defined as [17]

dP
dM0

¼
Z
x

w		
����
t¼0

oCi

oM0

dx; ð26Þ

where the relationship between the adjoint state w		 in

this equation and the adjoint state w	 in the rest of this

paper is w		 ¼ hw	. With Ci ¼ ðM0=hÞdðx� x0Þ, (26)

simplifies to dC=dM0 ¼ w		
x =h for location probability,

and from (17), fx ¼ w		
x for both forward and backward
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location probabilities, explaining their reciprocal rela-

tionship. Neupauer and Wilson [17] obtained this result

directly using a ¼ M 0 ¼ M0=h.
The adjoint derivation presented here is easily ex-

tended to multiple dimensions [17]. The relationships
between adjoint states and probabilities in (16), (17),

(22), and (23) are valid in multiple dimensions by re-

placing the scalar location x with a location vector.

3. Illustrations of the backward probability model

In this section we present several illustrations of
the backward probability model for a conservative tra-

cer using the hypothetical vertically-integrated aquifer

shown in Fig. 1. The confined aquifer is semi-infinite

and one-dimensional with a pumping well at xw ¼ 0, and

an instantaneous point source of contamination at

x0 > 0. Initially, we assume uniform porosity and steady

flow (from right to left in the figure), with no internal

sources or sinks of water or contamination. Later we
relax these assumptions, to encompass the three exten-

sions of previous work, including (1) spatially-varying

porosity, (2) transient flow and temporally-varying po-

rosity, and (3) distributed internal sources and sinks of

water and solute.

3.1. Backward probability model in a steady and uniform

flow field

The governing equation for the forward model is (6),

with qI ¼ qO ¼ 0, x1 ¼ 0, x2 ! 1, g1ðtÞ ¼ g2ðtÞ ¼ 0, and

CiðxÞ ¼ ðM0=hÞdðx� x0Þ. The solution to (6) for constant

v, D, and h is [23]

Cðx; tÞ ¼ M0

h
ffiffiffiffiffiffiffiffiffiffi
4pDt

p exp

(
� ðx� x0 � vtÞ2

4Dt

)

� 1
h

þ exp
�x0x
Dt

n oi
þ M0v
2Dh

� exp
�vx0
D

n o
erfc

xþ x0 � vtffiffiffiffiffiffiffiffi
4Dt

p
� �

; ð27Þ

for v < 0 (i.e., flow in the direction of )x). This solution
is plotted in Fig. 2a showing resident concentration for

t ¼ 20 days (circles) and t ¼ 50 days (squares) after re-

lease from the source at x0 ¼ 100 m using the transport

parameters values in Table 1. At t ¼ 20 days, the con-

tamination has not yet reached the pumping well, but

by t ¼ 50 days, some contamination has reached the

well.
Suppose one sample of contamination is observed at

the pumping well at time s ¼ 0, and we want to know its

location at some time in the past. To determine likely

prior locations, we use backward location probability.

The governing equation for this case is (13) with h de-

fined in (9), qI ¼ 0, x1 ¼ 0, and x2 ! 1. The solution to

this equation, w	
x , is used in (17) to obtain backward

location probability, given by [23]

fxðx; sÞ ¼
1ffiffiffiffiffiffiffiffiffi
pDs

p exp

(
� ðxþ vsÞ2

4Ds

)

þ v
2D

exp
�vx
D

n o
erfc

x� vsffiffiffiffiffiffiffiffi
4Ds

p
� �

; ð28Þ

for v < 0. Backward location probability is plotted in

Fig. 2b for s ¼ 20 days (circles) and s ¼ 50 days

(squares) prior to observation at the pumping well,Fig. 1. Aquifer geometry for example problem.

Fig. 2. Results of simulations with constant porosity and with spa-

tially-varying porosity (v ¼ �1 m/d at xw, aL ¼ 5 m). (a) Resident

concentration (M0 ¼ 1 g/m2; x0 ¼ 100 m). (b) Backward (prior) loca-

tion probability ðxw ¼ 0Þ. (c) Backward travel time probability (xw ¼ 0,

x0 ¼ 100 m).

Table 1

Transport parameters for the example problem

Parameter Value

Source location, x0 (m) 100

Groundwater velocity, v (m/d) )1
Longitudinal dispersivity, aL (m) 5

Porosity, h 0.3

Source mass, M0 (g/m2) 1
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showing the probable positions of the observed con-

tamination at s ¼ 20 and s ¼ 50 days prior to sampling.

The most likely prior position of the contamination is

x � 23 m at s ¼ 20 days prior to sampling, and x � 55 m

at s ¼ 50 days prior to sampling. Note also that
fx ðx ¼ 100 m; s ¼ 20 daysÞ � 0; this is consistent with

Fig. 2a (circles), which shows that mass originating at

x0 ¼ 100 m does not reach the pumping well in 20 days.

At s ¼ 50 days, however, the location probability at

x ¼ 100 m is non-zero, indicating that the mass that

originated at x0 ¼ 100 m has a finite probability of

reaching the pumping well in 50 days. This is also con-

sistent with Fig. 2a (squares).
Suppose, instead, that we would like to know when

the observed contamination could have been released

from a known or suspected source at x ¼ x0 ¼ 100 m. To

determine the likely travel times from the source to the

pumping well, we use backward travel time probability.

The governing equation for backward travel time prob-

ability is (13) with the load term defined in (20) for

observation at a pumping well; this is the same as the
governing equation for location probability, so w	

s ¼ w	
x

for this special case.

From (23) and (28), backward travel time probability

for this case is

fsðs; xÞ ¼
�vffiffiffiffiffiffiffiffiffi
pDs

p exp

(
� ðxþ vsÞ2

4Ds

)

� v2

2D
exp

�vx
D

n o
erfc

x� vsffiffiffiffiffiffiffiffi
4Ds

p
� �

; ð29Þ

where jqj in (23) is jqj ¼ �vh because v < 0 in this ex-

ample. This travel time probability distribution, plotted

in Fig. 2c (circles), shows that the most likely travel time

from x0 ¼ 100 m to the pumping well is s � 92 days.

Note also that fs > 0 at s ¼ 50 days, indicating a non-

zero probability that mass from x0 ¼ 100 m will reach
the pumping well in 50 days. This is consistent with the

results shown in Fig. 2a (squares and circles).

3.2. Backward probability model with spatially-varying

aquifer porosity

The next illustration addresses spatial variability in

aquifer porosity which enters both the adjoint equation

and the relationships between adjoint states and prob-

abilities in (17) and (23). To simplify the comparison of

results, we use a linear variation in porosity, given by

hðxÞ ¼ h0 þ 0:0005x; ð30Þ

where h0 ¼ 0:3 is the porosity at x ¼ 0 and x has units of

m. The same approach would be followed for other

spatial distributions, including realizations of random

fields.

For a one-dimensional domain with no internal

sources or sinks of water, as in Fig. 1, the specific dis-

charge, q, is uniform because of mass conservation.

If aquifer porosity is spatially-varying, groundwater

velocity and the dispersion coefficient vary in space,

because vðxÞ ¼ q=hðxÞ, and the governing equations (6)

and (13) must be solved numerically. We used MOD

FLOW-96 [9] and MT3DMS [26] to simulate steady

flow and transient transport using the parameter values

shown in Tables 1 and 2. With these values and (30), the
velocity at the well (at x ¼ 0) is v ¼ �1 m/d, and its

magnitude decreases upgradient of the well.

Fig. 2a shows the resident concentration in the vari-

able-porosity aquifer at t ¼ 20 days (solid line) and

t ¼ 50 days (dashed line) after release from the source at

x0 ¼ 100 m. For comparison, the plumes for the con-

stant porosity ðh ¼ 0:3Þ case are also shown. With spa-

tially-varying porosity, the porosity at the source (at
x0 ¼ 100 m) is hðx0Þ ¼ 0:35; therefore the velocity

ðv ¼ q=hÞ near the source is slower for the spatially-

varying porosity case. This is confirmed in Fig. 2a,

which illustrates that the constant-porosity plume moves

faster than the spatially-varying-porosity plume (com-

pare circles and solid line). Also, because porosity is

higher in the aquifer with spatially-varying porosity, the

spatially-varying-porosity plume occupies a smaller
portion of the total aquifer volume.

If contamination is observed in the pumping well, we

can use backward location probability to determine

where the contamination was at some time in the past.

The appropriate governing equation is (13) with h as

defined in (9). We solved this equation numerically for

w	
x using MODFLOW-96 and MT3DMS with the pa-

rameters in Tables 1 and 2 and porosity in (30) (see [15]
for details of the numerical implementation of the

backward probability model), and we used the results in

(17) to calculate backward location probability. Fig. 2b

shows backward location probability for s ¼ 20 days

(solid line) and s ¼ 50 days (dashed line) prior to ob-

servation at the pumping well. For comparison, the lo-

cation probability for the constant-porosity case is also

shown. Because the velocity is slower for the spatially-
varying-porosity case, the possible prior locations are

slightly closer to the well, and the distribution is less

disperse.

Table 2

Flow parameters for numerical simulations

Parameter Value

Downstream boundary, x1 0

Upstream boundary, x2 (m) 201

Specified head at x2 (m) 100

Spatial discretization (m) 2 (1 m at x1)
Aquifer thickness, B (m) 10

Aquifer width (m) 1

Transmissivity (m2/s) 0.0002

Specific storage, Ss (m�1) 0.001

Pumping rate, Q (m3/d) 3
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Using w	
s ¼ w	

x in (23), we also calculated backward

travel time probability from the pumping well to the

source at x ¼ x0 ¼ 100 m. For contamination that is

observed in the pumping well, the backward travel

time probability plotted in Fig. 2c shows the possible
times in the past that the contamination was at x0 ¼
100 m (solid line). The travel time probability for

the constant-porosity case is also shown in the figure

(circles). Because the velocity is slower for the spatially-

varying-porosity case, the travel time probability dis-

tribution is shifted to later backward times, suggesting

an earlier actual release time at the source.

Although this illustration implements the backward
probability model for spatially-varying porosity, it is a

surrogate for implementation in similar situations with

spatially-varying storage properties. Examples include

variable saturated thickness in a vertically integrated

Dupuit model of a phreatic aquifer (or the upper layer

of a 3D phreatic aquifer application of MODFLOW-96

and MT3DMS), and unsaturated flow with spatially-

varying moisture content. In general, spatial variability
of porosity, saturated thickness, or moisture content

is incorporated into the governing equation (13), which

is solved for adjoint states in the usual manner. The

backward probabilities are further affected by the spatial

variability because porosity appears in the relationships

between the adjoint states and probabilities, (17) and

(23).

3.3. Backward probability model with transient flow

The next illustration addresses transient flow and

temporal variability of porosity. We have chosen to vary

the velocity through a step change in the pumping rate

at the downgradient domain boundary. Neglecting

water compressibility, the accumulation term of the
continuity equation becomes Ssðoh=otÞ ¼ oh=ot, where

Ss is specific storage and h is hydraulic head, indicating

that porosity is also temporally variable. This example,

therefore, is a surrogate for any process that produces

quantifiable temporal variability in storage properties,

including saturated thickness in vertically-integrated

models and moisture content in unsaturated flow.

If the flow field in an aquifer is transient, the forward
contaminant transport model is governed by (6), with

v ¼ vðx; tÞ. For emphasis, we generalize (6) for the tem-

porally-varying parameters as

o

ot
½hðx; tÞC� ¼ o

ox
hðx; tÞDðx; tÞ oC

ox

� �

� o

ox
½hðx; tÞvðx; tÞC� þ qICI � qOC: ð31Þ

The governing equation for the backward probability

model is the adjoint of (31), rewritten here to emphasize

the temporal and spatial variability in the parameter

values:

o

os
½hðx; T � sÞw	� ¼ o

ox
hðx; T

�
� sÞDðx; T � sÞ ow

	

ox

�

þ o

ox
½hðx; T � sÞvðx; T � sÞw	�

� qIw
	 þ oh

oC
; ð32Þ

where we have substituted t ¼ T � s. Note that the flow

field in the backward (adjoint) model is reversed in both

space (positive sign on the advection term) and time

(now in terms of T � s) relative to the forward model,

leading to a reversal in time of h and D also. In other

words, in the backward model, the transient behavior of
h and D must begin with its final state at t ¼ T ðs ¼ 0Þ
and progress back to its original state at t ¼ 0 ðs ¼ T Þ.
The backward location and travel time probabilities are

still defined by (17) and (23), respectively.

Suppose the aquifer in Fig. 1 is initially at steady state

with a pumping rate of Q ¼ 4 m3/d, and at t ¼ 0 the

pumping rate is decreased to Q ¼ 3 m3/d. After the

pumping rate is decreased, head increases and the flow
field is transient until a new steady state is reached. We

used MODFLOW-96 and MT3DMS to solve (31) and

(32) for this scenario. In MT3DMS, porosity is not

updated during the simulation (i.e., h 6¼ hðtÞ), therefore
we only considered temporally-varying v and D and

were not able to simulate temporally-varying porosity

(see Appendix B for more details).

The head distribution in the aquifer at five different
times is shown in Fig. 3. The aquifer reaches a new

steady state in approximately 40 days. Fig. 4a shows

resident concentration at t ¼ 20 days (solid line) and

t ¼ 50 days (dashed line) after release from a source at

x0 ¼ 100 m. For comparison, the plumes from the

steady flow simulation (Q ¼ 3 m3/d; v ¼ �1 m/d) are

also shown. In the transient flow case, the velocity is

initially faster than in the steady flow simulation;
therefore, the plume moves slightly faster.

To calculate backward location probability, we

solved (32) with h as defined in (9) for the adjoint state

w	
x using MODFLOW-96 and MT3DMS, with s ¼ T � t

and T ¼ 50 days. We used the results in (17) to calculate

backward location probability. Fig. 4b shows the

backward location probability distribution for s ¼ 20

days (solid line) and s ¼ 50 days (dashed line) prior to
observation at the pumping well (at xw ¼ 0). For com-

parison, the location probability for the steady flow case

Fig. 3. Head distribution in transient flow simulation.
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is also shown (circles and squares). For early s (later

forward time), the aquifer is essentially at steady state

with the lower pumping rate (Q ¼ 3 m3/d; v ¼ �1 m/d);

therefore, the steady-flow and transient-flow location

probability distributions at s ¼ 20 days are essentially

equivalent. At s ¼ 50 days, the aquifer is at steady state

with the higher pumping rate (Q ¼ 4 m3/d); therefore the

transient-flow probability distribution is shifted farther
upgradient than the steady-flow distribution.

The backward travel time probability from the

pumping well to the source at x ¼ x0 ¼ 100 m was cal-

culated using w	
s ¼ w	

x in (23). These results are plotted

in Fig. 4c (solid line), along with the travel time prob-

ability for the steady-flow case (circles). Because the

velocity is faster in the transient-flow case, the travel

time probability distribution is shifted to earlier back-
ward times, indicating that a more recent release from

the source is likely.

This example illustrates the implementation of the

backward probability model with temporally-varying

parameters values, cases such as unsaturated flow

with temporally-varying moisture content. The tempo-

ral variability of parameters is incorporated into the

governing equation (13), with the time-dependence of
the parameters reversed to begin with the final state at

t ¼ T ðs ¼ 0Þ and end with the original state at t ¼ 0

ðs ¼ T Þ.

3.4. Backward probability model with a distributed source

The final illustration addresses distributed internal

sources or sinks of water and solute. We use natural

recharge, a spatially-distributed source of water, and

possibly of contamination, in a vertically-integrated

aquifer model. In the absence of any other internal

sources or sinks, the one-dimensional forward governing

equation (6) is modified as

oðhCÞ
ot

¼ o

ox
hD

oC
ox

� �
� o

ox
ðhvCÞ þ N

B
CI; ð33Þ

where the sink term in (6), �qOC, is eliminated because

we are assuming no internal sinks, N is the natural re-

charge rate (here assumed to be spatially-uniform), B is

the aquifer thickness, and the ratio N=B is the source

inflow rate, qI. Assuming that the natural recharge is

free of contamination (i.e., CI ¼ 0), the final term in (33)

vanishes.
Since natural recharge is a spatially-distributed

source of water, the velocity in the aquifer varies in

space. With uniform natural recharge, the velocity in the

aquifer shown in Fig. 1 is

vðxÞ ¼ v0 þ
Nx
Bh

; ð34Þ

where v0 ¼ �1 m/d is the velocity at the pumping well,

and velocity decreases in magnitude upgradient of the

well. We solved (33) numerically using MODFLOW-96
and MT3DMS with the parameters listed in Tables 1

and 2, and with N ¼ 0:009 m/d. We used an unrealisti-

cally large N to amplify the effects of natural recharge.

The results are plotted in Fig. 5a, showing the resident

concentration for t ¼ 20 days (solid line) and t ¼ 50

days (dashed line) after release from the source. For

comparison, the plumes for the no-recharge case are also

shown. The plume with recharge travels more slowly
and is less disperse than the plume without recharge

because the magnitude of the velocity is lower.

Fig. 5. Results of simulations with natural recharge (v0 ¼ �1 m/d,

aL ¼ 5 m, h ¼ 0:3). (a) Resident concentration (M0 ¼ 1 g/m2; x0 ¼ 100

m). (b) Backward (prior) location probability and the integral over

time of backward travel time probability, fsðs; xÞ (solid line with tri-

angles) ðxw ¼ 0Þ. (c) Backward travel time probability (xw ¼ 0,

x0 ¼ 100 m).

Fig. 4. Results of transient flow simulations (v0 ¼ �1 m/d, aL ¼ 5 m).

(a) Resident concentration (M0 ¼ 1 g/m2; x0 ¼ 100 m). (b) Backward

(prior) location probability ðxw ¼ 0Þ. (c) Backward travel time prob-

ability (xw ¼ 0, x0 ¼ 100 m).
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To calculate backward location probability with re-

charge, we used MODFLOW-96 and MT3DMS to

solve for the adjoint state w	
x in (13) with qI ¼ N=B, and

we used the results in (17) to calculate location proba-

bility. Fig. 5b shows the backward location probability
distribution for s ¼ 20 days (solid line) and s ¼ 50 days

(dashed line) prior to observation at the pumping well

(at xw ¼ 0). For comparison, the location probability for

the no-recharge case is also shown. Because of a lower

velocity, the location probability distribution with re-

charge is shifted toward the well (compare solid line and

circles), indicating that contamination observed in the

pumping well was likely to have been closer to the well
at some time in the past.

The recharge term in the adjoint equation (13) has the

same form as a first-order decay term with an equivalent

decay rate of k ¼ N=ðBhÞ ¼ 0:003 d�1 for the parameters

used in this example. As can be seen in Fig. 5b, proba-

bility is ‘‘decaying’’, i.e.,
R
x fx dx < 1, for s > 0, indicat-

ing a finite probability that the observed contamination

entered the system through the natural recharge and
therefore was not in the system at the time of interest. In

other words, 1�
R
x fxðx; ŝsÞdx is equivalent to the prob-

ability that the observed contamination entered the

system via natural recharge during the time interval

0 < s < ŝs. With recharge behaving like a first-order de-

cay process,
R
x fxðx; sÞdx ¼ e�ks, where k ¼ N=ðBhÞ. For

s ¼ 20 days (solid line in Fig. 5b),
R
x fxðx; sÞdx ¼ 0:9401,

and
R
x fxðx; sÞdx ¼ 0:8622 for s ¼ 50 (dashed line in Fig.

5b). These values are essentially equivalent to e�ks.

Suppose you know that the observed contamination

did not enter the aquifer through recharge, i.e., CI ¼ 0 as

we assumed in this example. In this case, there is a

probability of zero that the contamination entered

through natural recharge, requiring that
R
x fxðx; sÞ dx ¼

1 when integrated over the entire spatial domain. This

second interpretation of backward location probability
can be achieved by setting qI ¼ 0 in the adjoint equation

(13). The backward probabilities are still influenced by

recharge through the flow field, but they do not ‘‘decay’’

over time. Results for this case are not shown in Fig. 5b;

however, they would be equivalent to normalizing the

curves by
R
x fxðx; sÞdx ¼ e�ks.

Backward travel time probability with recharge also

has two interpretations. We first consider the scenario in
which the contamination could have entered through

natural recharge. Since w	
s ¼ w	

x for an observation at a

pumping well, we use the adjoint state from the location

probability simulation in (23) to calculate backward

travel time probability. The results are plotted in Fig. 5c,

showing the backward travel time probability from the

pumping well to the source at x ¼ x0 ¼ 100 m (solid

line). For comparison, the travel time probability is also
shown for the no-recharge case (circles). Because the

velocity is slower with recharge, the travel time proba-

bility distribution is shifted toward later backward

times, indicating an earlier actual release time at

x0 ¼ 100 m. By comparing the areas under the curves in

Fig. 5c, we see that travel time probability decays over

time because the recharge term in the adjoint equation

acts like a first-order decay term. The amount of decay,
1�

R
s fsðs; x̂x; xwÞds, represents the probability that the

observed contamination entered the aquifer downgra-

dient of x̂x and therefore never was at x̂x. From Fig. 5c,R1
0

fsðs0; x0Þds0 � 0:71 at x0 ¼ 100 m, indicating a 71%

probability that the observed parcel was ever at x0 ¼ 100

m, and a 29% probability that the parcel entered the

system through natural recharge between xw ¼ 0 and

x0 ¼ 100 m, and therefore was never at x0 ¼ 100 m. The
values of this integral for other x are shown in Fig. 5b

(triangles, right-hand axis). The probability that the

observed contamination was ever at a location x de-

creases as the distance from the well increases.

If we know that the contamination did not enter

through natural recharge, we could set qI ¼ 0 in (13),

preventing the loss of backward probability through

reversed natural recharge. This conditional travel time
probability is shown in Fig. 5c (diamonds). The travel

time probability is still shifted to later times relative to

the no-recharge case; however,
R1
0

fsðs0; x0Þds0 ¼ 1, in-

dicating that the observed contamination was at

x0 ¼ 100 m at some time in the past and did not enter

through natural recharge.

If natural recharge, or any other distributed internal

source of water, is modeled, the user must decide which
of the two interpretations is more appropriate. In some

situations, natural recharge is a known pathway for

contamination to enter the groundwater, so the first

interpretation is more appropriate. In situations in

which the contamination source is likely to be vertically

distributed within the aquifer, the second interpretation

is more appropriate.

This example illustrates the implementation of the
backward probability model with internal sources or

sinks of solute and water. Internal sources of solute

become sinks of probability in the backward model,

producing a ‘‘decaying’’ probability distribution. The

probability integrates to less than unity over the ap-

propriate domain (space for location probability; time

for travel time probability), with the difference indicat-

ing the probability that the contamination entered
through the internal source. For an internal source of

water that does not contain the solute, the associated

sink term can be eliminated from the backward proba-

bility model because the solute could not have entered

there. A solute sink in the forward model does not

appear in the backward model. The solute parcel that

was found at the observation point obviously did not

leave the system at the internal sink; therefore, the solute
sink has no effect on the prior position of the sol-

ute parcel, except through its influence on the velocity

field.
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4. Conclusions

Backward location and travel time probabilities were

developed heuristically by Liu [13] and Wilson and Liu

[23] for several cases including transport of conservative
solutes in uniform and non-uniform flow fields. Neu-

pauer and Wilson [16,17] demonstrated that these

backward probabilities are related to adjoint states of

resident concentration, and they used adjoint theory to

obtain the governing equations of the backward prob-

ability model for conservative tracers. The advantage of

the adjoint approach over the heuristic approach in

obtaining the governing equations is that adjoint theory
provides a rigorous mathematical procedure for devel-

oping the equations for all aquifer geometries and for all

transport processes. As additional processes are in-

troduced to the problem, the adjoint equation must be

rederived to ensure that the appropriate backward

continuum model is obtained. Likewise, if random walk

models are used, the correct backward equation must

also be rederived if new processes are included.
We used adjoint theory to obtain backward location

and travel time probabilities for the cases of spatially-

varying porosity, transient flow and temporally-varying

porosity, and distributed internal sources of solute and

water. In each case, the backward governing equation

was obtained directly from adjoint theory, indicating

that the adjoint method is sufficiently robust to handle

general spatially- and temporally-varying aquifer states
and properties and distributed internal sources of sol-

ute and water. We illustrated each of these generaliza-

tions using simple one-dimensional vertically-integrated

models. The approach is easily extended to multiple

dimensions with irregular geometries using the approach

of [17].

For non-constant porosity, we obtained more general

forms of the adjoint equation and of the relationships
between probabilities and adjoint states. The constant-

porosity results of Neupauer and Wilson [16,17] are

special cases of these. We found that spatially-varying

porosity produces a non-uniform velocity field that af-

fects both the movement and the spread of the proba-

bility distributions. We would observe similar results for

variable aquifer thickness in vertically-integrated models

or variable moisture content in unsaturated flow. With
transient flow, the velocity field and porosity are spa-

tially- and temporally-variable. The flow field in the

backward model is reversed in both space and time

relative to the flow field for the forward model.

A non-uniform velocity field can also result from

areally-distributed natural recharge or other distributed

internal sources or sinks of water. With internal sources

of water, two interpretations of backward probability
are possible. The first interpretation is used if contami-

nation is known to enter through an internal source,

such as natural recharge in a vertically integrated aqui-

fer model. In the adjoint (backward) equation, the nat-

ural recharge term is equivalent to a first-order decay

term; therefore, backward probabilities decay in time.

For location probability at a fixed backward time, ŝs, this
decay quantifies the probability that the observed con-
taminant parcel entered the aquifer through natural re-

charge during the time interval 0 < s < ŝs, and was not in

the system at ŝs. For travel time probability at a fixed

point, x̂x, the decay indicates a non-zero probability that

the contaminant parcel entered the system downgradient

of x̂x, and therefore it was never at x̂x. The second inter-

pretation is used if it is known that the source of con-

tamination has no causal or correlative link to recharge.
In this case, the backward probability can be calculated

without decay by eliminating the recharge term from the

adjoint equation. The choice of interpretation is based

on the judgment of the modeler with knowledge of the

physical system.

The backward probability model is an efficient

method for obtaining information about the prior po-

sition of contamination that is observed in an aquifer.
For each observation, only one simulation is needed to

obtain information about all possible sources. In addi-

tion, the reversal of information can lead to new insight

into the physical situation. For example, the two inter-

pretations that are possible when internal sources of

water are present show that the backward model can

provide new kinds of information that can improve the

understanding of the physical system.
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Appendix A. Adjoint derivation

To eliminate the state sensitivity, w, from (11), we

first obtain a governing equation for w by differentiating

each term of (6) with respect to the parameter a ¼ M0,

resulting in
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� o

ot
ðhwÞ þ o

ox
hD

ow
ox

� �
� o

ox
ðhvwÞ � qOw ¼ 0; ðA:1Þ

wðx; 0Þ ¼ oCiðxÞ
oM0

;

ow
ox

¼ 0 at x ¼ x1;

w ¼ 0 at x ¼ x2;

where we assume that g1 and g2 are independent of M0

(although this assumption is not necessary), and by

definition, the derivatives of D, v, h, qI, CI, and qO with

respect to M0 all vanish. Note that the water source term

vanishes from this equation.

Next we take the inner product of each term of (A.1)

with an arbitrary function, w	, the adjoint state. The
inner product in the space of continuous, square-integ-

rable, real functions is hf ; gi ¼
R T
0

R x2
x1
f gdxdt, where the

time domain is 06 t6 T . Taking the inner product of

each term in (A.1) with w	 producesZ Z
x;t

�
� w	 o

ot
ðhwÞ þ w	 o

ox
hD

ow
ox

� �

� w	 o

ox
ðhvwÞ � w	qOw

�
dxdt ¼ 0: ðA:2Þ

Using integration by parts on each derivative term,
we can rewrite the inner product as

Z Z
x;t

hw
ow	

ot

�
þ w

o

ox
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ow	

ox

� �
þ hvw

ow	

ox
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dx

þ
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w	hD
ow
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�
� whD

ow	

ox
� w	hvw

�����
x¼x2

x¼x1

dt ¼ 0:

ðA:3Þ
Since the left-hand side of this equation evaluates to

zero, it can be added to the right-hand side of (11)

without changing the equality. With this addition, after

evaluation of the integrands of the single integrals at the
boundaries, (11) becomes

dP
dM0

¼
Z Z

x;t
w

oh
oC

�
þ h

ow	

ot
þ o

ox
hD

ow	

ox

� �

þ hv
ow	

ox
� qOw	

�
dxdt �

Z
x

ðw	hwÞ t¼T

���
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�
dxþ

Z
t

w	hD
ow
ox

����
x¼x2

"

þ wh D
ow	

ox

�
þ vw	

�����
x¼x1

#
dt: ðA:4Þ

To eliminate w from the equation, we define the ad-

joint state, w	, such that the terms containing w vanish.

The double integral can be eliminated if the terms inside

the square brackets sum to zero; this produces the ad-

joint equation

�h
ow	

ot
¼ o

ox
hD

ow	

ox

� �
þ hv

ow	

ox
� qOw	 þ oh

oC
; ðA:5Þ

with w	 as the adjoint state. Using the continuity

equation for an incompressible fluid,

oh
ot

þ o

ox
ðhvÞ ¼ qI � qO; ðA:6Þ

the adjoint equation can be rewritten as (13).

All but one of the remaining terms in (A.4) vanish if

Dðow	=oxÞ þ vw	 ¼ 0 at x ¼ x1, w	 ¼ 0 at x ¼ x2, and

w	 ¼ 0 at t ¼ T . These are the final and boundary con-

ditions for the adjoint state, w	, in (13). With this defi-

nition of the adjoint state, the marginal sensitivity in

(A.4) is simplified to the expression in (12).

Appendix B. Backward probability simulations using

MT3DMS with transient flow

For transient flow of an incompressible fluid, tem-

poral variability in hydraulic head causes temporal
variability in porosity, given by

Ss
oh
ot

¼ oh
ot

; ðB:1Þ

where Ss is specific storage, h is head, and h is porosity.

Although most flow codes account for small changes in

water storage through Ss, few flow and transport models
account for the actual change in aquifer thickness or

change in porosity. In general, this inconsistency pro-

duces small mass balance errors in the transport model

that are almost always ignored. To verify that the

backward probability model is correctly developed, we

require that probability (equivalent to mass in a forward

contaminant transport model) be preserved. Although

this inconsistency in the general treatment of storage
effects prohibits a complete verification of the backward

probability model, we made a small change in our use of

MT3DMS to ensure mass conservation.

In MT3DMS [26], the accumulation term in (6) is

separated into

oðhCÞ
ot

¼ h
oC
ot

þ C
oh
ot

¼ h
oC
ot

þ Cq0s; ðB:2Þ

where q0s ¼ oh=ot is the ‘‘flow rate’’ (per unit volume) of

water into or out of storage. The values of q0s are cal-

culated in the flow simulation (MODFLOW-96) as
Ssðoh=otÞ, and are entered into MT3DMS via the

MODFLOW/MT3D link file. The term containing q0s
implicitly accounts for the time-variability of the pore

volume; however, porosity in the hðoC=otÞ term is not

updated from its original value. This leads to an in-

consistent treatment of the time-variability of porosity,
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producing usually negligible mass balance errors. To

preserve mass and probability in our examples, we set

q0s ¼ 0 for all forward and backward transient transport

simulations. The specific discharge, q, is still transient,

but the time-variability of porosity is eliminated.
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