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Abstract. The permeabilities and dispersivities of 
geologic media are known to vary with the scale of 
observation. Particularly well documented is the 
consistent increase in apparent longitudinal dispersivity 
with the mean travel distance of a tracer. This has been 
previously interpreted by the author to imply that the 
permeabilities of many geologic media scale, on the 
average, according to the power-law semivariogram .., (s) 
.. c Vs where c is a constant and s is distance. Tracer 
test data support this conclusion indirectly at least over 
scales from 10 em to 3,500 m. The present paper cites 
evidence for such behavior over scales from 10 cm to 45 
tm based directly on permeability and transmissivity data. 
The paper then investigates theoretically the implications 
of such power-law behavior on the equivalent 
permeability of a block of rock having a characteristic 
length (support scale) L. It predicts that the equivalent 
isotropic permeability should generally decrease with L 
in one-dimensional media, increase with L in three
dimensional media, and show no systematic variation with 
L in two-dimensional media. This prediction appears to 
be consistent with observations. 

Introduction and Background 

Longitudinal dispersivities a deduced by means of 
deterministic Fickian theories from laboratory and field 
tracer studies in a variety of porous and fractured media, 
under varied flow and transport regimes, appear to 
increase without limit as the scale of the study increases. 
To explain this scale effect, Neuman [1990, Fig. 11 
considered 131 dispersivity data obtained from 
deterministic Fickian models which do not account 
explicitly for spatial variations in permeability. Such 
deterministic models are consistent with stochastic 
models which consider log permeability to be a random, 
statistically homogeneous field. Upon interpreti.ng the 
scale of the tracer studies as the mean travel distance 
set), Neuman found by linear regression that, f~~a range 
of scales from 10 em to 3.5 SO, a "" 0.017 s with a 
coefficient of determination R "'" 0.75 and remarkably 
narrow confidence intervals. He then noted that 
consistency with stochastic transport theories implies that 
the regression model must be associat~d with a l?g 
permeability field which possesses neither a finIte 
correlation scale nor a finite variance. Instead, the 
corresponding log permeability field must posses~ a 
power-law semivariogram .., (s) = c s2 W where c IS a 
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constant and w is a Hurst coefficient. This in turn 
implies that the random log permeability field is self
affme with statistically homogeneous spatial increments 
and a fractal dimension D == E + 1 • w where E is the 
topological dimension of relevance. 

In log permeability fields which do not possess a fmite 
correlation scale, dispersion is inherently anomalous 
(non-Fickian) and the traditional notion of local 
dispersivity does not apply. Instead. dispersion in such 
fields is described by integro-differential equations that 
involve nonlocal parameters [Nellman, 1993aJ. This 
explains why a is an apparent dispersivity; rather than 
representing local material properties, it is merely an 
artifact resulting from the common practice of applying 
Fickian models to media in which transport is generally 
non-Fickian. Any spatial variations in k which are not 
accounted for explicitly by the Fick:ian model are 
absorbed into a [ibid]. Hence if the apparent correlation 
scale and variance of log permeabilities increase without 
limit, the apparent dispersivity likewise increases without 
bounds. 

The regression model yields a Hurst coefficient", ... 
0.25 which leads to the generalized scaling relation 

Y(8) - e{a (1) 

This simple relation explains 75% of the observed 
variation of a about its mean. As w < 0.5, the 
semivariogram (1) represents a log permeability field 
with negatively correlated (antipersistent) spatial 
increments and a fractal dimension D'" E + 0.75. The 
fact that it is supported by apparent dispersivities from 
both porous and fractured media was taken by Newltan 
[1990] to imply that one can often analyze flow and 
transport in fractured rocks by treating them as 
multisca1e porous continua. 

Neuma1l [1990, 1991, 1993b] recognized that the 
permeabilities of real geologic media scale locally in a 
much more complex manner than is implied by the above 
model At . locale, such media may be viewed 
more realisti as a nested sequence of more or less 
distinct hydrogeologic units associated with a discrete 
hierarchy of scales. When the semivariograms of such 
discrete units are superimposed, one obtains a function 
that increases with the distance s in a stepwise rather 
than a gradual fashion. Each step in such an echelon 
represents a "natural correlation scale" at which log 
permeability is statistically homogeneous or nearly so; 
other scales are locally either inactive or suppressed. As 
hydrogeologic conditions vary from one setting to 
another, so do the dominant natural scales, giving rise to 
an infinite variety of possible echelon-type 
semivariograms. It is only when One juxtaposes data 
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from a sufficiently large number of different 
hydrogeologic settings that a sufficiently broad spectrum 
of scales come into play to reveal the underlying 
commonality of these semivariograms, in the form of a 
generalized power law. 

Though permeabilities at each site are unique, their 
spatial correlation is viewed by Neuman [1990, 1991, 
1993b] as a fluctuation about a mean semivariogram 7 (s) 
= c V's. He found evidence in the data that accounting 
explicitly for site-specific medium heterogeneity by 
conditioning is tantamount to filtering out large-scale, 
low-frequency modes from the multiscale hierarchy of log 
permeabilities. This filtering effect is the reason why 
Neuman did not consider dispersivities obtained from 
calibrated (conditional) models in deriving his scaling 
relation -• (s) = c ¾ s. A rigorous theoretical explanation 
of this filtering effect can be found in Neuman [1993a]. 
It forms the basis for our discussion in this paper of the 
manner in which block permeabilities vary with sample 
size (support scale). 

Neuman's [1990] derivation of (1) was indirect, resting 
entirely on the interpretation of tracer studies. One 
purpose of this brief communication is to examine the 
extent to which the same scaling rule is supported 
directly by permeabilities and transmissivities obtained 
from hydraulic tests. Another purpose is to discuss the 
implications of this scaling rule on the manner in which 
the permeability of a block of rock changes with the 
dimensions and scale of the sample (or support). 

Validation of Generalized Scaling Rule 

To validate directly that log permeabilities do not in 
fact possess a finite correlation scale, we consider 
hydraulic conductivity and transmissivity data from a 
number of different sites recently summarized by Gelhat 
[1993, Table 6.1]. Fig. 1 is a plot of reported correlation 
scales.X versus characteristic lengths of the corresponding 
field sites. It is clear that the reported correlation scale 
increases consistently with field length, being 
approximately equal to one tenth of the latter. This 
relationship holds true over a range of •X values from 10 
cm to 45 km. 

Fig. 2 is based on the same data and shows how the 
product o2A of reported log hydraulic conductivity or 
transmissivity variance 0 2, and reported horizontal 
correlation scale A, varies with this scale. Since 
transmissivities are proportional to hydraulic 
conductivities averaged over the thickness of an aquifer, 
one expects them to have a correspondingly smaller 
variance. Hence the transmissivities (circles) in Fig. 2 
are expected to be offset downward relative to the 
hydraulic conductivities (squares and triangles). In other 
words, the two sets of data represent different 
populations and must not be analyzed jointly. The 
number of data in each set (14 and 10, respectively) is 
too small to justify fitting a theoretical model, such as 
7 (s) = c s 2•ø, to any one of them by regression. Instead, 
we prefer to ask how well does the model 7 (s) = c ½ s, 
derived on the basis of more than 130 dispersivity data, 
predict the scaling behavior indicated by the two sets of 
hydraulic data in Fig. 2? 
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Fig. 1: Correlation scale X of natural log hydraulic 
conductivities and transmissivities at various sites versus 

field length (data from Gelhat [1993, Table 6.1]). 

To answer this, we first note that adjusting c so as to 
obtain an optimum visual fit between 7 (s) = c ½s and 
the hydraulic conductivity data (squares and triangles) 
yields the broken line in Fig. 2. It predicts the observed 
variation of o2• with X to within one order of magnitude 
over a range of scales from 10 cm to 500 m. Making no 
adjustment but setting c equal to 8/5 x 0.017 as implied 
by Neuman's [1990] analysis yields the solid line in Fig. 
2. This line predicts the observed scaling behavior of all 
the data (hydraulic conductivities and transmissivities) to 
within two orders of magnitude over a range of scales 
from 10 cm to 45 km. It is clearly possible to adjust c so 
as to predict the observed scaling of transmissivities to 
within one order of magnitude over a range of scales 
from 150 rn to 45 km. These levels of predictability are 
consistent with the scatter of apparent dispersivity data in 
Fig. 1 of Neu/nan [ibid] about the regression line a = 
0.017 s 1'5 from which the model qt (s)-- c½ s was derived. 
It follows that this model of permeability scaling, derived 
indirectly from tracer studies, is consistent with (and thus 
supported by) hydraulic conductivity and transmissivity 
data obtained directly from hydraulic tests. 

Additional support can be found in a recent analysis of 
transmissivities from the fractured Culebra dolomite at 
the Waste Isolation Pilot Plant site in New Mexico by 
Grindrod and bnpey [1992]. These authors showed that, 
at least over scales ranging from 1.7 to 18.6 kin, the 

natural lOs• transmissivities at the site scale according to 3t(s) = c w where c lies between 0.014 and 0.022, and 
co = 0.35 +0.05. This compares quite favorably with 
Neuman's [1990] predicted (see previous paragraph) c = 
8/5 x 0.017 = 0.027 and co = 0.25. 

Implications Concerning Block Permeabilities 
S2tO The semivariogram •, (s) = c is associated with a 

log permeability field having homogeneous spad• 
increments but devoid of natural scale(s) at which t• 
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Fig. 2: Product of variance (=2 and horizontal correlation 
scale X of natural log hydraulic conductivities and 
transmissivities at w{rious sites versus X (data from 
Gelher [1993, Table 6.1]). Predictions correspond to q, (s) 

field would be statistically homogeneous. It implies 
[Neuman, 1990] that statistical homogeneity of log 
permeabilities is at best a local phenomenon occurring 
intermittently over narrow bands of the scale spectrum. 
Hence one must question the utility of routinely 
associating geologic medium properties with 
representative elementary volumes (REV's) as has been 
the custom for several decades. Indeed, it was found by 
Brace [1980, 1984] that the permeabilities of sedimentary 
and crystalline rocks tend to grow with the characteristic 
scale of their measurement. This is reinforced by a more 
recent compilation of crystalline rock permcabi!ities by 
Clauser [1992]. According to him, a plot of these data 
(Fig. 3) "confirms the increase in average permeability by 
about 3 decades from the laboratory to the borehole 
scale ... However, this increase apparently does not 
continue from the borehole to a regional scale, such as 
above 100 m." Previously, Neuzil et al. [1984] showed by 
numerical simulation that the recorded volume and rate 

of water withdrawal from the Dacota Aquifer could not 
be sustained without leakage through the overlying Pierre 
Shale. They found that the vertical permeability of this 
shale must be 10 to 1,000 times larger on the regional 
than on the local scales. An increase'in permeability of 
up to four orders of magnitude was observed by Hanor 
[1993] when comparing laboratory and bulk values for 
clay beds at a hazardous waste site in Louisiana. 

We interpret this scale effect on the premise that the 
log permeabilities of both porous and fractured rocks can 
be treated as multiscale random functions defined over 
a continuum. It is common to treat such log 
permeability as a statistically homogeneous Gaussian 
field. For an unbounded flow domain subject to a 
uniform mean hydraulic gradient, the effective 
permeability corresponding to a statistically isotropic field 
has been conjectured by Mathe/vn [1967] to be 

where k_ is the geometric mean pcrmeabi!ity. This is 
rigorously valid for the one-dimensional case (E = 1) 
where k½ is the harmonic mean and for the 

two-dimensional case (E = 2) where k e = •5' Its validity in the three-dimensional case (E = has been 
demonstrated numerically for 0 2 as large as 7 [Neuman 
and Orr, 1993]. Equivalent expressions have also been 
developed for statistically orthotropic media. Newnan 
and Depner [1988] verified the three-dimensional 
anisotropic result at a fractured crystalline rock site for 
0 2 > 7. Expressions for bounded rock volumes can be 
found in Neuman et el. [1993]. 

Extreme anisotropy can alter the flow regime from 
three-dimensional to predominantly two- or 
one-dimensional, and from two-dimensional to 
predominantly one-dimensional. The actual degree of 
anisotropy encountered in any given permeability test, 
and the prevailing boundary conditions, are often 
unknown or uncertain. However, regardless of what the 
prevailing test conditions may be, k c is always given by 

where 0 < • _< E. In particular, /5 = 1 for infinite 
isotropic media, 0 < fl < 1 for bounded isotropic media, 
and 1 </5 < E for infinite anisotropic media. This applies 
to (Gaussian) statistically homogeneous log permeability 
fields. A log permeability field having a power-law 
semivariogram q, (s) = c s 2 • with w < 0.5 can be viewed 
[Neumw•, 1990] as the superposition of an infinite 
hierarchy of similar (isotropic) fields having mutually 
uncorrelated increments and (exponential covariance 
functions with) variances that increase as a power of the 
correlation scale. Let L be the characteristic length of a 
rock volume which acts as the support for a given 
permeability test. Then low-frequency spatial variations 
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Fig. 3: Range (after Clauser [1992]) and midrange of 
permeabilities in crystalline rocks at various sites versus 
experimental scale. 
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in permeability on scales .X of order larger than L do not 
contribute to internal heterogeneity within the tested rock 
volume. Hence log permeabilities within the test volume 
are correlated over a distance of order L and exhibit a 

variance of order o 2 = 7 (L) = c L 2'ø. Substituting this 
variance into (3) yields the following relationship between 
effective permeability and the support scale L, 

(4) 

According to (4), ke(0 ) = kg is the effective permeability 
of a rock volume having zero support, i.e., k• represents 
fictitious point measurements (in reality rIhere must 
always be a cutoff value of L below which the classical 
notion of permeability, and a power-law variogram, do 
not apply). Equation (4) implies that the logarithm of 
the effective permeability Ye(L) = btke(L ) generally 
varies as a power 2 co of L. Ye(L) increases as a power 
of L when/5 < 0.5 E, decreases when/5 > 0.5 E, and 
remains unchanged when/5 = 0.5 E. For large isotropic 
rock supports with L/X > > 1,/5 -- 1. Then Ye(L) 
increases as a power of L in three-dimensions (E = 3), 
decreases in one dimension (E = •), and shows no 
systematic variation with L in two dimensions (E = 2). 

Figure 3 shows only ranges of k which are insufficient 
to either validate or invalidate these theoretical 

predictions. It is not clear whether the laboratory 
permeabilities increase (as we might expect on the basis 
of (4) for more or less equidimensional samples) or 
decrease (as we might expect for long and narrow core 
samples) systematically with scale. The borehole log 
permeabilities are, as expected from (4), generally larger 
than those determined in the laboratory. The former 
show a systematic increase with the length of the test 
interval which however reflects only one dimension of 
what is likely to be a more or less cylindrical data 
support; it is additionally difficult to tell whether or not 
this increase follows a power law. The regional data in 
Fig. 3 do not show a consistent variation with scale. This 
could be due to a combination of factors: The available 

sample is too small to indicate a trend; some of the data 
correspond to near two-dimensional flow regimes; and 
some of the data are derived from calibrated numerical 

models which account explicitly for medium 
heterogeneity and thus filter out large-scale, 
low-frequency variations from the hierarchy. 
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