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Abstract 

Analytical study of contaminant transport from a finite source in a finite-thickness aquifer is 
most useful in hydrological and environmental sciences and engineering but rarely investigated in 
previous studies. This paper provides analytical solutions of eontaminant transport from one-, 
two-, and three-dimensional finite sources in a finite-thickness aquifer using Green's function 
method. A library of unpublished analytical solutions with different finite source geometry is 
provided. A graphically integrated MATLAB® script is developed to calculate the temporal 
integrations in the analytical solutions and obtain the final solutions of concentration. The 
analytical solutions are examined by reproducing the solutions of some special cases discussed in 
previous studies. The sensitivities of the line source solutions to source geometry, dispersion 
coefficients, and distance to the source are tested. The contaminant concentration in the near field 
is found to be sensitive to the source geometry and anisotropy of the dispersion coefficients. The 
contaminant concentration in the far field is found to be much less sensitive to the souree 
geometry. The physical insights of the analytical solutions are interpreted, © 200 I Elsevier 
Science B.V. All rights reserved. 

Keywords: Analytical solution; Contaminant transport; Green's function; Advection-dispersion equation; 
Effect of geometry 

1. Introduction 

Contaminant transport in the subsurface has been one of the most important research 
topics in the hydrological sciences and engineering in the last four decades (Bear, 1972; 
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.Gelhar, 1993; Domenico and Schwartz, 1998; Fetter, 1999 . Although many transport
problems must be solved numerically, analytical solutions are still pursued by many
scientists because they can provide better physical insights into the problems. Analytical
solutions are usually derived from the basic physical principles and free from numerical
dispersions and other truncation errors that often occurred in numerical simulations
Ž .Zheng and Bennett, 1995 . With help of analytical solutions to estimate movements of
contaminant plumes, we can save a lot of effort to guide and collect data and monitor

Ž .water quality despite complexities of hydrogeologic systems Wexler, 1992 . Using
analytical solutions, we can better understand the mechanism of contaminant transport,
predict the movement of contaminant plumes, measure the field parameters related to
solute transport, and verify the results of numerical modeling.

The solutions of one-, two-, and three-dimensional deterministic advection–disper-
sion equations have been investigated in numerous publications before and are still

Ž . Ž .actively studied. For instance, Ogata and Banks 1961 , Sauty 1980 , and van Genuchten
Ž .1981 have provided analytical solutions of one-dimensional transport with the first-type
Ž . Ž . Ž .Dirichlet , second-type Neumann , and third-type Cauchy boundary conditions,

Ž .respectively. Yeh 1981 have given the generalized analytical one-, two-, and three-di-
mensional description and computer code for estimating the transport of waste in

Ž . Ž .groundwater aquifers. Domenico and Robbins 1984 and Domenico 1987 have
Ž .explored some multi-dimensional transport problems.Batu 1989, 1993 have studied the

two-dimensional analytical solute transport model with the first- and the second-type
Ž .boundary conditions. Wexler 1992 and its cited references there have documented

many previously derived analytical solutions with different initial and boundary condi-
Ž .tions. Leij et al. 1993 have studied the non-equilibrium multi-dimensional transport

Ž .using the Laplace and Fourier transforms, and Leij et al. 2000 have used Green’s
functions to describe persistent solute source transport.

Although most of the source bodies of contaminants are usually three-dimensional
and finite, the advection–dispersion equation is commonly solved either with an
infinitely large source or with a one- or two-dimensional source. A three-dimensional
source is rarely considered. Besides that, many of the previous solutions assume that
either the sources are fully penetrating through the entire thickness of the aquifer or the
aquifers are infinite or semi-infinite along the vertical axis. In reality, aquifers are finite
vertically.

Ž .Previous works closely related to our study were carried out by Yeh 1981 ,
Ž . Ž . Ž .Domenico and Robbins 1984 , Domenico 1987 , Batu 1989, 1993 , and Leij et al.

Ž . Ž .2000 . Yeh 1981 provided a general framework of using Green’s functions to solve
transport equations for 450 options without giving too many details. Domenico and

Ž . Ž .Robbins 1984 and Domenico 1987 considered finite sources as boundary conditions
when solving the advection–dispersion equation. They did not include the effect from

Ž .the upper and lower boundaries of an aquifer. Batu 1989, 1993 provided a two-dimen-
sional analytical solute transport model in a bounded aquifer by using the same source
dimension as the aquifer thickness along the z-axis and included the contaminant source
as a boundary condition. The general solutions were derived there through the help of

Ž .Fourier analysis and Laplace transform. Leij et al. 2000 also used the Green’s function
method by including the contaminant source as a boundary condition. In their study, a



( )E. Park, H. ZhanrJournal of Contaminant Hydrology 53 2001 41–61 43

vertically semi-infinite aquifer and a vertically infinitely thin source are assumed. In this
study, we assume a three-dimensional finite source within a vertically finite-thickness
aquifer, and include the source as a source term in the advection–dispersion equation.

The first goal of this paper is using Green’s function method to solve the general
form of contaminant transport from three-dimensional finite, instantaneous or continuous
sources in a finite-thickness aquifer. Using the same methodology, we derive the
solutions for the point, line, and area sources in a finite-thickness aquifer. The Green’s
function method is a convenient way to solve three-dimensional flow and transport
problems that include source terms. With a parallelepiped shape of source, the three-di-
mensional Green’s function can be obtained from three separate one-dimensional
Green’s functions. Such one-dimensional solutions have been provided in previous

Ž .works Gringarten and Ramey, 1973 .
The second objective of this paper is using the established general methodology to

derive various solutions for point, line, and area sources. By generating concentration
curves using the derived solutions, we can observe how each of the different source
geometries and aquifer conditions influence the concentration distribution. A library of
unpublished analytical solutions will be provided.

2. Conceptual and mathematical models

The general geometry of the problem is shown in Fig. 1. The origin of the coordinate
system is at the upper boundary. The positive z-axis is downward. The aquifer is
assumed infinite in the x- and y-directions but finite in the z-direction with a thickness
of d. The aquifer is horizontal without curvature. Bedrock or extremely low-permeabil-
ity clay stratum exists underneath the aquifer, thus a no-flow boundary is assumed at the

Ž .bottom of the aquifer zsd . A no-flow or a water table boundary exists at the top of
the aquifer. If a water table boundary exists, we assume that the slope of the water table
is so small that we can assume the water table to be parallel to the lower boundary. The

w x w xshape of the contaminant source is a parallelepiped body with, xg 0, x , yg yy , y0 0 0
w xand zg z , z . Steady-state groundwater flow is along the x-axis. The three-dimen-0 1

sional deterministic advection–dispersion equation, which describes equilibrium solute
transport within a vertically finite aquifer from a finite source, is written as follows:

EC E2 C E2 C E2 C EC
yD yD yD qÕ qlCsq x , y , z ,t 1Ž . Ž .x y z v2 2 2Et ExEx E y Ez

with boundary conditions:

C "`, y , z ,t s0, y`-y-`, 0-z-d and t)0 2Ž . Ž .
C x ,"`, z ,t s0, y`-x-`, 0-z-d and t)0 3Ž . Ž .

y`-x-`E E
y`-y-`C x , y ,0,t s C x , y ,d ,t s0, 4Ž . Ž . Ž .

Ez Ez
t)0
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Fig. 1. A schematic diagram of a three-dimensional source body within parallel non-penetrable boundaries for
the solute. The upper boundary is a no-flow boundary or a water table boundary. The lower boundary is a
no-flow boundary.

and initial condition:

y`-x-`

y`-y-`C x , y , z ,0 s0, 5Ž . Ž .
0-z-d

Ž 3. Ž .where C is the solute concentration kgrm ; t is time day ; D , D , and D are thex y z
Ž 2 .principal dispersion coefficients in the x-, y-, and z-directions, respectively m rday ; Õ

Ž .is the groundwater flow velocity mrday ; l is the first-order reaction or decay constant
Ž . Ž . Ž . Ž Ž 3 ..1rday ; q x, y, z,t is the volumetric source strength function SSF kgr m dayv
Žq )0 means producing contaminant mass, q -0 means removing contaminantv v

. Ž .mass ; and d is the thickness of the aquifer m .
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For a three-dimensional finite source, q is defined as the mass removed or added tov

a unit aqueous volume at a unit time interval. q is assumed to have the characteristicsv
Ž .of Heaviside function see Fig. 1 :

q f t , 0-x-x ,yy -y-y , z -z-z , and t)0Ž .0 0 0 0 0 1q x , y , z ,t s 6Ž . Ž .
Õ ½ 0 otherwise

Ž .where q is a constant and f t is a function of time.0

The concentrations at laterally infinite distances are assumed zero. Along the
z-direction, both the upper and lower boundaries are assumed non-penetrable for the

Ž . Ž .solute. By transforming x to xsxyÕt, C to Csexp lt C, q to q sexp lt qv v v

and doing the following dimensionless transformations:

x D y D z D Dz z z z
x s , y s , z s , t s t , C s C ,D D D D D2 2( (d D d D d d q dx y 0

q Õdv
q s , Õ s 7Ž .vD Dq D D(0 x z

Ž . Ž .above Eqs. 1 – 5 become:

2 2 2EC E C E C E C q , inside the sourceD D D D vDy y y s 8Ž .2 2 2 ½Et Ex E y Ez 0, outside the sourceD D D D

C "`, y , z ,t s0, y`-y -`, 0-z -1 9Ž . Ž .D D D D D D

C x ,"`, z ,t s0 y`-x -`, 0-z -1 10Ž .Ž .D D D D D D

E E y`-x -`DC x , y ,0,t s C x , y ,1,t s0, 11Ž .Ž . Ž .D D D D D D D D y`-y -`Ez Ez DD D

y`-x -`D

y`-y -`C x , y , z ,0 s0, 12Ž .Ž . DD D D D

0-z -1D

3. Solutions derived using green’s function method

3.1. Three-dimensional solutions

Above mathematical model can be solved using Green’s function method. Green’s
Ž .function in this problem is defined as the concentration at x,y,z,t due to an instanta-

Ž X X X .neous point source of strength unity generated at the point x , y , z ,t , the aquifer being
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initially kept at zero concentration and boundary surface being kept at zero concentra-
Ž .tion Gringarten and Ramey, 1973 . This method has been used in fewer previous

Ž .studies of contaminant transport Yeh, 1981; Leij et al., 2000 . Detailed description of
Ž .the Green’s function method can be found from Carslaw and Jaeger 1959 , Gringarten

Ž . Ž .and Ramey 1973 , and Arfken and Weber 1995 .
The Green’s function of this problem can be obtained by solving the following

Ž Ž . Ž ..differential equation with initial and boundary conditions Eqs. 9 – 12 .

E2 G E2 G E2 G EG
X X X Xq q y sd x yx d y yy d z yz d t y tŽ . Ž . Ž .Ž .D D D D D D D D2 2 2 EtEx E y Ez DD D D

13Ž .

The three-dimensional Green’s function can be expressed as the product of three
one-dimensional Green’s functions. The one-dimensional Green’s function in an infinite

Ž .aquifer is Carslaw and Jaeger, 1959 :

2X1 j y jŽ .D DXG j , j ,t s exp y , jsx , y or z 14Ž . Ž .D D D ž /4 t2 p t( DD

where, jX and j denote the coordinates of the source point and measured point,D D

respectively.
Ž .The Green’s function method is commonly applied using the source function SF ,

which is defined as the integration of the Green’s function over the volume or area or
Ž .length of the source Carslaw and Jaeger, 1959; Gringarten and Ramey, 1973 . Using the

Ž . ŽGreen’s function method, the concentration in Eq. 8 can be written as follows Carslaw
.and Jaeger, 1959; Gringarten and Ramey, 1973 :

tD X X XC x , y , z ,t s q t G x , y , z ,t yt ; x , y , z dVdtŽ .Ž . Ž .H HD D D D D D D D D D D D D D D D
0 V

tDs q t S x , y , z ,t yt dt 15Ž . Ž .Ž .H D D D D D D D D
0

where V is the source domain, G is the Green’s function, and S is the source function.
Ž .Eq. 15 shows that the continuous source solution is simply the temporal convolution

of the source strength function q and the source function S. Applying Neumann’sD

product rule, the three-dimensional source function is expressed as the product of three
one-dimensional source functions:

S x , y , z ,t yt sS x ,t yt S y ,t yt S z ,t yt 16Ž . Ž . Ž .Ž . Ž .D D D D D D D D D D D D D D

Ž .Through the z-axis, the one-dimensional source function, S z ,t yt , is representedD D D
Ž X .as an integration of the one-dimensional Green’s function, G z , z ,t yt , from zD D D D 0D

to z , where z and z are the dimensionless source dimensions in the z-direction,1D 0D 1D
Ž .defined in Eq. 7 . Along the vertical direction, there are two boundaries that contami-
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nant cannot penetrate through. To solve the boundary value problem, the method of
Ž .image is applied Bear, 1972 . The method of image uses infinite numbers of image

Ž .sources along the z-axis to replace the upper and lower boundaries Zhan, 1999 . The
source function along the z-axis is a summation of the source function of the original
source and the source functions of all the image sources. The resulting source function

Ž . Ž .in the z-axis is given by Eq. 17 Carslaw and Jaeger, 1959, p. 275 .

`z1D 2 2S z ,t yt s 1q2 cosnpz cosnp z exp yn p t yt dzŽ . Ž .ÝHD D D D D D D
z0D ns1

17Ž .

Through the y-axis, the source function is an integration of the corresponding one-di-
Žmensional Green’s function from yy to y along the y-axis Gringarten and Ramey,0D 0D

.1973 :

2
y1 y ycŽ .0D D D

S y ,t yt s exp y dc 18Ž . Ž .HD D D D4 t ytŽ .2 p t yt yy( Ž . D D0DD D

Ž .where y is the dimensionless y defined in Eq. 7 .0D 0

The source function along the x-axis is derived as follows. The source along the
Ž .x -axis is between yÕ t and x yÕ t in the coordinate system x , y , z atD D D 0D D D D D D

Ž .time t . Notice that the source function S x ,t yt is referred to an instantaneousD D D D

source at time t and it is the spatial integration of the corresponding Green’s functionD
Ž .at that time t . Thus, when calculating S x ,t yt , t is treated as a fixed value.D D D D D

Ž . Ž .Therefore, S x ,t yt is Gringarten and Ramey, 1973 :D D D

2
x yÕ t1 1 x yjŽ .0D D D D D

S x ,t yt s exp y dj 19Ž .Ž . HD D D D' 4 t ytŽ .t yt2 p (yÕ t D DD D D D

The ultimate solution of our problem is given by the integration of product of Eqs.
Ž . Ž .17 – 19 .

C x , y , z ,tŽ .D D D D D

x yÕ t y z1 1t 0D D D 0D 1DDs q tŽ .H H H HvD D4p t yt0 yÕ t yy z D DD D 0D 0D

=

2 2x yj q y ycŽ .Ž .D D D D
exp y

4 t ytŽ .D D

`

2 2= 1q2 cosnpz cosnp z exp yn p t yt dj dc dz dtŽ .Ý D D D D D D D D
ns1

20Ž .
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X Ž .Changing the integration parameter from t to t s t yt in Eq. 20 and finishingD D D D

the spatial integration first, we have:

C x , y , z ,tŽ .D D D D D

1 tD Xs q t ytŽ .H vD D D4 0

=

X Xx yx qÕ t yt x qÕ t ytŽ . Ž .D 0D D D D D D D D
erfc yerfcX X2 t 2 t( (D D

y yy y qyD 0D D 0D
= erfc yerfcX X2 t 2 t( (D D

`2 1
= z yz q sinnp z ysinnp z cosnp zŽ .Ý1D 0D 1D 0D D

p nns1

X2 2=exp yn p t dt 21Ž .D D

Ž .If expressed in a dimensional format, Eq. 21 becomes:
X X1 xyÕt yx xyÕtt 0X XC x , y , z ,t s q tyt exp ylt erfc yerfcŽ . Ž . Ž .H v X X4d 2 D t 2 D t( (0 x x

=
yyy yqy0 0

erfc yerfcX X2 D t 2 D t( (y y

` d np z np z np z1 0
= z yz q2 sin ysin cosÝ1 0 ž /np d d dns1

=

2 2D n pz X Xexp y t dt 22Ž .2ž /d

Ž . Ž .Eqs. 21 and 22 are the dimensionless and dimensional solutions of contaminant
transport in a finite-thickness aquifer with a three-dimensional finite source.

Ž . Ž .If an instantaneous source exists, the SSF q t sC d t , where C is the sourcev 0 0
Ž .concentration at time t, and d t is the Dirac Delta function. Therefore, the instanta-

Ž .neous source solution is expressed by the same equation as Eq. 22 without doing the
integration and q is replaced by C . If the source is eliminated at a certain time tX, wev 0

can get the solution by changing the lower limit of the integration from 0 to ty tX in Eq.
Ž .22 .

It is important to emphasize the physical conditions, applications, and limitations of
Ž .Eq. 22 in order to make use of this formula for practical purpose:

Ž .1 This equation calculates concentrations for reactive solute transport in a vertically
finite but horizontally infinite, homogeneous, and anisotropic aquifer with a three-di-



( )E. Park, H. ZhanrJournal of Contaminant Hydrology 53 2001 41–61 49

w x w x w xmensional parallelepiped source body xg 0, x , yg yy , y , and zg z , z . The0 0 0 0 1

first-order reaction or radioactive decay has been taken into account. The linear sorption
can be incorporated by replacing Õ, D , D , and D with ÕrR, D rR, D rR, andx y z x y

D rR, respectively, where R is the retardation factor. A time-dependent but space-inde-z

pendent source strength function is used. If the source strength function depends on both
X X XŽ . Ž . Ž .time and space, q t in Eq. 15 should be replaced by q t , x , y , z and it cannotD D D D D

Ž .be taken out of the spatial integration in Eq. 15 .
Ž . Ž .2 The initial concentration is assumed zero in Eq. 22 . If a non-zero initial

Ž . Ž .concentration C exists, one additional term H C G dV should be added in Eq. 15 .i V i
Ž .3 The following discussion explains how to determine q and source concentrationv

C at some hypothetical cases. If doing a tracer test with a continuously adding tracer,0

q is the amount of mass added to the source zone per unit volume of pore water perv

unit time. If doing a tracer test with an instantaneous tracer, C is the mass of tracer0

added to the source zone per unit volume of pore water per unit time. If free phase
contaminants such as LNAPLs and DNAPLs exist in the aquifer, then dissolved free
phase contaminants become the sources of aqueous phase contamination. The dissolu-

Ž .tion process cannot be easily handled by solution 22 because of the difficulty of
accurately determining the source strength function. However, that process can be

Ž .handled by Leij et al. 2000 solution if treating the source as a boundary condition
rather than a source term inside the studied domain.

Ž .4 The molecular diffusion into the upper and lower boundaries is not considered in
this paper in order to derive the analytical solutions. By neglecting the molecular
diffusion, we will slightly overestimate the concentration in the aquifer when time is so
long that the contaminant plume reaches the boundaries.

3.2. One- and two-dimensional solutions

Ž .Using Eq. 22 as a base, a library of analytical solutions for different source types
are derived and shown in Table 1. The source types in Table 1 include a point source
Ž . Ž .Case A, Fig. 2a , three line sources Cases B–D, Fig. 2b–d , and two area sources
Ž .Cases E–F, Fig. 2e–f .

The SSF for a point case, denoted as q , is defined as the produced or removed massp
w xper unit time at the point MrT ; the SSF for a line source, denoted as q , is defined asl

w Ž .xthe produced or removed mass per unit length per unit time Mr LT ; and the SSF for
an area source, denoted as q , is defined as the produced or removed mass per unit areaa

w Ž 2 .xper unit time Mr L T .
Ž .The point source in Fig. 2a is at 0,0, z . The sources in Fig. 2b–d are line sources0

with infinitesimal radius. The source in Fig. 2b spans along the x-direction, from
Ž . Ž .0,0, z to x ,0, z , parallel to the groundwater flow. The source in Fig. 2c spans0 0 0

Ž . Ž .along the y-direction, from 0,yy , z to 0, y , z , normal to the groundwater flow.0 0 0 0
Ž . Ž .The source in Fig. 2d spans along the z-direction, from 0,0, z to 0,0, z , normal to0 1

the groundwater flow. The sources in Fig. 2e and f are rectangular area sources. The
source in Fig. 2e is on the yz-plane with infinitesimal thickness along the x-direction; it
is from yy to y along the y-direction and from z to z along the z-direction. The0 0 0 1
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Table 1
Solutions of several general types of sources: Case A is a point source; Cases B–D are the line sources with different positions; and Cases E–F are the area sources
with different positions

Solution of given geometry Source type

2 21 xy Õt yŽ .tŽ . Ž . Ž .C x, y, z,t s q tyt exp ylt exp y =exp y Case A point sourceH p 4D t 4D t4dp D D 0 x y' x y

2 2` np z np z D n p dt0 z Ž .= 1q2 cos cos exp y t Fig. 2aÝ 2d d tdns1

21 xy Õty x xy Õt yt 0Ž . Ž . Ž .C x, y, z,t s q tyt exp ylt erfc yerfc =exp y Case B line sourceH l 4tD4d D p 2 D t 2 D t0 ' ' y' y x x

2 2` np z np z D n p dt0 z Ž .= 1q2 cos cos exp y t Fig. 2bÝ 2 'd d d tns1

21 xy Õt yq y yy yŽ .t 0 0Ž . Ž . Ž .C x, y, z,t s q tyt exp ylt exp y = erfc yerfc Case C line sourceH l 4D t 2 D t 2 D t4d D p 0' x ' 'y yx

2 2` np z np z D n p dt0 z Ž .= 1q2 cos cos exp y t Fig. 2cÝ 2 'd d d tns1
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2 21 xy Õt yŽ .tŽ . Ž . Ž .C x, y, z,t s q tyt exp ylt exp y =exp y Case D line sourceH l 4D t 4D t4dp D D 0 x y' x y

2 2`2 d 1 np z np z np z D n p dt1 0 z Ž .= z y z q sin ysin cos exp y t Fig. 2dÝ1 0 2ž /p n d d d tdis1

21 xy Õt yq y yy yŽ .t 0 0Ž . Ž . Ž .C x, y, z,t s q tyt exp ylt exp y = erfc yerfc Case E area sourceH a 4D t 2 D t 2 D t4d D p 0' x ' 'y yx

2 2`2 1 np z np z np z D n p dt1 0 z Ž .= z y z q sin ysin cos exp y t Fig. 2eÝ1 0 2ž / 'p n d d d d tns1

1 xy x y Õt xy Õtt 0Ž . Ž . Ž .C x, y, z,t s q tyt exp ylt erfc yerfc Case F area sourceH a4d 2 D t 2 D t0 ' 'x x

2 2`yq y yy y np z np z D n p0 0 0 z Ž .= erfc yerfc = 1q2 cos cos exp y t dt Fig. 2fÝ 2d d d2 D t 2 D t' 'y y ns1
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Fig. 2. Schematic diagrams of various source shapes within two parallel non-penetrable boundaries for the
Ž . Ž . Ž .solute. a A point source; b a horizontal line source parallel to the regional flow; c a horizontal line source

Ž . Ž .perpendicular to the regional flow; d a vertical line source perpendicular to the regional flow; e an area
Ž .source perpendicular to the regional flow; and f an area source parallel to the upper and lower boundaries.

source in Fig. 2f is located on the xy-plane with a distance z below the upper0

boundary; it is from yy to y along the y-direction and from 0 to x along the0 0 0

x-direction.
Ž .Eq. 22 can be simplified in certain special cases. For instances, if the source

dimension in the vertical direction is the same as the aquifer thickness, the solution
becomes independent of the vertical coordinate. If the source dimension in the y-direc-
tion is infinite, then the solution is independent of the y-coordinate. Through these

Ž .manipulations, the general solution 22 will converge to some typical solutions derived
Žbefore by other investigators Morgenau and Murphy, 1956; Ogata and Banks, 1961;

.Leij et al., 2000 . Time-dependent source strength function can be applied to the solution
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to simulate the loading history of the contaminant sources. Some typical cases are
discussed below and their results are compared with previous solutions.

ŽCase 1 A continuous area source located at the upper boundary in a semi-infinite
.aquifer . In this special case, the continuous source has an infinitesimal thickness along

the z-direction; an extension from 0 to x along the x-direction; and an extension from0

yy to y along the y-direction. The source is located at the upper boundary. The lower0 0

impermeable boundary is assumed to be far from the source thus its influence upon the
transport is negligible. Therefore, the source function along the z-direction becomes:

1 z 2

S z ,t s exp y 23Ž . Ž .ž /4D tpD t( zz

If including the first-order decay, the concentration then becomes:

C x , y , z ,tŽ .
21 z xyÕtyx xyÕtt 0

s q tyt exp ylty erfc yerfcŽ .H ž /4D t4 pD 2 D t 2 D t( ( (0 zz x x

yyy yqy dt0 0
= erfc yerfc 24Ž .'2 D t 2 D t t( (y y

Ž .Eq. 24 is identical to the equation of the second type source solution given by Leij et
Ž Ž .. Ž . ŽŽ . Ž ..al. 2000, p.166, Eq. 24 but q tyt is replaced by the mass flux, D EC r Ez atz

zs0, given by Fick’s law in their equation. Notice that the y- and z-axes used in Leij et
Ž .al. 2000, Fig. 1 there are equivalent to the z- and y-axes in our coordinate system,

Ž .respectively Fig. 1 .

Ž .Case 2 A fully penetrated instantaneous source . If we extend the source length along
the z-axis to the aquifer thickness and exclude the first-order decay and sorption,

2 2`1 d np d np z D n p tz
S z ,t s dq2 sin cos exp y s1 25Ž . Ž .Ý 2d np d d dns1

Ž . Ž . Ž . Ž .For a problem with an instantaneous source, q t sC d t . Eq. 22 becomes Eq. 26 .v 0

C xyÕt xyÕtyx yqy yyy0 0 0 0
C x , y ,t s erfc yerfc erfc yerfcŽ .

4 2 D t 2 D t2 D t 2 D t( ( ( (y yx x

26Ž .

Ž .Eq. 26 agrees with the two-dimensional solution derived by Morgenau and Murphy
Ž .1956 .
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Ž .Case 3 An instantaneous semi-infinite source . For a problem with an instantaneous
source, if we extend the source length along the z-axis to the aquifer thickness, the
source length along the y-axis to infinity, the source length along the x-axis from 0 to
negative infinity, and exclude the first-order decay and sorption, we can reproduce the

Ž .solution derived by Ogata and Banks 1961 . In this case:

1 yy` yq`
S y ,t s erfc yerfc s1 27Ž . Ž .

2 2 D t 2 D t( (y y

1 xyÕt xyÕtq` 1 xyÕt
S x ,t s erfc yerfc s erfc 28Ž . Ž .

2 22 D t 2 D t 2 D t( ( (x x x

Ž . Ž .Therefore, Eq. 22 becomes Eq. 29 , which is the well-known Ogata and Banks’
Ž .solution Ogata and Banks, 1961; Domenico and Schwartz, 1998 .

C xyÕt0
C x , y , z ,t s erfc 29Ž . Ž .

2 2 D t( x

where C is the concentration of the source.0

3.3. Numerical calculation of the concentration

Ž .The analytical solutions shown in above Eq. 22 and in Table 1 include the temporal
integrations. A numerical integration program using the Gaussian Quadrature method
Ž . w Ž .Abramowitz and Stegun, 1972 is written in a MATLAB M-file MathWorks, 2000 .
A visual graphical interface is built in the program so that input and output handling
becomes straightforward. This program has the following characteristics.

1. It can calculate concentration at any given time for any given type of sources
presented in Figs. 1 and 2.

2. It can calculate concentration for both continuous and instantaneous sources
including the first-order decay.

3. It can automatically calculate the abscissas and weights used in the Gaussian
Quadrature to achieve the desired accuracy of integration.

4. Characteristics and applications of the solutions

4.1. Characteristics and applications of the three-dimensional solution

Ž .The results of this study have many applications. For instance, Eq. 22 can be
directly applied to sources located within or on the boundaries. Typical cases of this
kind could be a smear zone of a chemical spill, formed by a changing water table, or a
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leaking landfill. The solutions for the line sources can be applied to wells, abandoned
mines, utility pipes, ditches, etc.

Fig. 3 shows the results of a contaminant plume caused by a source similar to a smear
Ž .zone of a continuous chemical spill, calculated from Eq. 22 using the numerical

program described above. Two cases are presented here for comparison. Fig. 3a–b is the
results in a finite-thickness aquifer in which the lower boundary is at zsd, Fig. 3c–d is
the results in a semi-infinite aquifer in which the lower boundary is at zs`. As
expected, the plume spreads out with time and the plume movement depends on the

Ž . Ž .Fig. 3. Iso-concentration contours on the xz-plane ys0 and yz-plane xs20 m in 2 years after injecting
Ž 3 . w x w xof solute. The source strength is q s0.01 gr m day . The source dimensions are xg 0, x , yg y y , y ,v 0 0 0

w x 2and zg 0, z where x s5, y s1, and z s2 m. The aquifer parameters are ds5 m, D s0.1 m rd,0 0 0 0 x
Ž .D rD s0.5, and D rD s0.3. a xy-slice plane passing through the center of the source along the z-axisy x z x

Ž . Ž .in a finite-thickness aquifer; b yz-slice plane passing through xs20 m in a finite-thickness aquifer; c
Ž .xy-slice plane passing through the center of the source along the z-axis in a semi-infinite aquifer.; and d

yz-slice plane passing through xs20 m in a semi-infinite aquifer.
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regional flow velocity. The degree of spreading depends on the dispersion coefficients of
each direction. Because the source is closer to the upper boundary, the expansion of the
plume along the qz-direction is prohibited. The iso-concentration profiles in Fig. 3b are
perpendicular to the upper and lower boundaries, reflecting the influence of imperme-
able conditions at zs0 and zsd. The iso-concentration profiles in Fig. 3d are
semi-elliptic shapes, reflecting the impermeable condition at zs0 and an infinitely far
lower boundary.

Ž .Domenico and Schwartz 1998, p. 379 also discussed the influence of a finite aquifer
thickness upon the evolution of a plume. They gave an order-of-magnitude estimation of

Ž .the distance at which the plume will AtouchB the lower boundary. The Eq. 22 in this
paper is a rigorous solution including the influence of the upper and lower boundaries
upon the concentration.

4.2. Effects of source geometry, dispersion coefficients, and distance from the source

Figs. 4 and 5 show the influence of source geometry and dispersion coefficients on
the concentration distribution. Fig. 6 shows the influence of distance from the source on
the concentration distribution. Three line sources are included in Figs. 4–6.

The following parameters are used in Figs. 4–6. The source mass per unit length is
0.09 grm for the instantaneous line source in Fig. 4. The source strength function q isl

Ž Ž ..0.09 gr m day for the continuous line source in Fig. 5. The line source along the
Ž . Ž . Žx-axis is from 0,0,8 m to 8 m,0,8 m ; the line source along the y-axis is from 0,y4

. Ž . Ž . Ž .m,8 m to 0,4 m,8 m ; and the line source along the z-axis is from 0,0,0 to 0,0,8 m .
The concentration profiles of instantaneous sources in Fig. 4 show left skewed bell

shapes. This is consistent with what was found before for a finite-length source in the
Ž .x-direction Zhan, 1998 . Such left skewed bell shapes are caused by the subtraction of

Ž .two x-dependent complementary error functions in Eq. 22 and in Table 1. If x ™0,0

the skewed bell shapes will become symmetric bell shapes.
As shown in Figs. 4a and 5a, difference of the source geometry affects the

concentration distribution significantly if dispersion coefficients are anisotropic. The
horizontal line source along the regional flow shows the highest concentration, the
horizontal line source normal to the regional flow shows the second highest concentra-
tion, and the vertical source shows the lowest concentration. If D sD sD , Figs. 4bx y z

and 5b show that the difference of the source geometry has less significant influence
upon the concentration distributions.

When the dispersion coefficients are isotropic, the differences of concentration
distributions are less significant for different line source orientations. The remaining
slight differences in Figs. 4b and 5b are caused by the finite aquifer dimensions in the
z-direction. If the aquifer thickness is infinite, those differences will disappear.

Figs. 4 and 5 indicate that the source geometry has a profound influence on the
concentration profiles when the dispersion coefficients are anisotropic. Such influence is
insignificant when the dispersion coefficients are isotropic.

Fig. 6 is similar to Fig. 5b except that the measuring point is 50-m downstream in
Fig. 6, while it is 20-m downstream in Fig. 5b. Comparison of Figs. 5b and 6 shows that
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Fig. 4. Theoretical concentration measured at 20-m downstream from the center of the sources that is released
instantaneously. The released mass per unit length of the source C s0.09 grm, D s0.1 m2rd, ds10 m.0 x
Ž .a Comparison of concentrations from three different types of sources, the ratio of D rD and D rD arey x z x

Ž .0.1 and 0.01, respectively; b comparison of concentrations from three different types of sources, the ratio of
D rD and D rD are all 1.y x z x
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Fig. 5. Theoretical concentration measured at 20-m downstream from the center of the line sources that is
Ž . 2 Ž .released continuously where q s0.09 gr m day , D s0.1 m rday, and ds10 m. a Comparison ofl x

concentrations from three different types of line sources, the ratio of D rD and D rD are 0.1 and 0.01,y x z x
Ž .respectively; b comparison of concentrations from three different types of line sources, the ratio of D rDy x

and D rD are all 1.z x
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Fig. 6. Comparison of the theoretical concentration measured at 50 m downstream from the center of the
Ž . 2source with three different types of continuous line sources. q s0.09 gr m day , D s0.1 m rd, ds10 m,l x

the ratio of D rD and D rD are all 1.y x z x

Ž .at a near field point Fig. 5b , the source geometry influences the concentration
Ž .distribution, but at a far field point Fig. 6 , the source geometry has an almost

negligible influence upon the concentration distribution.

5. Summary and conclusions

We generated analytical solutions of multi-dimensional concentration fields origi-
nated from one-, two-, and three-dimensional, finite sources within finite-thickness
aquifers using the Green’s function method. Our solution is examined by reproducing
the special solutions of previous works. Based on the general three-dimensional solu-

Ž Ž ..tions Eq. 22 , a library of analytical solutions for different source shapes is published
in Table 1. The temporal integrations in the analytical solutions are calculated using a
graphically integrated MATLABw program. The program is available from the author’s
website http:rrgeoweb.tamu.edurFacultyrZhanrResearch.html.

The derived analytical solutions show that the upper and lower aquifer boundaries
have a profound influence upon the concentration distribution. We also find that the
concentration at a near field point is sensitive to the source geometry when the
dispersion coefficients are anisotropic; it is less sensitive to the source geometry when
the dispersion coefficients are isotropic. The concentration at a far field is found to be
almost independent of the source geometry.

The limitation of these analytical solutions is that they assume simplified aquifer
geometry with no slope and a uniform one-dimensional groundwater flow. Molecular
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diffusion into the upper and lower no-flow boundaries is not considered. Dispersion
coefficients are assumed to be constants at all scales rather than scale-dependent

Ž . Ž .variables as described by Gelhar 1993 , Zhan 1998 , and many others.

Notation
Ž .CsC x, y, z,t w 3 xconcentration of point at time MrL

C Ž .sexp lt C
C D

2Ž . Ž .s D r q d C, dimensionless Cz 0

d w xaquifer thickness L
D , D , Dx y z longitudinal, transverse horizontal and vertical dispersion coefficients

w 2 xL rT ,
G Green’s function
qa w Ž 2 .xarea source strength function Mr L T
ql w Ž .xline source strength function Mr LT
qp w xpoint source strength function MrT
qv Ž . w Ž 3 .xsq f t , volume source strength function Mr L T0

q0 w Ž 3 .xconstant source strength Mr L T
q
Õ

Ž .sexp lt qv

qvD sq rq
Õ 0

Ž .S M,t source function
t w xtime T
tD ŽŽ . Ž 2 ..s D r d t, dimensionless timez

Õ w xvelocity of groundwater MrT
ÕD Ž . Ž .s Õd r D D , dimensionless velocity( x z

x, y, z w xcoordinates of the point where concentration is measured L
x , y , z , z0 0 0 1 w xsources dimensions along the x-, y-, and z-axes L
x , y , zD D D Ž . Ž .x s xrd D r D , y s yrd D r D , z s zrd, dimen-(Ž . Ž . Ž . Ž .(D z x D z y D

sionless x, y and z
x sxyÕt
Ž .d Dirac delta function

l w xfirst-order decay factor T
j , c , z , t , t X dummy indexes for integration
j , c , z , t , t X

D D D D D dimensionless dummy index for integration.
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