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PREFACE 

The series of manuals on techniques describes procedures for planning and 
executing specialized work in water-resources investigations. The material is 
grouped under major subject headings called books and further subdivided into 
sections and chapters; section B of book 3 is on ground-water techniques. 

The unit of publication, the chapter, is limited to a narrow field of subject 
matter. This format permits flexibility in revision and publication as the need 
arises. Chapter 3B7 deals with analytical solutions to the solute-transport 
equation for a variety of boundary condition types and solute-source configura- 
tions in one-, two-, and three-dimensional systems with uniform ground-water 
flow. 

Provisional drafts of chapters are distributed to field offices of the U.S. 
Geological Survey for their use. These drafts are subject to revision because of 
experience in use or because of advancement of knowledge, techniques, or 
equipment. After the technique described in a chapter is sufficiently developed, 
the chapter is published and is for sale from the U.S. Geological Survey, Book and 
Open-File Report Sales, Federal Center, Box 25425, Denver, CO 80225. 

Copies of the computer codes and sample data sets described in this report are 
available on diskette from Book and Open-File Report Sales as USGS Open File 
Report 92-78. They are on a 5.25” (360K) double-density diskette formatted for 
the IBM PC. The computer programs were originally written for a Prime 
minicomputer but all programs should run using IBM-PC Fortrans with minor 
modifications as described in the report. The plot routines were written with 
DISSPLA software calls and can be used on the PC only with the PC version of 
the DISSPLA library. Alternatively, data can be easily extracted from the 
program output and plotted using PC graphics presentation programs. 

Reference to trade names, commercial products, manufacturers, or distribu- 
tors in this manual constitutes neither endorsement by the U.S. Geological 
Survey nor recommendation for use. 
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ANALYTICAL SOLUTIONS FOR ONE-, TWO-, AND 
THREE-DIMENSIONAL SOLUTE TRANSPORT IN GROUND-WATER 

SYSTEMS WITH UNIFORM FLOW 

By Eliezer J. Wexler 

Introduction 

Contamination of ground water by inorganic and 
organic chemicals has become an increasing concern in 
recent years. These chemicals enter the ground-water 
system by a wide variety of mechanisms, including 
accidental spills, land disposal of domestic and indus- 
trial waste, and application of agricultural fertilizers 
and pesticides. Once introduced into an aquifer, these 
solutes will be transported by flowing ground water 
and may degrade water quality at nearby wells and 
streams. 

Abstract 

Analytical solutions to the advective-dispersive solute-transport 
equation are useful in predicting the fate of solutes in ground water. 
Analytical solutions compiled from available literature or derived by 
the author are presented for a variety of boundary condition types 
and solute-source configurations in one-, two-, and three- 
dimensional systems having uniform ground-water flow. A set of 
user-oriented computer programs was created to evaluate these 
solutions and to display the results in tabular and computer- 
graphics format. These programs incorporate many features that 
enhance their accuracy, ease of use, and versatility. Documentation 
for the programs describes their operation and required input data, 
and presents the results of sample problems. Derivations of selected 
solutions, source codes for the computer programs, and samples of 
program input and output also are included. 

To improve management and protection of ground- 
water resources, it is important to first understand 
the physical, chemical, and biological processes that 
control the transport of solutes in ground water. 
Predictions of the fate of ground-water contaminants 
can then be made to assess the effect of these chemi- 
cals on local water resources and to evaluate the 
effectiveness of remedial actions. 

Two physical processes that govern the movement 
of ground-water solutes are (1) advection, which 
describes the transport of solutes by the bulk motion 

of flowing ground water (Freeze and Cherry, 1979), 
and (2) hydrodynamic dispersion, which describes the 
spread of solutes along and transverse to the direction 
of flow resulting from both mechanical mixing and 
molecular diffusion (Bear, 1979, p. 230). Chemical 
reactions, including those mediated by microorgan- 
isms or caused by interaction with aquifer material or 
other solutes, may also affect the concentration of the 
solute. 

These prqcesses have been described quantitatively 
by a partial differential equation referred to as the 
“advective-dispersive solute-transport equation.” 
Solution of the equation yields the solute concentra- 
tion as a function of time and distance from the 
contaminant source. To apply the equation to a par- 
ticular ground-water contamination problem, data 
must be provided on the ground-water velocity, coef- 
ficients of hydrodynamic dispersion, rates of chemical 
reactions, initial concentrations of solutes in the aqui- 
fer, configuration of the solute source, and boundary 
conditions along the physical boundaries of the 
ground-water flow system. 

In ground-water systems having irregular geome- 
try and nonuniform aquifer properties, numerical 
techniques are used to determine approximate solu- 
tions to the solute-transport equation. In aquifers 
having simple flow systems and relatively uniform 
hydrologic properties, analytical solutions, which rep- 
resent exact mathematical solutions to the solute- 
transport equation, have been used to predict contam- 
inant migration. These solutions are also used 
extensively in analysis of data from soil-column exper- 
iments and field tracer tests to determine aquifer 
properties, and have been used to verify the sound- 
ness of numerical models. In complex hydrogeologic 
systems, analytical solutions can still be useful to the 
hydrologist because they can provide estimates of 

1 
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rates of solute spread and, thus, guide data collection 
and water-quality-monitoring efforts. 

Although deriving an analytical solution for the 
solute-transport equation requires knowledge of 
higher mathematics, analytical solutions have already 
been derived and published for many combinations of 
solute-source configurations and boundary-condition 
types. After the solutions have been derived, they can 
be evaluated easily using electronic calculators or 
digital computers. 

Purpose and scope 
This report briefly describes the theoretical back- 

ground of solute transport in a porous medium and 
then presents analytical solutions to the advective- 
dispersive solute-transport equation for a variety of 
aquifer and solute-source configurations and boundary 
conditions in systems having uniform (unidirectional) 
ground-water flow. Solutions for one-dimensional sol- 
ute transport were compiled from various journals and 
reports, many of which are not readily available. 
Many of the solutions for two- and three-dimensional 
solute transport were modified from those presented 
in a report by Cleary and Ungs (19’78), whereas others 
were derived by the author using integral transform 
techniques. (Detailed derivations of these solutions 
are provided in attachment 1.) All solutions are given 
in a simplified format, together with information on 
important assumptions in their derivation and limita- 
tions to their use. 

Simple computer programs, written in FORTRAN- 
77, have been provided for evaluation of the analytical 
solutions presented. The programs were designed for 
ease of use and for enhanced accuracy. Documentation 
for these programs includes descriptions of program 
operation and the input data required. Source codes 
and samples of program output are provided at the 
end of the report. Subroutines that allow for graphical 
display of the program output, created using DISS- 
PLA software, are also described. Computer- 
generated plots are presented within the report. 

Previous studies 
Analytical solutions for the one-dimensional form of 

the solute-transport equation have appeared in 
reports and journals concerning physical chemistry, 
soil science, and water resources. These solutions, 
generally determined through Laplace transform 
techniques, have been applied to studies of solute 
movement in laboratory columns, unsaturated soils, 
and natural-gradient tracer tests. Solutions to the 
one-dimensional solute-transport equation for most 

combinations of boundary and initial conditions are 
given in van Genuchten and Alves (1982); some of the 
more useful solutions appear in this report. Other 
sources that list several analytical solutions include 
Gershon and Nir (1969), Bear (19’72), and Bear (1979). 

Fewer analytical solutions have been published for 
the two- and three-dimensional forms of the solute- 
transport equation. Cleary and IJngs (1978) give sev- 
eral solutions derived using integral transform tech- 
niques, and Yeh (1981) presents a computer program 
that evaluates Green’s function to model one-, two-, 
and three-dimensional transport. 
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Theoretical Background 

Most models that simulate migration of dissolved 
contaminants in ground water solve the advective- 
dispersive solute-transport equation. This partial dif- 
ferential equation is derived from the conservation- 
of-mass principle (continuity equation), whereby the 
net rate of change of solute mass within a volume of 
porous media is equal to the difference between the 
flux of solute into and out of the volume, adjusted for 
the loss or gain of solute mass due to chemical reac- 
tions (Freeze and Cherry, 1979). The flux of solute 
into the volume is controlled by two physical process- 
es-advection and hydrodynamic dispersion. Hydro- 
dynamic dispersion, in turn, represents the combined 
effects of two other physical processes-molecular 
diffusion and mechanical dispersion. 

Advection 
Advective transport describes the bulk movement 

of solute particles along the mean direction of fluid 
flow at a rate equal to the average interstitial fluid 
velocity. In a saturated medium, this velocity can be 
calculated from Darcy’s law, such that 
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where 
(1) 

2 =average interstitial fluid velocity [L/T], 
K = hydraulic conductivity tensor for medium 

WJJ, 
n =effective porosity [dimensionless], and 

& =gradient in head [dimensionless] (equal to 
dhldx, the change in head per unit distance 
along the x-axis for uniform flow along the 
x-axis). 

Head, h in equation 1, is equal to the sum of the 
elevation head, z, with respect to a datum level, and 
the pressure head, p/y, where p is the fluid pressure 
(gage pressure) and y is the specific weight of water 
(Bear, 1979, p. 62). Water flows from areas of higher 
head toward areas of lower head. Effective porosity, 
n, differs from total porosity (volume of pore space per 
unit volume of aquifer material) in that it does not 
include pores that are too small to transmit water or 
“dead-end” pores, those that are not interconnected 
with other pores. 

In unsaturated porous media, the average intersti- 
tial fluid velocity can be approximated (Bear, 1979, p. 
209) as 

where 
v’ =average interstitial fluid velocity [L/T], 

z(0) =unsaturated hydraulic conductivity tensor for 
medium, which is a function of moisture con- 
tent [LPI’], and 

8 =moisture content of soil [dimensionless]. 
This form of the equation assumes that the movement 
of air in the soil is negligible and that the density of 
water is constant. 

Molecular diffusion 

In addition to advective transport, solutes spread 
within the fluid in the porous medium by molecular 
diffusion. Diffusion results from the random collision 
of solute molecules and produces a flux of solute 
particles from areas of higher to lower+solute concen- 
tration (Bear, 1979). The solute flux, J, can be given 
by Fick’s first law as 

(W 

whzre 
Dd = second-rank diagonal tensor of molecular diffu- 

sion lL’/T], 

Scheidegger (1961) stated that the coefficients of 
mechanical dispersion can be related to the average 
interstitial fluid velocity by means of the geometric 
dispersivity of the medium. For a saturated porous 
medium, geometric dispersivity depends on hydraulic 
conductivity, length of a characteristic flow path, and 
tortuosity (Bear, 1972, p. 614). In a medium that is 
isotropic with respect to dispersion, geometric disper- 
sivity can be expressed in terms of just two coeffi- 
cients-longitudinal dispersivity, al, and transverse 
dispersivity, tit (Bear, 1979, p. 234). 

+C =concentration gradient [M/L4], and The elements of the mechanical dispersion tensor 
C =concentration of solute (mass of solute per unit can be expressed in terms of longitudinal and trans- 

volume of fluid) [M/L3]. verse dispersivities, the magnitude of the velocity 

Bear and Bachmat (1967) state that the coefficients of 
molecular diffusion in an isotropic medium are depend- 
ent on the diffusion coefficient of the particular solute 
in water and the tortuosity of the medium. Rates of 
molecular diffusion are independent of ground-water 
velocity, and diffusion occurs even in the absence of 
fluid movement. 

Mechanical dispersion 

The average interstitial fluid velocity represents a 
mathematical approximation. True velocities at points 
in the aquifer will differ from this average value, in 
both magnitude and direction. Local variations in 
ground-water velocity may not greatly affect the bulk 
movement of ground water, but they do control the 
fate of solute particles. 

Mechanical dispersion describes the mixing and 
spreading of solutes along and transverse to the 
direction of flow in response to local variations in 
interstitial fluid velocities. On a microscopic scale (the 
scale of individual pores), mechanical dispersion 
results from (1) the distribution of velocities within an 
individual pore due to friction effects along the surface 
of soil grains, (2) differences in size of pores, (3) 
differences in path length for individual solute parti- 
cles, and (4) the effect of converging and diverging 
flow paths (Freeze and Cherry, 1979, p. 75). On a 
larger (macroscopic) scale, mechanical dispersion 
results from local variations in hydraulic conductivity, 
and thus fluid velocity, owing to the heterogeneity of 
aquifer material (Bear, 1979, p. 229). 

Laboratory tests on soil columns have shown that 
the flux of solutes due to mechanical dispersion can 
also be described using Fick’s first law, as 

f= -tGm.+c, CW 

where D, is the second-rank symmetric tensor of 
mechanical dispersion [L’/T]. 
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vector, v, and the magnitudes of its components, vX, 
vY, and v, (Bear, 1979, p. 235) as 

D mn =[~*v,2+olt(Vy2+V,2)1/V 
D mYY =[c(p,2+a,(v,2+v,2)1/v 
D 

mxY =Dmfl =(cYpt)vxvy/v 

D 
my2 =DmZy =(ctp.t)VyV~v 

D =D 
DlI= [‘yIvZ 

m~=(“,-“thxVz/V 
+ (Y&v,~ +vy2)l/v. (4) 

If a coordinate system is chosen, such that the 
direction of the average ground-water velocity is 
aligned with the x-direction (v=v, and vy=vZ=O), the 
off-diagonal terms in the dispersion tensor (eq. 4) will 
equal zero, and the mechanical dispersion tensor can 
be simplified to 

Dmx=Dmxx=~l~ 
Dmy=Dm =r+v 
DmZ=DmZy=~t~. (5) 

Hydrodynamic dispersion 
As stated earlier, hydrodynamic dispersion is the 

flux of solute due to the combined effect of molec$ar 
diffusion and mechanical dispersion. Solute flux, J, is 
given by Fick’s first law as 

f= -eE&, (6) 
zzz 

where D is the hydrodynamic dispersion tensor. 
In a flow system having uniform flow aligned with 

the x-axis, the coefficients of the hydrodynamic dis- 
persion tensor, D,, D,, and D,, are given by 

Dx=DmX+Dd=~I~+Dd 
Dy=DmY+Dd=atv+Dd 
D,=DmZ+Dd=atv+Dd. (7) 

The effects of mechanical dispersion generally are 
much greater than those of molecular diffusion, and, 
except at low ground-water velocities, the contribu- 
tion of molecular diffusion often is negligible. 

In laboratory experiments using homogeneous 
materials, values for longitudinal dispersivity, al, are 
typically between 0.004 and 0.4 inch (in), whereas in 
field studies, longitudinal dispersivities of as much as 
328 feet (ft) have been determined (Freeze and 
Cherry, 1979). The larger field values can be attrib- 
uted to increased mixing due to local variations in 
hydraulic conductivity (macrodispersion). A discus- 
sion of the apparent scale dependency of hydrody- 
namic dispersion is given in Anderson (1984). Trans- 

verse dispersivity is generally less than longitudinal 
dispersivity, by a factor of 5 to 20 (Freeze and Cherry, 
1979, p. 400). 

Advective-dispersive solute-transport 
equation1 

The advective-dispersive solute-transport equation 
describes the time rate of change of solute concentra- 
tion for a single solute and can be written as 

aec 
~=-~*[e;C-eD=*~Cl+eQ, (8) 

where Q, is used to represent a general source or sink 
term for production or loss of solute within the sys- 
tem. 

Equation 8 (after Bear, 1979, p. 241) can be written 
in terms of volumetric rather than mass concentra- 
tions because the fluid density is assumed to be 
constant. This is usually valid for most ground-water 
flow systems in which solutes are present in relatively 
low concentrations. 

The analytical solutions presented in this report are 
derived for idealized systems in which the ground- 
water velocity is assumed to be uniform, aligned with 
the x-axis, and of constant magnitude. The moisture 
content (equal to porosity for satnrated material) and 
the coefficients of hydrodynamic dispersion (see eq. 7) 
are also assumed to be constant. Given these assump- 
tions, the three-dimensional form of the solute- 
transport equation for a uniform flow system can be 
expressed as 

aceD a2C 
z- 

x,+Dy$+D,$-V$+Q~, (9) 1, 

where V represents the uniform velocity aligned with 
the x-axis. 

In a thin aquifer in which the solute is uniformly 
mixed in the vertical (y-z) plane at the inflow bound- 
ary, the concentration gradient. in the z-direction, 
aC/az, equals zero. The two-dimensional solute- 
transport equation can be expressed as 

Finally, if the solute concentration is uniform over 
the entire inflow boundary, such as in a soil column, 
the term aC/ay would also equal zero, yielding the 
one-dimensional solute-transport equation that can be 
expressed as 

ac a% ac 
-g=Dz-Vz -t&s, (11) 
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where D represents the dispersion coefficient along 
the direction of flow. 

Chemical transformation 

In addition to physical mechanisms that govern the 
movement of solutes through the ground-water sys- 
tem, chemical transformations may alter the concen- 
tration of a contaminant species in solution. Possible 
chemical transformations include dissolution, precipi- 
tation, oxidation, reduction, biological degradation, 
radioactive decay, and adsorption and ion-exchange 
reactions between the solute and the solid matrix of 
the aquifer. 

If the processes involved in chemical transformation 
can be described mathematically, they then can be 
incorporated in the source term, Q,, in the solute- 
transport equation for each chemical species. The 
analytical solutions described herein have been 
derived for systems in which the chemical transforma- 
tion terms are given by first-order (linear) relations. 
The relations and their incorporation in the solute- 
transport equation are described below. 

linear equilibrium adsorption 

Many ionic inorganic solutes and nonpolar organic 
solutes can be removed from solution by adsorption 
onto the surface of soil particles. The solute may be 
attracted to soil surfaces by either electrical attrac- 
tion, Van der Wals forces, or chemical bonding (chemi- 
sorption). A general expression for the change in 
solute concentration due to partitioning of solute par- 
ticles on the solid matrix (in the absence of dispersive 
or advective fluxes) can be stated as 

ac as 
eat= - Pbx f (1% 

where 
pb =bulk density of solid matrix measured as mass 

per unit volume of aquifer material [M/L3], and 
S =mass of solute adsorbed on solid matrix per 

unit mass of solid material [dimensionless]. 
The amount of solute remaining in solution depends 

on the amount of solute in the adsorbed phase. The 
functional relation is usually determined experimen- 
tally through a series of batch tests in which solutions 
of known initial concentration are mixed with differing 
amounts of adsorbate. After equilibrium is achieved, 
the final solute concentration of each solution is meas- 
ured, and the mass of solute adsorbed is calculated. 
An equilibrium adsorption curve can then be fitted to 
these data. Equilibrium concentrations are dependent 
on temperature, and the adsorption curve at a partic- 

Observed mass concentration vsluell 

lo.‘0 I I I I I 

IO.8 10-G 10” 10” Id IO” 10’. 

CONCENTRATION OF SOLUTE IN SOLUTION. IN MILLIGRAMS PER LITER 

Figure 1 .-Typical shape of equilibrium adsorption 
isotherm. 

ular temperature is termed an “equilibrium adsorption 
isotherm.” A typical equilibrium adsorption isotherm 
is shown in figure 1. 

A linear approximation of the equilibrium adsorp- 
tion isotherm is generally applicable in systems in 
which the solute concentration is low relative to the 
adsorptive capacity of the porous medium. The 
adsorption of various nonionic organic solutes at trace 
concentrations onto sediments and soils has also been 
shown to be linear (Cherry and others, 1984). Many 
nonlinear forms for the adsorption isotherm, some 
empirical and some that account for the physical 
mechanisms of adsorption, are suggested in the liter- 
ature (see Helfferich, 1962). However, the transport 
equation that incorporates these other forms must be 
solved by numerical methods. 

Because the amount adsorbed depends solely on the 
solute concentration, equation 12 can be expressed as 

(13) 

where aS/aC is determined from the functional rela- 
tion between C and S. For a linear equilibrium adsorp- 
tion isotherm, &/Z is equal to the slope of the 
adsorption isotherm and often is termed k or the 
“partitioning coefficient.” The source term can be 
incorporated in the general three-dimensional form of 
the solute-transport equation (eq. 9) to yield 

(14) 

where R is referred to as the “retardation factor,” 
given by 
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Dividing through by R yields 

where V* and D:, D;, and D: are the scaled (or 
retarded) velocity and dispersion coefficients, respec- 
tively. Equation 16 shows that transport of solutes 
subject to linear adsorption can be simulated in the 
same manner as a nonadsorbed solute using these 
scaled coefficients. Because the apparent velocity of 
the adsorbed solute is reduced, the solute will arrive 
at a given point later than a nonadsorbed solute. 

The use of equilibrium isotherms assumes that 
equilibrium exists at all times between the porous 
medium and the solute in solution. This assumption is 
generally valid when the adsorption process is fast in 
relation to the ground-water velocity (Cherry and 
others, 1934). If adsorption proceeds slowly, kinetics 
of the reaction must be considered. Nonequilibrium 
adsorption relations can be incorporated in the trans- 
port equation, but numerical methods are needed for 
solution of the resulting equation. 

The process of adsorption is also assumed to be 
reversible. If hysteresis effects during desorption are 
significant, other forms of the adsorption isotherms 
must be considered, and numerical methods would be 
required. 

Ion exchange 

Ion exchange is an adsorption process in which a 
cation in solution replaces another cation that is elec- 
trically bound to collodial material in the soil. Under 
certain conditions, ion exchange can be modeled in a 
manner similar to linear adsorption (R.W. Cleary, 
Princeton University, written commun., 1977). The 
exchange reaction for monovalent ions can be 
expressed as 

A++B+RsB++A+R, (17) 

where A+ is used to represent a cation in solution, R 
is the exchange medium, and B+ represents the 
counter ion released from the exchanger. At equilib- 
rium, a selectivity coefficient, &, can be defined, such 
that 

EB+I[A+Rl 
K=[A+,[B+R] ’ (18) 

where the bracketed terms represent the activities of 
each constituent. 

Measured values of K, can be used in simulating 
transport by making the following assumptions: (1) if 
all exchange sites are assumed to be occupied initially, 

then [B+Rl represents the total cation exchange 
capacity (CEC) of the medium, which can be deter- 
mined experimentally and then treated as a constant; 
(2) the counter ion, Bf, is usually present in solution 
at much greater concentrations than the solute A+, 
and releases of additional amounts of the counter ion 
by exchange will not significantly alter its concentra- 
tion; thus, [B+l can also be treated as a constant; and 
(3) the relation between the amount of solute on the 
exchange sites and the amount remaining in solution 
can be defined as 

(19) 

where the distribution coefficient, kd, is determined 
through laboratory batch tests. 

Given these assumptions, the general expression for 
the change in solute concentration due to cation 
exchange can be expressed as 

ac aC 
eat= -P&x, 

where 

cw 

(21) 

This term would replace k in equation 15. For 
monovalent-divalent cation exchange, where 

A+++2B+R*2Bfi-A++R, (22) 

the distribution coefficient can be given by 

K,*CEC” 
kd= [B+]2 ’ (2% 

First-order chemical reactions 

Simple chemical reaction terms’ can be formulated to 
account for the kinetics of reactions under nonequilib- 
rium conditions. A first-order chemical process, such 
as radioactive decay or biological degradation, 
involves the irreversible unimolecular conversion of 
solute A to solute B (A+B). The rate of the reaction 
can be given by 

(24 

where A is the rate coefficient [Y/T]. The rate coeffi- 
cient can be expressed in terms of the half-life of the 
solute, T,,, (the time required for the concentration of 
the solute species to be reduced to half the initial 
concentration), as 
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h=ln(2)/Tl~,=0.693/‘I’1~~. (25) 

Equation 9 can be written to incorporate the first- 
order reaction as 

ac a% a2C 
at=DXz+D 

yv 
+.,$_,~-A,. (26) 

If the solute is subject to linear adsorption and to 
first-order chemical transformation in both the solute 
and adsorbed phases, equation 9 can be expressed as 

ac a2C 
R,t=D,,x,+D y$+D,$-V$RhC (27) 

where R is the retardation factor (eq. 15) or 

aC .a2C .a2C 
at- -D,=+D yv 

+D;$-V*$-XC, (28) 

where V’ and D” represent the scaled velocity and 
dispersion coefficients. If the adsorbed phase is not 
subject to chemical transformation, A in equation 28 
should be replaced by A*, where 

X.=X/R. (29) 

Some multiple-ion reactions can be approximated as 
a first-order reaction if all ions, except the species 
being considered, are present at high concentrations 
(R.W. Cleary, Princeton University, written com- 
mun., 1977). For example, if the reaction involves the 
conversion of solutes A and B to form solute C(A+B 
+C>, the rate of reaction would be given as 

d[Al -= -A,,[AI[B]. dt (30) 

If solute B is present at high concentration, its 
concentration will not change significantly due to 
conversion of A and [B] can be treated as a constant. 
Equation 26 or 28 can then be used with a modified A 
term, where A=AAB[B]. General bimolecular or 
multiple-ion reactions result in nonlinear chemical 
source terms. Reversible reactions and multistep 
reactions require simultaneous solution of the trans- 
port equation written for each species. Simulation of 
transport involving these chemical processes usually 
requires numerical methods. 

Initial conditions 
To solve the solute-transport equation, a complete 

set of boundary and initial conditions must be speci- 
fied. Initial conditions are used to define the solute 
concentration in the aquifer at the time inflow of 
solute begins. For the analytical solutions presented 

in this report, the initial conditions are specified such 
that all initial concentrations are zero. If the solute is 
conservative, a constant initial background solute 
concentration can be added to the calculated concen- 
trations. Analytical solutions for one-dimensional 
transport of nonconservative solute transport with 
nonzero initial concentrations are given in van Genu- 
chten and Alves (1982). 

Boundary conditions 

Three types of boundary conditions are generally 
associated with the solute-transport equation. The 
first-type (or Dirichlet) boundary condition specifies 
the value of the concentration along a section of the 
flow-system boundary. The second-type (or Neu- 
mann) boundary condition specifies the gradient in 
solute concentration across a section of the boundary. 
The third-type (or Cauchy) boundary condition is 
applied where the flux of solute across the boundary is 
dependent on the difference between a specified con- 
centration value on one side of the boundary and the 
solute concentration on the opposite side of the bound- 
ary. These three types of boundary conditions are 
used to describe conditions at the inflow and outflow 
ends of the flow system and also along the lateral 
boundaries of two- and three-dimensional systems. 

Inflow boundary 

The third-type boundary condition best describes 
solute concentrations at the inflow end in a uniform 
flow system (Bear, 1979, p. 268), where a well-mixed 
solute enters the system by advection across the 
boundary and is transported away from the boundary 
by advection and dispersion. The boundary conditions 
can be given as 

VC-D$=VC,, x=0, 

where C, is the known measured concentration in the 
influent water. The third-type boundary condition 
allows for solute concentration at the inflow boundary 
to be lower than C, initially and then to increase as 
more solute enters the system. Over time, the concen- 
tration gradient across the boundary, X%x, 
decreases as the concentration at the inflow boundary 
approaches C,. 

Alternatively, a first-type boundary condition can 
be specified at the inflow end, such that 

c=c,, x=0. (3% 

Application of this simpler form of boundary condition 
presumes that the concentration gradient across the 
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boundary equals zero as soon as flow begins. How- 
ever, this may lead to overestimation of the mass of 
solute in the system at early times. 

Equation 31 indicates that the difference between 
concentrations predicted for a system having a first- 
type source boundary condition and a system having a 
third-type boundary condition should decrease as the 
quantity DN decreases. Additional discussions of the 
effect and relative merits of the different types of 
inflow boundary conditions are presented in Gershon 
and Nir (1969), van Genuchten and Alves (1982), and 
Parker and van Genuchten (1984). 

Outflow boundary 

Often, the outflow boundary of the system being 
simulated is far enough away from the solute source 
that the boundary will not affect solute concentrations 
within the area of interest. Such a system can be 
treated as being “semi-infinite,” and either a first-type 
or second-type boundary condition can be specified as 

C, 
aC- a,-% x=m. 

When the system has a finite length, and solute 
concentrations near the outflow boundary are of inter- 
est, selection of an appropriate boundary condition 
becomes more difficult. In general, if the system 
discharges to a large, well-mixed reservoir and the 
additional solute will not significantly alter reservoir 
concentrations, then a third-type or first-type bound- 
ary condition (similar to the inflow boundary) can be 
used. If the reservoir is small or not well mixed, such 
as at the end of the soil column in figure 2A, concen- 
trations in the reservoir would equal solute concentra- 
tion at the discharge end of the system, and thus no 
concentration gradient would exist across the bound- 
ary. This can be specified by a second-type boundary 
condition as 

ac 
x=0, x=L, 

where L represents the length of the finite system. 
Van Genuchten and Alves (1982, p. 90-96) analyzed 

the difference between predicted concentrations 
obtained using analytical solutions for a semi-infinite 
system and a finite system having a second-type 
boundary condition in terms of two dimensionless 
numbers: (1) the column Peclet number (P) and (2) the 
number of displaced pore volumes (T), which are 
defined by 

p,vL 
D 

and C=Co*A(x,y,z,t)+(C1-C,)rA(x,y,z[t-tJ), (39) 

(35) 

T,Vt 
L’ 

They found that the predicted concentration at points 
near the outflow boundary begins to differ signifi- 
cantly for T greater than 0.25 and that the differences 
increase as T approaches 1 (corresponding to move- 
ment of the solute front closer to the outflow bound- 
ary). The magnitude of the difference and distance 
inward from the outflow boundary at which the solu- 
tions diverge decreases as P values increase. 

lateral boundaries 

In two- and three-dimensional systems, imperme- 
able or no-flow boundaries may be present at the base, 
top, or sides of the aquifer. Because there is no 
advective flux across the boundary, and molecular 
diffusion across the boundary is assumed to be negli- 
gible, the general third-type boundary condition sim- 
plifies to a second-type boundary condition, expressed 
as 

aC ay=o, y=O and y=W (374 

and 

8C z=o, z=O and z=H (3%) 

where W and H represent the width and height of the 
aquifer, respectively. 

In many cases, lateral boundaries of the system may 
be far enough away from the area of interest that the 
system can be treated as being infinite along the y- 
and z-axes. Boundary conditions can then be specified 
as 

c aC=(-j 
7 ay 7 

y::+cQ (384 

and 

c aC,() 
'az 7 

z- *co. (38b) 

Superposition 
Because the solute-transport equation is a linear 

partial-differential equation, the principle of superpo- 
sition can be used to calculate concentrations in the 
system if solute concentrations at the inflow boundary 
vary over time. The general form of the solution can 
be expressed as 
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Velocity (vkO.5 inch 
per hour 
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x=10 inches 

----a - x=L=lOO inches 

Direction of 
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AVERAGE CONCENTRATION ALONG 
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Figure 2.-Examples of situations in which the principle of superposition can be applied: A, soil column with 
time-varying input concentration (cases A and B in text), B, waste-disposal site with spatially varying input 
concentrations (case C in text), and C, plot of average concentration measured along waste-disposal site boundary. 
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where 
C, =initial solute concentration at boundary, 

A(x,y,z,t) =general form of analytical solution where 
concentration is a function of space and 
time, 

C1 =solute concentration at boundary after 
t=t,, and 

tl =time at which solute concentration chang- 
es at boundary. 

The principle of superposition should be familiar to 
most hydrologists who have used analytical solutions 
(such as the Theis equation) in analyzing aquifer tests. 
Several examples are provided to illustrate its appli- 
cation to solute-transport simulation. 

Case A: 

A solution is passed through a loo-in-long soil 
column (fig. 2A) for a period of 10 hours, with V=O.5 
inch per hour (in/h), D=0.05 square inch per hour 
(in’/h), and C,= 100 milligrams per liter (mg/L). At the 
end of the lo-hour period, the concentration of the 
influent is increased to C,=300 mg/L. Of interest is 
the concentration at x=10 in at the end of a total 
elapsed time of 20 hours. 

The analytical solution for transport of a conserva- 
tive solute in a semi-infinite column (assuming that 
boundary effects at x=L are negligible) with a first- 
type inflow boundary condition was given by Ogata 
and Banks (1961) as 

*(x,t)=$erfc[s]+exp[!$]*erfc[$]], 

where erfc is the complementary error function. (The 
solution is described in more detail later.) For the 
values given, equation 39 becomes 

C(l0 in, 20 hours)=100 mg/L*A(lO in, 20 hours)+(300 
mg/L-100 mg/L>A(lO in, [20 
hours-10 hours]) 

=lOO mg/L*(0.984)+200 mg/L 
l (0.088> 

=116.0 mg/L. 

Case B: 

This case is similar to case A, except that at the end 
of 10 hours, solute-free water (C,=O.O mg/L) is passed 
through the soil column, thus creating a solute pulse of 
finite duration. The concentration of solute at x= 10 in 
and t=20 hours can be given from equation 39 as 

C(10 in, 20 hours)=100 mg/L*A (10 in, 20 hours)+ 
(O-100 mg/L>A (10 in, [20-10 
hours]) 

=lOO mg/Le(0.984)-100 mg/L 
l (0.088) 

=89.6 mg/L. 
The principle of superposition can also be used to 

simulate more complex solute configurations at the 
boundary of two- and three-dimensional systems, as 
shown in case C. Also, if solute sources are at two 
locations, the calculated concentration from the first 
source at a particular point of interest can simply be 
added to the calculated concentration from the second 
source at that point. 

Case C: 

A waste-disposal site, shown in plan view in figure 
2B, has a solid-waste landfill and a smaller area for 
sludge disposal. Measured concentrations in fully 
screened wells along the eastern boundary downgra- 
dient from the landfill had chloride concentrations 
averaging 300 mg/L. Wells downgradient from both 
the sludge pond and the landfill had concentrations 
averaging 900 mg/L. Background chloride concentra- 
tions are 50 mg/L. Given V=l foot per day (ft/d), D, 
=20 feet squared per day (ft’/d>, and D,=4 ft2/d, 
calculate the concentration at a private well located at 
x=500 ft and y=300 ft at the end of 1 year. 

The analytical solution for transport of a conserva- 
tive solute in an infinitely wide aquifer having a 
finite-width or “strip” source along the inflow bound- 
ary is modified from Clear-y and Ungs (1978, p. 17): 

-erfc 

where YI and Ya are coordinates of the endpoints of 
the source on the y-axis and T is a dummy variable of 
integration. The solute source can be represented by 
two strip sources, the first extending from Y1=200 to 
Y2=8OO ft, with an effective concentration, CI, of 250 
mg/L (difference between measured and background 
concentration) and the second extending from YI= 
400 to Ya=6OO ft, with a concentration, Ca, of 600 
mg/L (measured concentration minus first-source 
effective concentration and background concentra- 
tion). The concentration at the private well can be 
calculated as 

c(500 ft, 300 ft)=Cbae~groun~+C10A(500 ft, 300 ft, 200 
ft, 800 ft, 365 days)+Cz*A(500 ft, 
300 ft, 400 ft, 600 ft, 365 days) 
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A 

3 Land surface 
c=c, 

Unsaturated zone 

B 

Not to scale 

Figure 3.-Two examples (A and B) of contaminant movement in field settings that can be simulated as 
one-dimensional solute-transport systems. 

=50 mg/L+250 mg/L*(O.1612)+600 developed for study of dispersion phenomena in soil or 
mg/L*(O. 1354) adsorption columns. Some field situations can also be 

=171.5 mg/L. idealized as one-dimensional transport systems; two 

One-Dimensional Solute 
examples are shown in figure 3. Figure 3A represents 
steady vertical flow through the unsaturated zone 

Transport beneath a septic tank drain field. Transport at the 
center of the field is simulated, and the horizontal 

Many analytical solutions for the one-dimensional spread of solutes along the edges of the field is 
form of the solute-transport equation (eq. 11) were ignored. Figure 3B represents a case of steady hori- 
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zontal ground-water flow from river A, which has 
been contaminated, to river B. 

One-dimensional systems can be finite, semi- 
infinite, or infinite in extent. In the finite or semi- 
infinite systems, water containing a known concentra- 
tion of a contaminant species enters the system at the 
origin (at x=0). Water and solute exit at the opposite 
end of the system (at x=L), which could represent the 
water table, a stream, or the end of a soil column (fig. 
3). 

In the finite-length system, the outflow boundary is 
close enough that it will have an effect on the magni- 
tude of concentrations within the area of interest. If 
the outflow boundary is far enough away as to have 
negligible effect on solute concentrations in the area of 
interest (equivalent to T<0.25, where T is the number 
of displaced pore volumes), solutions for a semi- 
infinite system can be used and are generally easier to 
evaluate. 

An example of transport in an infinite system might 
be the injection of a solute into the center of a long soil 
column. In this case, the spread of solute, both upgra- 
dient and downgradient from the source, is of interest. 
Solutions for an infinite system can be found in van 
Genuchten and Alves (1982) and Bear (1972, 1979). 

For the four analytical solutions presented in this 
section, either a first- or third-type boundary condi- 
tion is specified at the inflow end of a finite or 
semi-infinite system. Specifically, the solutions are 
for a 

Finite system with a first-type boundary condition 
at the inflow end, 
Finite system with a third-type boundary condition 
at the inflow end, 
Semi-infinite system with a first-type boundary 
condition at the inflow end, and 
Semi-infinite system with a third-type boundary 
condition at the inflow end. 

Solutions for the finite systems assume a second-type 
boundary condition at the outflow end. 

Two computer programs, FINITE and SEMINF, 
were developed to calculate concentrations in these 
four systems as a function of distance and elapsed 
time. These programs are also described in this sec- 
tion. The format used in presenting each of the 
solutions may seem repetitive, but it provides for easy 
reference. 

Finite system with first-type source 
boundary condition 

Governing equation 

One-dimensional solute-transport equation: 

(40) l 
Boundary conditions: 

aLo 
dx- ’ 

XEL 

Initial condition: 

c=o, o<x< L at t=O (43) 

Assumptions : 

1. 
2. 

3. 
4. 

Fluid is of constant density and viscosity. 
Solute may be subject to first-order chemical trans- 
formation (for a conservative solute, X=0>. 
Flow is in x-direction only, and velocity is constant. 
The longitudinal dispersion coefficient (D), which is 
equivalent to D, (eq. 7), is constant. 

Analytical solution 

The following equation is modified from van Genu- 
chten and Alves (1982, p. 63-65): 

C(x,t)=C, 

-2 exp[g+-g] 

where U=flL+4XD and pi are the roots of the 
equation 

VL p cot p+m=o. (45) 

Comments: 

Values of the first six roots of equation 45, a*cot(a) 
+c=O, are tabulated in Carslaw and Jaeger (1959, p. 
492) for various values of the constant c. Additional 
roots of equation 45 can be found through standard 
root-search techniques. 

The maximum number of terms that should be 
computed in the infinite series summation depends on 
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how fast the series converges. Convergence is usually 
a problem at early times (or at T << 1) near the origin 
(x=0), especially when the column Peclet number (P 
in eq. 35) is relatively large. The program described 
below determines that the series has converged if the 
absolute value of the last term in the series is less than 
1x10-12. A good initial estimate for the maximum 
number of terms is 100, but more should be used if the 
program indicates that the series did not converge. A 
minimum of 25 roots is used by the program. 

For a solute that is not subject to first-order chem- 
ical transformation (X=0), equation 44 can be replaced 
(Clear-y and Adrian, 1973; Wexler and Clear-y, 1979) 
by 

C(x,t)=C, 

1 

l-2 exp g-g [ 1 
m f3iSiIl - exp -2 

c 

(y) ( Ppt) 

. (46) 
i=l 

For large values of time (st*eady-state solution), 
equation 44 can be reduced (van Genuchten and Alves, 
1982, p. 58) to 

C(x)=C,exp (47) 

Linear equilibrium adsorption and ion exchange can 
be simulated by first dividing the coefficients D and V 
by the retardation factor, R (eq. 15). (Note: U in eqs. 
44 and 47 would be given by U=dV*+4XD*). Tempo- 
ral variations in source concentration can be simulated 
through the principle of superposition (eq. 39). 

Description of program FINITE 

The program FINITE computes the analytical solu- 
tion to the one-dimensional solute-transport equation 
for a finite system with a first-type (eq. 44) or third- 
type (eq. 52) source boundary condition at the inflow 
end. It consists of a main program and four 
subroutines-ROOTl, ROOT3, CNRMLl, and 
CNRML3. The function of the main program and 
subroutines ROOT1 and CNRMLl are outlined below; 
the program code listing is presented in attachment 2. 
Subroutines ROOT3 and CNRML3 are called when a 
third-type boundary condition is specified and are 
described in a subsequent section. 

The program also calls the output subroutines 
TITLE, OFILE, and PLOTlD, which are common to 
most of the programs described in this report. These 
subroutines are described in detail later. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 1. 

The program calls subroutine ROOT1 to compute 
the positive roots of equation 45 when a first-type 
source boundary condition is specified and then exe- 
cutes a set of nested loops. The inner loop calls 
subroutine CNRMLl to calculate the concentration 
for a particular time value and distance; the outer loop 
cycles through all specified time values and prints a 
table of concentration in relation to distance for each 
time value. Graphs of concentration in relation to 
distance can also be plotted. 

Subroutines ROOT1 and CNRMLl 

Subroutine ROOT1 calculates the roots of the equa- 
tion 

a*cot(a)+c=O 

by an iterative procedure. The first root is known to 
lie between 1~/2 and 7~, and an initial estimate of 0.75 7~ 
is made. Newton’s second-order method (Salvadori 
and Baron, 1961, p. 6) is used to correct and update 
the estimate at each iteration. A maximum of 50 
iterations and a convergence criterion of 1.0~10-‘~ 
are set in the subroutine. Each subsequent root of the 
equation is about r greater than the previous one. 
This value is used as an initial estimate in the search 
for the remaining roots. 

Subroutine CNRMLl calculates the normalized con- 
centration (C/C,,) for a particular time value and 
x-distance value, using equation 44 for a solute subject 
to first-order chemical transformation and equation 46 
if the solute is conservative (h=O). The number of 
terms taken in the infinite series summation is speci- 
fied in the input data. 

Sample problems 1 a and 1 b 

Two sample problems are presented that use data 
similar to the data given in Lai and Jurinak (1972). In 
sample problem la, a conservative solute is introduced 
into a saturated soil column under steady flow. Model 
variables are 

Velocity (V) =0.6 in/h 
Longitudinal dispersion (D) =0.6 in21h 
System length (L) =12 in 
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Table I.-Input data format for the program FINITE 

Data VEGAable 
set COlUUmS Format name DescriDtion 

1 1 - 60 A60 TITLE Data to be printed in a title box on first page of program output. 
Last line in data set must have an -1" in column 1. First four lines 
are also used as title for plot. ------------------------------------------------------------------------------------------------------~----- 

2 1-4 14 NBC Boundary condition type (NBC = 1 for a first-type boundary condition; 
NBC - 3 for a third-type boundary condition). 

5-6 I4 Nx Number of x-coordinates at which solution will be evaluated. 

S-12 14 NT Number of time values at which solution will be evaluated. 

13 - 16 14 NROOT Number of terms used in infinite series sumnation. 

17 - 20 14 IPLT Plot control variable. 
is greater than 0. 

Concentration profiles will be plotted if IPLT 
---------------------------------------------------------------------------------------~-------------------- 

3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 
+ output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUNITS Units of dispersion coefficient. 

31 - 40 A10 KUNITS Units of solute-decay coefficient. 

41 - 50 .A10 LUNITS Units of length. 

51 - 60 A10 TWITS Units of time. ----------------------------------------------------------------------------------------~------------------- 
4 1 - 10 F1O.O CC Solute concentration at inflow boundary. 

11 - 20 F10.0 VX Ground-water velocity in x-direction.l 

21 - 30 F10.0 DX Longitudinal dispersion ooeffioient.1 

31 - 40 F10.0 DK First-order solute-decay coefficient.' 

41 - 50 F1O.O XL Length of flow system.' 

51 - 60 F10.0 XSCLP Sealing factor by which x-coordinate values are divided to convert them 
to plotter inches. -----___--------------------------------------------------------------------------------~------------------- 

5 1 - 80 8FlO.O X(I) X-;;zzfinates at which solution will be evaluated (elight values per 
-------_---------------------------------------------------------------------------------------------------- 

6 1 - 60 8FlO.O T(I) TimTn;;lues at which solution will be evaluated (ei6ht values per 

'All units must be consistent. 

Solute concentration at inflow 
boundary (C,) 

=l.O mg/L. Retardation factor (R) =8.31 
Scaled velocity (V’) =0.072 in/h 

Concentrations are calculated for points 0.5 in apart at 
elapsed times of 2.5, 5, 10, 15, and 20 hours. 

In sample problem lb, a solute is removed by linear 
equilibrium adsorption. Additional model variables 
are 

Soil bulk density (pb) =0.047 
lb(mass)/in3 

Porosity (n) =0.45 
Slope of adsorption isotherm (k) =70 in3Ab 

(mass). 

From these values and equations 15 and 16 (substitut- 
ing n for 0), the terms obtained are 

Scaled dispersion coefficient (I)‘) =0.072 in2/h. 

Concentrations are calculated for points 0.5 in apart at 
elapsed times of 20, 50, 100, and 150 hours. 

The input data sets for sample problems la and lb 
are shown in figures 4A and 514; computer plots of 
concentration profiles generated by the program 
FINITE are shown in figures 4B and 5B. Comparison 
of the concentration profiles at 20 hours shows the 
retarding effect of adsorption on solute movement. 

Program output for sample problem la is presented 
in attachment 4. Sample problems la and lb each 
required 3.9 seconds (s) of cen.tral processing unit 
(CPU) time on a Prime model 9955 Mod II. 
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A 
Sample Problem la -- Solute transport in a finite-length 
soil column with a first-type boundary condition at x=0 
Model Parameters: L=12 in, FO.6 in/h, D=0.6 in**l/h 

Kl=O.O per h, CO=l.O mg/L 
WC= 

1 25 05 50 1 
N/L IN/H IN"*2IH PER HOUR INCHES HOURS 

1.0 
E 

0.6 0.0 12.0 1.2 
0.0 
4.0 415 

El 2.0 2.5 

1x*: 6.5 9:o 
k-z 
9:5 

6.0 6.5 
10.0 10.5 

2:5 5.0 10.0 15.0 20.0 

3.0 3.5 
7.0 7.5 

11.0 11.5 

f3 

SampLe ProbLem lo -- Solute transport in o finite-Length 
soil column with o first-type boundary condition at x-0 

FlodeL Parameters: L-12 in, V-O.6 in/h, O-O.6 inxx2/h 
Kl-0.0 per h, CO-l.0 mg/L 

Figure 4.-(A) Sample input data set, and (B) concentration profiles generated by the program 
FINITE for a conservative solute in a finite-length system with first-type source boundary 
condition after 2.5, 5, IO, 15, and 20 hours (sample problem la). 
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A 

B 

Sample Problem lb -- Solute transport in a finite-length 
soil column with a first-type boundary condition at x=0 
Model Parameters: L=12 in, V=O.O72 in/h. D=0.072 in**2/h 

Kl=O.O per h, CO=l.O mg/L 
Solute is subject to linear adsorption 
==== 

1 25 04 50 1 
MG/L IN/H IN**P/H PER HOUR INCHES HOURS 
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Sample Problem lb -- Solute transport in a finite-Length 
soil column with a first-type baundory condition at x-0 

Model Parameters: L-12 in, V-O.072 in/h, D-0.072 inrx2/h 
Kl-0.0 per h, CO-l.0 mg/L 

-I 

OISTRNCE RLONG X-AXIS, IN INCHES 

Figure 5.-(A) Sample input data set, and (B) concentration profiles generated by the program FINITE for 
a solute subject to linear adsorption in a finite-length system with first-type source boundary 
condition after 20, 50, 100, and 150 hours (sample problem lb). 
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a Finite system with third-type source 
boundary condition 

Governing equation 

One-dimensional solute-transport equation: 

E& -$E-,~ 
at ax2 ax 

Boundary conditions: 

VC =VC-DaC 0 ax' x=0 

x=L 

Initial condition: 

c=o, O<x<L at t=O 

Assumptions: 

(48) 

(49) 

(50) 

(51) 

1. 

0 

2. 

3. 
4. 

Fluid is of constant density and viscosity. 
Solute may be subject to first-order chemical trans- 
formation (for a conservative solute, h=O). 
Flow is in x-direction only, and velocity is constant. 
The longitudinal dispersion coefficient (D), which is 
equivalent to D, (eq. 7), is constant. 

Analytical solution 

The solution to equation 48 was first presented by 
Selim and Manse11 (1976). The following equation is 
modified from a form presented in van Genuchten and 
Alves (1982, p. 66-67): 

C(x,t)=C, 

I 
[ 
w+w- w-w2 -E 

2v Bv(u+v) 
exp 

( )I D 

(52) 

where U=dVL+4XD and pi are the roots of the 
equation 

p cot pm+vL_o 
VL 4D ’ (53) 

For a solute that is not subject to first-order chem- 
ical transformation (X=0), equation 52 can be simpli- 
tied (Gershon and Nir, 1969, p. 837; van Genuchten 
and Alves, 1982, p. 13) as 

C(x,t)=C, 1 VL vx v2t 
l-2pxp 2D-m [ 1 

(54) 

For large values of time (steady-state solution), 
equation 52 can be reduced (van Genuchten and Alves, 
1982, p. 59) to 

C(x)=C, 

{ 

exp~~]+~~~~~cxp[(~)-~] .(55) 

[ 
(u+v) (u-v)2 - -2wJ+V~ex4-~l 2v I 

Comments: 

The roots of equation 53 can be found by standard 
root-search techniques. An iterative technique using 
Newton’s second-order correction method was 
described in the preceding section. 

Linear equilibrium adsorption and ion exchange can 
be simulated by first dividing the coefficients D and V 
by the retardation factor, R (eq. 15). (Note: U in eqs. 
52 and 55 would be given by U=dV*+4XD*). Tempo- 
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ral variations in source concentration can be simulated 
through the principle of superposition (eq. 39). 

Description of program FINITE 

The analytical solution to the one-dimensional 
solute-transport equation for a finite system with a 
third-type (or first-type) source boundary condition at 
the inflow end is computed by the program FINITE, 
described in detail in the preceding section. The main 
program reads and prints all input data needed to 
specify model variables. The required input data and 
the format used in preparing a data file are shown in 
table 1. 

The main program then calls subroutine ROOT3 to 
compute the positive roots of equation 53 when a 
third-type source boundary condition is specified, and 
executes a set of nested loops. The inner loop calls 
subroutine CNRML3 to calculate the concentration 
for a particular time value and distance; the outer loop 
cycles through all specified time values and prints a 
table of concentration in relation to distance for each 
time value. Graphs of concentration in relation to 
distance can also be plotted. 

Subroutines ROOT3 and CNRML3 

Subroutine ROOT3 calculates the roots of the equa- 
tion a-cot(a)-b*a’+c=O. The procedure followed is 
similar to that for subroutine ROOT1 (described in the 
preceding section), with ~12 as an initial estimate for 
the first root. 

Subroutine CNRMLS calculates the normalized con- 
centration (C/C,) for a particular time value and 
distance value, using equation 52 for a solute subject 
to first-order chemical transformation and equation 54 
if the solute is conservative (X=0). The number of 
terms taken in the infinite series summation is speci- 
fied in the input data. 

Sample problem 2 

In sample problem 2, the solute introduced into the 
soil column is assumed to be conservative. Model 
variables are identical to those in sample problem la 
and are 

Velocity (V) =0.6 in/h 
Longitudinal dispersion (D) =0.6 in21h 
System length (L) =12 in 
Solute concentration opposite =l.O mg/L. 

inflow boundary (C,) 

Concentrations are calculated for points 0.5 in apart at 
elapsed times of 2.5, 5, 10, 15, and 20 hours. 

The input data set for sample problem 2 is shown in 
figure 6A; a computer plot of concentration profiles 
generated by the program FINITE is shown in figure 
6B. Output for this sample problem is presented in 

attachment 4. Sample problem 2 required 4.3 s of CPU 
time on a Prime model 9955 Mod II. 

Comparison of figures 4B and 6B shows that the 
principal difference between the solutions for a first- 
type and a third-type source boundary condition is 
reflected in the solute concentrations near the inflow 
boundary at early times. As mentioned previously, 
these differences decrease with decreasing values for 
the quantity D/V. 

Semi-infinite system with first-type 
source boundary condition 

Governing equation 

One-dimensional solute-transport equation: 

Boundary conditions: 

c=c,, 2;=0 

c ac,() 
tax 7 >; = cc 

Initial condition: 

c=o, o<x<a at t=O 

Assumptions: 

1. Fluid is of constant density and viscosity. -. 

(57) 

(5% 

l (59) ’ 

2. Solute may be subject to first-order chemical trans- 
formation (for a conservative solute, X=0). 

3. Flow is in x-direction only, and velocity is constant. 
4. The longitudinal dispersion coefficient (D), which is 

equivalent to D, (eq. 7), is constant. 

(56) 

Analytical solution 

The following equation was modified from Bear 
(1972, p. 630) and van Genuchten and Alves (1982, 
p. 60): 

+exp[&(V+U)]*erfc[ ;$I}, 030) 

where U=dV”+4h.D. 

The analytical solution for a solute not subject to 
first-order chemical transformation (X=0) was derived 
by Ogata and Banks (1961) as 
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A 

Sample Problem 2 -- Solute transport in a finite-length 
soil column with a third-type boundary condition at x=0 
Model Parameters: L=12 in, V=O.6 in/h, D=0.6 in**2/h 

Kl=O.O per h, CO=l.O mg/L 
- 
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igure 6.-(A) Sample input data set, and (B) concentration profiles generated by the program 
FINITE for a conservative solute in a finite-length system with third-type source boundary 
condition after 2.5, 5, 10, 15, and 20 hours (sample problem 2). 
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C,x,t,=$‘{erfc[~]+exp[#erfc[$]}. (61) 

For large values of time (steady-state solution), 
equation 60 reduces (modified from Bear, 1972, p. 631) 
to 

C(x)=C, exp &(V-U) [ 1 6% 

Comments: 

Equations 60 and 61 are presented in this form to 
utilize computer routines that accurately compute the 
product of an exponential term (exp [xl) and the 
complementary error function (denoted as erfc [y]). 

Linear equilibrium adsorption and ion exchange can 
be simulated by first dividing the coefficients D and V 
by the retardation factor, R (eq. 15). (Note: U in eqs. 
60 and 62 would be given by U=dV*+4XD*). Tempo- 
ral variations in source concentration can be simulated 
through the principle of superposition (eq. 39). 

Description of program SEMINF 

The program SEMINF computes the analytical 
solution to the one-dimensional solute-transport equa- 
tion for a semi-infinite system with a first-type or 
third-type source boundary condition at the inflow 
end. It consists of a main program and two 
subroutines-CNRMLl and CNRML3. The function 
of the main program and subroutine CNRMLl are 
outlined below; the program code listing is presented 
in attachment 2. Subroutine CNRML3, called when a 
third-type boundary condition is specified, is 
described in a subsequent section. 

The program also calls the subroutine EXERFC 
and the output subroutines TITLE, OFILE, and 
PLOTlD, which are common to most programs 
described in this report. These subroutines are 
described in detail later. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 2. 

The program next executes a set of nested loops. 
The inner loop calls subroutine CNRMLl to calculate 
the concentration for a particular time value and 
distance. The outer loop cycles through all specified 
time values and prints a table of concentration in 
relation to distance for each time value. Graphs of 
concentration in relation to distance can also be 
plotted. 

Subroutine CNRMLl 

Subroutine CNRMLl calculates the normalized con- 
centration (C/C,) for a particular time value and 
distance, using equation 60 for a solute subject to 
first-order chemical transformation and equation 61 if 
the solute is conservative (h=O). 

Sample problems 3a and 3b 

Two sample problems are presented. In sample 
problem 3a, a conservative solute is introduced into a 
long soil column. The system is idealized as being 
semi-infinite in length, with model variables as 

Velocity (V) =0.6 in/h 
Longitudinal dispersion (D) =0.6 in”/h 
Solute concentration at inflow =l.O mg/L. 

boundary (C,) 

Concentrations are calculated for points 0.5 in apart at 
elapsed times of 2.5, 5, 10, 15, and 20 hours. 

In sample problem 3b, solute is removed by both 
first-order solute decay and linear equilibrium adsorp- 
tion. Additional model variables are 

Solute half-life (T1,, ) =7.6 days 
Soil bulk density (pJ =0.047 

lb(mass)/in3 
Porosity (n) =0.45 
Slope of adsorption isotherm (k) =70 in3/lb 

(mass). 

From these values, the following terms are obtained 
using equations 15 and 25: 

Decay constant (X) =0.0038 per 
hour 

Retardation factor (R) =8.31 
Scaled velocity (V*) =0.072 in/h 
Scaled dispersion coefficient (D”) =0.072 in2/h. 

Concentrations are calculated for points 0.5 in apart at 
elapsed times of 20, 50, 100, and 150 hours. 

Input data sets for sample problems 3a and 3b are 
shown in figures 7A and 8A; computer plots of con- 
centration profiles generated by the program SEM- 
INF are also shown. Output for sample problem 3a is 
presented in attachment 4. Sample problems 3a and 3b 
each required 3 s of CPU time on a Prime model 9955 
Mod II. 

Comparison of the concentration profiles at 20 hours 
in each plot (figs. 7B and 8B) shows the effect of both 
solute decay and adsorption on solute movement. 
Comparison of figures 7B and 48 shows the difference 
in concentration profiles that would result if the 
solution for a semi-infinite syst,em were used to sim- 
ulate transport in a finite system. The most significant 
difference is the lower solute concentrations and the 

- 
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Table 2 .-Input data format for the program SEMINF 

Data VEUiable 
set Columns Format name DescriDtion 

1 1 - 60 A60 TITLE Data to be printed in a title box on first page of program output. 
Last line in data set must have an *=" in colucm 1. First four lines 
are also used as title for plot. ________________--________c_____________-------------------------------------------------------------------- 

2 l-4 14 NBC Boundary condition type (NBC - 1 for first-type boundary condition; 
NBC - 3 for third-type boundary condition). 

5-6 14 Nx t&saber of r-coordinates at which solution will be evaluated. 

0 - 12 14 NT Xumber of time values at which solution will be evaluated. 

13 - 16 14 IPLT Plot control variable. Concentration profiles will be plotted if IPLT 
is greater than 0. ________________________________________-------------------------------------------------------------------- 

3 1 - 10 A10 CUXITS Character variable used as label for units of concentration in program 
output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUXITS Units of dispersion coefficient. 

31 - 40 A10 XUNITS Units of solute-decay coefficient. 

41 - 50 A10 LUXITS Units of length. 

51 - 60 A10 TUXITS Units of time. --____---------_--__---------------------------------------------------------------------------------------- 
4 1 - 10 F10.0 co Solute concentration at inflow boundary. 

11 - 20 P10.0 vx Ground-water velocity in x-direction-l 

21 - 30 F10.0 DX Longitudinal dispersion coefficient.' 

31 - 40 F1O.O DK First-order solute decay coefficient.' 

41 - 50 F10.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them 
to plotter inches. ______----______--__---------------------------------------------------------------------------------------- 

5 1 - 00 6FlO.O X(I) X-~;;.inates at which solution will be evaluated (eight values per 
. ------------------__---------------------------------------------------------------------------------------- 

6 1 - 60 6FlO.O T(I) Time values at which solution will be evaluated (eight values per 
line). 

'All units must be consistent. 

steeper gradients near x=12.0 in (fig. 7B). As men- 
tioned previously, differences between the two solu- 
tions decrease with increased column Peclet number 
(P) and lower values for the number of displaced pore 
volumes (T). 

Semi-infinite system with third-type 
source boundary condition 

Governing equation 

One-dimensional solute-transport equation: 

Boundary conditions: 

VC,=VC+Dg, x=0 

(63) 

C 
aC 

, dx=o, x=cc 

Irzitial condition: 

c=o, o<x<m at t=O 

6’3 

(66) 

Assumptions: 

1. Fluid is of constant density and viscosity. 
2. Solute may be subject to first-order chemical trans- 

formation (for a conservative solute, h=O). 
3. Flow is in x-direction only, and velocity is constant. 
4. The longitudinal dispersion coefficient (D), which is 

equivalent to D, (eq. 7), is constant. 

Analytical solution 

The following equation is modified from Cleary and 
Ungs (1978, p. 10): 
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A 
Sample Problem 3a -- Solute transport in a semi-infinite 
soil column with a first-type boundary condition at x=0 
Model Parameters: V=O.E in/h, D=0.6 in**2/h 

Kl=O.O per h, CO=l.O mg/L 

I MG 
1 25 05 1 

.--IL IN/H IN**2/H PER HOUR INCHES HOURS 
1.0 

i:; 
0.6 0.0 

0.0 1.0 1.5 ;.i 
2: 

12:o 

ii:: Co" i:z 10.0 6:0 
2.5 3.0 3.5 

1::: 1;:: 11.5 7.5 

2.5 5.0 10.0 15.0 20.0 

Sample Problem 30 -- Solute transport in o semi-infinite 
s0i.L column with o first-type boundory condition ot x-0 

ModeL Parameters: V-O.6 in/h, D-O.6 inHr2/h 
Kl-0.0 per h, CO-l.0 mg/L 

Figure 7.-(A) Sample input data set, and (B) concentration profiles generated by the program SEMINF 
for a conservative solute in a semi-infinite system with first-type source boundary condition after 
2.5, 5, 10, 15, and 20 hours (sample problem 3a). 
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A 
Sample Problem 3b -- Solute transport in a semi-infinite 
soil column with a first-type boundary condition at x=0 
Model Parameters: V=O.O72 in/h, D=0.072 in**2/h 

K1=0.0038 per h, CO=l.O mg/L 
Solute is subject to first-order decay and linear adsorption 
s== 

1 25 04 1 
m/L IN/H IN**P/A PER HOUR INCHES HOURS 

0':: 0.072 0.5 0.072 1.0 0.0038 2; 2.5 

12:o 2: 4.5 8.5 ;:: :*ii 9:5 8:0 8.5 10.0 10.5 

20.0 50.0 100.0 150.0 

Sample Problem 3b -- Solute transport in o semi-infinite 
soil column with a first-type boundary condition at x-0 

Model Parameters: V-O.072 in/h, O-0.072 innw2/h 
Kl-0.0038 per h, CO-l.0 mg/L 

- - - 0 I.2 2.4 3.6 4.8 6 7.2- L-4 9.c l0.i I2 
DISTRNCE ALONG X-RXIS, IN INCHES 

Figure 8.-(A) Sample input data set, and (B) concentration profiles generated by the program SEMINF 
for a solute subject to first-order decay and linear equilibrium adsorption in a semi-infinite system 
with first-type source boundary condition after 20, 50, 100, and 150 hours (sample problem 3b). 
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ax,t>= 4hD q2 exppg-At].erf~[~] 

-(++l)exp[&,V+U)]*erfc[~]}, (67) 

where 

U=@+4hD. 

For a conservative solute (h=O), the solution to 
equation 63 is given by Lindstrom and others (1967) 
and van Genuchten and Alves (1982, p. 10) as 

C(x,t)=C,(ierfc[s]+ $exp[ -e] 

-i[ I+$+g]expg)*erfc[s]). (68) 

For large values of time (steady-state solution), 
equation 67 can be reduced (Gershon and Nir, 1969, p. 
837) to 

C(x)=C,(v+U)*exp 2D 2v [x,,-U)]. (69) 

Comments: 

Equations 67 and 68 are presented in this form to 
utilize computer routines that compute the product of 
an exponential term and the complementary error 
function. For extremely small values of X, calculations 
of concentration values using equation 67 may be 
subject to round-off errors as both the denominator in 
the first term and the terms within the bracket 
approach zero. 

Linear equilibrium adsorption can be simulated by 
dividing the coefficients D and V by the retardation 
factor, R (eq. 15). Temporal variations in source 
concentration can be simulated through the principle 
of superposition (eq. 39). 

Description of program SEMINF 

The analytical solution to the one-dimensional 
solute-transport equation for a semi-infinite system 
with a third-type (or first-type) source boundary con- 
dition is computed by the program SEMINF, 
described in detail in the preceding section. The main 
program reads and prints all input data needed to 

specify model variables. The required input data and 
the format used in preparing a data file are shown in 
table 2. 

The program next executes a set of nested loops. 
The inner loop calls subroutine CNRML3 to calculate 
the concentration for a particular time value and 
distance. The outer loop cycles through all specified 
time values and prints a table of concentration in 
relation to distance for each time value. Graphs 
of concentration in relation to distance can also be 
plotted. 

Subroutine CNRML3 

Subroutine CNRML3 calculates the normalized con- 
centration (C/C,> for a particular time value and 
distance, using equation 67 for a solute subject to 
first-order chemical transformation and equation 68 if 
the solute is conservative (X=0). 

Sample problem 4 

In sample problem 4, a conservative solute is intro- 
duced into a long soil column. The system is idealized 
as being semi-infinite in length, with model variables 
as 

Velocity (V) 
Longitudinal dispersion (D) 
Solute concentration opposite inflow 

=0.6 in/h 
=0.6 in2/h 

boundary (C,) =l.O mg/L. 

Concentrations are calculated for points spaced 0.5 in 
apart at elapsed times of 2.5, 5, 10, 15, and 20 hours. 

The input data set for sample problem 4 is shown in 
figure 9A; a computer plot of concentration profiles 
generated by the program SEM INF is shown in figure 
9B. Because of the third-type boundary condition, 
solute concentration computed near x=0 at early 
times differs from C,. 

Program output for this sample problem is pre- 
sented in attachment 4. Sample problem 4 required 
3.6 s of CPU time on a Prime model 9955 Mod II. 

Two-Dimensional Solute 
Transport 

Several analytical solutions are available for the 
two-dimensional form of the solute-transport equation 
(eq. 10). These solutions can be used to simulate 
transport of contaminants from sources within rela- 
tively thin aquifers, provided t.he solute is generally 
well mixed throughout the thickness of the aquifer and 
vertical concentration gradients are negligible. Trans- 
port of contaminants within a vertical section along 
the centerline of a contaminant plume in a thick 
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B 

Sample Problem 4 -- Solute transport in a semi-infinite 
soil column with a third-type boundary condition at x=0 
Model Parameters: V=O.6 in/h, D=0.6 in**Z/h 

Kl=O.O per h, CO=l.O mg/L 
==c= 
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Figure 9.-(A) Sample input data set, and (B) concentration profiles generated by the program SEMINF 
for a conservative solute in a semi-infinite system with third-type source boundary condition after 
2.5, 5, IO, 15, and 20 hours (sample problem 4). 
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aquifer can be simulated with these solutions if the 
solute source is wide enough that horizontal concen- 
tration gradients, which cause solute movement per- 
pendicular to the centerline, are negligible. 

In the first solution presented, the aquifer is 
assumed to be of infinite area1 extent and to have a 
continuous point source in the x,y plane (equivalent to 
a line source extending the entire thickness of the 
aquifer). Fluid having a known solute concentration is 
injected into the aquifer at a constant rate. It is 
further assumed that the injection rate is small, and 
that the uniform flowfield around the well is not 
disturbed. Solutions in which radial flow away from an 
injection well is considered are discussed by Hseih 
(1986). A solution for an area1 source where solute 
enters the aquifer at a known flux and concentration is 
given by Code11 and others (1982). 

For the remaining solutions presented in this sec- 
tion, aquifers are assumed to be of semi-infinite length 
and to have a solute source at the inflow boundary (at 
x=0). The width of the aquifer can be treated as being 
finite or infinite in extent. In an infinite-width system, 
impermeable boundaries at the edges of the aquifer 
are presumed to be far enough away as to have a 
negligible effect on solute distribution within the area 
of interest. Idealized diagrams of both types of sys- 
tems are shown in figure 10. 

One type of source configuration, referred to as a 
“strip” source (Clear-y and Ungs, 1978), has a finite 
width extending from y=Y, to y=Y, at x=0 (fig. 10). 
The concentration within the strip is uniform and 
equal to C,. At the boundary of the strip source (at 
y=Y, or y=Y,), th e concentration is equal to 0.5 C,. 
Elsewhere along the inflow boundary, the concentra- 
tion is zero. Combinations of strip sources could be 
used to simulate odd-shaped concentration distribu- 
tions or multiple sources through use of the principle 
of superposition, as previously described. 

A solute source can also have a “gaussian” concen- 
tration distribution (Cleary and Ungs, 19’78, p. 80) 
given by 

[ 1 -(y-Y,>2 
C=C,exp 2a2 , x=0, (70) 

where 
C, =maximum concentration at center of gaussian 

concentration distribution, 
Y, =y-coordinate of center of solute source (X,=0), 

and 
(T =standard deviation of the gaussian distribu- 

tion. 
A field situation in which a gaussian distribution can 

be found is shown in figure 11. The solute concentra- 
tion at the waste-disposal pond is unknown, but a line 
of monitoring wells downgradient from the site and 

normal to the direction of flow s,hows a concentration 
distribution that approximates a gaussian curve. (This 
is expected, as the concentration distribution along a 
cross section normal to the direction of flow taken at 
any point downgradient from an ideal point source 
would be gaussian.) The standard deviation of the 
distribution can be determined from the data as 

(Y-Y,) z!rZZzZ 
“d-2 ln(C/C,)’ (71) 

where C is the concentration observed at a well a 
distance (y-Y,> away from the point of maximum 
concentration. 

Solving equation 71 may lead to differing values of u 
if the observed data are not perfectly gaussian. An 
alternative procedure (R.M. Clear-y, Princeton Uni- 
versity, written commun., 1978) is to (1) normalize the 
data by dividing the observed concentrations by C,, 
(2) plot a histogram of the normalized concentration 
with respect to y, and (3) calculate the area under the 
curve. The standard deviation can be approximated by - 
a=area/V2n. A sample problem illustrating the use of 
both methods is presented later. 

This section presents analytical solutions for an 
l Aquifer of infinite area1 extent with a continuous 

point source, when fluid is injected at a constant 
rate and concentration, 

l Semi-infinite aquifer of finite width with a strip 
source, 

l Semi-infinite aquifer of infinite width with a strip 
source, and 

l Semi-infinite aquifer of infinite width with a gaus- 
sian source. 

All solutions can account for first-order solute decay. 
Four computer programs (POINT2, STRIPF, 
STRIP1 and GAUSS) were written to calculate con- 
centrations in these systems as a function of distance 
and elapsed time. 

Aquifer of infinite areal extent with 
continuous poinit source 

Governing equidion 

The analytical solution for a continuous point source 
has been presented by several authors, including Bear 
(1972, 1979), Fried (1975, p. 132), and Wilson and 
Miller (1978). The solution is derived by first solving 
the solute-transport equation for an instunt!neous 
point source and then integrating the solution over 
time. The two-dimensional solute-transport equation 
for an instantaneous point source is given by 

- 
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dC --&=Dx~+Dy~-v~-Ac 
3 Q' C,exp [ 1 w-x,> 

c(x,Y>= 
2Dx 

Q' +-$ C$(x-X,>S(y-Y&t-t’) (72) 

Boundary conditions: 

c !a() 
‘ax ’ 

x= +aJ 

c aCz() 
‘ay ’ y= +w, 

where 
V =V,, velocity in x-direction, 
Q’ =fluid injection rate per unit thickness of aqui- 

fer, 
n =aquifer porosity, 

dt =infinitesimal time interval, 
S =dirac delta (impulse) function, 

X,,Y,=x- and y-coordinates of point source, and 
t’ =instant at which point source activates 

(assumed to be 0). 

Initial condition: 

c=o, --co< y<+m and --co<x<+~ at t=O (75) 

Assumptions: 

1. Fluid is of constant density and viscosity. 
2. Solute may be subject to first-order chemical trans- 

formation (for a conservative solute, h=O). 
3. Flow is in x-direction only, and velocity is constant 

(no radial flow). 
4. The longitudinal and transverse dispersion coeffi- 

cients (D, and DJ are constant. 

Analytical solution 

The following equation, modified from Bear (1979, 
p. 274)) represents the analytical solution for an 
instantaneous point source integrated with respect to 
time, such that 

C(x,y,t)= CoQ' oxp[ “(;; y Ii,‘; 
4nrdD,D, 

1 dT,(W 

where T is a dummy variable of integration for the 
time integral. 

The steady-state solution is given (modified from 
Bear, 1979, p. 274) as 

ZnndD,D, 

Kl\}, (77) 

where K, is the modified Bessel function of second 
kind and zero order. Tables of values and polynomial 
approximations for K,(x) are given by Abramowitz 
and Stegun (1964, p. 37, p. 417422). 

Comments: 

The integral in equation 76 cannot be simplified 
further and must, therefore, be evaluated numeri- 
cally. A Gauss-Legendre numerical integration tech- 
nique, used in the computer program written to 
evaluate the analytical solution (eq. 76)) is described 
later. 

The integral in equation 76 is difficult to evaluate 
correctly at x and y values near the point source. 
(Mathematically, when (x-X,> and (y-Y,> approach 
zero, the integral in eq. 76 becomes a form of the 
exponential integral, E,(t), which becomes infinite at 
t=O; see Abramowitz and Stegun, 1964, p. 228.) 
Farther away from the point source, generally when 
(x-XJ2 is larger than V2, a meaningful solution can be 
obtained. 

Linear equilibrium adsorption and ion exchange can 
be simulated by first dividing Q’ and the coefficients 
D,, D,, and V by the retardation factor, R (eq. 15). 
Temporal variations in source concentration or multi- 
ple sources can be simulated through the principle of 
superposition. 

Description of program POINT2 

The program POINT2 computes the analytical solu- 
tion to the two-dimensional solute-transport equation 
for an aquifer of infinite area1 extent with a continuous 
point source. It consists of a main program and the 
subroutine CNRMLB. The functions of the main pro- 
gram and subroutine are outlined below; the program 
code listing is presented in attachment 2. 

The program also calls subroutine GLQPTS and the 
output subroutines TITLE, OFILE, PLOT2D, and 
CNTOUR, which are common to most programs 
described in this report. These subroutines are 
described in detail later. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
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Figure IO.-(A) Plan view and vertical section of idealized two-dimensional solute transport in an aquifer of 
semi-infinite length and finite width, and (B) plan view of idealized two-dimensional solute transport in an aquifer 
of semi-infinite length and infinite width. 
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Figure Il.-(A) Plan view of a semi-infinite aquifer of infinite width showing location of waste-disposal pond and 
monitoring wells, and graph of (B) observed solute concentration values and gaussian curve used to 
approximate concentration distribution at x=0. 
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Table 3.-Input data format for the program POINT2 

Data Variable 
set c01Lmms Format name Descriotion 

1 1 - 60 A60 TITLE Data to be printed in a title box on the first page of program output. 
Last line in data set must have an *a" in column 1. First four lines 
are also used as title for plot. ------------------------------------------------------------------------------------------------------------ 

2 l- 4 14 Nx Number of x-coordinates at which solution will be evaluated. 

5- 8 14 NY Number of y-coordinates at which solution will be evaluated. 

9-12 14 NT Number of time values at which solution will be evaluated. 

13 - 16 14 NMAX Number of terms used in the numerical integration technique (must be 
equal to 4, 20, 60, 104, or 2561. 

17 - 20 14 IPLT Plot control variable. Contours of normalized concentration will be 
plotted if IPLT is greater than 0. ----------------------------------------------------------------------------------------~------------------- 

3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 
output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUNITS Units of dispersion coefficient. 

31 - 40 A10 KUNITS Units of solute-decay coefficient. 

41 - 50 A10 LIMITS Units of length. 

51 - 60 A10 TUNITS Units of time. __________________----------------------------------------------------------------------~------------------- 
4 1 - 10 F1O.O CO Solute concentration in injected fluid. 

11 - 20 F10.0 vx Ground-water velocity in x-direction. 

21 - 30 F10.0 DX Longitudinal dispersion coefficient. 

31 - 40 F10.0 DY Transverse dispersion coefficient. 

41 - 50 F1O.O DK First-order solute-decay coefficient. 
-------------------------------------------------------------------------------------------------------~---- 

5 1 - 10 F1O.O xc X-coordinate of point source. 

11 - 20 F10.0 YC Y-coordinate of point source. 

21 - 30 P10.0 w Fluid injection rate per unit thiclcness of aquifer'. 

31 - 40 F1O.O KIN Aquifer porosity. -----------------------------------------------------------------------------------------~------------------ 
6 1 - 80 8FlO.O X(I) X-coordinates at which solution will be evaluated (eight values per 

line). 
-----------------------------------------------------------------------------------------~------------------ 

7 1 - 80 8FlO.O Y(I) Y-zcofinates at which solution will be evaluated (eight values per 
-----------------------------------------------------------------------------------------~------------------ 

8 1 - 60 8FlO.O T(I) Tim;n;lues at which solution will be evaluated (eight values per 
------------------------------------------------------------------------------------------.------------------ 
29 1 - 10 F1O.O XSCLP Scaling factor by which x-coordinate values are divided to convert them 

to plotter inches. 

11 - 20 F10.0 YSCLP Scaling factor used to convert y-coordinates into plotter inches. 

21 - 30 F10.0 DELTA Contour increment for plot of normalized concentration (must be between 
0.0 and 1.0). 

'For the solution to be consistent, units of QM must be identical to those of the dispersion coefficients. 

'Data line is needed only if IPLT (in data set 2) is greater than 0. 

data and the format used in preparing a data file are The program next executes a set of three nested 
shown in table 3. The routine then calls the subroutine loops. The inner loop calls subroutine CNRMLB to 
GLQPTS, which reads the data file GLQ.PTS contain- calculate the concentration at all specified y- 
ing values of the positive roots and weighting func- coordinate values for a particular x-coordinate value 
tions used in the Gauss-Legendre numerical integra- and time. The middle loop cycles through all x- 
tion technique. coordinate values. The outer loop cycles through all 
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specified time values and prints a table of concentra- 
tions in relation to distance for each time value. Model 
output can also be plotted as a series of maps showing 
lines of equal solute concentration. 

Subroutine CNRMLZ 

Subroutine CNRMLZ calculates the normalized con- 
centration (C/C,) for a particular time value and 
distance. The integral in equation 76 is evaluated 
through a Gauss-Legendre numerical integration 
technique. The Gauss integration formula used is 
given by Abramowitz and Stegun (1964) as 

where 

I1 f(x)dx=~wi l f(zi), 
-1 i=l 

(78) 

n =order of Legendre polynomial, 
wi =weighting functions, 

f(z,) =value of integrand calculated with variable of 
integration equal to zi, and 

zi =roots of nth order polynomial. 
The normalized roots of the Legendre polynomial and 
the corresponding weighting functions are passed by 
subroutine GLQPTS and scaled in the subroutine to 
account for the non-normalized limits of integration 
(from 0 to t rather than from - 1 to + 1). 

The number of terms summed in the numerical 
integration (equivalent to the order of the polynomial) 
is specified by the user. Roots of the Legendre poly- 
nomial of order 4, 20, 60, 104, and 256 (from data in 
Cleary and Ungs, 1978) are provided in data file 
GLQ.PTS. In general, the more terms used in the 
integration, the more accurate the approximation; 
however, this must be weighed against the corre- 
sponding increase in computational effort and time. 
Additional discussions of the numerical integration 
technique are presented in a later section describing 
subroutine GLQPTS. 

Sample problem 5 

In sample problem 5, an abandoned borehole that 
penetrates a brackish artesian formation is discharg- 
ing into an overlying freshwater aquifer. Model vari- 
ables are 

Aquifer thickness =lOO ft 
Discharge rate = 1,250 ft3/d 
Ground-water velocity (V) =2 ftld 
Longitudinal dispersivity (a,) =30 ft 
Transverse dispersivity (aUt> =6 ft 
Source concentration (C,) =l,OOO mg/L 
Point-source location (X,,Y,> =o, 500 ft 
Aquifer porosity (n) =0.25. 

From these values, the terms obtained are 
Discharge rate per unit thickness 
of aquifer (Q’) = 12.5 ft2/d 

Coefficient of longitudinal 
dispersion (D,) =60 ft21d 

Coefficient of transverse 
dispersion (D,) =12 ft2/d. 

Concentrations are calculated at lo-ft intervals along 
the x-axis from x= -60 ft to x=200 ft, and at 5-ft 
intervals along the y-axis from y=450 ft to y=550 ft. 
Chloride concentration distribution after 25 days and 
100 days is simulated. 

The input data set for sample problem 5 is shown in 
figure 12A. A computer-generated contour plot of 
normalized concentrations (C/C,> at both time values 
is shown in figure 12B. Program output for this 
sample problem is presented in attachment 4. Sample 
problem 5 required 9 s of CPU time on a Prime model 
9955 Mod II. 

Aquifer of finite width with 
finite-width solute source 

Governing equation 

Two-dimensional solute-transport equation: 

ac a2c 
dt- - Dx -+D,F-V $hC dX2 f 

(79) 

Boundary conditions: 

c=c,, x=0 and Y,< y<Y, 

c=o, x=0 and y<Y, or y>Y, (80b) 

c aC=, 
pay 7 y=o 

c !a() 
)ay 9 y=w 

c aC,o 
'ax 9 

x=cn 

where 
V =velocity in x-direction, 

(81) 

(82) 

(83) 

Y, = y-coordinate of lower limit of solute source at 
x=0 

Y, =y-coordinate of upper limit of solute source at 
x=0, and 

W =aquifer width. 
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Initial condition: Description of program STRIPF 

c=o, O<x<m and O<y<W at t=O (84 

Assumptions: 

1. Fluid is of constant density and viscosity. 
2. Solute may be subject to first-order chemical trans- 

formation (for a conservative solute, h=O). 
3. Flow is in x-direction only, and velocity is constant. 
4. The longitudinal and transverse dispersion coeffi- 

cients (D,, DJ are constant. 

The program STRIPF computes the analytical solu- 
tion to the two-dimensional solute-transport equation 
for an aquifer of finite width with a finite-width or 
“strip” solute source at the inflow boundary. It con- 
sists of a main program and subroutine CNRMLF. 
The functions of the main program and subroutine are 
outlined below; the program code listing is presented 
in attachment 2. 

Analytical solution 

The following equation is modified from Hewson 

The program also calls the subroutine EXERFC 
and the output subroutines TITLE, OFILE, 
PLOTBD, and CNTOUR, which are common to most 
programs described in this report. These subroutines 
are described in detail later. 

(1976): 

C(x,y,t)=C,CL,P, cos (qy) 
n=O 

l [ exp pp]erfc[ *] 

+exp[p]erfc[ s]] 

where 

1 
l/2, n=O 

L= 1 , n>O 

y2-Yl n=O 

p,= W 

i 

[sin (qY,)-sin (qydl 00 
n7r , 

q=n7FlW, n=0,1,2,3. . . 

p=~V2+4D,(neD,+h) 

Comments: 

(85) 

Terms in the infinite series in equation 85 tend to 
oscillate, and the series converges slowly for small 
values of x; thus, a large number of terms may be 
needed to ensure convergence. A good initial estimate 
is 100 terms. For larger values of x, the series 
converges more quickly. 

The solution can yield results with either D, or X=0. 
Linear equilibrium adsorption and ion exchange can 
be simulated by first dividing the coefficients D,, D,, 
and V by the retardation factor, R (eq. 15). Temporal 
variations in solute concentration and odd-shaped 
source configurations can be simulated through the 
principle of superposition. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 4. 

The program next executes a set of three nested 
loops. The inner loop calls subroutine CNRMLF 
to calculate the concentration at all specified y- 
coordinate values for a particular x-coordinate value 
and time. The middle loop cycles through all x- 
coordinate values. The outer loop cycles through all 
specified time values and prints a table of concentra- 
tion in relation to distance for each time. Model output 
can also be plotted as a map showing lines of equal 
solute concentration. 

Subroutine CNRMLF 

Subroutine CNRMLF calculates the normalized 
concentration (C/C,) for a particular time value and 
distance using equation 85. The maximum number of 
terms in the infinite series summation is specified by 
the user. Because terms in the series tend to oscillate, 
a subtotal of the last 10 terms is kept, and when the 
subtotal is less than a convergence criterion set at 
1 x 10-12, the series summation is halted. If the series 
does not converge after the specified maximum num- 
ber of terms are taken, a warning message is printed 
on the program output. 

Sample problem 6 

In sample problem 6, migration of chloride ion in 
landfill leachate through a narrow, relatively thin, 
valley-fill aquifer is simulated. Model variables are 

Aquifer width (W) 
Lower limit of solute source (YJ 
Upper limit of solute source (Y2> 
Ground-water velocity (V,) 
Longitudinal dispersivity (01~) 
Transverse dispersivity (at> 

=3,000 ft 
=400 ft 
=2,000 ft 
=l ftld 
=200 ft 
=60 ft 
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Table 4.-Input data format for the program STRIPF 

Data V53Iiable 
set c01lmms Format name Description - 

1 1 - 60 A60 TITLE Data to be printed in a title box on the first page of program output. 
Last line in data set must have au "=ll in colmm 1. First four lines 
are also used as title for plot. --_-_______---------____________________-------------------------------------------------~------------------ 

2 l-4 14 Nx Number of x-coordinates at which solution will be evaluated. 

5-6 I4 NY Number of y-coordinates at which solution will be evaluated. 

9 - 12 14 NT Number of time values at which solution will be evaluated. 

13 - 16 14 NMAX Maximum number of terms used in the infinite series summation. 

17 - 20 14 IPLT Plot control variable. Contours of normalized concentration will be 
plotted if IPLT is greater than 0. ----_______------------------------------------------------------------------------------------------------- 

3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 
output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUNITS Units of dispersion coefficient. 

31 - 40 A10 KUNITS Units of solute-decay coefficient. 

41 - 50 Al0 LUNITS Units of length. 

51 - 60 A10 TUNITS Units of time. ------------------------------------------------------------------------------------------~--------------~-- 
4 1 - 10 F10.0 co Solute concentration at inflow boundary. 

11 - 20 F10.0 vx Ground-water velocity in x-direction. 

21 - 30 F10.0 DX Longitudinal dispersion coefficient. 

31 - 40 F10.0 DY Transverse dispersion coefficient. 

41 - 50 F10.0 DK First-order solute-decay coefficient. ------------------------------------------------------------------------------------------~----------------- 
5 1 - 10 F10.0 W Aquifer width (aquifer extends from y = 0 to y - W). 

11 - 20 F10.0 Yl Y-coordinate of lower limit of finite-width solute source. 

21 - 30 no.0 Y2 Y-coordinate of upper limit of finite-width solute source. 
-----------------------------------------------------------------------------------------~---------------~-- 
6 1 - 60 6FlO.O X(I) X-coordinates at which solution will be evaluated (eight values per 

line). ---________---------____________________--------------------------------------------------~----------------- 
7 1 - 60 6FlO.O Y(I) Y-coordinates at which solution will be evaluated (eight values per 

line). ____________---_________________________-------------------------------------------------------------------- 
6 1 - 60 6FlO.O T(I) Tim;s;;lues at which solution will be evaluated (eight values per 

___________------------------------------------------------------------------------------------------------- 
19 1 - 10 F1O.O XSCLP Scaling factor by which x-coordinate values are divided to convert them 

to plotter inches. 

11 - 20 F1O.O YSCLP Scaling factor used to convert y-coordinates into plotter inches. 

21 - 30 F1O.O DELTA Co;t.;wa!za!~~~t for plot of normalized concentration (must be between 
. . 

'Data line is needed only if IPLT (in data set 2) is greater than 0. 

Source concentration (C,) =l,OOO mg/L. 

From these values, the terms obtained are 

Dispersion in x-direction (D,) =200 fta/d 
Dispersion in y-direction (D,) = 60 ft2/d. 

Concentrations are calculated at 150-ft intervals along 
the x-axis for 4,500 ft, and at 100% intervals along the 
y-axis for 3,000 ft. Chloride concentration distribution 
after 1,500 and 3,000 days is simulated. 

The input data set for sample problem 6 is shown in 
figure 13A. A computer-generated contour plot of 
normalized concentration (C/C,) at each time value is 
shown in figure 13B. The lack of symmetry about the 
centerline of the chloride plume is due to the effect of 
the closer lateral boundary (at y=O). Lines of equal 
concentration are perpendicular to the lateral bound- 
ary, indicating that concentration gradients in the 
y-direction equal zero and, thus, no solute flux occurs 
across the boundary. Program output for this sample 
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problem is presented in attachment 4. Sample prob- 
lem 6 required 52 s of CPU time on a Prime model 
9955 Mod II. 

A 
? 

uifer of infinite width with 
inite-width solute source 

Governing equation 

Two-dimensional solute-transport equation: 

Bou?zdary conditions: 

c=c,, x=0 and Y,<y<Y, 

c=o, x=0 and y<Y, or y>Y, 

(-J aC,() 
pay f y=+c.Q 

(-J aC,(-J 
fax 7 x=w, 

c3f3 

(8%) 

(87b) 

c38) 

(89) 

where 
V =velocity in x-direction, 

Y, =y-coordinate of lower limit of solute source at 
x=0, and 

Y, =y-coordinate of upper limit of solute source at 
x=0. 

Initial condition: 

c=o, O<X<=J and --co<y<+w at t=O (90) 

Assumptions: 

1. 
2. 

3. 
4. 

Fluid is of constant density and viscosity. 
Solute may be subject to first-order chemical trans- 
formation (for a conservative solute, h=O). 
Flow is in x-direction only, and velocity is constant. 
The longitudinal and transverse dispersion coeffi- 
cients (D,, DJ are constant. 

The program STRIP1 computes the analytical solu- 
tion to the two-dimensional solute-transport equation 
for an aquifer of infinite width with a finite-width or 
“strip” solute source at the inflow boundary. It con- 
sists of a main program and the subroutine CNRMLI. 
The functions of the main program and subroutine are 
outlined below; the program code listing is presented 
in attachment 2. 

The program also calls subroutines EXERFC and 
GLQPTS and the output subroutines TITLE, OFILE, 
PLOTZD, and CNTOUR, which are common to most 
programs described in this report. These subroutines 
are described in detail later. 

Analytical solution Main program 

The following equation is modified from Cleary and 
Ungs (1978, p. 17): 

.{erfc[s]-erfc[z]}dT, @la> 

To improve the accuracy of the numerical integration, 
a variable substitution can be made where 7=Z4, 
yielding 

CCx,,N=-& ““I&] .tj$exp[ ~~(-g++--&] 

l [e~c[~]-erfc[$$j+]}& (glb) 
Comments: 

The integral in equation 91b cannot be simplified 
further and must be evaluated numerically. A Gauss- 
Legendre numerical integration technique was used in 
the computer program written to evaluate the analyt- 
ical solution and is described later. Round-off errors 
may still occur when evaluating the solution for very 
small values of x at late times. 

Linear equilibrium adsorption and ion exchange can 
be simulated by dividing the coefficients D,, D,, and V 
by the retardation factor, R (eq. 15). Temporal vari- 
ations in solute concentration and odd-shaped source 
configurations can be simulated through the principle 
of superposition. 

Description of progralm STRIPI 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 5. The routine then calls the subroutine 
GLQPTS, which reads the data file GLQ.PTS contain- 
ing values of the positive roots and weighting func- 
tions used in the Gauss-Legendre numerical integra- 
tion technique. 
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Table 5.-Input data format for the program STRIPI 

Data VEllZiElble 
set Columns Format name DescriDtiOn 

1 1 - 60 A60 TITLE Data to be printed in a title box on the first page of program output. 
Last line in data set must have an W=ll in column 1. First four lines 
are also used as title for plot. 

____________________---------------------------------------------------------------------------------------- 
2 l-4 14 Nx Number of x-coordinates at which solution will be evaluated. 

5-8 14 NY Number of y-coordinates at which solution will be evaluated. 

9-12 14 NT Number of time values at which solution will be evaluated. 

13 - 16 14 NM4x Number of terms used in the numerical integration techniques (must be 
equal to 4, 20. 60. 104, or 2561. 

17 - 20 14 IPLT Plot control variable. Contours of normalized concentration will be 
plotted if IPLT is greater than 0. 

________--___---____------------------------------------------ ________________------------------------------ 
3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 

output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUNITS Units of dispersion coefficient. 

31 - 40 A10 KUNITS Units of solute-decay coefficient. 

41 - 50 A10 LUNITS Units of length. 

51 - 60 A10 TUNITS Units of time. 
__________-_________---------------------------------------------------------------------------------------- 

4 1 - 10 F1O.O co Solute concentration at inflow boundary. 

11 - 20 F10.0 VX Ground-water velocity in x-direction. 

21 - 30 F10.0 DX Longitudinal dispersion coefficient. 

31 - 40 F1O.O DY Transverse dispersion coefficient. 

41 - 50 F1O.O DK First-order solute-decay coefficient. ________--__________----------------------------------------------------------------------------------- ----- 
5 1 - 10 F1O.O Yl Y-coordinate of lower limit of finite-width solute source. 

11 - 20 F10.0 Y2 Y-coordinate of upper limit of finite-width solute source. 
________---_________----------------------------------------------- ----------_________---------------------- 

6 1 - 80 8FlO.O X(11 X-coordinates at which solution will be evaluated (eight values per 
line). 

-----------_______--------------------------------------------- -----------________-------------------------- 
7 1 - 80 8FlO.O Y(I) Y-coordinates at which solution will be evaluated (eight values per 

line). 
____________________---------------------------------------------------------------------------------------- 

8 1 - 80 8FlO.O T(1) Time values at which solution will be evaluated (eight values per 
line). _____________-______---------------------------------- ____________-_______---------------------------------- 

19 1 - 10 F10.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them 
to plotter inches. 

11 - 20 F10.0 YSCLP Scaling factor used to convert y-coordinates into plotter inches. 

21- 30 F10.0 DELTA Contour increment for plot of normalized concentration (must be between 
0.0 and 1.0). 

'Data line is needed only if IPLT (in data set 2) is greater than 0. 

The program next executes a set of three nested 
loops. The inner loop calls subroutine CNRMLI to 
calculate the concentration at all specified y- 
coordinate values for a particular x-coordinate value 
and time. The middle loop cycles through all x- 
coordinate values. The outer loop cycles through all 
specified time values and prints a table of concentra- 
tion in relation to distance for each time. Model output 
can also be plotted as a map showing lines of equal 
solute concentration. 

Subroutine CNRMLI 

Subroutine CNRMLI calculates the normalized con- 
centrations (C/C,,) for a particular time value and 
distance. The integral in equation 91 is evaluated 
through a Gauss-Legendre numerical integration 
technique. The normalized roots of the Legendre 
polynomial and the corresponding weighting functions 
are passed by subroutine GLQPTS and scaled in the 
subroutine to account for the non-normalized limits of 
integration (from 0 to t”4 rather than from - 1 to + 1). 
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The number of terms summed in the numerical 
integration (equivalent to the order of the polynomial) 
is specified by the user. Roots of the Legendre poly- 
nomial of order 4, 20, 60, 104, and 256 are provided in 
data file GLQ.PTS. In general, the more terms used in 
the integration, the more accurate the approximation; 
however, this must be weighed against the corre- 
sponding increase in computational effort and time. 
Additional discussions of the numerical integration 
technique are presented in a later section describing 
subroutine GLQPTS. 

Sample problem 7 

In sample problem ‘7, contaminant migration from a 
waste-disposal pond through the upper glacial aquifer 
of Long Island, N.Y., is simulated. Data are from a 
numerical modeling study by Pinder (1973). Model 
variables are 

Lower limit of solute source (Y1> =635 ft 
Upper limit of solute source (Y.J =865 ft 
Ground-water velocity (V) =1.42 ftld 
Longitudinal dispersivity (0~~) =70 ft 
Transverse dispersivity (OLJ =14 ft 
Source concentration (C,) =40 mg/L. 

Lateral boundaries are far enough from the area of 
interest that the aquifer can be treated as being 
infinite in width. From these values, the terms 
obtained are 

Dispersion in x-direction (D,) =lOO fts/d 
Dispersion in y-direction (D,) = 20 ft’ld. 

Concentrations are calculated at 100~ft intervals along 
the x-axis for 3,000 ft, and at 50-ft intervals on the 
y-axis for 1,500 ft. Concentration distributions after 5 
years (1,826 days) are simulated. 

The input data set for sample problem 7 is shown in 
figure 14A. A computer-generated contour plot of 
normalized concentration (C/C,> is shown in figure 
14B. Program output for this sample problem is 
presented in attachment 4. Sample problem 7 required 
1 min (minute) 25 s of CPU time on a Prime model 
9955 Mod II. 

Aquifer of infinite width with solute 
source having gaussian concentration 

distribution 
Governing equation 

Two-dimensional solute-transport equation: 

(92) 

Bounda y conditions: 

-(Y-y,>2 C=C,exp 2a2 [ I , x=0 (93) 

c aC,() 
'ay 9 y=+oO (94 

c ac,() 
'ax 9 

:<=cc, t (95) 

where 
C, =maximum concentration at center of gaussian 

solute source, 
Y, =y-coordinate of center of solute source at x = 0, 

and 
(T =standard deviation of gaussian distribution. 

Initial condition: 

C=O, O<x<w and -c~yc:+~ at t=O (96) 

Assumptions: 

1. Fluid is of constant density and viscosity. 
2. Solute may be subject to first-order chemical trans- 

formation (for a conservative solute, h=O). 
3. Flow is in x-direction only (V,=O), and velocity is 

constant. 
4. The longitudinal and transverse dispersion coeffi- 

cients (D,, DY) are constant. 

Arralytical solution 

The following equation is 
and others (1980, p. 905): 

modified from Gureghian 

. (97) 
where 

V2 
P’4D,fA 

and 7 is a dummy variable of integration for the time 
integral. 

To improve the accuracy of the numerical integra- 
tion, a variable substitution (modified from Cleary and 
Ungs, 1978, p. 20) can be made where 7=Z4, yielding 
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B 

f 

A 

Sample Problem 7 -- Solute transport in a semi-infinite 
aquifer of infinite width with a continuous ‘strip’ source 
Model Data: V-l.42 ft/d, DX-100.0 ft**2/d, DY-20.0 ft**2/d 

Yl-635 ft, Y2-865 ft, CO-40.0 mg/L 

31 31 1 104 1 
MG/L ET/D FT**2/D PER DAY FEET DAYS 

40.0 1.42 100.0 20.0 0.0 
635.0 865.0 

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 
800.0 900.0 1000.0 1100.0 1200.0 1300.0 1400.0 1500.0 

1600.0 1700.0 1800.0 1900.0 2000.0 2100.0 2200.0 2300,O 
2400.0 2500.0 2600.0 2700.0 2800.0 2900.0 3000.0 

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 
400.0 450.0 500.0 550.0 600.0 650.0 700.0 750.0 
800.0 850.0 900.0 950.0 1000.0 1050.0 1100.0 1150.0 

1200.0 1250.0 1300.0 1350.0 1400.0 1450.0 1500.0 
1826.0 

500. 500. 0.1 

Sam 
aqui P 

Le Problem 7 -- Solute transport in a semi-infinite 
er of infinite width with a continuous ‘strip’ source 

Model Data: V=1.42 ft/d, DX=lOO.O ft%c#2/d, DY=20.0 ft*G/d 
Y1=635 ft, Y2=865 ft, CO=40.0 mg/L 

1 2000 I I I I I 
NORMALIZED CONCENTRATION AT TIME - 1826.DAYS 
CONTOUR INTERVAL - 0.1 C/Co 

H J 

U 0 500 1000 1500 2000 2500 3000 

DISTANCE ALONG X-AXIS, IN FEET 

7gure 74.-(A) Sample input data set, and (B) computer plot of normalized concentration contours generated by the 
program STRIPI for a conservative solute in an aquifer of infinite width with finite-width solute source after 1,826 days 
(sample problem 7). 
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ZC,xa vx 
C(x,y,t)=~~~exp 2~, 

[ I 

q3z4w&k$f dZ 

x 1 . , (98) 
where 

Comments: 

The integral in equation 98 cannot be simplified 
further and must be evaluated numerically. A Gauss- 
Legendre numerical integration technique was used in 
the computer program written to evaluate the analyt- 
ical solution and is described later. 

Linear equilibrium adsorption and ion exchange can 
be simulated by first dividing the coefficients D,, D,, 
and V by the retardation factor, R (eq. 15). Temporal 
variations in solute concentration can be simulated 
through the principle of superposition. 

Description of program GAUSS 

The program GAUSS computes the analytical solu- 
tion to the two-dimensional solute-transport equation 
for an aquifer of infinite width with a solute source 
having a gaussian concentration distribution along the 
inflow boundary. It consists of a main program and the 
subroutine CNRMLG. The functions of the main pro- 
gram and subroutine are outlined below; the program 
code listing is presented in attachment 2. 

The program also calls the subroutine GLQPTS 
and the output subroutines TITLE, OFILE, and 
PLOTBD, which are common to most programs 
described in this report. These subroutines are 
described in detail later. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 6. The routine then calls the subroutine 
GLQPTS, which reads the data file GLQ.PTS contain- 
ing values of the positive roots and weighting func- 
tions used in the Gauss-Legendre numerical integra- 
tion technique. 

The program next executes a set of three nested 
loops. The inner loop calls subroutine CNRMLG 
to calculate the concentration at all specified y- 
coordinate values for a particular x-coordinate value 
and time. The middle loop cycles through all x- 

coordinate values. The outer loop cycles through all 
specified time values and prints a table of concentra- 
tion in relation to distance for each time value. Model 
output can also be plotted as a map showing lines of 
equal solute concentration. 

Subroutine CNRMLC 

Subroutine CNRMLG calculates the normalized 
concentration (C/C,) for a particular time value and 
distance. The integral in equation 98 is evaluated 
through a Gauss-Legendre numerical inte,gration 
technique. The normalized roots of the Legendre 
polynomial and the corresponding weighting functions 
are passed by subroutine GLQPTS and scaled in the 
subroutine to account for the non-normalized limits of 
integration, from 0 to t’” rather than from -1 to +l. 

The number of terms summed in the the numerical 
integration (equivalent to the order of the polynomial) 
is specified by the user. Roots of the Legendre poly- 
nomial of order 4, 20, 60, 104, and 256 are provided in 
data file GLQ.PTS. In general, the more terms used in 
the integration, the more accurate the approximation; 
however, this must be weighed against the corre- 
sponding increase in computational effort and time. 
Additional discussions of the numerical integration 
technique are presented in a later section describing 
subroutine GLQPTS. 

Sample problems 8a and 8b 

Two sample problems are presented. Sample prob- 
lem 8a is modified from an example presented in 
Gureghian and others (1980) for a conservative solute 
uniformly mixed in a thin aquifer of infinite width. 
Model variables are 

Maximum concentration (C,) =l,OOO mg/L 
Standard deviation of gaussian 

distribution (a) =130 ft 
Center of solute source (Y,) =450 ft 
Ground-water velocity (V,) =4 ftkl 
Coefficient of longitudinal 

dispersion (D,) =150 ft2/d 
Coefficient of transverse dispersion 

@,I =30 ft”/d. 
Concentrations are calculated at 50-ft intervals along 
the x-axis for 1,700 ft, and at 25ft intervals on the 
y-axis for 900 ft. The chloride concentration distribu- 
tion after 300 days is simulated. 

Sample problem 8b demonstrates two methods of 
calculating a value for u. Aquifer dimensions, ground- 
water velocity, and dispersion coefficients are the 
same as in problem 8a. Concentrations measured in 
monitoring wells 500 ft downgradient from a waste- 
disposal site are presented in table 7; figure 15 pre- 
sents a plot of the normalized concentration (C/C,> in 
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Table 6.-Input data format for the program GAUSS 

Data VS3dable 
set COlWrmS Format name DescriDtion 

1 1 - 60 A60 TITLE Data to be printed in a title box on the first page of program output. 
Last line in data set must have an "=" in column 1. First four lines 
are also used as title for plot. ______----__________----------------------------------------- ------------____-__---------------------------- 

2 l- 4 14 Nx Number of x-coordinates at which solution will be evaluated. 

5- 6 14 NY Number of y-coordinates at which solution will be evaluated. 

9-12 14 NT Number of time values at which solution will be evaluated. 

13 - 16 14 NnAx Number of terms used in the numerical integration technique (must be 
equal to 4, 20. 60, 104. or 256). 

17 - 20 14 IPLT Plot control variable. Contours of normalized concentration will be 
plotted if IPLT is greater than 0. ________________________________________-------------------------------------------------------------------- 

3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 
output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUNITS Units of dispersion coefficient. 

31 - 40 A10 XUNITS Units of solute-decay coefficient. 

41 - 50 A10 LUNITS Units of length. 

51 - 60 A10 TUNITS Units of time. -__--__----_________---------------------------------------------------------------------------------------- 
4 1 - 10 F1O.O a4 Maximum solute concentration at inflow boundary. 

11 - 20 F10.0 vx Ground-water velocity in x-direction. 

21 - 30 F10.0 DX Longitudinal dispersion coefficient. 

31 - 40 F10.0 DY Transverse dispersion coefficient. 

41 - 50 F1O.O DK First-order solute-decay coefficient. 
----------_------------------------------------------------ ------------_______------------------------------ 

5 1 - 10 F10.0 YC Y-coordinate of center of gaussian-distributed solute source. 

11 - 20 F10.0 ws Standard deviation of gaussian distribution describing solute source. ____________--______------------------------------------ ---_---------____----------------------------------- 
6 1 - 60 6FlO.O X(I) X-coordinates at which solution will be evaluated (eight values per 

line). 
____________--______----------------------------------- ____________________--------------------------------- 

7 1 - 60 8FlO.O Y(I) Y-coordinates at which solution will be evaluated (eight values per 
line). 

_-___---_-__________---------------------------------------- --__--------___-_------------------------------- 
8 1 - 80 8FlO.O T(I) Time values at which solution will be evaluated (eight values per 

line). ___________--_______--------------------------------- __________----______----------------------------------- 
19 1 - 10 F10.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them 

to plotter inches. 

11 - 20 F10.0 YSCLP Scaling factor used to convert y-coordinates into plotter inches. 

21 - 30 F10.0 DELTA Co;t"XufFyyt for plot of normalized concentration (must be between 
. . 

'Data line is needed only if IPLT (in data set 2) is greater than 0. 

relation to distance along the y-axis (normal to the Input data sets for sample problems 8a and 8b are 
direction of flow). An average value of u, calculated shown in figures 16A and 17A. Computer-generated 

l from the observed concentrations (table 7) using equa- contour plots of normalized concentration (C/C,) are 
tion 70, is 66.1 ft. The area under the curve in figure shown in figures 16B and 17B. Comparison of figures 
15 can also be approximated and yields a u value of 16B and 17B shows the effect of varying o on the 
65.0 ft. A value of 65 ft was used in the input data for concentration distribution. Program output for sample 
sample problem 8b. problem 8a is presented in attachment 4. Sample 
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Table 7.-Measured solute concentrations in monitoring 
wells downgradient from the waste-disposal site in 
sample problem 8b 

well locations shown in fig. 111 

we11 location 
(x and y 

coordinates), 
in feet 

0, 200 

0, 250 

0, 300 

0, 350 

0, 400 

0, 450 

0, 500 

0, 550 

0, 600 

0, 650 

0, 700 

Measured solute Calculated value 
concentration, in of 0, in feet 

milligrams per liter (from eq. 71) 

2 70.9 

12 67.2 

65 64.2 

310 65.3 

725 62.3 

1,000 __ 

760 67.5 

290 63.6 

82 67.1 

9 65.2 

1 67.3 

problems 8a and 8b required 24 s of CPU time on a 
Prime model 9955 Mod II. 

Three-Dimensional Solute 
Transport 

Several analytical solutions are available for the 
three-dimensional form of the solute-transport equa- 
tion (eq. 9), including those presented in Cleary and 
Ungs (1978), Huyakorn and others (1987), Code11 and 
others (1982>, Sagar (1982), and Hunt (1978). These 
solutions are particularly useful, as they can simulate 
transport of contaminants from sources in relatively 
thick aquifers when both vertical and horizontal 
spread of the solute is of interest. In addition to a 
solution modified from Cleary and Ungs (1978, p. 
24-25), two solutions were derived by the author for 
this report. Detailed derivations of these solutions are 
presented in attachment 1. 

In the first solution presented, the aquifer is 
assumed to be of infinite extent along all three coor- 
dinate axes. Fluid is injected into the aquifer through 
a point source at a constant rate and solute concentra- 
tion (C,). It is further assumed that the rate of 
injection is low and does not disturb the predomi- 
nantly uniform flow field. In the remaining solutions 
presented in this section, the aquifer is assumed to be 
semi-infinite in length and to have a solute source 
located along the inflow boundary. The semi-infinite 
aquifer can be either finite in both width and height, 
extending from y=O to y=W and from z=O (the base 

of the aquifer) to z=H, or infinite in width and height. 
A diagram of an idealized three-dimensional aquifer of 
semi-infinite length and finite width and height is 
presented in figure 18. 

The solute source, referred to as a “patch” source 
(Cleary and Ungs, 1978), is of finite width and height 
and extends from y=Y, to y=Y, and from z=Z, to 
z=Z, at x=0 (fig. 18). The concentration within the 
patch is uniform and is equal to C,, except along the 
boundary of the patch source, where it is equal to 0.5 
C,. Elsewhere along the inflow boundary, the concen- 
tration is 0. Combinations of patch sources could be 
used to simulate odd-shaped concentration distribu- 
tions or multiple sources through the principle of 
superposition. First-order solute decay, adsorption, 
and ion exchange can also be simulated. A solution for 
a “gaussian source” of finite height along the boundary 
is given in Huyakorn and others (1987). 

Three computer programs, POINT3, PATCHF, 
and PATCHI, were developed to calculate concentra- 
tions in these systems as a function of distance and 
elapsed time. They are described in this section. 

Aquifer of infinite extent with 
continuous point source 

Governing equation 

The analytical solution for a continuous point source 
has been derived by first solving the solute-transport 
equation for an instantaneous point source and then 
integrating the solution over time. The three- 
dimensional solute-transport equation for an instan- 
taneous point source is given by 

.6(x-X,)6(y-Y,)6(z-Z,)6(t -tr>. (99) 

Boundary conditions: 

c aC,() 
‘ax ’ 

X”_foO 

c aC,() 
‘ay ’ y==- 

c CL, 
‘az ’ 

z= +m f 

where 
V =velocity in x-direction, 
Q =fluid injection rate, 
dt =infinitesimal time interval, 

S( > =dirac delta function, 

(101) 

(102) 
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Figure 15.-Normalized concentrations in relation to distance for the waste-disposal site in sample problem 8a and 
fitted gaussian distribution. 

X,,Y,,Z, =coordinates of point source, and 
t’ =time at which instantaneous point source 

activates (assumed t,o be 0). 

Initial Condition: 

C=O, -w<x<a~, -w<y<a~, --cc,<z<w at t’=O (103) 

Assumptions: 

1. Fluid is of constant density and viscosity. 
2. Solute may be subject to first-order chemical trans- 

formation (for a conservative solute, X=0>. 
3. Flow is in x-direction only, and velocity is constant. 

This presumes that the fluid injection rate is small 

and that the spread of solute due to radially diverg- 
ing flow paths is negligible. 

4. The coefficients of longitudinal dispersion (D,) and 
transverse dispersion (D,, D,), from equation 7, 
are constant. 

Analytical solution 

Hunt (1978, p. 76) presented a solution for a point 
source with a conservative solute. A solution for the 
instantaneous point source with solute decay was 
derived by the author using exponential Fourier 
transforms (detailed derivation in attachment 1) and 
can be expressed as 
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A - -- 
Sample Problem 8a -- Solute transport in.s semi-infinite 
aquifer of infinite width with a continuous gaussian source 
Model Data: V-4.0 ft/d, DX-150.0 ft**2/d, DY-30.0 ft**2/d 

us-130 ft, YC-450 ft. co-1000.0 mg/L 
--cw 

33 37 1104 1 
MG/L FT/D FT**2/D PER DAY FEET DAYS 

1000.0 4.00 150.0 30.0 0.0 
450.0 130.0 

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 
400.0 450.0 500.0 550.0 600.0 650.0 700.0 750.0 
800.0 850.0 900.0 950.0 1000.0 1050.0 1100.0 1150.0 

1200.0 1250.0 1300.0 1350.0 1400.0 1450.0 1500.0 1550.0 
1600.0 

0.0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 
200.0 225.0 250.0 275.0 300.0 325.0 350.0 375.0 
400.0 425.0 450.0 475.0 500.0 525.0 550.0 575.0 
600.0 625.0 650.0 675.0 700.0 725.0 750.0 775.0 
800.0 825.0 850.0 875.0 900.0 
300.0 
250.0 250.0 0.1 

Sam 
7 

le Problem 80 -- Solute transport in a semi-infinite 
aqua er of infinite width with a continuous aussion source 
ModeL Data: V-4.0 ft/d, DX-150.0 ftxx2/d, O%-30.0 ftxx>!/d 

1250 I 
WS-130 ft, YC-450 ft, CO-1000.0 mg/L 

-- 
NORMdLIZED COkENTRATIdN AT TIME'- 300.0dYS ' 
CONTOUR INTERVAL - O.lC/Co 

250 

0 ' I I I 1 I I --I 
0 250 500 750 1000 1250 1500 1750 

DISTANCE ALONG X-AXIS, IN FEET 

Figure 16.-(A) Sample input data set, and (B) normalized concentration contours generated by the program 
GAUSS for a conservative solute in an aquifer of infinite width having a gaussian concentration distribution 
(a=150 feet) at the inflow boundary at 300 days (sample problem 8a). 
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A 
I 

Sample Problem 8b -- Solute transport in a semi-infinite 
aquifer of infinite width with,a continuous gaussian source 
Model Data: V-4.0 ft/d, DX-150.0 ft**2/d, DY-30.0 ft**2/d 

ws-65 ft. YC-450 ft, co-1000.0 lug/L 
---- 

33 37 1 104 1 
MG/L FT/D FT**Z/D PER DAY FEET DAYS 

1000.0 4.00 150.0 30.0 0.0 
45070 

0.0 
400.0 
800.0 

1200.0 
1600.0 

0.0 
200.0 
400.0 
600.0 
800.0 
300.0 
250.0 

65.0 
50.0 

450.0 
850.0 

1250.0 

100.0 150.0 200.0 250.0 300.0 
500.0 550.0 600.0 650.0 700.0 
900.0 950.0 1000.0 1050.0 1100.0 

1300.0 1350.0 1400.0 1450.0 1500.0 

25.0 50.0 75.0 100.0 
225.0 250.0 275.0 300.0 
425.0 450.0 475 .O 500.0 
625.0 650.0 675.0 700.0 
825.0 850.0 875.0 900.0 

250.0 0.1 

350.0 
750.0 

1150.0 
1550.0 

125.0 150.0 175.0 
325.0 350.0 375.0 
525.0 550.0 575.0 
725.0 750.0 775.0 

B 

Sam 
7 

le Problem 8b -- Solute transport in a semi-infinite 
oqu~ er of infinite width with o continuous oussian source 
ModeL Data: V-4.0 ft/d, 0X-150.0 ftxx2/d, 0 -30.0 ftux2/d 3( 

WS-65 ft, YC-450 ft., CO-1000.0 mg/L 
1250 

I------ ' 

I I I I 
NORMALIZED CONCENTRATION AT TIME - 3OO.DRYS 
CONTOUR INTERVRL - O.lC/Co 

0 I I I 1 I I 

0 250 500 750 1000 1250 1500 1750 
DISTANCE ALONG X-AXIS, IN FEET 

Figure 17.-(A) Sample input data set, and (B) normalized concentration contours generated by the program 
GAUSS for a conservative solute in an aquifer of infinite width having a gaussian concentration distribution 
(a=65 feet) at the inflow boundary at 300 days (sample problem 8b). 
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Figure 18.-Plan view and vertical section of idealized three-dimensional transport in an aquifer of 
semi-infinite length and finite width and height. 
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l C(x,y,z,t)= c,Qdt exp p&fqg+A)(,-tY] 
8na 3/2 (t-t’) 3/2 ~D,D,D, 

‘exp 
(x-x,)2 (Y-Y,)2 @-ZJ2 

-4D,(t-t’)-QD,(t-t’)-4D,(t-t’) * (lo4) 1 
Equation 104 can be integrated with respect to time 

to yield a closed-form solution for the continuous 
solute source as 

C(x,y,z,t)= 

+exp[ z]erk[ s] ), 

where 

D,(y-Y,)‘+D,(z-ZJ2 l/2 
D 

Y DZ 1 

(105) 

When X=0, equation 105 reduces to a form similar to 
that presented in Hunt (1978, p. 77) for a continuous 
point source with a conservative solute. 

Comments: 

Equation 105 is valid only when y does not equal 
zero. Also, concentrations determined at locations 
close to the point source may exceed C, for certain 
combinations of values of Q, V, D,, D,, and D,. In 
general, this can occur when Q is large relative to 

n’D,D,. 

A solution that accounts for radial flow away from the 
point source would be more appropriate at large 
injection rates. 

Linear equilibrium adsorption and ion exchange can 
be simulated by dividing the coefficients Q, V, D,, D,, 
and D, by the retardation factor, R (eq. 15). Temporal 
variations in solute concentration can be simulated 
through the principle of superposition. 

Description of program POINT3 

The program POINT3 computes the analytical solu- 
tion to the three-dimensional solute-transport equa- 

tion for an aquifer of infinite extent with a continuous 
point source. It consists of a main program and the 
subroutine CNRML3. The functions of the main pro- 
gram and subroutine are outlined below; the program 
code listing is presented in attachment 2. 

The program also calls the subroutine EXERFC 
and the output subroutines TITLE, OFILE, PLOT3, 
and CNTOUR, which are common to most programs 
described in this report. These subroutines are 
described in detail later. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 8. 

The program next executes a set of four nested 
loops. The innermost loop calls subroutine CNRML3 
to calculate the concentration at all specified y- 
coordinate values for a particular x-coordinate value, 
z-coordinate value, and time. The second loop cycles 
through all x-coordinate values. The third loop cycles 
through all z-coordinate values and prints a table of 
concentration in relation to x and y for each z value. 
The outer loop cycles through all specified time val- 
ues. Model output can be plotted as a series of maps 
showing lines of equal solute concentration in a hori- 
zontal (x-y plane) cross section at each point along the 
z-axis. 

Subroutine CNRML3 

Subroutine CNRMLS calculates the normalized con- 
centration (C/C,> for a particular time value and 
distance using equation 105. A warning message is 
printed on the program output if the values of (x-X,), 
(y-Y,>, and (z-Z,> all equal to zero are passed to the 
subroutine. 

Sample problem 9 

In sample problem 9, a natural gradient tracer test 
was conducted by injecting a chloride solution into an 
aquifer. The solution was injected through three wells 
spaced 2 ft apart, laterally, each having a small 
screened interval centered about z=lO ft. A total of 
22.5 gallons (3 ft3) of solution was injected during a 
24-hour period. Other model variables are 

Aquifer porosity (n) =0.25 
Ground-water velocity (V,) =O.l ftld 
Longitudinal dispersivity ((YJ =0.60 ft 
Horizontal transverse dispersivity (tit,,) =0.03 ft 
Vertical transverse dispersivity (a,,> =0.006 ft 
Chloride concentration in injected 

solution =l,OOO mg/L 
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Table B.-Input data format for the program POINT3 

Data Variable 
set Columns Format name Descriution 

1 1 - 60 A60 TITLE Data to be printed in a title box on the first page of program output. 
Last line in data set must have an "=" in column 1. First four lines 
are also used as title for plot. ------------------------------------------------------------------------------------------------------~----- 

2 l- 4 14 Nx Number of x-coordinates at which solution will be evaluated. 

!i- 6 14 NY Number of y-coordinates at which solution will be evaluated. 

9-12 14 NZ Number of z-coordinates at which solution will be evaluated. 

13 - 16 14 NT Number of time values at which solution will be evaluated. 

17 - 20 14 IPLT Plot control variable. Contours of normalized concentration will be 
plotted if IPLT is greater than 0. 

3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 
output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUNITS Units of dispersion coefficient. 

31 - 40 A10 XUNITS Units of solute-decay coefficient. 

41 - 50 A10 LUNITS Units of length. 

51 - 60 A10 QUNITS Units of solution injection rate. 

61 - 70 A10 TUNITS Units of time. 

4 1 - 10 F10.0 CO Solute concentration in injected fluid. 

11 - 20 F10.0 VX Ground-water velocity in x-direction. 

21 - 30 F10.0 DX Longitudinal dispersion coefficient. 

31 - 40 F10.0 DY Transverse dispersion coefficient in y-direction. 

41 - 50 F10.0 DZ Transverse dispersion coefficient in z-direction. 

__-____I'_I_"9___"9Ip_____DK___________--------------------------------~---------------------------------- 
First-order solute-decay coefficient 

5 1 - 10 F10.0 XC X-coordinate of continuous point source. 

11 - 20 F10.0 YC Y-coordinate of continuous point source. 

21 - 30 F10.0 2c Z-coordinate of continuous point source. 

31 - 40 F10.0 QM Solution injection rate. 

41 - 50 F1O.O FOR Aquifer porosity. 

6 1 - 60 6FlO.O X(I) X-coordinates at which solution will be evaluated (eight values per 
line). 

----------------------------------------------------------------------------------------.-------------------- 
7 1 - 80 6FlO.O Y(I) Y-;y;zinates at which solution will be evaluated (eight values per 

______________-__-__--------------------------------------------------------------------~------------------- 
6 1 - 80 8FlO.O Z(I) Z-coordinates at which solution will be evaluated (eight values per 

line). ________________________________________------------------------------------------------~------------------- 
9 1 - 80 6FlO.O T(I) Time values at which solution will be evaluated (eight values per 

line). ________________________________________------------------------------------------------~------------------- 
110 1 - 10 F10.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them 

to plotter inches. 

11 - 20 F1O.O YSCLP Scaling factor used to convert y-coordinates into plotter inches. 

21 - 30 F1O.O DELTA Co;t;wmpc,rTt for plot of nonaalised concentration (must be between 
. . 

'Data line is needed only if IPLT (in data set 2) is greater than 0. 
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Injection well coordinates (X,, Y,, Z,) 
Well 1 =(O, 98, 10) 
Well 2 =(O, 100, 10) 
Well 3 =(O, 102, 10). 

From these values, the terms obtained are 

Coefficient of longitudinal dispersion 
W =0.06 f&d 

Coefficient of horizontal transverse 
dispersion (DJ = 0.003 fta/d 

Coefficient of vertical transverse 
dispersion (D,) = 0.0006 f&d 

Injection rate per well (Q,) =l.O ft31d. 

Chloride concentrations are computed in the z=lO- 
ft plane at x=0 and at 2-ft intervals along the x-axis 
from x=20 ft to x=60 ft, and at 1-ft intervals along the 
y-axis from y=90 ft to y=llO ft, after an elapsed time 
of 400 days. The injection period was simulated using 
the principle of superposition by first calculating the 
concentrations resulting from a continuous point 
source after 400 days and then subtracting the con- 
centrations resulting from a continuous point source 
after 399 days. The effect of the multiple injection 
wells was simulated by summing the calculated con- 
centrations for each well. 

Rather than running the program POINT3 six 
times and then summing all the concentration values 
manually, it was easier to temporarily modify the 
main program by adding nine lines within the inner- 
most loop, as follows: 

DO 50 IY=l,NY 
YY=Y(IY)-YC 
CALL CNRML3(QM,POR,DK,T(IT),XX,YY,ZZ, 

DX,DY,DZ,VX,CN) 
CXY(IX,IY)=CO*CN 

YYl=YY +2.0 
YY2=YY-2.0 
CALL CNRML3(QM,POR,DK,T(IT),XX,YYl, 

ZZ,DX,DY,DZ,VX,CNl) 
CALL CNRML3(QM,POR,DK,T(IT),XX,YY2, 

ZZ,DX,DY,DZ,VX,CN2) 
Tl=T(IT)-1.0 
CALL CNRML3(QM,POR,DK,Tl,XX,YY,ZZ, 

DX,DY,DZ,VX,CN3) 
CALL CNRML3(QM,POR,DX,Tl,XX,YYl,ZZ, 

DX,DY,DZ,VX,CN4) 
CALL CNRML3(QM,POR,DK,Tl,XX,YY2,ZZ, 

DX,DY,DZ,VX,CN5) 
CXY (IX, IY) = CXY (IX, IY)+ CO* (CNl + CN2 

-CN3-CN4-CN5) 
50 CONTINUE 

The input data set for sample problem 9 is shown in 
figure 19A; a computer-generated contour plot of 
normalized concentrations (C/C,) in the x-y plane at 
z=lO ft are shown in figure 19B. Sample problem 9 
required 5 s of CPU time on a Prime model 9955 Mod 
II. 

Aquifer of finite width and height 
with finite-width and finite-height 

solute source 

Governing equation 

Three-dimensional solute-transport equation: 

g+D$+D a2c+D$-V~-kC (106) 
“af 

Boundary conditions: 

c=c,, x=0 and Y,<y<Y, 
and Z,<z<Z, 

(107a) 

c=o, x=0 and y<Y, or y>Y, 
and z<Z, or z>Z, 

(107b) 

c aC,o 
'ay 9 y=o (108) 

c a-(-J 
'ay 9 y=w (109) 

c aC,() 
faz 7 z=o (110) 

c aC,o 
faz 7 z=H (111) 

c aC,() 
'ax 7 x=ca (112) 

where 
V =velocity in x-direction, 

Y, =y-coordinate of lower limit of solute source, 
Y, =y-coordinate of upper limit of solute source, 
Z, =z-coordinate of lower limit of solute source, 
Z, =z-coordinate of upper limit of solute source at 

x=0, 
W =aquifer width, and 
H =aquifer height. 

Initial condition: 

C=O O<x< 00, O<y<W, and O<z< H at t=O (113) 

Assumptions: 

1. Fluid is of constant density and viscosity. 
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A 
I 

Sample Problem 9 -- Solute transport in an infinite aquifer 
with multiple point sources of finite duration 
Model Data: V-O.1 ft/d, DX-0.06 ft**2/d, DY-0.003 ft**2/d 

DZ-0.0006 ft**2/d, QM-1.0 ft**3/d, CO-1000.0 mg/L, n-O.25 
--- 

21 21 1 01 1 
MG/L FT/D FT**Z/D PER DAY FEET FT**3/D DAYS 

1000.0 0.1 0.06 0.003 0.0006 
0.0 100.0 10.0 1.00 0.25 

20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 
36.0 38.0 40.0 42.0 44.0 46.0 48.0 50.0 
52.0 54.0 56.0 58.0 60.0 
90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 
98.0 99.0 100.0 101.0 102.0 103.0 104.0 105.0 

106.0 107.0 108.0 109.0 110.0 
10.0 

400.0 
5.0 5.0 0.01 

Sample Problem 9 -- Solute transport in an infinite aquifer 
with muLtipLe point sources of finite duration 

Model Doto: v=O.l ft/d, 0X=0.06 ftHn2/d, DY=0.003 ftnx2/‘d 
OZ-0.0006 ftxn2/d, ON-l.0 ftnn3/d, CO=lOOO.O mg/L, n=O.25 

115 I I 1 I I I I 
NORMALIZED CONCENTRRTIONR;; ;+M; 1 ;';O;Fd;" 

CONTOUR INTERVAL - O.OlC/Co 

110 - 
E 
It 
z 

90 I I I I I I I 
20 25 

;;STANCE :LONG X-&S, IN +&ET 
50 55 60 

Figure 19.-(A) Sample input data set, and (B) normalized concentration contours generated by the program POINT3 for a 
natural gradient tracer test in an aquifer of infinite extent after 400 days in the z=lO-foot plane (sample problem 9). 
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2. 

a 3. 
4. 

Solute may be subject to first-order chemical trans- 
formation (for a conservative solute, X=0). 
Flow is in x-direction only, and velocity is constant. 
The coefficients of longitudinal dispersion (D,) and 
transverse dispersion (D,, D,), from equation 7, 
are constant. 

Analytical solution 

The solution to equation 106 was first derived by 
Cleary and Ungs (19’78, p. 24-25). A modified form of 
the equation (derived in detail by the author in attach- 
ment 1) can be given as 

m cc 

w,Y,w=Co~ ~h-rl,o,P, cm (54 cos (qy) 
m=O n=O 

l { exp pF]*erfc[ s] 

(114) 

where 

m=O, and n=O 
m=O, and n>O 
m>O, and n=O 
m>O, and n>O 

1 
;J,-z, 

H 
O,= 

[sin ({Z,)-sin (&)I 
m7r 

i 

Y,--Yl 
Pn= W 

[sin (qY,)-sin (7jYJl 

m=O 

m>O 

n=O 

n>O 

t=m7r/H m=0,1,2,3. . . 

q=n7rlW n=0,1,2,3. . . 

P=~V”+4D,(rlZD,+5”D,+X). 

Comments: 

The terms in the infinite series in equation 114 tend 

0 
to oscillate, and the double series converges slowly for 
small values of x and time. Therefore, many terms 
may be needed to ensure convergence. A good initial 
estimate is 200 terms for each series. 

The solution can yield results with either D,, D,, or 
h=O. Linear equilibrium adsorption and ion exchange 
can be simulated by dividing the coefficients D,, D,, 
D,, and V by the retardation factor, R (eq. 15). 
Temporal variations in solute concentration and odd- 
shaped source configurations can be simulated 
through the principle of superposition. 

Description of program PATCHF 

The program PATCHF computes the analytical 
solution to the three-dimensional solute-transport 
equation for an aquifer of finite width and height with 
a finite-width and finite-height solute source at the 
inflow boundary. It consists of a main program and 
subroutine CNRMLF. The functions of the main pro- 
gram and subroutine are outlined below; the program 
code listing is presented in attachment 2. 

The program also calls the subroutine EXERFC 
and output subroutines TITLE, OFILE, PLOT3D, 
and CNTOUR, which are common to most programs 
described in this report. These subroutines are 
described in detail later. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 9. 

The program next executes a set of four nested 
loops. The innermost loop calls subroutine CNRMLF 
to calculate the concentration at all specified y- 
coordinate values for a particular x-coordinate value, 
z-coordinate value, and time. The second loop cycles 
through all x-coordinate values. The third loop cycles 
through all z-coordinate values and prints a table of 
concentration in relation to x and y for each z value. 
The outer loop cycles through all specified time val- 
ues. Model output can be plotted as a series of maps 
showing lines of equal solute concentration in the 
horizontal (x-y) plane at each point along the z-axis. 

Subroutine CNRMLF 

Subroutine CNRMLF calculates the normalized 
concentration (C/C,> for a particular time value and 
distance using equation 114. The maximum number of 
terms in the infinite series summation is specified by 
the user. Because terms in the series tend to oscillate, 
a subtotal of the last 10 terms is kept, and when the 
subtotal is less than a convergence criterion set at 
1 x lo-“, the series summation is halted. If the series 
does not converge after the specified maximum num- 
ber of terms are taken, a warning message is printed 
on the program output. 



52 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS 

Table 9.-Input data format for the program PATCHF 

Data Variable 
set Columns Format name Descrintion 

1 1 - 60 A60 TITLE Data to be printed in a title box on the first page of program output. 
Last line in data set must have an "=- in column 1. First four lines 
are also used a5 title for plot. 

------------------_--------------------------------------------------------------------~-------------------- 
2 l- 4 14 Nx Number of x-coordinates at which solution will be evaluated. 

S- 6 I4 NY Number of y-coordinates at which solution will be evaluated. 

Q-12 14 NZ Number of s-coordinates at which solution will be evaluated. 

13 - 16 14 NT Number of time values at which solution will be eva:Luated. 

17 - 20 14 NMAX Maximum number of terms to be used in inner loop of the infinite series 
sumnation. 

21 - 24 14 MAX Maximum number of terms to be used in outer loop of the infinite series 
sumnation. 

25 - 26 14 IPLT Plot control variable. Contours of normalized concentration will be 
plotted if IPLT is greater than 0. 

------------------__--------------------------------------------------------------------~------------------- 
3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 

output. 

11 - 20 A10 VUNITS Units of ground-water velocity. 

21 - 30 A10 DUNITS Units of dispersion coefficient. 

31 - 40 A10 XUNITS Units of solute-decay coefficient. 

41 - 50 A10 LUNITS Unit5 of length. 

51 - 60 A10 TUNITS Units of time. 
------------------__--------------------------------------------------------------------~------------------- 

4 1 - 10 F1O.O co Solute concentration at inflow boundary. 

11 - 20 F1O.O VX Ground-water velocity in x-direction. 

21 - 30 F1O.O DX Longitudinal dispersion coefficient. 

31 - 40 F10.0 DY Transverse dispersion coefficient in y-direction. 

41 - 50 F10.0 DZ Transverse dispersion coefficient in s-direction. 

51 - 60 F1O.O DK First-order solute-decay coefficient. 
________________________________________-----------------------------------------------~-------------------- 

5 1 - 10 F1O.O W Aquifer width (aquifer extends from y - 0 to y = W). 

11 - 20 F1O.O H Aquifer thickness (aquifer extends from s = 0 to s := El. 

21 - 30 F1O.O Yl Y-coordinate of lower limit of patch solute source. 

31 - 40 F10.0 Y2 Y-coordinate of upper limit of patch solute source. 

41 - 50 F10.0 Zl Z-coordinate of lower limit of patch solute source. 

51 - 60 F1O.O 22 Z-coordinate of upper limit of patch solute source. 
____________________--------------------------------- _______________-_-----------------~-------------------- 

6 1 - 60 6FlO.O X(f) X-coordinates at which solution will be evaluated (eight values per 
line). 

____________________-------------------------------------------------------~-------------------- 
7 1 - 60 6FlO.O Y(I) Y-coordinates at which solution will be evaluated (eight values per 

line). 
_________________-_------------------------------- ____________________------------------~------------------- 

6 1 - 60 6FlO.O Z(I) Z-coordinates at which solution will be evaluated (eight values per 
line). 

______-__-_--------------------------------- ____________________------------------------~------------------- 
Q 1 - 60 6FlO.O T(I) TimGn;lues at which solution will be evaluated (eight values per 

. 
____________________------------------------------------------------------ _________-----_--_---------------- 
110 1 - 10 F10.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them 

to plotter inches. 

11 - 20 F10.0 YSCLP Scaling factor used to convert y-coordinates into plotter inches. 

21 - 30 F10.0 DELTA Contour increment for plot of normalized concentration (must be between 
0.0 and 1.0). 

'Data line is needed only if IPLT (in data set 21 is greater than 0. 
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Sample problem 10 $L,,$+D e+D,$-V$$hC (115) 
“ati 

In sample problem 10, migration of chloride ion 
from a landfill, created by filling in a gravel pit 
excavated in a valley-fill aquifer, is simulated. Model 
variables are 

Boundary conditions: 

c=c,, x=0 and Y,<y<Y, 
and Z,<z<Z, (116a) 

Aquifer width (W) 
Aquifer height (H) 
Y-coordinate of lower limit of 

source (Y J 
Y-coordinate of upper limit of 

source (YJ 
Z-coordinate of lower limit of 

source (Z,) 
Z-coordinate of upper limit of 

source (Z,) 
Source concentration (C,) 
Ground-water velocity (V) 
Dispersion in x-direction (D,) 
Dispersion in y-direction (D,) 
Dispersion in z-direction (D,) 

=3,000 ft 
=lOO ft 

=400 ft 

=2,000 ft 

=50 ft 

= 100 ft 
=l,OOO mg/L 
=l ft/d 
=200 ft’ld 
=60 ft’/d 
=lO ft’ld. 

Concentrations are calculated at 150-ft intervals 
along the x-axis for 3,900 ft, and at lOO-ft intervals 
along the y-axis for 3,000 ft. Chloride concentration 
distributions after 3,000 days for z-coordinates of 50 
and 75 ft (z=O is at the base of the aquifer) are 
simulated. 

The input data set for sample problem 10 is shown in 
figure 20A; computer-generated contour plots of nor- 
malized concentration (C/C,) in x-y planes defined by 
the two z-coordinates are shown in figure 20B. The 
plot of concentrations along the centerline of the 
plume (at z=75 ft) can be compared with figure 13B to 
show the effect of vertical dispersion on both the 
shape of the chloride plume and simulated concentra- 
tions. This demonstrates the type of errors that can be 
introduced by using a two-dimensional solution when a 
three-dimensional solution is required. 

Program output for sample problem 10 is presented 
in attachment 4. The sample problem required 7 min 
and 50 s of CPU time on a Prime model 9955 Mod II. 

Aquifer of infinite width and hei ht 
with finite-width and finite-heig Ii t 

solute source 

Governing equation 

Three-dimensional solute-transport equation: 

c=o, x=0 and y<Y, or y>Y, 
and z<Z, or z>Z, (116b) 

c aC,o 
‘dy ’ 

y=*cc (117) 

c a() 
‘dz ’ 

z= kcc (118) 

c aC,o 
‘ax ’ 

x=co (119) 

where 
V =velocity in x-direction, 

Y, =y-coordinate of lower limit of solute source, 
Y, =y-coordinate of upper limit of solute source, 
Z, =z-coordinate of lower limit of solute source, and 
Z, =z-coordinate of upper limit of solute source at 

x=0. 

Initial condition: 

C=O, O<x<m, --oo<y<+m, and --oo<z<+m at t=O (120) 

Assumptions : 

1. Fluid is of constant density and viscosity. 
2. Solute may be subject to first-order chemical trans- 

formation (for a conservative solute, X=0>. 
3. Flow is in x-direction only, and velocity is constant. 
4. The coefficients of longitudinal dispersion (D,) and 

transverse dispersion (D,, D,), from equation ‘7, 
are constant. 

Analytical solution 

Sagar (1982, p. 49) presents a solution to the anal- 
ogous problem of vertical leaching of a conservative 
solute from a patch source in the x-y plane. The 
following analytical solution was derived by the author 
using Fourier transforms (detailed derivation pre- 
sented in attachment 1) for a patch source in the y-z 
plane with solute subject to decay: 
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I 
- WlM w!“bv - 

L33.4 NI 'SIXtl-A 3NO-M 33NHlSIO 

1333 NI ‘SIX&J. 3NOlt’ 33NklISIO 1333 NI ‘SIX&J. 3NOlt’ 33NklISIO 
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C(x,y,z,t)= 
C, x exp g [ 1 x WTD, 

l {erfc[s]-erfc[$$]} 
l [erfc[$$]-erfc[$$]]dT. (121a) 

where T is a dummy variable of integration for the 
time integral. 

To improve the accuracy of the numerical integra- 
tion, a variable substitution can be made where 7=Z4, 
yielding 

m,Y,z,t)= 

C, x exp g [ 1 x 
2-\/43x 

l j--$exp[ -(g++-&] 

l [erfc[$$j=]-erfc[~]]dZ. (121b) 

Comments: 

The integral in equation 121b cannot be simplified 
further and must be evaluated numerically. A Gauss- 
Legendre numerical integration technique was used in 
the computer program written to evaluate the analyt- 
ical solution and is described later. Round-off errors 
may still occur when evaluating the solution for very 
small values of x at late times. 

Linear equilibrium adsorption and ion exchange can 
be simulated by dividing the coefficients D,, D,, D,, 
and V by the retardation factor, R (eq. 15). Temporal 
variations in solute concentration and odd-shaped 
source configurations can be simulated through the 
principle of superposition. A solution where the patch 
source is located in the x-y plane at z=O and velocity is 
in the x-direction can be found in Sagar (1982, p. 51). 

Description of program PATCHI 

The program PATCH1 computes the analytical 
solution to the three-dimensional solute-transport 
equation for an aquifer of infinite width and height 
with a finite-width and finite-height solute source at 
the inflow boundary. It consists of a main program and 
the subroutine CNRMLI. The functions of the main 
program and the subroutine are outlined below; the 
program code listing is presented in attachment 2. 

The program also calls subroutines EXERFC and 
GLQPTS and the output subroutines TITLE, OFILE, 
and PLOT3D, which are common to most programs 
described in this report. These subroutines are 
described in detail later. 

Main program 

The main program reads and prints all input data 
needed to specify model variables. The required input 
data and the format used in preparing a data file are 
shown in table 10. 

The program next executes a set of four nested 
loops. The innermost loop calls subroutine CNRMLI 
to calculate the concentration at all specified y- 
coordinate values for a particular x-coordinate value, 
z-coordinate value, and time. The second loop cycles 
through all x-coordinate values. The third loop cycles 
through all z-coordinate values and prints a table of 
concentration in relation to x and y for each z value. 
The outer loop cycles through all specified time val- 
ues. Model output can also be plotted as a series of 
maps showing lines of equal solute concentration in 
the horizontal (x-y) plane at each point along the 
z-axis. 

Subroutine CNRMLI 

Subroutine CNRMLI calculates the normalized con- 
centration (C/C,,) for a particular time value and 
distance. The integral in equation 121b is evaluated 
through a Gauss-Legendre numerical integration 
technique. The normalized roots of the Legendre 
polynomial and the corresponding weighting coeffi- 
cients are passed by subroutine GLQPTS and scaled in 
the subroutine to account for the non-normalized 
limits of integration (from 0 to t1’4 rather than from - 1 
to +1>. 

The number of terms summed in the numerical 
integration (equivalent to the order of the polynomial) 
is specified by the user. Roots of the Legendre poly- 
nomial of order 4, 20, 60, 104, and 256 are provided in 
data file GLQ.PTS. In general, the more terms used in 
the integration, the more accurate the approximation; 
however, this must be weighed against the corre- 
sponding increase in computational effort and time. 
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Table IO.-input data format for the program PATCHI 

Data ValZiflble 
set c01usms Format name Description 

1 1 - 80 A80 TITLE Data to be printed in a title box on the first page of program output. 
Last line in data set must have an "a* in column 1. First four lines 
are also used as titles for plot. 

-----------------------------------------------------------------------------------------~------------------ 
2 l- 4 14 Nx Number of x-coordinates at which solution will be evaluated. 

5- 8 14 NY Number of y-coordinates at which solution will be evaluated. 

9-12 14 NZ Number of a-coordinates at which solution will be evaluated. 

13 - 18 14 NT Number of time values at which solution will be evaluated. 

17 - 20 I4 NM4x Number of terms to be used in nmerical integration technique (must be 
equal to 4, 20, 80, 104, or 258). 

21 - 24 14 IPLT Plot control variable. Contours of normalized concentration will be 
plotted if IPLT is greater than 0. 

-----------------------------------------------------------------------------------------~------------------ 
3 1 - 10 A10 CUNITS Character variable used as label for units of concentration in program 

output. 

11 - 20 Al0 VUNITS Units of ground-water velocity. 

21 - 30 Al0 DUXITS Units of dispersion coefficient. 

31 - 40 Al0 KUNITS Units of solute-decay coefficient. 

41- 50 A10 LUNITS Units of length. 

51 - 80 A10 TUNITS Units of time. 
-----------------------------------------------------------------------------------------.------------------- 

4 1 - 10 F1O.O co Solute concentration at inflow boundary. 

11 - 20 F1O.O vx Ground-water velocity in x-direction. 

21 - 30 F1O.O DX Longitudinal dispersion coefficient. 

31 - 40 F10.0 DY Transverse dispersion coefficient in y-direction. 

41 - 50 F10.0 DZ Transverse dispersion coefficient in z-direction. 

51 - 80 P10.0 DK First-order solute-decay coefficient. ________________________________________-------------------------------------------------~------------------ 
5 1 - 10 F1O.O Yl Y-coordinate of lower limit of finite width and height. solute source. 

11 - 20 P10.0 Y2 Y-coordinate of upper limit of finite width and height solute source. 

21- 30 F1O.O Zl Z-coordinate of lower limit of finite width and height solute source. 

31 - 40 F10.0 22 Z-coordinate of upper limit of finite width and height solute source. ________________________________________--------------------------------------------------.------------------ 
8 1 - 80 8FlO.O X(I) X-coordinates at which solution will be evaluated (eight values per 

line). _-__________________---------------------------------------------------------------------~--------------.---- 
7 1 - 80 8FlO.O Y(I) Y-coordinates at which solution will be evaluated (ei&tt values per 1 

line). ________________________________________-------------------------------------------------~--------------~--- 
8 1 - 80 8FlO.O Z(I) Z-coordinates at which solution will be evaluated (eight values per 

line). ________________________________________-------------------------------------------------,------------------- 
9 1 - 80 9PlO.O T(I) Time values at which solution will be evaluated (eight values per 

line). ________________________________________-------------------------------------------------~------------- ----- 
110 1 - 10 F10.0 XSCLP Scaling factor by which to divide x-coordinate values are divided to 

convert them to plotter inches. 

11 - 20 F1O.O YSCLP Scaling factor used to convert y-coordinates into plotter inches. 

21 - 30 F1O.O DELTA Contour increment for plot of normalized concentration Gnust be between 
0.0 and 1.0). 

'Data line is needed only if IPLT (in data set 2) is greater than 0. 
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Additional discussions of the numerical integration 
technique are presented in a later section describing 
subroutine GLQPTS. 

Sample problem 11 

In sample problem 11, a contaminant plume contain- 
ing “Sr (strontium-90) from a deep radioactive-waste 
storage facility migrates through a thick, confined 
aquifer. Model variables are 

Source width (W,) =1,200 ft 
Source height (H,) = 300 ft 
Y-coordinate of lower limit of source (YJ = 900 ft 
Y-coordinate of upper limit of source (YJ =2,100 ft 
Z-coordinate of lower limit of source (Z,) =1,350 ft 
Z-coordinate of upper limit of source (Z,) =1,650 ft 
Ground-water velocity (V) =l ft/d 
Longitudinal dispersivity (a,) = 100 ft 
Transverse dispersivity (at) = 2oft 
Source concentration (C,) =lOO mg/L 
Half-life of “Sr =28 years. 

From these values, the terms obtained are 

Coefficient of longitudinal 
dispersion (D,) =lOO ft2/d 

Coefficients of transverse 
dispersion (DY and D,) = 20 ft21d 

First-order solute-decay 
coefficient (A) =6.78x lop5 per day. 

Concentrations are calculated at 150-ft intervals 
along the x-axis for 3,900 ft, and at lOO-ft intervals 
along the y-axis for 2,600 ft. The “Sr concentration 
distribution after 10 years (3,652.5 days) for z- 
coordinates of 1,650, 1,700, and 1,750 ft (z=O at the 
base of the aquifer and z=1,650 at the top of the 
storage facility) is simulated. 

The input data set for sample problem 11 is shown in 
figure 21A; computer-generated contour plots of the 
normalized concentration (C/C,,) in x-y planes defined 
by the three z-coordinates are shown in figure 21B. 
Program output for this sample problem is presented 
in attachment 4. Sample problem 11 required 3 min 20 
s of CPU time on a Prime model 9955 Mod II. 

Description of Subroutines 

The subroutines described in this section are com- 
mon to most of the programs developed to evaluate 
the analytical solutions. Subroutines EXERFC and 
GLQPTS are used in evaluating terms in the analyti- 
cal solutions, OFILE and TITLE are used in program 

input and output, and PLOTlD, PLOTBD, PLOT3D, 
and CNTOUR are used to graphically display pro- 
gram results. Subroutine listings are presented in 
attachment 3. 

Mathematical subroutines 

Subroutines EXERFC and GLQPTS 

Subroutine EXERFC is called to evaluate the prod- 
uct of an exponential and complementary error func- 
tion (exp[x]* erfc[y]), where the error function, erf(y), 
is defined as 

(122) 

and the complementary error function, erfc(y), is 
defined as 

erfc(y)=l.O-erf(y). (123) 

Often, the values of x and y are such that erfc(y) is 
very small (less than lx lo-l2 for y=5), whereas 
exp(x) is very large. To accurately calculate the prod- 
uct of the two functions, a high degree of accuracy is 
needed in the calculation of erfc(y). Subroutine 
EXERFC uses a rational Chebyshev approximation 
(Cody, 1969), accurate to between 10 and 13 signifi- 
cant figures, to calculate erf(y) or erfc(y). The two 
variables x and y are passed to the subroutine. To 
calculate only erfc(y), the routine EXERFC can be 
called with the value of x set to zero. 

For absolute values of y less than 0.469, the rational 
Chebyshev approximation is given by 

erf(y)= yr P&p/r Qlip, (124) 
i=O i=O 

where Pl and Ql are the coefficients of the rational 
approximation given by Cody (1969) for n=5. For 
negative values of y, the symmetry condition that 
erf(-y)= -erf(y) (Abramowitz and Stegun, 1964) is 
used. Erfc(y) is then given by equation 123. 

For absolute values of y between 0.469 and 4.0, a 
rational approximation for erfc(y) is used, given by 

(125) 
i=O i=O 

where P2 and Q2 are the coefficients given by Cody 
(1969) for n=8. For negative values of y, the identity 
that erfc(-y)=2-erfc(y) is used. 

For absolute values of y greater than 4.0, a second 
rational approximation for erfc(y) is used, given by 
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where P3 and Q3 are coefficients given by Cody (1969) 
for n=5. When a product of exp(x) and erfc(y) is 
calculated, the arguments for the exponential in equa- 
tions 125 and 126 are changed to (x-f). 

Subroutine GLQPTS is called to numerically evalu- 
ate the time integral found in several of the analytical 
solutions. The Gauss integration formula used is given 
by Abramowitz and Stegun (1964) as 

n 

(127) 

where 
zi =roots of Legendre polynomial for a particular 

value of n, and 
wi =corresponding weighting functions. 
Positive roots of the Legendre polynomials for n=4, 

20, 60, 104, and 256 and their weighting functions, as 
given in Cleary and Ungs (1978), have been tabulated 
and are read from a data file called GLQ.PTS. Sub- 
routine GLQPTS calculates the negative roots and 
their weighting coefficients. These values are passed 
to the other subroutines through an array in common. 
A listing of file GLQ.PTS is presented in attachment 
3. 

As stated earlier, the accuracy of the numerical 
integration is increased if the user selects a larger 
value for n. However, computational effort is also 
increased. Checks can be made to determine whether 
a smaller value for n produces reasonable results by 
comparing the solution for a particular n with that 
obtained using the next higher value. Roots and 
weighting coefficients for additional values of n can be 
found in Abramowitz and Stegun (1964, p. 916-919). 

.The subroutine is set up to read data file GLQ.PTS 
on logical unit 77 on the Prime system. For systems 
other than Prime, this routine should be modified to 
include the correct system-dependent file opening 
statements. Also, file-naming conventions for the par- 
ticular system must be observed, and the data file 
renamed appropriately. 

Input/Output subroutines 

Subroutines OFILE and TITLE 

Subroutine OFILE is used to open disk files for 
program input and output on the Prime computer 
system. It assigns logical unit 15 to the input data file 
and logical unit 16 to the file for program output. The 
user is queried at the terminal (logical unit 1) for the 
name of the appropriate disk files, and any file name 
up to 50 characters in length can be entered. For 

output to be sent directly to the terminal, the user 
should type an asterisk (*) in column 1 when asked for 
the output file name. 

For systems other than the Prime, this routine 
should be modified to include the correct system- 
dependent file opening statements. Also, the logical 
units (1, 15, and 16) should be changed if they are not 
appropriate for the particular system. 

Subroutine TITLE is called by all programs to print 
a title box on the first page of model output. Titles are 
supplied as the first lines of the input data set. Titles 
are automatically centered, and the routine closes the 
title box when it encounters an equal sign (=> in 
column 1 of a data line. The routine also prints the 
date and time the program execution began. The first 
four title lines are used as titles for plots. 

Subroutine TITLE calls the Prime-supplied func- 
tions TIME$A and DATE$A found in the library 
VAPPLB. For non-Prime systems, these calls should 
be modified or, if similar functions are not available, 
deleted. 

Graphics subroutines 
Four subroutines, PLOTlD, PLOT2D, PLOT3D, 

and CNTOUR, were developed to graphically display 
selected output from the programs described in this 
report. These subroutines contain calls for DISSPLA 
graphics software (Integrated Software Systems Cor- 
poration, 1981>, and the DISSPLA library must be 
loaded when compiling the programs. Users who do 
not have access to DISSPLA software can easily 
modify the DISSPLA software calls to those appro- 
priate to their own graphics software. 

Subroutines PLOTlD, PLOTBD, and PLOT3D con- 
tain a call to COMPRS, which creates a META file 
that can be output, at a later time, to a wide variety of 
plotter devices through the DISSPLA postprocessor. 
This call can be replaced with a call to directly 
nominate a plotter device (such as a graphics terminal) 
so that plots can be drawn as the programs execute. 
The user should consult the DISSPLA users manual 
(Integrated Software Systems Corporation, 1981) for 
more information. 

Subroutines PLOT1 D, PLOTZD, PLOT3D, and 
CNTOUR 

Subroutine PLOTlD is called by the programs 
FINITE and SEMINF to create plots of the normal- 
ized concentration C/C, in relation to distance for each 
of the time values specified in the input data. An 
example of typical plotter output is shown in figure 
4B. DISSPLA software calls are used to draw the 
axes and to plot the data points. The height of the plot 
is 12.5 in. The width is controlled by the difference 
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between the minimum and maximum x-coordinate 
value and by the scale factor XSCLP specified in data 
set 4 (tables 1, 2). If no plotter is available, the user 
can either specify a value of 0 for IPLT in data set 2 
(tables 1, 2) or delete the call to PLOTlD in the main 
programs of FINITE and SEMINF. 

Subroutine PLOTZD is called by the programs 
POINTB, STRIPF, STRIPI, and GAUSS to initialize 
a plot of lines of equal normalized concentration (C/C,) 
in the x-y plane for each of the specified time values. 
A typical example is shown in figure 13B. 

The size of each subplot depends on the difference 
between the maximum and minimum x- and y- 
coordinate values and the plot scaling factors XSCLP 
and YSCLP specified by the user in data set 9 (tables 
3-5). The overall length of the plot is determined by 
the number of time values specified. The contour 
increment DELTA (a value between 0.0 and 1.0) is 
specified by the user in data set 9. 

Subroutine PLOTBD defines the plot and subplot 
sizes, draws and labels the axes, and then calls sub- 
routine CNTOUR, which draws and labels the con- 
tours. If no plotter is available, IPLT in data set 2 
(tables 3-6) can be set to 0, or the call to PLOTBD in 
the main programs STRIPF, STRIPI, and GAUSS 
can be deleted. 

Subroutine PLOTSD is called by the programs 
POINT3, PATCHF, and PATCH1 to initialize a plot 
of lines of equal normalized concentration (C/C,,) in the 
x-y plane for each of the z-coordinates and time values 
specified in the input data. An example of plotter 
output from this subroutine is shown in figure 20B. 

The size of each subplot depends on the difference 
between the maximum and minimum x- and y- 
coordinates and the plot scaling factors XSCLP and 
YSCLP specified by the user in data set 10 (tables 
8-10). The overall length of the plot is determined by 
the number of z-values specified. Separate plots are 
drawn for each specified time value. The contour 
increment DELTA (a value between 0.0 and 1.0) can 
also be specified by the user, in data set 10. 

Subroutine PLOT3D defines the plot and subplot 
sizes, draws and labels the axes, and then calls sub- 
routine CNTOUR, which draws and labels the con- 
tours. If no plotter is available, IPLT in data set 2 
(tables S-10) can be set to zero, or the call to PLOT3D 
in the main programs of POINT3, PATCHF, and 
PATCH1 can be deleted. 

Subroutine CNTOUR is called to produce simplified 
plots of lines of equal normalized concentration (C/C,,) 
in the x-y plane for each of the time values or 
z-coordinates specified in the input data. Although 
there are many software packages that contour grid- 
ded data, such as concentration in relation to x and y, 
some of these require the grid to be equally spaced 

and others, such as that contained in DISSPLA, can 
interpolate scattered data onto regular grids, but at 
the cost of considerable computational effort and time. 

The subroutine first creates a rectangular grid 
based on the x- and y-coordinates supplied in the input 
data. Each rectangular block in the grid is then 
subdivided into two triangles defined by a diagonal 
drawn across the block. Next, contour segments are 
drawn by connecting points of equal concentration 
determined by linear interpolation along the axes of 
each triangular element. 

The number of contours drawn is determined by the 
difference between the maximum and minimum nor- 
malized concentration values and the contour incre- 
ment, DELTA. The subroutine uses a relatively com- 
plex algorithm to connect the contour segments 
defining a contour line and to determine whether a 
contour line has exited the grid or formed a closed 
loop. Contour lines are labeled after all NUM contour 
segments are drawn. NUM is set. to 40 in the code, but 
this can be changed by the user. The routine requires 
three work arrays--PC, YPC, and IFL,4G-to 
store contouring data. IFLAG must be dimensioned to 
twice the number of rectangular blocks. XPC and 
YPC are dimensioned by 50 in the subroutine and in 
common block PDAT in the main programs. This 
number must be changed if the user increases the 
value of NUM to greater than 50. 

Running the programs 
Array dimensions 

Dimensions of arrays used by the programs are set 
by a PARAMETER statement, as follows: 

PARAMETER (MAXX=lOO, MAXY=50, MAXZ 
=30, MAXT=20, MAXXY=5000, MAXXYZ=:lOOOO, 

MAXRT= 1000) 
where 

MAXX =maximum number of x-coordinates, 
MAXY =maximum number of y-coordinates, 
MAXZ =maximum number of z-coordinates, 
MAXT =maximum number of time values, 

MAXXY =product of MAXX ;md MAXY, 
MAXXYB = twice MAXXY, and 

MAXRT =maximum number of roots used in series 
summation in program FINITE. 

The user can modify the PARAMETER statement to 
increase or decrease these limits. 

Compiling and loading 

The following describes the procedure for compiling 
and running the programson the Prime system. For 
convenience, the user should first create a single file 
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called SUBS.F77 that contains the following subrou- 
tines: EXERFC, GLQPTS, OFILE, TITLE, 
PLOTlD, PLOTZD, PLOT3D, AND CNTOUR. The 
user should then type 

Fi’7 PROGRAM.F77 -BIG -SILENT 
F77 SUBSF77 -BIG -SILENT 
SEG -LOAD 
LOAD PROGRAM 
LOAD SUBS 
LIBRARY DISSPLA 
LIBRARY VAPPLB 
LI 
SAVE 
QUIT 

where PROGRAM indicates the name of the main 
program (for example, STRIPF or GAUSS). After the 
message “LOAD COMPLETE” is received at the 
terminal, the user can run the program by typing 

SEG PROGRAM 

The following message will appear 

“TYPE IN INPUT FILE NAME” 

The user can respond with the name of the file 
containing the data set (see description of subroutine 
OFILE). The following will then appear: 

“TYPE IN OUTPUT FILE NAME” 

The user can respond with the name of the output file 
name or an asterisk (*> to cause output to come to the 
terminal. 

These programs can be run on other computer 
systems, although some device-dependent subroutine 
calls may have to be modified. These statements are 
identified in the previous section. 

Summary 

The physical, chemical, and biological processes 
that govern transport of solutes in ground water can 
be described quantitatively by the advective- 
dispersive solute-transport equation. Analytical solu- 
tions, which are exact mathematical solutions for this 
partial differential equation, have been derived for 
many combinations of aquifer geometry, solute-source 
configurations, and boundary and initial conditions. 
These solutions can be used to mathematically model 
the movement of solutes in homogeneous aquifers 
having simple flow systems in which the chemical and 
biological processes can be described by linear rela- 
tions. 

This report presents analytical solutions for solute 
transport in one-, two-, and three-dimensional sys- 
tems having uniform flow. The solutions were com- 
piled from those published in various journals and 
reports or were derived by the author. The solutions 
for one-dimensional solute transport are for (1) a 
finite-length system with a first-type boundary condi- 
tion at the inflow end, (2) a finite-length system with 
a third-type boundary condition at the inflow end, (3) 
a semi-infinite system with a first-type boundary 
condition at the inflow end, and (4) a semi-infinite 
system with a third-type boundary condition at the 
inflow end. Solutions for the finite-length system 
assume a second-type boundary condition at the out- 
flow end. 

Solutions for two-dimensional solute transport were 
presented for (1) an aquifer of infinite area1 extent 
with a continuous point source at which fluid is 
injected at a constant rate and concentration, (2) a 
semi-infinite aquifer of finite width with a strip source 
along the inflow boundary, (3) a semi-infinite aquifer 
of infinite width with a strip source along the inflow 
boundary, and (4) a semi-infinite aquifer of infinite 
width with a solute source having a gaussian concen- 
tration distribution. Solutions for three-dimensional 
solute transport were presented for (1) an aquifer of 
infinite extent with a continuous point source, (2) a 
semi-infinite aquifer of finite height and width with a 
patch source along the inflow boundary, and (3) a 
semi-infinite aquifer of infinite width and height with 
a patch source along the inflow boundary. All the 
solutions presented can account for first-order solute 
decay due to chemical or biological processes and 
linear equilibrium adsorption. 

A set of computer programs was written to evaluate 
these solutions and to produce tables and graphs of 
solute concentration as a function of time and distance 
from the solute source. Documentation of these pro- 
grams includes instruction on their use, description of 
input data format, sample problems, and sample data 
sets. Source codes for the programs and output for the 
sample problems are presented in attachments to the 
report. 
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