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Abstract 
A mathematical solution for solute transport in a three-dimensional porous medium with a patch source under 

steady-state, uniform ground water flow conditions was developed by Domenico (1987). The solution derivation 
strategy used an approximate approach to solve the boundary value problem, resulting in a nonexact solution. 
Variations of the Domenico (1987) solution are incorporated into the software programs BIOSCREEN and 
BIOCHLOR, which are frequently used to evaluate subsurface contaminant transport problems. This article 
mathematically elucidates the error in the approximation and presents simulations that compare different versions 
of the Domenico (1987) solution to an exact analytical solution to demonstrate the potential error inherent in the 
approximate expressions. Results suggest that the accuracy of the approximate solutions is highly variable and 
dependent on the selection of input parameters. For solute transport in a medium-grained sand aquifer, the Dome
nico (1987) solution underpredicts solute concentrations along the centerline of the plume by as much as 80% de
pending on the case of interest. Increasing the dispersivity, time, or dimensionality of the system leads to increased 
error. Because more accurate exact analytical solutions exist, we suggest that the Domenico (1987) solution, and 
its predecessor and successor approximate solutions, need not be employed as the basis for screening tools at 
contaminated sites. 

Introduction 
Analytical solutions are frequently used as screening 

tools to evaluate contaminant fate and transport in the 
subsurface environment. Analytical and semianalytical 
solutions are exact solutions to a boundary value problem 
that comprises a governing differential equation and asso
ciated boundary and initial conditions. Many approaches 
have been used in the published literature to derive exact 
analytical and semi analytical solutions (e.g., separation 
of variables, Laplace integral transforms, and Fourier 
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integral transforms). Although the configuration of the 
domain and source zone geometry is often simplified to 
facilitate a tractable solution, if a correct mathematical 
approach is employed, the solution will be an exact ana
lytical or semianalytical solution to the specified bound
ary value problem. 

The governing equation for three-dimensional (3D) 
solute transport in saturated porous media under uniform 
steady-state flow subject to advection, dispersion, sorp
tion, and first-order decay is (Bear 1979): 

ac vac a2c 
+- -a2 + ).c=oat R ax R z 

(1) 

where C C(x,y,z,t) is the concentration of the solute -
[M/L3], y is the horizontal transverse spatial coordinate 
[L], z is the vertical transverse spatial coordinate [L], 
x is the longitudinal spatial coordinate [Ll, t is time [T], v 
is the average linear ground water velocity unidirectional 
in x [Ur], R is the retardation coefficient, Dx (= CtxVx) is 
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the coefficient of longitudinal dispersion [L2/T], Dy

(¼ ayvx) is the coefficient of horizontal transverse disper-
sion [L2/T], Dz (¼ azvx) is the coefficient of vertical trans-
verse dispersion [L2/T], a is the coefficient of dispersivity,
and k is the aqueous phase decay constant [1/T]. In
Equation 1, both aqueous and sorbed phases undergo
first-order decay. Note that the boundary value problem
assumes that diffusion has a negligible contribution to
transport and is ignored in the definition of D.

Several exact analytical solutions to Equation 1 have
been presented in the published literature. Cleary and
Ungs (1978) derived a series of exact analytic solutions,
including a patch shaped source zone in a 3D domain that
was semi-infinite in x and finite in y and z. The boundary
value problem specified no flux boundaries at the hori-
zontal and vertical limits of the domain, and the solution
comprises two summation series. Wexler (1992) also
derived an exact analytical solution to the same boundary
value problem as Cleary and Ungs (1978) but considered
a domain that was infinite in y and z. The solution by
Wexler (1992) was an extension of an earlier exact ana-
lytical solution by Sagar (1982), who solved Equation 1
for a conservative solute. The solutions by Sagar (1982)
and Wexler (1992) comprise an integral that must be
numerically evaluated. Huyakorn et al. (1987), Leij et al.
(1991), and Batu (1996) also derived exact analytical sol-
utions to Equation 1 but used more sophisticated source
boundary conditions than those of the foregoing authors
(e.g., Gaussian distributions, multiple sources of variable
concentrations). Leij et al. (1991) solve Equation 1 for the
case of decay of the aqueous phase only.

An alternate approach to the aforementioned bound-
ary value problem solutions was developed by Domenico
(1987), who extended other earlier, less complex sol-
utions proposed by Domenico and Robbins (1985) and
Domenico and Palciauskas (1982). Variations of the
Domenico (1987) solution were incorporated into the com-
puter software programs BIOCHLOR (U.S. EPA 2000,
2002) and BIOSCREEN (U.S. EPA 1996), which are
available to users through the U.S. EPA. These versions
of the Domenico (1987) solution consider linear isother-
mal sorption and a variety of patch source boundary con-
ditions. Unfortunately, a common misconception among
many users of BIOCHLOR, BIOSCREEN, and other
versions of the Domenico (1987) solution is that these
programs use an exact analytical solution.

The Domenico (1987) solution is an approximate
solution to Equation 1 and not an exact analytical solu-
tion. The solution approach used by Domenico (1987)
entailed the assembly of different analytical solutions into
one equation. In particular, a one-dimensional (1D) exact
analytical solution for advection and longitudinal disper-
sion in a semiinfinite domain (e.g., Bear 1979) was used
to replace the longitudinal component of a modified exact
analytical solution for 3D diffusion (Crank 1975). In
a preceding article (Domenico and Robbins 1985) that
discussed the approach in detail, the authors identified
their solution methodology as an ‘‘extended pulse approx-
imation’’ and not a rigorous superposition model. The
intent of the authors was to derive an approximate solu-
tion suitable for parameter estimation of field data.

The appeal of the Domenico (1987) solution is its util-
ity. Since its derivation and resulting expression are rela-
tively simple, modifications to boundary conditions and
the governing equations (e.g., sorption or multiple species
decay) are implemented with relative ease when compared
to some corresponding exact analytical solutions. In addi-
tion, it can be incorporated in spreadsheet programs with
little effort. Despite its frequent use, little information is
available about its inherent error. Domenico and Schwartz
(1998, 381) presented a limited comparison of the Dome-
nico (1987) solution to the exact analytical solution by Leij
et al. (1991) and noted ‘‘some error of approximation.’’ It is
somewhat surprising that the first investigations of error
(beyond the original authors) were reported in research
literature only recently (Guyonnet and Neville 2004;
West and Kueper 2004; Falta et al. 2005).

It is the experience of the authors that the Domenico
(1987) solution and its predecessors and successors have
been adopted in some regulatory settings and readily used
by the contaminant hydrogeology community as not only
a screening tool but also a decision-making tool for quan-
tifying monitored natural attenuation and carrying out
risk analyses. For example, the use of BIOSCREEN and/
or BIOCHLOR at contaminated sites is recommended by
the U.S. EPA (1998, 2005), the United States Air Force
Environmental Restoration Program (1998), and the
United States Naval Facilities Engineering Command
(2001). It has also been relied upon in the research litera-
ture. Huntley and Beckett (2002) and Falta et al. (2005),
for example, applied the Domenico (1987) solution in
various studies of plume and source zone behavior. While
Falta et al. (2005) conducted a limited assessment of the
inherent error for their particular work, no such effort was
undertaken by Huntley and Beckett (2002).

It could be argued that the error of approximation
arising from the Domenico (1987) solution is irrelevant
given the uncertainties surrounding issues such as source
zone delineation and aquifer heterogeneity. However, the
use of the Domenico (1987) solution only exacerbates the
uncertainty with approximate mathematics. The ‘‘uncer-
tainty’’ due to mathematical approximation can be elimi-
nated by choice, a luxury that cannot always be extended
to complex subsurface domains. In addition, mathemati-
cal error does not fall within the definition of scientific
uncertainty. Uncertainty should only be attributed to phe-
nomena that are uncontrollable, either due to a low state
in scientific knowledge or a natural complexity that is
unobservable. The errors in the Domenico (1987) solution
do not satisfy this definition of uncertainty. In summary,
why employ an inexact mathematical model when exact
versions are available?

In this paper, the approximate nature of the Domenico
(1987) solution, and its predecessor and successor sol-
utions, is investigated both mathematically and with
modeling. A review of the derivations and mathematics
used in these approximate solutions is first presented to
elucidate errors due to solution technique, truncation, and
parameter substitution. To our knowledge, such an analy-
sis of the Domenico (1987) solution, and associated sol-
utions, has not been published. Several simulations are
then conducted to compare the output generated from the
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approximate solutions to the exact analytical solutions by
Cleary and Ungs (1978) and Wexler (1992). A full sensi-
tivity analysis is not the objective of this article. Guyonnet
and Neville (2004) recently conducted a thorough dimen-
sionless comparison between the Domenico (1987) solu-
tion and an exact analytic solution by Wexler (1992) in 3D
domains. It is our opinion that the use of dimensionless pa-
rameters by Guyonnet and Neville (2004) masks the errors
inherent in the BIOSCREEN and BIOCHLOR models.
Our approach is pragmatic, clearly illustrating the poten-
tial for error arising from the use of the Domenico (1987)
solution in both two-dimensional (2D) and 3D contami-
nant transport applications of practical interest.

Approximations in Solution Formulation
The historical progression of the various forms of the

Domenico (1987) solution and the different approxi-
mations in solution formulation are discussed in this sec-
tion and highlighted in Table 1. The approximations are
multiple and varied, including incorrect mathematics,
truncations of exact analytic solutions, and parameter
substitutions.

Throughout this section, comparisons are made
between the approximate Domenico (1987) solution and
other exact analytical solutions. In all cases, the compar-
isons reference the same boundary value problem. The ob-
jective here is to examine the impact of mathematical
techniques used to derive the Domenico (1987) solution
(and other related solutions), not the underlying boundary
value problem assumptions or formulations.

Approximate Expression Development
The approximate technique employed by Domenico

(1987) was developed earlier by Domenico and Robbins
(1985), who approximated a solution for the case of advec-
tive-dispersive transport in the absence of sorption and
decay. The corresponding governing equation is given by:

@C

@t
¼2v

@C

@x
1Dx

@2C

@x2
1Dy

@2C

@y2
1Dz

@2C

@z2
;

0�x�N
2N�y�N
2N�z�N

ð2Þ

for a patch source located between –Y/2 � y � Y/2 and
–Z/2 � z � Z/2, where Y is the source width and Z is the
source thickness. The Domenico and Robbins (1985)
technique approximates the 3D transient solution to
Equation 2 using the product of 1D solutions in each
direction (Domenico and Robbins 1985):

Cðx; y; z; tÞ ’ Cðx; tÞ 3 Cðy; tÞ 3 Cðz; tÞ ð3Þ

The methodology reflected in Equation 3 is not
mathematically rigorous and introduces errors of approxi-
mation relative to exact techniques. Furthermore, Equa-
tion 3 is not a solution to the original mass transport
equation and, therefore, does not conserve mass. This
approach reduces to solving Equation 2 using the follow-
ing three separate partial differential equations:

@C

@t
¼ 2 v

@C

@x
1 Dx

@2C

@x2
; 0 � x � N ð4Þ

@C

@t
¼ Dy

@2C

@y2
; 2N � y � N ð5Þ

@C

@t
¼ Dz

@2C

@z2
; 2N � z � N ð6Þ

For a patch source, the exact analytic solution to
Equations 5 and 6 is given by Crank (1975), which, for
Equation 5 as an example, is:

Cðy; tÞ ¼ Co
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where Co is the concentration of the patch source. The
exact analytical solution to Equation 4 is the Ogata and
Banks (1961) solution:

Cðx; tÞ ¼Co

2

�
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x2 vt

2
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1 exp
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Table 1
Summary of Solutions

Reference
Advection

(1D)
Dispersion

(3D)
Decay

(aqueous)
Decay
(sorbed) Sorption

C(x,y,z,t) w
C(x,t)3

C(y,t) 3 C(z,t)
Truncation of

C(x,t)

Approximate expressions used in this study
Domenico and Robbins (1985) d d d d

Domenico (1987) d d d d d

U.S. EPA (1996)–BIOSCREEN d d d d d d

U.S. EPA (2000)–BIOCHLOR d d d d d

Guyonnet and Neville (2004) d d d d d d d

Exact analytic solution used in this study
Wexler (1992) d d d d d
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Domenico and Robbins (1985) truncated Equation 8
in their work, thus omitting the product of the exp and
erfc functions. Some discussion on the inherent error
due to this truncation is found in Bear (1979) and Mar-
tin-Hayden and Robbins (1997). When Equation 3 is em-
ployed, the final truncated solution after substituting t ¼
x/v in the transverse dispersion terms is (Domenico and
Robbins 1985):

Cðx;y;z;tÞ ’ Co

8
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The substitution of t ¼ x/v warrants some mention.
Domenico and Palciauskas (1982) proposed that if time
(t) is approximately equal to x/vc, where vc is the contami-
nant velocity, then the contaminant will spread from Y to
Y 1 (Dyt)1/2 and Z to Z 1 (Dzt)1/2. While this substitution
may have some conceptual utility for cases with Dx ¼ 0,
Dy > 0, and Dz > 0 (i.e., longitudinal plug flow), it is
unclear what influence on accuracy interpreting plug flow
has for cases with Dx > 0. The substitution was re-
addressed in a subsequent paper as well. Domenico and
Robbins (1985) described time (t) as ‘‘running time.’’
They continued to state that ‘‘reinterpreting this time as x/
v for a moving coordinate system . has the effect of
maintaining the original source dimensions at x ¼ 0 so
that the condition C ffi Co is maintained at x ¼ 0 for
t > 0.’’ This interpretation of the substitution is conceptu-
ally more awkward. A rigorous mathematical solution to a
boundary value problem would require no such parameter
substitution to maintain the source boundary condition.

The application of Equation 3 presents another con-
flict that is evident in Equation 9. The product of the sepa-
rate solutions for Equations 4 through 6 yields C3

o, not Co.

This issue is not resolved by either Domenico and Robbins
(1985) or Domenico (1987). However, Domenico and
Schwartz (1998) provide a slightly different formulation of
Equation 3 that addresses this conflict, where C(x,y,z,t) is
actually treated as the relative concentration C(x,y,z,t)/Co,
and is equal to the product of relative solutions for x, y, and
z; thus, C3

o is replaced with Co.
Similar to Domenico and Robbins (1985), Domenico

(1987) used Equation 3 to approximate a solution for the
case of advective-dispersive transport subject to aqueous
phase decay in the absence of sorption. The correspond-
ing governing equation is given by:
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¼ 2 v
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(10)

Equation 3 was employed, which is an approach that
reduces to solving Equation 10 using the following three
partial differential equations:
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Again, the exact analytical solution to Equations 12
and 13 is given by Crank (1975) as presented in Equation
7. The exact analytical solution to Equation 11 is given by
Bear (1979):
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where Equation 14 is the nontruncated (full) 1D analytic
solution to Equation 11. Both the truncated and non-
truncated solutions are presented in Bear (1979), where the
truncated solution omits the second product of exp and
erfc. Domenico (1987) employed the truncated solution.
Using Equation 3 and the substitution t ¼ x/vc (with vc ¼ v),
the completed Domenico (1987) solution is:
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An interesting issue arises in Equation 15 with the
substitution of t ¼ x/vc. Since vc is the contaminant veloc-
ity for this substitution, one can rationalize vc ¼ v/R (for
Dx ¼ 0), but the treatment of decay (k) is more awkward.
Decay in the transverse direction has been excluded in all
derivations to date and thus introduces an additional error
of approximation to Domenico (1987) type solutions that
incorporate decay. Furthermore, the application of Equa-
tion 3 reduces the 3D decay stated in Equation 10 to 1D
decay in only the x direction (e.g., Bear 1979).

Adoption of Domenico and Robbins (1985) and
Domenico (1987) in subsequent studies

The Domenico and Robbins (1985) technique of em-
ploying Equation 3 was implemented in BIOCHLOR (U.S.
EPA 2000, 2002), BIOSCREEN (U.S. EPA 1996), and
Guyonnet and Neville (2004) to approximate 1D advection
with 3D dispersion, including linear isothermal sorption
and first-order decay (see Table 1); both Equation 3 and the
truncation of Equations 8 and 14 were implemented in the
latter two solutions. The original Domenico and Robbins
(1985) and Domenico (1987) solutions differ from those
in BIOSCREEN, BIOCHLOR, and Guyonnet and Neville
(2004) in that the latter solutions incorporate sorption.
BIOCHLOR and BIOSCREEN consider decay in only
the aqueous phase, while Guyonnet and Neville (2004)
examine decay in both the aqueous and sorbed phases.

The governing equation describing advection, dispersion,
linear isothermal sorption, and first-order decay in both the
aqueous and sorbed phases is given by Equation 1. If Equation
3 is employed, Equation 1 is reduced to the following three
partial differential equations that must be solved individually:
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The exact analytical solution to Equation 16 is given
by Bear (1979):
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The solutions to Equations 17 and 18 can be
derived using the techniques described by Crank (1975),
resulting in:
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Employing Equation 3 yields the final approximate
nontruncated solution:
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Equation 22 is the nontruncated form of the approx-
imate solution to Equation 1 using the Domenico and
Robbins (1985) technique (i.e., Equation 3). If the sub-
stitution of t ¼ x/vc (with vc ¼ v/R) is made in the
erf terms, Equation 22 becomes the solution used in
BIOCHLOR.

The exact analytical solution to Equation 1 was orig-
inally derived by Cleary and Ungs (1978) for a finite
transverse domain. By considering an infinite transverse
domain, Sagar (1982) derived an exact solution to Equa-
tion 1 for the case of a conservative solute. Based on the
work by Sagar (1982), Wexler (1992) derived an exact
analytical solution to Equation 1. The exact solution pre-
sented by Wexler (1992) can be used to further illustrate
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error in the Domenico (1987) solution and the approach
by Domenico and Robbins (1985). The exact analytical
solution to Equation 1 presented by Wexler (1992) is:
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where s is the dummy variable of integration. The
Domenico and Robbins (1985) technique (i.e., Equation 3)
essentially removes the transverse error functions (erf)
from the integration and treats the s as a constant t, giving:
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The x component of Equation 24 is actually the solu-
tion by Bear (1979) presented in Equation 19; hence,
once the integral is analytically evaluated, Equation 24
reduces to Equation 22. There is no mathematical basis
to justify Equation 3 or the approximation of s ¼ t in
Equation 24; it is a matter of convenience.

Based on the aforementioned approximations, it is
anticipated that source width, source depth, transverse
dispersion, retardation, transverse dimensionality, and
time (or the substitution of t ¼ x/vc) will contribute to the
‘‘error of approximation.’’ In some instances, the con-
ditions where the error is minimized can be surmised
from the properties of the error function (erf). The erf is
an asymptotic exponential integral where erf(N) / 1.
Therefore, large values of the argument (i.e., the ratio of
the numerator to the denominator) will yield error

function values close to 1, and the transverse components
of Equation 24 can become negligible. In relative terms,
large source geometries (Y and Z), large values of R, large
values of vc, small values of Dy and Dz, and small values
of x should reduce the influence of the transverse compo-
nents when examining concentrations along the plume
centerline (y ¼ z ¼ 0). Thus, under these conditions, a
Domenico (1987) type solution approaches the exact 1D
analytical solution of Bear (1979) presented in Equation
19. As a consequence, a practitioner conducting a suite of
screening calculations with a Domenico (1987) type solu-
tion will encounter increasing or decreasing errors of
approximation depending on the choice of parameter.

Quantification of the Error of Approximation
The relative error (r) is evaluated using:

rð%Þ ¼ ðOD 2 OWÞ
OW

3 100 ð25Þ

where OD is the output from the approximate Domenico
(1987) solution, and OW is the output from the exact ana-
lytical solutions by Cleary and Ungs (1978) and Wexler
(1992); For all cases, the solutions by Cleary and Ungs
(1978) and Wexler (1992) produced the same results. For
convenience, reference will be made to only Wexler
(1992) hereafter. The solution by Wexler (1992) (Equa-
tion 23) requires numerical integration techniques to
evaluate the integral. This need for numerical integration
prevents analytical analysis of the relative error between
the exact analytical solution by Wexler (1992) and the
approximate solutions presented by Domenico and Rob-
bins (1987), Domenico (1987), U.S. EPA (1996, 2000,
2002), and Guyonnet and Neville (2004). Thus, a compar-
ative evaluation, as presented Equation 25, is necessary.

Comparison of Solutions and Input Parameters
Simulations are executed here for both 2D and 3D

porous media with a constant concentration patch source
by comparing Domenico (1987) to Wexler (1992) for
both transient and steady-state conditions. Exact analy-
tical solutions by Huyakorn et al. (1987), Leij et al.
(1991), and Batu (1996) could also have been used for
this purpose. The 3D cases simulate an aquifer with only
a partially penetrating source zone, while the 2D case
considers a source zone distributed through the full aqui-
fer thickness. The consideration of dimensionality not
only highlights the influence of domain configuration on
the error of approximation in Domenico (1987) but also
illustrates the differences in prediction for the two cases,
which can be overlooked while screening a site. We
assume that our example site is fairly well characterized,
such that field solute concentrations, hydraulic gradient,
and geological conditions are known. We assume that the
contaminant is trichloroethene with a source concentra-
tion (Co) of 11 mg/L, and all concentration values are
assessed along the plume centerline, C(x,0,0,t), for all
simulations. In addition, the plume length (Lp), defined by
the position of the 5 parts per billion contour, is assumed
to be 100 m for the purposes of calculating a constant
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dispersivity. The parameters are summarized in Table 2.
Note that R ¼ 1 for all simulations as the Domenico
(1987) solution does not incorporate sorption. The depth
of the source zone below the water table is 2.5 m.

One would normally conduct a suite of screening
simulations to investigate the influence of various param-
eters (e.g., velocity, source width) on the solution output.
A subset of simulations is conducted herein, where only
the dispersivity values are adjusted. A full dimensionless
analysis was conducted by Guyonnet and Neville (2004).
As mentioned in the previous section, transverse disper-
sion and dimensionality will potentially introduce signifi-
cant error due to the mathematical approximations
employed in the Domenico and Robbins (1985) tech-
nique. The three approaches suggested in the BIO-
CHLOR manual (U.S. EPA 2000, 2002) are implemented
to obtain reasonable dispersivities for the subject example
site. In the first approach, the longitudinal dispersivity
(ax) is 10% of the Lp; using this approach, a constant ax ¼
10 m is calculated for all values of x. The second and
third approaches recognize the scale dependent nature of
dispersivity (Gelhar et al. 1992). The method of Pickens
and Grisak (1981) is adopted where ax ¼ 0.1 L, where L
is the distance along the domain to the point of reference.
The third method uses the findings of Xu and Eckstein
(1995) where ax ¼ 0.83(log10L)2.414; in the latter two
approaches, ax increases with x (i.e., L). For this ex-
ample, the horizontal transverse dispersivity is given by
ay ¼ 0.1ax and, where appropriate, the vertical transverse
dispersivity is given by az ¼ 0.01ax. Both transient
and steady-state simulations were executed in the 2D study
by assuming that the vertical transverse dispersivity was
negligible (i.e., az ¼ 0 and Dz ¼ 0). Descriptions of the
steady-state and transient simulations are provided in
Tables 3 and 4, respectively. The relative error between
solution outputs for each of the simulations is evaluated
using Equation 25.

Finally, a series of transient 3D simulations are con-
ducted to demonstrate the error due to truncation of the

solution for C(x,t). These simulations are summarized in
Table 5 and use the parameters listed in Table 2 where
appropriate. Relative error is evaluated along the plume
centerline while employing dispersivity values calculated
using ax ¼ 0.1 L.

Steady-State Simulations
Steady-state concentration profiles for solute transport

in 2D and 3D porous media are presented in Figure 1,
which compares the output generated from solutions by
Domenico (1987) and Wexler (1992). The simulations are
conducted using either a constant ax ¼ 10 m or a variable
ax ¼ 0.1 L. Clearly, the solutions are sensitive to the
choice of dispersivity, with the variable ax producing
greater concentrations near the source zone and reduced
concentrations downstream relative to the constant ax.
Furthermore, the dimensionality of the problem has a
significant impact on the concentration profiles, which
underscores the need for dimensional screening at sites.

The relative error between the two solutions is pre-
sented in Figure 2 for the four combinations of dis-
persivity and dimension. The Domenico (1987) solution

Table 2
Summary of Input Parameters for All Simulations

Description Parameter Value

Source concentration Co 11 mg/L
Source width Y 10 m
Source depth below
the water table (3D case)

Z/2 2.5 m

Source depth below
the water table (2D case)

Z/2 2.5 m

Source decay half-life t(c)1/2 N
Solute plume decay half-life t(k)1/2 5 years
Hydraulic gradient rh 0.008
Hydraulic conductivity K 1 3 1024 m/s
Longitudinal dispersivity ax Various
Transverse horizontal dispersivity ay 0.1ax
Transverse vertical dispersivity az 0.01ax
Porosity h 0.25
Ground water velocity v 0.277 m/d
Solute retardation factor R 1.0

Table 3
Summary of Steady-State Simulations

Run Solution Configuration ax

1 Wexler (1992) 2D 10 m
2 Domenico (1987) 2D 10 m
3 Wexler (1992) 2D 0.1 L
4 Domenico (1987) 2D 0.1 L
5 Wexler (1992) 3D 10 m
6 Domenico (1987) 2D 10 m
7 Wexler (1992) 3D 0.1 L
8 Domenico (1987) 3D 0.1 L

Table 4
Summary of Transient Simulations

Run Case Solution

Distance to
Monitoring
Well (m)

Method of
Calculating ax

1 A Wexler (1992) 10 Xu and

Eckstein (1995)

2 A Domenico (1987) 10 Xu and

Eckstein (1995)

3 A Wexler (1992) 100 Xu and

Eckstein (1995)

4 A Domenico (1987) 100 Xu and

Eckstein (1995)

5 B Wexler (1992) 10 Pickens and

Grisak (1981)

6 B Domenico (1987) 10 Pickens and

Grisak (1981)

7 B Wexler (1992) 100 Pickens and

Grisak (1981)

8 B Domenico (1987) 100 Pickens and

Grisak (1981)
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underpredicts the steady-state concentrations through the
majority of the domain, with the exception of the constant
ax for distances close to the source zone. As suggested
earlier from mathematical considerations, the error in the
Domenico (1987) solution is exacerbated by increasing
the dimensionality of the domain from 2D to 3D. The
choice of either a constant or variable ax has a significant
impact on the behavior of the error. For the 3D case, the
constant ax produces relative errors ranging from 2.5%
to 224%, peaking near the source zone. However, the

variable ax yields an error of 0.5% near the source zone
that continually increases with distance, such that an
error of 232% is realized at a distance of approximately
1000 m.

Transient Simulations
Breakthough curves are presented in Figure 3 for

monitoring wells located at 10 and 100 m downstream of
the source. Case A uses dispersivities calculated from Xu
and Eckstein (1995), while the method of Pickens and
Grisak (1981) is used in case B. The case A ax values for
the 10- and 100-m wells are 0.83 and 4.42 m, respec-
tively. The ax values of 1 and 10 m were applied to the
10- and 100-m wells for case B, respectively.

Figure 3 illustrates that the Domenico (1987) solu-
tion can underpredict the concentrations at each well for
all times. The relative error associated with the under-
prediction is presented in Figure 4. The error between
Wexler (1992) and Domenico (1987) is significant at
early time for all wells, with values of 230% for the 10-m
well and 280% for the 100-m well. For late time, the
well near the source zone (10 m) exhibits negligible
error. However, the error at the 100 m well achieves
a steady-state relative error of 27% for case A but
216% for case B. It can be observed that increasing the
dispersion in the system increases the error between the
solutions.

Influence of Truncation in C (x,t)
Profile curves of relative error between the truncated

and nontruncated Domenico (1987) solutions (see Table 5)
and Wexler (1992) are presented in Figure 5. A total of
six simulations were conducted to examine the relative
error at t ¼ 1, 2, or 5 years for Equation 25.

The influence of truncating C(x,t) can be observed by
comparing the relative error calculations for each simula-
tion. The truncated cases (e.g., Domenico [1987] and
BIOSCREEN) yield additional error of approximation when
compared to the nontruncated cases (e.g., BIOCHLOR);
however, all cases produce significant error with increas-
ing x. At a time of 1 year and a distance of 100 m, the
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Figure 2. Relative error between Wexler (1992) and Dome-
nico (1987) for 2D and 3D steady-state simulations.
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Figure 1. Comparison of solutions for steady-state condi-
tions in 2D and 3D porous media. Simulations are summa-
rized in Table 3.

Table 5
Simulation Notation for Figure 5

Label Description

Full 1 year Relative error between Wexler
(1992) and the full (nontruncated)
Domenico (1987) solution
(e.g., BIOCHLOR) for 1 year

Truncated 1 year Relative error between Wexler
(1992) and the truncated
Domenico (1987) solution (i.e.,
Domenico [1987] and
BIOSCREEN) for 1 year

Full 2 years Relative error between Wexler
(1992) and the full (nontruncated)
Domenico (1987) solution
(e.g., BIOCHLOR) for 2 years

Truncated 2 years Relative error between Wexler
(1992) and the truncated Domenico
(1987) solution (i.e., Domenico
[1987] and BIOSCREEN)
for 2 years

Full 5 years Relative error between Wexler
(1992) and the full (nontruncated)
Domenico (1987) solution
(e.g., BIOCHLOR) for 5 years

Truncated 5 years Relative error between Wexler (1992)
and the truncated Domenico (1987)
solution (i.e., Domenico [1987] and
BIOSCREEN) for 5 years
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nontruncated Domenico (1987) solution produced a rela-
tive error of 232%, but the truncated Domenico (1987)
solution yields a relative error of 241%. The additional
error of approximation diminishes with increasing time as
the two solutions approach steady-state conditions.

Conclusions
The accuracy of the Domenico (1987) solution is

parameter dependent. Depending on the choice of para-
meters, the magnitude of relative error can range from
significant (e.g., 280%) to negligible. When comparing
Domenico (1987) to the exact analytical solutions of
Cleary and Ungs (1978) and Wexler (1992), the Domeni-
co (1987) solution typically underpredicts concentrations.
The magnitude of relative error is a function of parameter
value, time, and dimensionality; the application of dis-
persivity is particularly awkward as different techniques
yield variable error behavior. Most important, the

behavior and magnitude of the relative error cannot be
predicted a priori. Thus, users of the Domenico (1987)
solution and other associated versions cannot ascertain
the degree of underprediction without a comparative
study (as conducted herein) or potentially by examining
the type curves of Guyonnet and Neville (2004).

Additional relative error is observed in expressions
(i.e., BIOSCREEN and Domenico [1987]) that truncate
the analytical solution for 1D solute transport. When per-
forming simulations to evaluate the effects of solution
formulation and truncation, the relative error between the
exact analytical solutions by Cleary and Ungs (1978) and
Wexler (1992) and the various approximate expressions
(i.e., Domenico [1987]; BIOSCREEN; BIOCHLOR) rang-
ed from 2% to280%, depending on the case of interest.

Guyonnet and Neville (2004) stated that along the
plume centerline, and for ground water flow regimes
dominated by advection and mechanical dispersion rather
than by molecular diffusion, the discrepancies between
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the Domenico (1987) solution and the exact Sagar (1982)
solution can be considered negligible for practical pur-
poses. Based on Figures 1 through 5 of this work, we take
a more conservative stance and suggest that in the context
of maximum allowable concentrations at contaminated
sites, the solutions developed using the technique by Do-
menico and Robbins (1985) can potentially significantly
underpredict solute concentrations along the plume cen-
terline when compared to other exact analytical solutions
for both transient and steady-state conditions in 2D and
3D domains.

Given the aforementioned magnitude of relative error
and the abundance of exact analytical solutions available to
practitioners, the Domenico (1987) solution and its associ-
ated solutions need not be employed as screening tools. We
fully encourage practitioners to use peer-reviewed pub-
lished exact analytic solutions, preferably with open source
code. In some cases, a compiled program with a graphic
user interface is more desirable. There are many such soft-
ware packages available in industry. While not a compre-
hensive list, some examples of commercial software that
use exact analytical solutions include PRINCE (distributed
by Waterloo Hydrogeologic Inc.), ATRANS (S.S. Papado-
pulos Inc.), and SOLUTRANS (Fitts Geosolutions).
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