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ABSTRACT

Domenico, P.A., 1987. An analytical model for multidimensional transport of a decaying contami-
nant species. J. Hydrol., 91: 45-58.

A mathematical model is developed for a finite source that incorporates one-dimensional
groundwater velocity, longitudinal and transverse dispersion, and some form of decay for either
radionuclides or biodegradable organics. The model is employed in a calibration procedure that
permits the determination of up to seven parameters from a known spatial distribution of con-
centrations. The determined parameters include the velocity of the contaminant, source size and
concentration, and up to three dispersivities for a three dimensional problem. For a biodegradable
organic, a combined parameter incorporates the ratio of velocity to a degradation half-life and is
readily determined from the field data.

INTRODUCTION

The difficulty in obtaining physically-based parameters from data provided
by contamination histories lies in the preponderance of unknowns. In the most
simple case for common inorganics, up to eight parameters have to be deter-
mined to understand and model the transport. These include the source dimen-
sions for a finite source, the source concentration, the velocity of the ground-
water, which requires further information on effective porosity, the time since
the contaminant first entered the groundwater, and up to three dispersivities
for a three-dimensional problem. This simple scenario assumes that no chemi-
cal reactions are taking place. In the presence of reactions, the problem is
magnified in that both dispersion and reaction tend to decrease the prevailing
concentrations and it is difficult to separate the influence of each. When
dealing with organics, additional problems arise. Chemical attenuation, bio-
degradation, and dispersion all act to lower the concentrations. The mapped
chemical enclave will reflect these processes but will not reveal the absclute or
even relative influence of each. Inverse methods are of some help here but
sometimes are misleading in that values must be assigned to some of the
parameters in order to determine the others. If errors are involved in the
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assignment of values, then errors will be incorporated in the “calibrated”
parameters. The solution, then, is non-unique and often without physical basis.

A transport model recently published by Domenico and Robbins (1985)
purportedly offered some techniques by which at least some of these problems
may be removed. This model allows for a calibration procedure whereby all of
the relevant unknowns are determined directly in an independent fashion from
a mapped chemical enclave. The model has since been applied to determine the
regional dispersivity of selected basalt flows at the Hanford site, Washington
(LaVenue and Domenico, 1986), the Babylon plume in Long Island, N.Y.
(Kelley, 1985), and a chloride plume at the Idaho National Engineering Lab-
oratory (Fryar, 1986). Recently, the model was independently checked against
a three-dimensional finite element code with rather good results (Fig. 1). The
correspondence between these two models is in agreement with comparisons
against other models as reported in the original manuscript.

In this paper, the model will be modified to account for a decaying species.
As expected, this will require some alterations of the calibration procedure.
The decaying species may be a radionuclide or a biodegradable organic,
provided the biodegradation follows similar laws as established for radioactive
decay.
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Fig. 1. Comparison of finite element result with analytical model: (a) along plume axis; (b) at 1070 m
from source; and (c) at 1680 m from source (after Collette, 1985).
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THE EXTENDED PULSE MODEL FOR TRANSPORT WITH DECAY

The original transport model described above was referred to as an “exten-
ded pulse” type model in that it was derived by an infinite spatial extension of
a well known instantaneous finite source pulse model. Certain modifications,
more heuristic than rigorous, were then incorporated to arrive at the final
workable form. Any modification of this result must also take on heuristic
overtones in that an exact solution to this problem cannot avoid some form of
numerical integration, which negates a calibration procedure where several
variables are involved (e.g., Domenico and Robbins, 1985). Fortunately, an
approximate solution may be arrived at purely on the basis of physical argu-
ments pertaining to the transport process. Figure 2 will help in developing the
pertinent physical ideas.

Figure 2a demonstrates the familiar plug flow model void of all longitudinal
and lateral mixing. The source material enters the flow tube at a source
concentration C, and immiscibly displaces the original fluid in the tube. The
displacement or advective front has progressed to the position x = vt where v
is the velocity of the displacing fluid and ¢ is the time since the process started.
The concentrations are at steady state and this steady state is everywhere
equal to the source concentration C; in that neither lateral nor longitudinal
dispersion has been permitted. This, of course, is not a realistic field or labora-
tory model, but it is the starting place to describe various dispersion models.

Figure 2b illustrates a plug flow model with longitudinal dispersion. Here
the material enters the flow tube and, in the absence of lateral dispersion, mixes
with and displaces the original fluids in the x direction strictly within the flow
tube. It is noted now that the concentration at x = vt is less than the original
concentration C; in that longitudinal dispersion causes some of the material to
move ahead of the advective front (vt) at the expense of material behind the
advective front. However, at some distance behind the advective front, the
concentration takes on a steady-state value equal to the source concentration
C, and thereafter possesses all the characteristics of the plug flow model. This,
again, is a non-realistic field condition, but one that has been observed in the
laboratory in one-dimensional (axial dispersion) tests. The situation depicted
in Fig. 2b is described completely by the so called Ogata—Banks equation (1961)
which, in abbreviated form, is expressed as:

C. = (Gy/2) [erfe(x — vt)/2(x,v0)"”] oy

where C, is the concentration at any distance x, C, is the source concentration,
v is the velocity of the constituent, commonly taken as the velocity of water,
t is the time since the experiment began, and «, is the longitudinal (axial)
dispersivity.

Figure 2c is yet a third case which can be referred to as plug flow with
transverse spreading (lateral dispersion). Three things are noteworthy here.
First, in the absence of longitudinal dispersion, no material travels beyond the
advective front. Second, with transverse spreading, the material for the first
time is not restricted to a single flow tube but can spread in a direction



o2

transverse to the flow. This condition accounts for the third feature of trans-
verse spreading models where the concentrations are everywhere at a steady
state and the steady state is everywhere less than the source concentration,
except of course, at the source where x = 0. Concentrations less than C, are
readily achieved in that the mass is equally distributed throughout the chemi-
cal enclave, but the volume which occupies the mass increases with increasing
distance from the source. Near the source, the mass within a given vertical
plane is more concentrated in that it occupies a smaller area (or volume). At
some distance x far from the source an equal amount of mass in a given plane
occupies a large area (or volume). As concentration is mass/volume, the con-
centration decreases with distance from the source.

Domenico and Palciauskas (1982) provide a solution to the transverse
spreading situation of Fig. 2¢. Their model is formulated as a boundary value
problem that approximates the spreading of a contaminant plume in both the

(d)
Steady state maintained Dispersion zone in
@ at source concentration C, front of vt
e Steady state maintained Mass depletion zone
/A at concentrations less than in back of vt

source concentration Cg

Fig. 2. Idealization of the dispersion process showing: (a) plug flow; (b) longitudinal dispersion; (c)
transverse dispersion; and (d) longitudinal and transverse dispersion.
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horizontal ( y) and vertical (z) directions perpendicular to the prevailing flow
path in x. The solution is:

Clx,y,2) = (Cy/d) {erf [(y + Y/2)/2(a,x)"?]
—erf [(y — Y/2)/2(a,x)"*]} {exf [(z + Z]2)/2(a,x)'"] (2)
—erf(z — Z/2)/2(a,x)"*]}

where Y and Z are the source dimensions. If spreading in z can be ignored, the
four becomes a two and the error function terms in z are ignored. If spreading
takes place in only one direction in z, say vertically downward, Z/2 is replaced
by Z. This is likely the most common spreading geometry and corresponds to
a finite source at the water table in a very thick aquifer. The maximum
concentration occurs along the centerline (y = z = 0) and is given as:

C(x, 0,0) = C,erf [Y/4(x,x)"?] erf [Z/4(x,x)"?] (3)

Note that at x = 0, C = C,. Equation (3) is currently in use by the U.S.
Environmental Protection Agency to evaluate delisting petitions to exclude
certain wastes from the hazardous waste list (Federal Register, 1985).

Finally, Fig. 2d demonstrates a more realistic chemical enclave as might be
expected in a field situation. Because of an assumed one-dimensional velocity,
this may be referred to as a plug flow model with both longitudinal and
transverse spreading (dispersion). Note that this enclave has features common
to both the longitudinal dispersion model (Fig. 2b) and the transverse spread-
ing model (Fig. 2c). There is a frontal dispersion zone beyond the advective
front caused exclusively by longitudinal dispersion, and a resulting mass
depletion zone behind the advective front, this latter zone providing the mass
in the frontal portions of the plume. At some distance behind the advective
front, depending largely on the value of the longitudinal dispersivity, the
enclave is in a steady state. The steady-state concentrations are everywhere
less than the source concentration because of transverse spreading, except of
course at x = 0.

The essential features of this enclave can be captured by combining the
longitudinal dispersion and transverse spreading models given in eqns. (1) and
(2), or:

Clx,v,2,t) = (Cy/8) erfc [(x — vt)/2a, vt)"*]
{erf [(y + Y/2)/2(2,x)"] — erf [(y — Y/2)/2(x,x)"*]; (4)
{erf [(z + Z/2)/2(0,x)"*] — erf [(z — Z/2)/2(a,x)"?]}
Equation (4) is the extended pulse model of Domenico and Robbins (1985),
developed here on the basis of physical arguments as opposed to mathematical
arguments employed in the original development. Note that for x less than vt
such that the argument of the complementary error function approaches nega-

tive two, the steady-state transverse spreading model is recovered, eqn. (2). At
the source boundary x = y = z = 0, the product of the error functions equals
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four and, for times greater than zero, the argument of the complementary error
function rapidly approaches negative two, so that the source concentration at
the source boundary is maintained at or near C, for times greater than zero. For
different spreading geometries, the arguments regarding the transverse spread-
ing model apply here as well.

Similar physically based arguments can now be provided to ascertain the
manner in which decay may be incorporated in this relatively simple result.
The essential features of such an enclave can be captured if the longitudinal
dispersion described in Fig. 2b and eqn. (1) can be expressed in terms of both
dispersion and continuous decay, and then combined with the transverse
spreading component described in eqn. (2). Given such a result, the con-
stituents residing in each vertical plane of the enclave will be characterized by
the same amount of decay, with those closest to the source being affected the
least, and those furthest from the source being affected the most. The plug flow
model with both longitudinal dispersion and continuous decay has been de-
scribed by Bear (1979):

Clx, ) = (Cy/2) exp {x/20,[1 — (1 + 4o, [v)*]}
erfc {[x — vt(1 + 4o, [v)'?]/2(x, v0)"?} (5)

where 4 is the decay constant or 0.693 divided by the half-life. Note that if the
decay constant 1s zero, the Ogata-Banks (1961) expression is recovered. The
extended pulse approximation for a decaying species then becomes:

Clx,y, 2, 8) = (Cof8) exp {x/22,[1 — (1 + 442, /0)"*]}

erfc {[x — vt(1 + 4io, [v)"*]/2(x, vE)"*)

N (6)
lerf [(y + Y/2)/2(0,x)'*] — erf [(y — Y/2)/2(0,%)'"]}
lerf [(z + Z/2)/2(a,x)"] — erf [(z — Z/2)/2(2,x)"]}
The centerline concentration is expressed as:
C(x,0,0,t) = (Cy/2) exp {x/20,[1 — (1 + 4ia,[v)'*]}
{erfe [x — vt(1 + 442, [v)'"2)/2(a, vE)"?} (7

{erf [Y/4(a,x)'*] — erf [Z/4(x,x)"*]}

When the argument of the complementary error function approaches nega-
tive two, the steady state is achieved

Cx, y.2) = (Co/4) exp {x/20,[1 — (1 + 4o, [v)®])
{erf [(y + Y/2)/2(0(yx)1/2] . erf [(y _ Y/2)/2(ayx)1/2]} (8)
lerf [(z + 2/2)/2(.)"] — erf [(z — Z/2)/2(0, "]}

Equation (8) reduces to the original version of the steady state when the decay
constant is zero. Although there appears to be a contradiction of terms when
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a steady state can be achieved for a decaying species, the condition can be
realized if the source is continually renewed by new material.
Finally, the steady-state concentration along the centerline is expressed as:

C(x,0,0) = Cyexp {x/2¢,[1 — (1 + 4da,[v)"*]}
< erf [Y/4(2,x)"*] erf [Z/4(o, )] 9

A CALIBRATION PROCEDURE

In this section a calibration procedure for determining the pertinent coef-
ficients and parameters from field data is discussed. For simplicity, spreading
in the z direction will be ignored although incorporating this particular feature
is relatively straightforward. Because the expressions for error functions,
exponents, and complementary error functions are long and cumbersome, we
will use the following abbreviations:

erf (y,) = erf[(y; + Y/2)/2(x,x)] — erf (v, — Y/2)/2(«,x,)""]
exp fi; = exp (x;/2x. {1 — [1 + (440,)/v]"*}) (10
erfc x; = erfc {x; — vt[l + (44a,)/v]"*}/2(a, v8)"*

where the i designates a specified point in the field.

The first problem is to determine the transverse dispersivity «, and the
source size Y. The ratio of two field concentrations at the same x distance from
the source but at different y coordinates may be expressed from eqn. (6) in terms
of the notation above:

Clx;, 1, t)/Clxy, ya, t,) = exrf (y)/erf (y,) (11

This result can be iterated immediately for the source size Y and the dispers-
ivity x,. A second iteration at two different points with a common x distance
from the source will provide for unique values of «, and Y. This is demonstrated
in Fig. 3 from the results of three concentration ratios with distances from the
source of 4000 cm, 6000 cm, and 8000 cm. The unique values are a, = 10cm and
Y = 1000 cm. The procedure is identical to that described for a non-decaying
species (Domenico and Robbins, 1985). Examples of this procedure can be found
in Domenico and Robbins (1985), Kelley (1985), LaVenue and Domenico (1986),
and Fryar (1986).

The next step in the calibration procedure requires that two points be
selected in the near field where it is reasonably certain that steady state has
been achieved. The points are at two different distances x from the source. The

concentration ratio for the stated steady-state concentration expressed in eqn.
(8) 1s:

Clxy, yi, 8)/C(xy, 32, 1) = exp By erf (y))/exp B, erf (y,) (12)

This can be further expressed as:

(C,/Cy) exf (yy)ferf (y,) = N = exp f,/exp f,. (13)
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Fig. 3. Plot of: (a) transverse dispersivity versus the source dimension Y; and (b) the transverse
dispersivity versus the source dimension Z (after Domenico and Robbins, 1985).

where N 1s some known number. Normally, NV will be close to one or possibly
one or two orders of magnitude smaller than one. Substituting for the exponent
terms in eqn. (10), eqn. (13) may be expressed as:

% [ln Nj(x, = )P = In Ni(x; — x) = v (14)

In that the first bracketed quantity is a very small number considerably less
than one, it is seen that this relationship (and the exponential terms in the
solution) are insensitive to «,. This is not totally unexpected in that steady-
state concentrations have been observed to be independent of longitudinal
dispersivity (Prakash, 1982). This is further demonstrated with the following
example. At a distance of 1600 m for 2 = 0.057and v = 250myr "', the exponent
term is 0.6966 when x, = 2m, and 0.7019 when «, = 100m, for a difference of
0.76%. At a distance of 100 m for the same fixed parameters the exponent term
15 0.9777 and 0.9781, respectively, for a difference of 0.04%. Ignoring the term
involving z,, eqn. (14) is expressed:

vlh = (x, — x)/In N (15)

where v is the velocity of the contaminant, and will be equal to the velocity of
the groundwater only for unretarded contaminants, and NV is given in eqn. (13).
For a radioactive species, 4 is known and the velocity may be calculated
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directly. For a biodegradable organic where 4 is unknown, only the combined
parameter v/} is determined here, and other methods are required to obtain the
individual parameters.

Given the information above, the source concentration C, may be deter-
mined with the steady-state eqn. (8) where everything is now known except for
x,. However, any reasonable value of «, can be placed in the exponential terms
(say a, = three or four times «,) and the exponential terms will be insensitive
to that value.

With the procedures given above, the following may be determined: (1) the
source dimension Y; (2) the lateral dispersivity a,; (3) the velocity of the
contaminant v for a radionuclide (or ifv for a biodegradable organic); and (4)
the source concentration C,. The remaining parameters include time and
longitudinal dispersivity. It is convenient now to express a concentration ratio
for concentrations along the centerline (x, 0, 0), where the ratio is expressed as
the actual concentration, eqn. (7), to the maximum concentration, eqn. (9). This
gives:

C/C

max

= lerfc {[x — vt (1 + 44a,/v)"*]/2(c, v)"*} (16)

For any C/C,,, less than one, the enclave is in the unsteady state, and the
longitudinal dispersivity is readily determined if the time ¢ is known. A more
simple approach is to determine the distance x where C/C,,, equals 0.5 so that:

x = vt(l + 4ia, [v)? (17)

where all parameters are known except for «,.

CONCLUSIONS

The methodology presented in this paper may be useful in the analysis of
radionuclide contamination or organic transport with biodegradation, where
/. 1s the biodegradation “‘half-life”” value. The calculations are straightforward
and easily programmed for microcomputer analysis, and the model can be
manipulated to account for several spreading geometries. Most importantly,
information on most of the relevant parameters can be obtained from the
concentration distribution. As all the information is taken directly off the
plume, the method can be applied to a chemically retarded species without any
regard to retardation coefficients. Given data at different points in time, field
retardation coefficients can be ascertained.
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