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Abstract The purpose of this study is to present a library
of analytical solutions for the three-dimensional contam-
inant transport in uniform flow field in porous media with
the first-order decay, linear sorption, and zero-order pro-
duction. The library is constructed using Green's function
method (GFM) in combination with available solutions.
The library covers a wide range of solutions for various
conditions. The aquifer can be vertically finite, semi-infin-
itive or infinitive, and laterally semi-infinitive or infinitive.
The geometry of the sources can be of point, line, plane or
volumetric body; and the source release can be continuous,
instantaneous, or by following a given function over time.
Dimensionless forms of the solutions are also proposed. A
computer code FlowCAS is developed to calculate the
solutions. Calculated results demonstrate the correctness
of the presented solutions. The library is widely applicable
to solve contaminant transport problems of one- or
multiple- dimensions in uniform flow fields.

Keywords solution library, contaminant transport, ana-
lytical solution, dispersion and advection, porous media,
type curve, Green’s function method (GFM)

1 Introduction

Analytical solutions of contaminant transport in porous
media can be applied in many fields. They can provide
better physical insights into the problems; thus, are the
basic tools to reveal the mechanism of contaminant trans-
port phenomena. Analytical solutions can help us to ana-
lyze the influence of parameters and boundary conditions,
measure the field parameters related to contaminant
transport, and verify the numerical models, as they are
free of numerical dispersions attached to numerical simu-
lations, especially in the advection dominated transport
[1]. They can also be used to predict the movement of
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contaminant plumes and design the experiments in the
field or laboratory scales [2].

Analytical solutions of contaminant transport have
been widely studied in the last three decades. Many solu-
tions have been published before and new ones are still
appearing. For instance, Cleary and Adrian [3], Sauty and
Pierre [4], and van Genuchten [5] have provided analytical
solutions for one-dimensional transport with the first-type
(Dirichlet) and third-type (Cauchy) boundary conditions,
respectively. Hunt [6], Latinopoulos et al [7], and Wilson
and Miller [8] have investigated the two dimensional
transport models for the continuous release of a point
source. Batu has studied the two-dimensional analytical
solutions for the plane sources with the first- and the
second-type boundary conditions [9,10]. Quezada and
Clement developed a generalized solution to multi-dimen-
sional multi-species transport equations coupled through
sequential first-order reactions [11]. Recently, Srinivasan
and Clement derived a closed-form solution to the prob-
lem [12,13].

For the study of three-dimensional contaminant trans-
port in uniform flow field, one of the most widely used
analytical solutions is the approximate one proposed by
Domenico [14,15]. The solution is expressed in a simple
way without integration. Neville has obtained the solution
for the vertical rectangle source by taking the source as the
boundary condition of the first type [16]. Leij et al. have
studied the analytical solutions for non-equilibrium solute
transport in three-dimensional porous media using the
Laplace, Fourier, and Hankel transforms [17,18]. Later
in 2000, Leij et al. have provided a useful Green’s function
table using the Green’s function method (GFM) for vari-
ous plane sources that can be used to construct solutions
[19]. They also illustrated three solutions for a semi-
infinitive aquifer. Park and Zhan obtained a series of
analytical solutions of contaminant transport from finite
one-, two-, and three- dimensional sources in a finite-
thickness aquifer by GFM [20]. In addition, many other
authors have also published some solutions for different
sources and boundary conditions [21-26].
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The purpose of this paper is to present a library of
analytical solutions of contaminant transport in uniform
flow field in porous media. The users can either use the
solutions presented in the paper or construct their own
solutions by using the directional solutions and their
integration results over directional source lengths to solve
their specific problems. The types of contaminant sources
can be of point, line, plane or volumetric body; their
release duration can be instantaneous, temporary or con-
tinuous and their strengths or concentrations can be con-
stant or variable over time. The first-order decay or
attenuation and linear retardation process (Henry mod-
ule) are considered. The aquifer can be vertically infin-
itive, semi-infinitive or finite and horizontally infinitive
or semi-infinitive. By using the method of imaging and
superposition principles, the problems of linear bound-
aries, multiple sources, sources of irregular shapes, and
random change of source strengths and concentrations
can also be solved.

2 Mathematical model and solution
methods

2.1  Assumptions

The assumptions embedded in the analytical solutions are
actually the constraint conditions for their application.
Therefore, it is important to know the conditions and
limitations before we make use of the solutions for prac-
tical purpose. The following conditions are assumed in
this study:

Studied domain The aquifer or the studied domain is
vertically finite with constant thickness or semi-finite,
horizontally infinite or semi-finite in x- or y-directions,
homogeneous, and anisotropic.

Source type There exist sources of point, line, plane or
volumetric body, either regular or irregular in shape. They
can be treated either as a source term inside the domain or
as a boundary condition if the source concentration is
provided. The corresponding domain for the former case
is horizontally infinite, while for the latter case, is hori-
zontally semi-finite. The source strength can be constant
or time-dependent but not space- independent.

Flow field Fluid flow is steady and uniform along the x-
or xz-directions.

Retardation Partitioning between dissolved and sorbed
phases is instantaneous and reversible, and can be repre-
sented by the linear sorption process.

Attenuation Solute undergoes first-order degradation
or decay. The rate constants can be the same or different
in the dissolved and sorbed phases, or zero in the sorbed
phase.

Initial condition There is no target contaminant in the
studied domain at the initial time.

Transport The contaminant transport in the domain is
assumed to be three-dimensional. The components of
hydrodynamic dispersion coefficient tensor are known
with its principal directions parallel to the x-, y-, and z-
axis respectively.

It should be noted that from the view of the constraints
applied for the analytical solutions, the above assump-
tions are relatively widely applicable, compared to more
strict constraints embedded in other known analytical
solutions.

2.2  Mathematical model

The three-dimensional advection- dispersion equation
with first-order decay and zero order source or production
under the above assumptions can be written as [2]

L(C) =1/n, (1
where the linear operator L is defined by
oc _&C _&C _&C
L(C)=— -Di=5 ~Dy—= ~D.—=
ot Ox oy oz
oC
and subject to initial condition
C(x’y’zat)|t:0 =0xyzED, 3)

and boundary conditions of various types, which will be
discussed later, where C(x, y, z, ©) [ML™] is the solute
concentration at location (x, y, z) at time £, D,, D,, and
D, [L*T "] are principal dispersion coefficients; A [T'] is
the first-order constant for decay in liquid and sorbed
phases; u [LT'] is the pore- water velocity along the x-
axis; b [L] and n are the thickness and the porosity of the
aquifer, respectively; D is the studied domain; and [
[ML T '] is the zero-order source term.

Note that / exists only in the space occupied by the
source, while for the rest of the domain, / is equal to zero.
For instance, if source occupies a space of parallelepiped
body, x € [0, xo], ¥ € [0, o], and z € [z, z1],

s Iof(1),0 <x <xg, —yo <y <yp,z9g<z<z,t>0,
B 0, otherwise, 4)

where I, [MLT'] is the initial volumetric mass released by
the source per unit time; f{f) is a dimensionless known
function, representing the changes of source strength with
time.

The boundary conditions are set as follows:

1) Horizontal infinitive boundaries If the source term
is inside the domain and source strength is provided,
the horizontal domain is set to infinitive and the con-
centration in infinitive boundaries is set to zero, that is,
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Cxp.z) [ ymioo = 0,1 > 0; (5)

Cxyzt)|yioo = 0,2 > 0. 6)

2) Horizontal semi-infinitive boundaries If the source
concentration is provided, it can be treated as a boundary
condition of'the first type. The function of sources is imple-
mented by the boundary condition while 7/ in Equation (1)
is set to zero. For instance, if a vertical rectangle source is
along the yz- plane at x = 0, the studied domain can be set
to semi- infinitive in the x-direction, x € [0, +00), and the
boundary condition at x = 0 is expressed as

Cy, v, zEsource, t > 0,

C(x’yﬂz’t)|x=0 = { (7)

0, otherwise.

3) Vertical infinitive boundaries If an aquifer can be
considered as infinitive in thickness, the vertical domain
in the z-direction is infinitive, and the vertical infinitive
boundary is set to the first type as

Cxp.zt) |00 =0, ¢ > 0. ®)

4) Vertical semi-infinitive boundaries with the source
concentration provided on top boundaries The vertical
domain is z € [0, +00), and the top boundary condition is

Cy, x, yEsource, t > 0,

C(x>y>zat)|z:0 = { (9)

0, otherwise.

5) Vertical finite boundaries If an aquifer is of constant
thickness, b, the vertical domain is z € [0, b]. It is assumed
that the contaminant can not penetrate through the top
and bottom boundaries, that is,

ocC oC
—| =—=| =0, —co<xy<oo,t>0.
Oz z=b

(10)

z=0 Oz

2.3 Solution method

Solutions to Eq. (1) exist for a variety of boundary con-
ditions as stated above. The solutions can be derived by
making use of traditional integration transform methods,
such as Laplace method, or more recent Green’s function
method (GFM). The GFM can be briefly described in the
following steps [19,20,27,28]:

1) Deriving the solutions for an instantaneous point
source in an infinitive, semi-finite and finite aquifer. The
governing equation for an infinite aquifer is

L(C) :%S(xfxl,yfy/,zfz/,tfr), (11)
and the corresponding differential equation of the Green’s
function is [19,29]

L'(G) = 8(x—x y—y z—2 t—1), (12)

where L is the adjoint differential operator:

. oG *G  0G &’G
LG = ~Fr D ~ugy Do
26 SENE)
—D.——+ G,
Z@zz+

where G is the Green’s function; M, [M] is the mass
released instantaneously at point (x', )', z) at time 7; o
[LT™] is the Dirac delta function.

The GFM indicates that a three-dimensional solution
is the product of the three directional solutions [19,27].
The directional solutions for directions x, y and z with
different boundary conditions are summarized in
Table 1. For instance, the directional solution in the
x-direction for an instantaneous point source is shown
in Eq. (14).

Note that if an aquifer is vertically semi-finite or finite
with a constant thickness b, the contaminant cannot pen-
etrate through its top or bottom boundaries. To solve the
problem, the method of imaging is applied [30]. Take the
finite thick aquifer as an example, the source and the top
and bottom boundaries are imaged for infinite numbers of
times in the z-direction. Therefore, the boundary value
problem can be represented by a vertically infinitive prob-
lem with infinite numbers of the image sources and the
original source [20,2], as shown in Eq. (20).

From Table 1 it is easy to construct solutions for the
instantaneous point sources. For instance, the analytical
solutions for the infinitively and finitely thick aquifers are
[20,29]

M,

Clrad) = — mexpuum
Xexp{ . [(xfgxf(tf) op }
xexpl nyy_(—ty/);} exp 4(1;;(—:/);]’ (22)
and
Cluyzt) = gt 5ol )
Xexp{[<x:l’)>x(tu<tr)r>]2}
xexp| - 4%‘(”2) 1+ zi ”“%;‘Z’)
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Table 1 Directional solutions for the instantaneous point sources

direction condition directional solution
X Clitine =0 ) —ult—o)?
(M- G. = 1 expl [(x—x)—u(t—1)] 14
oo < x < 400 2/ADi 1) 4D, (1—1)
Co,(y,z) Esource x—x x—x —u(t—7)P
Cho=1 " v Gy = ————expg — [ 4D — (15)
0,0therwise 24/nD,(t—7) ) (t-1)
0<x<+00
C . =0 1 [ 2 T
y |} +o00 Gy _ exp | — ()’ y) (16)
—00 <y < +00 2,/nD,(t-1) 4D, (t—1)
Co,(x,z) Esource y—y, [ —y, 2]
Cli— = 0(x:2) G, = exp | — 4% ) (17)
’ 0,0therwise 2/nD,(t-1) I y(tfr)_
0<y<+o0
z Cl._. =0 1 i 2]
e G. = xp| - ) (18)
—00 <z < 400 2/nD.(t-7) i 4Dz(t*1')_
8C/oz)._g =0 1 —Z)? )
/0z].=0 S S PO (z—2) +exp| (z4+2z2) (19)
Cliine =0 2/nD.(t—7) 4D.(t—7) 4D.(t—1)
0<z < +00
0C/z]._g =0 1 > -z t D.n’n?
/Celemo G =— 1—0—2Zcosmﬁ(z0 Z)cosmn(z Z)exp{— ann (t—t)} (20)
ac/az|z:b =0 b m=1 b b b
0<z<h
Co,(x,y) Esource z—z y—x )2
Clg = 0 G. = p| - ) @
0,otherwise 2\/nD.(t-7) .(1—17)

0<z< 400

respectively. When 7 = 0, Egs. (22) and (23) becomes the
solutions for the point source of initially instantaneous
release [20,2].

2) Obtaining the instantaneous solutions by an analytic
integration over the length, area or volume of the source.
Taking the above mentioned parallelepiped body source
as an example, the source body is located at x € [0, x¢],
v € [—Yo, Yol, and z € [z, z,]. For an infinitively wide and
infinitively thick aquifer,

M,

LRI

Clxy.zt) = exp[—A(t—1)]

X exp

4D, (t—7) D.(1—7)

24

The results of the analytic integration over the source
length in the corresponding direction, which can be used
to construct analytical solutions for various conditions,
are summarized in Table 2 for the infinitive, semi-infin-
itive, and finite boundaries.

_ -y) ]exp l 4(2—2/)2 1dx,dy,dz/.

From Eq. (24) referred to Table 2, we can easily obtain
the analytical solution of the instantaneous release from a
volumetric source:

Cley.at) = %eXp[fA(tfr)] lerfc%

Cerfe AU u(t—7)
2+/D(t—7)
x |erfc — 220 erfe— 20
2,/D,(t-7) 2,/D,(t-7)
x |erfc — =20 erfc—— + 20 , (30)
D.(t—7) 2+/D.(t—7)

where M, [ML™] is the mass released instantaneously
at time 7 per unit source volume. Similarly, we can
obtain the solutions for a finitely thick aquifer. If = 0,
Eq. (30) becomes the solution for initially instantaneous
release.

3) Obtaining the solutions of continuous source release
by analytic integration of instantaneous release solutions
over time. For a continuous source, integration of Eq. (30)
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Table 2

Results of the integration of directional solutions over the source lengths

source condition integration result
range
0-x Clirine =0 | Culi—1)— -
0 et D e u(t—7)—xp o u(t—1) 25)
—00 < x < 400 2 2./Dy(t—7) 2\/D,(t—7)
—Yo—Yo Clyine =0 1 Y= Y+
) — |erfc —erfc 26
—00 <y < +oo 2 2,/D,(t-1) 2,/D,(t-1) (26)
- Closny =0 . .
oA too l erfc A —erfc Z %0 27)
—00 <z < +00 2 2./D.(t-1) 2\/D.(t-7)
Z0—12 0C/0z],-g =0 1 i B Z0 P NN ) 8
s =0 P RN T N/ T W/ 2/Dx @8
z—+00 T
0<z < 400
20—21 0C/0z]._g =0 1 > 1 nnz, nmnz, nnz < D,n’n?
—|zi—zg+— ) — ( - )cos—exp (t-1) (29)
oC /2],y = 0 ZI: b b b b?
0<z<b

over time from 0 to 7 yields

Clpt) = :;% [ ;f(tfr)exp(f)tr)

" ercx ut . X—ut
2v/D 2+/D,t
x | erfc VYo —erfc YT Yo

21/Dr

B Y S I
- T.
2v/D.t 2v/D.t

X erfc

3 Solution library

By using the above stated GFM in combinations with
superposition principle and imaging method, a library of
analytical solutions is constructed for a three-dimensional
contaminant transport in a uniform flow field.

3.1 Solutions for continuous release

Solutions for the regular continuous source release are
summarized in Table 3, with the source types of point,
line, plane, and parallel-piped body in a finite and semi-
finite aquifer. Some solutions in the Table have been pub-
lished by other authors as noted, and some are, for the
first time, constructed by using the equations in Tables 1
and 2. For the practical application of the solutions, users
must be aware of the conditions and constraints embed-
ded with them.

Equations in Table 3 can be easily simplified to obtain
the solutions for one- or two-dimensional transport
problems. For instance, by letting z, equal to 0 and z; to
b in Eq. (38), the solution of two-dimensional transport is
obtained for a point source in horizontal plane view,
which is identical to the solution proposed by Wilson
and Miller [8].

Most analytical solutions shown in Table 3 include
the temporal integrations. In general, the integrations
are often evaluated numerically. In this paper, the
Gaussian Quadrature method is utilized to numerically
evaluate integrations. A computer code named Flow-
CAS (Flow and Contaminant transport Analytical
Solutions) is created by using Borland Delphi 7. The
code can make calculations of all solutions presented in
this paper.

3.2 Solutions for instantaneous release

As mentioned in the above section, solutions for the
instantaneous release are the basis for deriving the solu-
tions for continuous release. Therefore, the solutions in
Table 3 can be easily modified to yield the solutions for
instantaneous release. For the cases of given source
strengths, by substituting M, M;, M,, and M, for 1,, I,
1,, and I, respectively, taking out of the temporal integ-
ration, and substituting ¢ for 7, the corresponding equa-
tions in the Table then become the solutions for the
instantaneous release, where M, [ML™'] and M, [ML7]
are the mass released per unit source length and per unit
source area, respectively. For instance, the solution for the
instantaneous release of a point source in a finite aquifer
is, according to Eq. (32):
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M, (x—u)* )P
Clapzt) = ——L——exp| — At -
C32d) = nbe /DD, T { 4D 4Dy
D 2,2
1+22c0s cos—exp( Zmzrc t)}
b sy

For the cases of constant concentration boundaries, the
instantaneous solutions can be obtained by taking out of
the temporal integration, substituting ¢ for z, and multi-
plying the right-handed terms by ¢ in the corresponding
equations of given C,. For instance, the instantaneous
solution in accordance with Eq. (41) is:

)

Clxyat) = 4D.t

4b\/— exp {At

X [erfc bl —erfc

2,/Dyi

2b K1 < . ommzy . mnz())
X|zy—zp +— — | sin —sin
T A=m b b

Dzmzn2
T t .

3.3 Solutions for short period release

Y+

cos ? exp < — (58)

The source strength for short period release can be
expressed as

59
0,t> t, (59)

10 = {Iof(t),O < t<t,

where #, [T] is the time of source elimination. When the
calculation time #<1,, the solutions are the same as those
for the continuous release. When ¢ > f,, the solutions can
be obtained by changing the lower limit of the integration
from 0 to ().

3.4 Solutions for the exponential decay of the source
strength

In this case, the change of source strength with time is
determinative, which can be expressed as f{f) = exp(—az),
where o [T'] is the decay constant. Considering the pro-
blems of the point source, for instance, 7,(f) = L,oexp(—at),
where I,y [MT'] is the initial point source strength.
Substituting this function into Eq. (32) yields

Clxyzt) =

[ explale )
amnb\ /DD, J o= P T

-wf 7
XeXp{ X b 4D,z
D 2,2
X [1 + ZZCOS cos—exp( Zr:zn r):| %
(60)

3.5 Transport with retardation-sorption

If there exists solid sorption during the transport process
as stated in the assumptions, and the sorption process can
be represented by the linear module of Henry type, the
governing equation is
2 C_, 82C b ach) o°C
“or T Y o)

ac 1
*uafleC‘f'_ (61)

where A is the rate constant of first-order decay in the
dissolved and sorbed phases; and R, is retardation factor
_ Pp
Ry =14+—Kj, (62)
n
where p, [ML7] is porous medium bulk density, and K4
[L3M ] is the distribution coefficient.
If

D, =D,/Ry, D, = D,/Ry, D. = D./Ry,

u =u/Ry, I =1/Ryy M = M/Ry, (63)

in Eq. (61), the equation is identical to Eq. (1) in form,
which means that its solutions are the same if the above
replacements are substituted. Hence, all solutions given
above are applicable for the retardation transport, only
if D, D,, D., u, I, and M in the equations are replaced by
D;, Djv, D;, u', I', and M', respectively.

If the decay in the sorbed phase is not neglectable, the
governing equation becomes

aC &’C >’C fod
R,— =D D D
4 ot x8x2+y8y2 o2
oC I
U AT (64)

In this case, A must also be replaced by A’ = A/R,.
3.6 Solutions for the sources near linear boundaries

Two principal types of linear boundaries are often
encountered in felds for the contaminant transport stud-
ies: impenetrable boundary, such as impermeable layers;
and absorbable boundary, such as rivers connected to
aquifers. It is supposed that the contaminant can not pen-
etrate through the impermeable layers. The river can elim-
inate the contaminant instantaneously when it flows into
the river. For these cases, if ground water flows along the
boundary direction, the solutions for the concentration
can be obtained using the method of imaging when the
contaminant has reached the boundaries, as shown in
Fig. 1. The coordinates of calculation point p are (x, y)
in xOy system (real domain) and (£, ¢{) in £o{ system
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(imaging domain), respectively. Substituting them into
Eq. (55) yields two solutions C; and C,. For the impen-
etrable boundary, the concentration for point p is
C = C, + Cy; for the river boundary, C = C; — C,. The
method of imaging are often used for the solutions of
horizontally infinitive domain, that is, —oo <x,y < 400.

3.7 Superposition of multiple sources and source
changes with time

The solutions discussed above can also be used for con-
centration calculation for multiple sources. On the basis
of superposition principles, the concentration for calcula-
tion point p is equal to the sum of concentrations for
individual sources. This can also be used for the irregular
source problems, since an irregular source can be approxi-
mated by the combination of a limited number of regular
sources. Similarly, if the changes of source strength or
concentration with time can be represented by a limited
number of steps, the superimposed solutions can also be
obtained [1].

3.8 Dimensionless solutions

Dimensionless parameters are particularly useful for
drawing type curves and comparing analytical solutions,
because a much wider range of parameter values can be
covered in a compact fashion than the situation when
dimensional parameters are used [29].

The dimensionless parameters can be defined differ-
ently for different kinds of solutions [4,20,29]. In this
paper, the dimensionless parameters are defined as fol-
lows:

C(x, y, z, t)/C,, for solutions of given

boundary concentration C,

C(x, y, z, t)nb\/D.D, /I, for solutions of 65)
Cp = 5
P given source strength [, (b = constant),

C(x, y, z, t)nD,/D,D. [Lyu, for solutions

of given source strength [, (b — +00)

t
td:u_axdzgzpesxdozﬂzpeO?
* * (66)
uy Wo M
d=—-

Ya = /—Dny7yd0 = /_Dny’ - 2

For the finite thickness (b = constant),

z Zg z bu 67)
Zd = 775240 = 7 »2dl — 7 ,Uq = .
b b b VD, D.

For the semi-infinitive or infinitive thickness (b — + oo
or b —+00)

(68)

1 (o
Cy= EJO exp | —ApPer— ———

T CAY

real source
£
<
g >
= »~
.?3 x
l . 1) PO
T u \ linear boundary
£ —> a
<
£
=}
o
[=11] N,
P=) ~
5 0 ¢
E

imaging source

<«

Fig. 1 Schematic representation of imaging method near a
linear boundary

In the above equations, Cp, is relative concentration, #p
is dimensionless time, xp, yp, and zp are dimensionless
distances in directions x, y, and z, respectively, Pe is the
Peclet number, Ap is the dimensionless decay constant, up
is the dimensionless pore velocity, and I, [MT™] is the
source mass released per unit time. It is not feasible to
compare the dimensionless calculation results for differ-
ent definitions, since the dimensionless parameters are
different either for an infinitive and finite aquifer or for
a given source strength or concentration.

With dimensionless parameters as defined above, all
solutions in the library can be transferred into their
dimensionless forms. For instance, Egs. (32) and (33) in
Table 3 become

Pe(1-
47 4per

00 2
X1+ 2Zcosmnzdocosmnzdexp( Per)
uj

m=1

dr

T

(69)

and

B (Zd_zd0)2:| +exp[_ (zq +Zd0)2]}£

52’

(70)

where 7 is the dimensionless integration variable (tp).
Equation (49), which is a solution for given boundary
concentration C,, becomes
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Fig. 2 Type curves of Eq. (72) along the plume centerline for different values of Peclet number (Pe)

1 [Pe [ Pe(1-1)?
CD—g ?foexp{—lDPet—T

X [erfc Ya=Ydo _ erfc Io+ yDO} {erfc Zp~ 21
2+/Pet 2+/Pet 2/ Pet
Zp —Zpo dT
—erfc —. 71
2\/Per} /2 D

4 Example calculations

The analytical solution library presented above can be
widely applied for various practical purposes. Here we will
discuss two kinds of applications: one is drawing type
curves, which can be used, for instance, for parameter
identification; and the other is comparing the effect of
source geometries on concentration calculations.

4.1 Examples of type curves

Eq. (55) is taken as an example to draw the type curves. Its
dimensionless form is

C Fe f ? exp(— apPer)

= exp(—ApPet

P 8yg(zn1 —2po)Peg J 0 P
Pe(1—1)—Pe,

X [erfc [erfcM

2 /pet 2\/Per

Yp +Ypo 2~ 1, .
—erfc——— - — — (sin
}[ Zp) —Zpo + . E m( MTZq
2

2/ Pet

. mn
—sinmmnzpg)cosmnzpexp | —

Figure 2 presents a graph of relative concentrations (Cp)
versus dimensionless time (p), calculated using Eq. (72),
without decay (Ap = 0) or sorption (Rp = 1) and for differ-
ent values of Peclet numbers (Pe). Calculations are per-
formed along the plume centerline (yp =0, zp = 0.5) for a
source of coordinates xpy = 0.5, ypo = 0.25, zpy =0,
zp1 = 0.5, and up = 1. It is found that dimensionless time
values to reach quasi steady-state conditions are different
for different Peclet numbers and smaller Peclet numbers
have larger dimensionless time values to reach. This is dif-
ferent than what was described by Guyonnet and Neville
(2004), in which a constant dimensionless time value of 10 is
suggested [29]. From Fig. 2 it can be seen that the concen-
trations increase with time for agiven space point. Different
places have experienced a similar concentration change.
Locations of smaller Peclect numbers (Pe = xp) have longer
concentration increase duration of dimentionless time than
those of larger ones before they reach their steady state.

Figure 3 is the calculation results of Eq. (72) for steady
state concentrations along the x direction for different
values of dimensionless lateral distance (yp) with zp kept
equal to 0.5 and up to 1. The calculations are performed
with the same source conditions as in Fig. 2 with yp values
from 0 to 5. As groundwater flows along the x axis and the
dimensionless source length is 0.5 in the x direction
(Pey = xpo), the steady concentrations increase in the
places of Peclet number from 0 to 3 along the plume cen-
terline with the maximum value at the point of Peclet
number equal to 0.3. Then the concentrations decrease
rapidly. The steady concentrations are significantly influ-
enced by lateral distance to the plume centerline, espe-
cially at low values of Peclet number, but with a similar
trend of distributions.
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Fig. 3 Steady state concentrations of Eq. (72) along the x direction

zp=0.5and up =1
4.2 Effect of source geometries on the concentrations

For a given transport equation, analytical solutions will
differ according to the source geometry [29]. Huyakorn et
al. [31] compared several analytical solutions for three-
dimensional transport in groundwater. Guyonnet and
Neville [29] compared two solutions: one is the solution
proposed by Domenico [14], as shown in Eq. (50) and the
other, by Sagar [21] in Eq. (49). As an example, the effect
of three different sources—point, line, and plane on the
concentration calculations will be discussed. The dimen-
sionless forms of Eq. (36) for the line source and Eq. (40)
for the plane source are

1 |Pe(® Pe(1-1)?
Cp=— —eflexp —}{DPer—M
8)’D0 T 0 47

y [erfcyD VD0 e D +yD0:|
2+/Pet 2+/Pet
= mn? dr
X |[1+2 cosmrczDocosmnzDexp<f —Per> —,
2 2 )|V
(73)

and

1 [Pe (1 Pe(1-1)?
Cp=c—""—"— —ef Dexp[fADPerf Pe(l=o)” }
8po(zp1 —2po) V m J 0 4t

« |:erfcyD_yD0 erfe?® +.VDO]

2+/Pet 2+/Pet

21, . .
X | zp1 —Zpo +E E E(smmnzm—smmnzm)
m=1

2 2
mm dr
X COSMTMZpeXp ( -— Pef) } —, (74)
ud VT

xp= Pe

for different values of dimensionless lateral distance (yp) with

respectively, and the dimensionless form for the point
source is shown in Eqs (69) and (70). The sources are
placed in the middle of the aquifer thickness with a dimen-
sionless length of 1.0 for the line source and side lengths of
1.0 x 0.5 for the rectangle plane source. Three types of
sources have the same source strength. The concentra-
tions are calculated for the steady state along the plume
centerline and the line of yp = 0.5 and zp = 0.25, as shown
in Fig. 4.

It is shown that the source types affect the concentra-
tion distribution significantly for smaller values of Peclet
number. However, this effect decreases with the increase
in Peclet number. For the case described above with unit
aquifer thickness and isotropic dispersion coefficients, the
concentration difference is less than 5% when the Peclet
number is greater than 1.0. As the source size gets larger,
the medium gets more anisotropic. When the aquifer gets
thicker, the effect of source types on concentrations
becomes greater. Accordingly, the value of Peclet number,
beyond which the effect of source types can be neglected,
gets larger.

5 Conclusions

The library of analytical solutions presented in this paper
is a useful tool to analyze the contaminant transport in
porous media. Dimensionless forms of the solutions pro-
vided make dimensionless analyses very convenient, such
as drawing type curves and comparing solutions. The cor-
rectness of the solutions is well tested by known solutions
and inter-comparison. As the library covers most of the
available solutions, it can be used to solve a wide range of
contaminant transport problems for one or multiple



Hongtao WANG et al. Solutions library of three-dimensional contaminant transport in uniform flow field in porous media 127

1.0 |
P
& plume centerline
08 — — — - line of y,=0.5, z,=0.25
PtS: point source
0.6 LS: line source
& Ls \ PS: plane source
0.4 e~
| ps TS .
N 0 vt s e e e = = =
[—PtS LS ——— |
0.0
10! 2 5 100 2 5 10!
xp = Pe

Fig. 4 Comparison of steady state concentrations along the x direction for the point, line and plane sources

dimensions. By using the Green’s function method, solu-
tions for specific problems can be obtained by multiplying
the directional solutions and their integration results as
listed in Tables 1 and 2. Users can select the solutions in
the library or construct their own solutions to solve their
specific problems.

It should be noted that the solutions in the library are
obtained under a series of assumptions. The most impor-
tant assumptions are homogeneous media, constant dis-
persion coefficients, steady uniform flow, first-order
decay, and linear sorption. Problems of variable disper-
sion coefficients and nonuniform flow such as radius flow
are excluded in the library.
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