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Preface 

In recent years the International Commission on Continental Erosion (ICCE) of 
the International Association of Hydrological Sciences (IAHS) has organized a 
number of international symposia focusing on themes concerning erosion and 
sediment yield. Recent symposia include the Symposium on Sediment Budgets 
(Porte Alegre, 1988), the Symposium on Erosion and Sediment Transport 
Monitoring Programmes in River Basins (Oslo, 1992) and the Symposium on 
Sediment Problems: Strategies for Monitoring, Prediction and Control 
(Yokohama, 1993). In addition, there have been joint symposia held in 
conjunction with the IAHS International Commission on Water Quality — the 
Symposium on Sediment and Stream Water Quality in a Changing Environment: 
Trends and Explanation (Vienna, 1991) and the Symposium on Tracers in 
Hydrology (Yokohama, 1993). In most of these symposia, papers have raised 
the issue of variability in erosion and stream sediment transport. The Symposium 
on Variability in Stream Erosion and Sediment Transport arose from this 
background. It is fitting that the symposium was held in Canberra, Australia, as 
this is possibly the most hydrologically variable continent on Earth. 

On a global scale soil erosion is one of the major contemporary 
environmental issues, while stream sediments provide the most common host 
for contaminants and nutrients. As a result, there is a growing need to 
understand better the processes involved in sediment erosion and transport in 
order to isolate sediment sources, characterize transport behaviour and 
determine the fate of eroded material. In many cases, an understanding of the 
processes involved is clouded by the natural variability within the sediment 
system at a range of spatial and temporal scales. Research designs and 
methodologies must be capable of accurately characterizing the sediment 
system especially with respect to its variability. This becomes more important 
as human impacts on stream systems increase and also if we are to make 
meaningful predictions of changes related to global environmental changes. In 
both cases we must be able to disentangle natural variability and that 
associated with basin change. 

The 54 papers in this proceedings volume cover a wide range of topics. 
They have been grouped into six main themes. The papers on Soil erosion, 
sediment transport and sediment tracers examine variability in erosion and 
transport, especially the implications of variability on the techniques used. This 
theme continues in the next section on Flood plains and lake sedimentation 
which focuses on determining the fate of eroded material and the use of such 
deposits in the interpretation of past processes and environmental history. The 
next two sections, Large basins and regional variation and Small basins, 
concentrate on variability at a range of spatial scales. The penultimate section 
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examines Human impacts on erosion and sediment transport systems. The final 
section titled Techniques outlines the application of new research techniques. 
It is hoped that these papers will lead to greater consideration of the role of 
variability in erosion and sediment transport especially in the establishment of 
adequate research and monitoring designs. 

Laurie Olive & Julie Kesby 
Department of Geography and Oceanography, 

University College, University of New South Wales, 
Australian Defence Force Academy, Australia 

Bob Loughran 
Department of Geography, University of Newcastle, Australia 
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Variability in discharge, stream power, and particle-
size distributions in ephemeral-stream channel systems 

L. J. LANE, M. H. NICHOLS, M. HERNANDEZ, 
C. MANETSCH 
US Department of Agriculture, Agricultural Research Service, Southwest Watershed 
Research Center, 2000 East Allen Road, Tucson, Arizona 85719, USA 

W. R. OSTERKAMP 
US Geological Survey, Water Resources Division, Denver Federal Center, Denver, 
Colorado 80225, USA 

Abstract The interacting factors of climate, geology, vegetation, soils, 
land use, and transmission losses affect the characteristics of discharge 
and sediment yield in ephemeral streams in arid and semiarid areas of the 
southwest USA. Research results are presented which describe and 
summarize these factors and emphasize the consequences of spatially 
varying rainfall and transmission losses (infiltration losses to stream bed 
and banks) on the subsequent spatial variability of peak discharge, stream 
power, and median particle-sizes of bed sediment in ephemeral-stream 
channels of the Walnut Gulch Experimental Watershed, Arizona, USA. 

INTRODUCTION 

Spatial and temporal variability in hydrologie processes and the resulting erosion and 
sedimentation processes are characteristically high in arid and semiarid regions. High 
variability results from climatic factors such as infrequent and spotty precipitation (i.e. 
Sellers, 1964; Osborn, 1983). Variable geologic and geomorphic features, including 
ephemeral-stream channels (i.e. Leopold & Miller, 1956; Thornes, 1977), and marked 
variations in soils and soil moisture result in variations in vegetation, land use and 
management (i.e. Fuller, 1975; Branson et al., 1981). 

Insufficient knowledge concerning spatial and temporal variations in hydrologie, 
erosion, and sedimentation processes and their links with geomorphic features at various 
scales is limiting our ability to model these processes accurately, and thus, to develop 
the predictive capability required for land use and management decisions. The purpose 
of this paper is to report the results of a hydrologie modelling study conducted to 
emphasize the consequences of spatially varying rainfall and transmission losses 
(infiltration losses to stream bed and banks) on the subsequent spatial variability of peak 
discharge, stream power, and median particle-sizes of bed sediment in ephemeral-stream 
channels of the Walnut Gulch Experimental Watershed, Arizona, USA. 

DESCRIPTION OF STUDY SITES AND DATA 

The Walnut Gulch Experimental Watershed, operated by the US Department of 
Agriculture, Agricultural Research Service (USDA-ARS) is illustrated in Fig. 1 and 
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Fig. 1 Location map for the Walnut Gulch Experimental Watershed. 

Subwatershed 10 is shown in Fig. 2. Subwatershed 10 drains approximately 10% of the 
area drained by Walnut Gulch, has relatively more relief, has a higher drainage density, 
and is significantly more elongated. Detailed descriptions of the Walnut Gulch 
Experimental Watershed, its database, and observations and research findings are given 
by Renard (1970) and Renard et al. (1993). 

Mean annual temperature at Tombstone, Arizona (within the Walnut Gulch 
Watershed) is 17.6°C, mean annual precipitation is 324 mm, and the climate is 

raingauge 
main channel 
tributary 
subwatershed boundary 

Fig. 2 Subwatershed 10 on Walnut Gulch Experimental Watershed showing channel 
system and subwatershed discretization for the distributed hydrologie model. 



Variability in ephemeral-stream channel systems 337 

classified as semiarid or steppe. About 70% of the annual precipitation occurs during 
the summer months from convective thunderstorms of limited areal extent. 

Soils on the Walnut Gulch Watershed, like most desert and semidesert soils, are 
notable for their variations with topographic features and their close relationships with 
the parent material because of slow rates of soil formation processes in moisture 
deficient environments. The parent material is dominated by fan deposits, mostly 
derived from intrusive and volcanic rocks and cemented with calcretes; thus, associated 
soils are generally well-drained, calcareous, gravelly to cobbly loams. Other important 
soils developed from igneous, intrusive materials and are typically shallow, cobbly, and 
fine textured. Finally, soils in flood plains along the ephemeral stream channels are 
formed of alluvium and vary from sands to loams. 

Shrub vegetation, such as creosote bush, acacia, tarbush, and small mesquite trees, 
dominates (30 to 40% canopy cover) the lower two-thirds of the watershed. The major 
grass species (10 to 80% canopy cover) on the upper third of the watershed are the 
gramma grasses, bush muhley, and lovegrass, with some invasion of the shrub species 
and mesquite (Renard et al., 1993). Land use consists primarily of grazing, recreation, 
mining and some urbanization. 

METHODS AND ANALYSES 

Distributed watershed modelling 

A calibrated, distributed hydrologie model (Lane, 1982) was used as a tool to compute 
runoff from rainfall data and to route the runoff in ephemeral-stream channels to 
compute peak discharge and stream power. Spatial variations in peak discharge due to 
distributed rainfall, soils, vegetation, and transmission losses are explicitly included in 
the calculations. 

Thiessen weights were determined for the 18 recording raingauges on or near 
Sub watershed 10 (Fig. 2) and then areal average rainfall was determined for each of the 
38 upland and lateral flow areas used to represent the subwatershed. This procedure was 
repeated for 74 individual runoff producing storms over the 11-year period of record 
from 1967 to 1977 to fit, or calibrate, the model to observed runoff data measured in the 
supercritical flume (Fl 10) located at the subwatershed outlet. 

This fitting procedure constituted the model calibration with the following results 
for the 74 runoff events: 

Vf = 0.42 + 0.89 V0 (1) 

with a value of R2 = 0.71 where Vf is the fitted runoff volume (mm) and V0 is the 
observed runoff volume (mm). The corresponding equation for peak discharge is: 

ty= 0.51 + 0.96^ (2) 

with a value of R2 = 0.73 where qfis the fitted peak discharge (mm h"1) and q0 is the 
observed peak discharge (mm h"1). 

On 9 July 1993 a thunderstorm occurred over the upper portion of Subwatershed 10 
and produced runoff at the subwatershed outlet. Runoff curve numbers were adjusted 
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for the dry initial condition until the model estimate matched the runoff peak discharge 
as measured at the flume. Stream channel cross sections and composite bed material 
samples were obtained before and after this runoff event at each cross section. 

Finally, 60-minute point rainfall amounts for the 2 and 10 year return periods were 
determined following Osborn (1983) and then adjusted using a depth area relationship 
(Osborn, 1983) to estimate average rainfall depths over the 16.6 km2 subwatershed. 
These subwatershed-average rainfall amounts were used as input to the calibrated, 
distributed model to produce runoff volume and peak discharge estimates for the 2 and 
10 year floods. 

Stream power and sediment transport 

Stream power per unit length of the stream bed is calculated as: 

P = iQS (3) 

where P is stream power in N s"1, y is the specific weight of water (N m"3), Q is the 
discharge rate (m3 s"1), and S is the longitudinal slope of the channel bed. Stream power 
has been related to total sediment transport (Bagnold, 1960, 1966, 1977). Stream power 
per unit weight of water, called unit stream power, has been related to total sediment 
concentration in streams (i.e. Yang & Stall, 1976; Yang & Molinas, 1982). Graf (1983) 
used stream power per unit length as a surrogate for total sediment transport in 
ephemeral stream channels. 

Earlier, Lane (1955) recognized the role of stream power in stating a qualitative 
relationship for stable alluvial channels. Lane's equation stated that: 

Gsds is proportional to QS (4) 

where Gs is sediment transport rate (kg s"1), ds is a characteristic sediment particle size 
(mm), <2 is discharge rate and 5 is slope of the stream bed, as in equation (3). Without 
loss of generality, the right hand side of equation (4) can be multiplied by gamma, y, 
and both sides of the equation can be divided by ds (since both y and ds are positive 
quantities) to produce 

Gs is proportional to yQS/ds = Plds (5) 

which again suggests that stream power might be a useful surrogate for sediment 
transport rate. 

RESULTS AND DISCUSSION 

Physical characteristics of the main channel of Subwatershed 10 are summarized in 
Table 1. Composite bed material samples were collected at 11 cross sections (Table 1). 
Median particle size varied with distance along the main channel and also with time 
before and after the runoff event of 9 July 1993. However, there were no statistically 
significant trends with distance along the main channel and no statistically significant 
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Table 1 Physical characteristics for the main channel of Watershed 10 as measured in the field and on 
1:5000 scale ortho-topographic maps. Channel characteristics used in the distributed hydrologie model 
to simulate runoff. 

Channel 
reach 

A) 56f-xl* 

B)50 

C) 47-x3 

D) 44-x4 

E) 41-x5 

F) 38 

G)31-x6 

H) 28-x7 

I) 25-x8 

J) 22-x9 

K) 16-xll 

L) 13-xl4 

M) 03-X13 

Upper end 

Reach 
length 
(km) 

0.18 

0.21 

0.84 

0.68 

0.9 

0.6 

3.19 

2.27 

0.58 

1.06 

1.5 

0.18 

7.42 

Distance above Fl 10 
at lower end of reach 
(km) 

0 

0.18 

0.39 

1.22 

1.9 

2.8 

3.39 

6.58 

8.85 

9.43 

10.49 

11.99 

12.16 

19.58 

Average 
width of 
reach (m) 

9.1 

24 

24 

23 

17 

18 

12 

14 

18 

20 

12 

7.6 

9.1 

-— 

Slope at 
lower end of 
reach 

0.0106 

0.0098 

0.0089 

0.0163 

0.0157 

0.014 

0.0124 

0.0111 

0.0131 

0.0097 

0.0105 

0.0127 

0.0114 

—-

Median 

Before* 

1.48 

.... 

2.28 

1.45 

1.72 

.... 

0.95 

1.38 

1.89 

1.41 

2.17 

1.28 

2.98 

.... 

particle size: 

(mm) After (mm) 

0.78 

— 

0.96 

1.71 

1.94 

.... 

0.76 

2.03 

1.31 

1.23 

0.96 

0.96 

1.37 

.... 

* Samples taken before and after the first runoff event of the season on 9 July 1993 
\ Channel reach numbers as represented in the distributed model. 
* Denotes cross section numbers on main channel where bed material samples were taken. 

differences in median particle sizes before and after the runoff event of 9 July 1993. 
Hydrologie variable estimates based on application of the calibrated, distributed 

hydrologie model are summarized in Table 2. Calculated peak discharge rates along the 
main channel in Subwatershed 10 for the storm of 9 July 1993, and for the 2 and 10 year 
floods are shown in Fig. 3(a). Corresponding stream power results are shown in 
Fig. 3(b). 

Excluding the boundary point at the upper end of the main channel, the ratio of 
maximum to minimum values for the channel characteristics in Table 1 varied by a 
factor of approximately 2 to 3. The corresponding maximum to minimum ratio for peak 
discharge of the 9 July 1993 storm is 5.5 and for stream power is 6.4. Ratios for peak 
discharge of both the 2 and 10 year floods are about 1.6 and ratios for stream power are 
2.0. Recall that rainfall input to the model for the storm on 9 July 1993 was distributed 
over the 38 elements used to model Subwatershed 10 (Fig. 2) while the rainfall input for 
the 2 and 10 year floods was calculated from a depth area relation and thus was assumed 
to be uniform over the entire subwatershed. These analyses suggest that the assumption 
of uniform rainfall input to the hydrologie model significantly underestimated the spatial 
variability of peak discharge and stream power, and thus by inference, erosion and 
sediment transport rates. 

The results presented in Table 2 are based on modelling results after the model was 
calibrated using observed runoff data measured at the subwatershed outlet. However, 
peak discharge and stream power values calculated at interior points remain unvalidated. 
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Table 2 Hydrologie variable estimates for the main channel of Watershed 10 based on the physical 
characteristics shown in Table 1 and results of applying the distributed hydrologie model. Calculations 
are for the storm of 9 July 1993 and for the 2 and 10 year floods. 

Channel 
reach 

A) 56*-xl§ 

B)50 

C) 47-x3 

D) 44-x4 

E) 41-x5 

F)38 

G)31-x6 

H) 28-X7 

I) 25-x8 

J) 22-x9 

K) 16-xll 

L) 13-xl4 

M) 03-X13 

Upper end 

Distance above 
Fl 10 at lower end 
of reach (km) 

0 

0.18 

0.39 

1.22 

1.9 

2.8 

3.39 

6.58 

8.85 

9.43 

10.49 

11.99 

12.16 

19.58 

9 My 

Q* 
(m3 s"1 

4.79 

5.01 

5.44 

7.39 

8.84 

10.5 

11.9 

18.2 

23.9 

26.2 

24.7 

15.9 

13.8 

0 

1993: 

J* 
) (N s"1) 

498 

480 

476 

1180 

1360 

1430 

1450 

1980 

3060 

2490 

2540 

1980 

1540 

0 

2 year: 

(m3 s"1) 

14.6 

12.2 

12.6 

13.9 

14.4 

15.3 

15.1 

16.9 

17.1 

17.5 

14.6 

11.0 

11.0 

0.0 

P 
(N s"1) 

1520 

1170 

1100 

2220 

2220 

2100 

1830 

1840 

2200 

1670 

1510 

1370 

1230 

0 

10 year: 

(m3 s~') 

44.5 

37.5 

38.5 

41.8 

42.9 

45.2 

44.6 

48.7 

48.5 

49.4 

40.6 

29.5 

29.6 

0.0 

P 
(N s"1) 

4620 

3600 

3350 

6680 

6610 

6210 

5420 

5300 

6220 

4690 

4180 

3680 

3310 

0 

* Q is estimated peak discharge using the calibrated, distributed hydrologie model. 
t P is stream power calculated from the estimated peak discharge. 
* Channel reach numbers as represented in the distributed model. 
§ Denotes cross section numbers on main channel where bed material samples were taken. 

Adequate study of spatial variability of hydrological processes and sedimentation 
processes in ephemeral-stream channel systems will require continuous monitoring of 
discharge, hydraulic variables, and sediment concentration during runoff events, as well 
as monitoring of physical features of the channel systems between events at a sufficient 
number of interior points to test the validity of distributed modelling results. 

Subwatershed 10 was discretized for modelling purposes as shown in Fig. 2. This 
resulted in 13 channel reaches along the main channel. The mean reach length is 1.5 km 
and the range of lengths is 0.18 to 7.42 km. From Fig. 3, it is apparent that at least one 
additional cross section (and thus subwatershed in the model discretization) is needed 
between the cross section at 12.16 km above the flume and the main channel headwaters 
at 19.58 km. 

Under the special circumstances of this study, an appropriate distance between 
monitoring points along the main channel appears to be 1-2 km. For a watershed of this 
scale (main channel length of about 20 km), 10 to 20 interior measurement points are 
needed to test the validity of distributed hydrologie models of the complexity used in this 
study. 

Similar studies on other subwatersheds of Walnut Gulch over a range of geomorphic 
features are needed to generalize these results basinwide. Such generalizations are 
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Fig. 3 Variation with distance in the main channel of Subwatershed 10 of (a) peak 
discharge and (b) stream power. 

needed before the impacts of spatial variability in hydrologie and sedimentation 
processes can be understood, modelled, and predicted. 
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