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Adaptive hybrid optimization strategy for calibration
and parameter estimation of physical models

Velimir V. Vesselinov∗, Dylan R. Harp

Computational Earth Sciences Group, Earth and Environmental Science Division, Los
Alamos National Laboratory, Los Alamos, USA.

Abstract

A new adaptive hybrid optimization strategy, entitled squads, is proposed for

complex inverse analysis of computationally intensive physical models. Typi-

cally, models are calibrated and model parameters are estimated by minimiza-

tion of the discrepancy between model simulations characterizing the system

and existing observations requiring a substantial number of model evaluations.

The new strategy is designed to be computationally efficient and robust in iden-

tification of the global optimum (e.g maximum or minimum value of a per-

formance metric). It integrates a global Adaptive Particle Swarm Optimiza-

tion (APSO) strategy with a local Levenberg-Marquardt (LM) optimization

strategy using adaptive rules based on runtime performance. The global strat-

egy optimizes the location of a set of solutions (particles) in the parameter

space. The LM strategy is applied only to a subset of the particles at different

stages of the optimization based on the adaptive rules. After the LM adjust-

ment of the subset of particle positions, the updated particles are returned

to the APSO strategy. Therefore, squads is a global strategy that utilizes a

local optimization speedup. The advantages of coupling APSO and LM in

the manner implemented in squads is demonstrated by comparisons of squads

performance against Levenberg-Marquardt (LM), Particle Swarm Optimization

(PSO), Adaptive Particle Swarm Optimization (APSO; the TRIBES strategy),
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and an existing hybrid optimization strategy (hPSO). All the strategies are

tested on 2D, 5D and 10D Rosenbrock and Griewank polynomial test func-

tions for a set of 1000 runs with random initial guesses for the function (model)

parameters and with total number of function (model) evaluations less than

20,000. The performance of the strategies on the test functions are compared

based on their robustness, defined as the percentage of runs that identify the

global optimum given random initial function parameter guesses, and their ef-

ficiency, quantified by a statistical representation (boxplots) of the number of

function evaluations performed prior to identification of the global optimum for

successful runs. Squads is observed to have the best performance in terms of

robustness and efficiency than the other strategies for all test functions.

Keywords: optimization, Rosenbrock, Griewank, hybrid strategy, adaptive

strategy, Particle Swarm Optimization

1. Introduction1

Models are often used in the geosciences to indirectly estimate unknown (not2

observable) physical properties of a system based on observable quantities rep-3

resenting system behavior (Carrera and Neuman, 1986; Dahlin, 2001; Jessell,4

2001; Meek, 2001; Poeter and McKenna, 1995). In this process, the mathemat-5

ical model is designed to simulate the system behavior f(θ) for a given set of6

model parameters θ representing the actual physical properties of the system.7

The more accurately the model matches the observations, the more representa-8

tive the model parameters are assumed to be. The process of making inferences9

about model parameters, commonly referred to as inverse modeling, regularly10

results in difficult optimization problems where a set of model parameters capa-11

ble of acceptable representation of system behavior is sought. The optimization12

process is based on a metric representing the discrepancy between the model13

simulations f(θ) and the system observations. The discrepancy metric is also14

called the objective function (OF; Φ(θ)), and is a function of model parameters15

θ. In the parameter space, the metric is represented by a multi-dimensional16
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response hyper-surface; a three-dimensional surface for the case of two model17

parameters. The response surface typically has a complex shape due to multiple18

minima (representing multiple plausible solutions) and flat regions (represent-19

ing insensitivity of model parameters to the OF) in the response surface. The20

optimization process is based on a series of guided model evaluations for dif-21

ferent model parameter sets. The challenges in the optimization process come22

from complications in identifying the global minima and from requirements to23

execute a substantial number of model evaluations. Frequently, the number of24

model evaluations needed for optimization can vary from about 102 to more25

than 106 depending on the complexity of the inverse model. As a result, the26

optimization process can be especially difficult in real-world applications using27

physical models where a single forward model simulation is performed from sev-28

eral minutes to more than an hour. In these situations, even efficient parallel29

techniques (e.g. Vesselinov et al. (2001)) can cause substantial computational30

burden. Therefore it is important to develop computationally efficient and ro-31

bust strategies that can identify the global minimum with a relatively small32

number of model evaluations.33

Optimization strategies can be classified as global and local strategies (No-34

cedal and Wright, 1999). Global strategies excel at robust exploring the re-35

sponse surface, identifying multiple areas of attraction; however, global strate-36

gies are inefficient at locating the parameter set producing an optimal solution37

within a global or local area of attraction. As a result, in the case of real world38

model inversions, the application of global strategies may be infeasible when39

the model evaluations take a substantial amount of computational time (Keat-40

ing et al., 2010). Local strategies excel at efficiently identifying the optimal41

model parameters within an area of attraction; however, local strategies are not42

designed for robust exploration of a response surface outside of an area of at-43

traction. The local strategies are efficient within an area of attraction because44

they utilize local information about the gradient and curvature of the response45

surface. This requires estimation of the first and second order derivatives of46

the discrepancy metric in the parameter space. As many real world model47
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problems are characterized with multiple minima, the use of local strategies48

alone is not always robust. One of the most commonly used local strategies is49

the Levenberg-Marquardt (LM) strategy which has been applied in many fre-50

quently used inverse analysis and parameter estimation codes in the geosciences51

such as UCODE (Poeter and Hill, 1999) and PEST (Doherty, 2005).52

Global and local strategies are complimentary; where one excels, the other53

struggles, and vice versa. The benefits of hybrid global/local strategies have54

been demonstrated previously (Noel and Jannett, 2004; Leontitsis, 2004; Zhang55

et al., 2007; Ghaffari-Miab et al., 2007). We introduce a new development in56

hybrid optimization coupling recent developments in Adaptive Particle Swarm57

Optimization (APSO) and a Levenberg-Marquardt (LM) strategy producing a58

novel adaptive hybrid strategy entitled squads. The strategy applies an LM59

strategy to a subset of particles at different stages of an APSO strategy based60

on adaptive rules. After the LM update of the particle position, the particle61

is passed back to the APSO strategy and continues to evolve based on APSO62

rules. In essence, squads is a global strategy utilizing local optimization speedup.63

Squads is specifically designed to be a robust and computationally efficient strat-64

egy capable of identify the global minimum with a relatively small number of65

model evaluations in complex inverse problems. The name squads refers to the66

hierarchical structure of the population of solutions in the algorithm, similar to67

the APSO algorithm TRIBES (Clerc, Jul. 2004).68

The squads strategy is tested using the Rosenbrock (Rosenbrock, 1960) and69

Griewank (Griewank, 1981) polynomial test functions. In order to demonstrate70

the relative benefits of the hybrid strategy of squads, its performance is com-71

pared to open-source distributions of the LM (Lourakis, Jul. 2004), PSO (Pari-72

cle Swarm Central, 2006), and APSO (Clerc, Jul. 2004) strategies. Additionally,73

squads is compared to hPSO (Leontitsis, 2004), an open-source hybrid strategy74

that combines PSO and the Nelder-Mead downhill simplex strategy (Nelder75

and Mead, 1965) implemented in the MATLAB R© (The MathWorks Inc., 2003)76

computing environment.77
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2. Particle swarm optimization78

Sociobiologists have theorized that individuals within a population can ben-79

efit from the previous knowledge and experience of other members of the popu-80

lation while searching for sporadically distributed food sources (Wilson, 1975).81

The ubiquity of schooling and flocking tendencies common among many species82

suggests that this is an efficient, cost-effective strategy for the survival of in-83

dividuals. It is easy to recognize the analogy of organisms searching for food84

sources and mathematical strategies searching for optimal solutions. This recog-85

nition led to the development of PSO by Kennedy and Eberhart (1995), building86

on previous research intended to graphically simulate the flocking behavior of87

birds. Certain aspects of the flocking behavior of this early research has been88

eliminated in order to improve the strategy’s performance in global optimiza-89

tion, leading to the use of the term “swarm” to describe the graphical behavior90

of PSO.91

The development of PSO has produced a parsimonious optimization strat-92

egy modeling a population of randomly selected initial solutions (particles)93

by their position and velocity (Clerc, 2006). In a D-dimensional parameter94

space, the position and velocity of the ith particle can be represented as pi =95

[pi,1, pi,2, . . . , pi,D] and vi = [vi,1, vi,2, . . . , vi,D], respectively. An empirical for-96

mula for determining the swarm size S has been suggested as S = 10 + 2
√

D97

(Paricle Swarm Central, 2006). Particles retain a record of the best location98

they have visited so far denoted as bi = [bi,1, bi,2, . . . , bi,D]. Particles are also99

informed of the best location that K other randomly chosen particles have vis-100

ited, denoted as gi = [gi,1, gi,2, . . . , gi,D]. A standard value for K is 3 (Paricle101

Swarm Central, 2006). These networks of informers are reinitialized after it-102

erations with no improvement to the global best particles of the swarm. The103

velocity of the ith particle in the jth dimension is updated from strategy itera-104

tion k to k + 1 as105
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vi,j(k+1) = wvi,j(k)+c1r1(bi,j−pi,j(k))+c2r2(gi,j−pi,j(k)), k = {1, . . . , D},

(1)

where w is a constant referred to as the inertia weight, c1 and c2 are constants106

referred to as acceleration coefficients, r1 and r2 are independent uniform ran-107

dom numbers in [0, 1]. The parameter w controls the level of influence between108

its previous and current particle displacement, c1 and c2 scale the random influ-109

ence of (1) the particle memory (past particle locations in the parameter space),110

and (2) the current network of particle informers (current informer locations in111

the parameter space), respectively. A limitation on the magnitude of the veloc-112

ity Vmax is commonly employed. The particle position is updated during each113

strategy iteration as114

pi,j(k + 1) = pi,j(k) + vi,j(k + 1), k = {1, . . . , D}. (2)

It has been recognized that the selection of w, c1, c2, and Vmax tune the115

performance of PSO, modifying the balance between exploration (spreading116

the particles throughout the parameter space) and intensification (focusing the117

particles within an area of attraction). Manual tuning of PSO’s parameters can118

be a delicate task. Adaptive PSO (APSO) strategies have emerged in order to119

reduce or eliminate the often difficult and time-consuming process of parameter120

tuning of PSO (Cooren et al., 2009).121

One of the algorithmic variants of APSO is TRIBES (Clerc, 2006) (TRIBES122

is not an acronym, but we follow the convention of all capital letters as proposed123

by its designer), which eliminates the tuning of the PSO strategy parameters.124

The strategy has been proven competitive with well-known strategies on a suite125

of test problems (Cooren et al., 2009). As the name suggests, TRIBES parti-126

tions the particles into groups, referred to as tribes, intended to facilitate the127

exploration of multiple areas of attraction. In this way, a hierarchical structure128

is established where the swarm is composed of a network of tribes, and each129

tribe is a network of particles. The intent is to eliminate parameter tuning130
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as the swarm evolves from an initial set of tribes, and the tribes evolve from131

single particles based on rules governing the evolution of the swarm topology132

and rules for generation and elimination of entire tribes and individual particles133

within the tribes. The particle within a tribe with the lowest/highest OF for134

minimization/maximization is considered the shaman of the tribe. Information135

is shared only between the particles within a given tribe. Information between136

the tribes is shared only through the shamans. In this way, the displacements137

of non-shaman particles are influenced by the shaman of their tribe, while the138

displacements of the shamans are influenced by the best shaman in the swarm.139

The source code for TRIBES is available from Clerc (Jul. 2004).140

3. Squads adaptive hybrid optimization141

Various approaches have been introduced to couple the global search ca-142

pabilities of PSO with the efficiency of first and second-order local strategies.143

Clerc (1999) introduced a PSO strategy that adjusts particle locations based on144

approximations of the gradient of the OF utilizing the OF values of the current145

particle locations. Noel and Jannett (2004) developed a hybrid PSO strategy146

incorporating gradient information directly in the calculation of particle veloc-147

ity. Leontitsis (2004) coupled a PSO strategy with the Nelder-Mead simplex148

strategy (hPSO, Lagarias et al. (1998)), Zhang et al. (2007) coupled PSO and149

back-propagation to train neural networks. Ghaffari-Miab et al. (2007) devel-150

oped a hybrid strategy, iterating between PSO and BFGS quasi-Newton opti-151

mization. We present a hybrid strategy called squads that couples an APSO152

strategy with a Levenberg-Marquardt (LM) strategy. The following provides a153

detailed description of a fine-tuned coupling of APSO and LM based on adaptive154

rules, where the LM optimization is applied to improve the locations of a subset155

of selected particles (the shamans) in the course of the optimization process.156

The current APSO strategy implemented in squads is TRIBES (Clerc, 2006),157

and the LM optimization is performed using the LevMar library (Lourakis, Jul.158

2004).159
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Much of the time-consuming and difficult tuning required of many optimiza-160

tion strategies is reduced in squads utilizing adaptive rules. The APSO strategy161

does not require the specification of optimization parameters (Clerc, 2006), and162

the applied LM strategy is optimized to work well on many problems using de-163

fault and internally estimated optimization parameters (Lourakis, Jul. 2004).164

The adaptive rules implemented in squads to control the performance of LM165

speedups during the APSO optimization are also designed to be general and166

capable to tackle problems with different complexity.167

A flow diagram of the squads strategy is presented in Figure 6. Tables 1168

and 2 describe the particle initialization and displacement rules and their selec-169

tion within squads. For consistency with other global strategies discussed here,170

squads is initialized with Nt = S = 10 + 2
√

D mono-particle tribes, where Nt171

is the number of tribes in the swarm and S is the number of particles. How-172

ever, squads can also be initiated with a single mono-particle tribe and allow173

the swarm to develop based on the built-in adaptive rules. If provided, one174

of the initial particles is set to predefined values (rule 1 in Table 1), while the175

remaining positions of the initial particles are determined according to rule 5 in176

Table 1.177

Each iteration of the strategy is initiated by determining the informers for all178

the particles. For non-shaman particles, this will be the shaman of their tribe.179

A shaman is the particle with the best (e.g. lowest for minimization) OF value180

within the tribe. For shaman’s, this will be the shaman with the best OF value181

within the swarm, referred to as the best shaman. Particle positions are then182

updated according to the rules described in Table 2. Particles are initialized to183

use displacement rule 1. After informers are determined, particle positions are184

updated based on their currently selected displacement rule.185

The decision to adapt a tribe is based on whether the tribe has demonstrated186

sufficient improvement during the previous strategy iteration. This is performed187

stochastically, by comparing the fraction of particles in the tribe that improved188

their location in the last move with a random number between 0 and 1. If the189

fraction is greater than the random number, the tribe is considered a good tribe,190
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and the worst particle is removed from the tribe. This eliminates unnecessary191

model evaluations, focusing the attention of the tribe on the good particles.192

Otherwise, the tribe is considered a bad tribe, and a particle is added to the193

tribe (refer to Table 1 for details on particle initialization rule selection) and a194

randomly selected dimension of a randomly selected particle in the tribe (other195

than the shaman) is reinitialized randomly. Adding a particle to a bad tribe is196

intended to increase the exploration of the parameter space by the tribe.197

The swarm adaptation occurs either every Nt ∗(Nt−1)/4 strategy iterations198

or if the swarm is labeled by LM as a bad swarm. A swarm is considered a bad199

swarm if LM speedup was performed in the previous iteration, and the OF was200

not reduced by at least 2/3 for all the LM updated shamans. A mono-particle201

tribe is added to the swarm if it is considered bad according to rule 5 in Table 1.202

The tribe led by a shaman with the worst OF in the swarm is removed if the203

swarm is considered good.204

Next, particle displacement rule selections are updated. Particle displace-205

ment rule selections are modified based on whether or not (1) their position has206

improved in the last move and (2) their best overall position has improved in the207

last move. Following the convention of Clerc (2006), we use a (+) to indicate208

improvement, (=) the same OF value, and (–) a worse position. The particles209

performance can then be denoted as one of the following: (–=), (==), (+=),210

and (++), where the first symbol indicates if the particle improved its position211

in the last move, and second symbol indicates if the overall best position of the212

particle improved in the last move. Note that the best overall performance can213

only stay the same or improve, and an improvement in the overall performance214

indicates an improvement over the last position. Table 2 lists the displacement215

rule selection based on particle performance.216

After the swarm adaptation, squads checks whether or not to update the217

shamans using LM. LM updating is turned off in squads if none of the shamans218

reduces the OF of the previous shamans by more than 2/3 during the last LM219

updating. LM updating will be restarted when the best OF of the previously ob-220

tained OF during LM has been reduced by an order of magnitude by the APSO221
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strategy. This postpones LM until the global APSO strategy has identified a222

position with a significant improvement, which will perhaps be a previously223

unidentified area of attraction. After the LM optimization, the new shaman224

location is used in the APSO strategy.225

In contrast with the APSO strategy, the LM strategy requires that the OF226

be represented as a summation of components at least equal to the number of227

parameters as228

Φ(θ) =
N∑

i=1

Φi(θ), (3)

where θ is a vector of model parameters and N is equal or larger than the number229

of model parameters. This allows the LM strategy to estimate the local gradient230

and curvature of the response surface in the parameter space. These calculations231

utilize numerical derivatives of the OF components in equation 3 with respect to232

the model parameters (also called the Jacobian matrix). Based on the Jacobian233

matrix, the LM strategy also estimates the second-order derivatives of the OF234

components with respect to model parameters (also called a Hessian matrix).235

The second-order derivatives approximate the local curvature of the response236

surface. The LM strategy searches for the local optimum by adaptive adjust-237

ment between first and second-order optimization techniques (Levenberg, 1944;238

Marquardt, 1963). Frequently in the case of model inversion problems, the OF239

in equation 3 is represented by the discrepancy between model simulated values240

fi(θ) and corresponding observations oi, where i = 1, ..., N , and N is now the241

number of observations. For example, frequently Φ(θ) is computed as242

Φ(θ) =
N∑

i=1

Φi(θ) =
N∑

i=1

(fi(θ)− oi)2. (4)

Squads estimates the first-order derivatives using a finite difference approach243

applied in the LevMar library (Lourakis, Jul. 2004).244

The following criteria are defined by default in LevMar to terminate the LM245

optimization (Lourakis, Jul. 2004), and applied in the LM updating of squads246

as well: (1) the maximum change in any parameter is less than 10−5; (2) the247

10



relative change in the L2 norm of the change in the parameter values is less than248

10−5 of the L2 norm of the parameter values; (3) the OF reaches a value of zero;249

(4) the Jacobian matrix is close to singular, and (5) the maximum number of250

LM iterations (i.e. derivative approximation and Marquardt parameter value251

exploration) is achieved (50 when standalone LM is performed; 8 in squads).252

The criteria are designed to terminate LM once it successfully identifies a local253

optimum. Typically, criteria 1, 2, and 5 terminate the LM updating in squads254

(the termination criteria of the LM updating within squads do not terminate the255

squads run). Squads is terminated when either one of the following conditions256

are met: (1) Emax, the number of allowable model evaluations, is exceeded or257

(2) the OF reaches below a predefined cutoff value.258

The final step of each iteration is to perform a random local search in the259

empty space around each shaman (Clerc, Jul. 2004). In this step, a random260

position within the largest hyperparallelepid centered on the tribe’s shaman,261

void of other particles, is evaluated. If the position is an improvement over the262

current shaman position, the shaman is moved to this location. Otherwise, the263

position is forgotten.264

Global strategies in general, including APSO, are designed to operate on265

a bounded parameter space. The parameter ranges are typically predefined266

depending on the physical constraints or prior knowledge about the parameter267

distributions. However, the LM optimization by default works in an unbounded268

parameter space. There are various techniques to constrain an LM strategy269

within a parameter space, but these techniques typically have a negative impact270

on LM performance. To avoid this, squads operates in a transformed parameter271

space. For example, an element of the parameter vector θ is transformed as272

θ̂ = arcsin
(

θ − θmin

θmax − θmin
· 2− 1

)
, (5)

where θ̂ is the transformed parameter, and θmax and θmin are the upper and273

lower bounds for parameter θ, respectively. The APSO strategy is performed274

in the transformed parameter space bounded within [−π/2;π/2] in all dimen-275
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sions, while the LM updating is performed unconstrained in the transformed pa-276

rameter space. Model (function) evaluations are performed on de-transformed277

parameters by278

θ = θmin +

(
sin(θ̂) + 1

2

)
(θmax − θmin). (6)

In this way, the LM updating is unaware of parameter boundaries and is unaf-279

fected by performance issues associated with calculating numerical derivatives280

near boundaries. It should be noted that in the process of the LM updating,281

the transformed parameters can be moved outside of the [−π/2;π/2] range;282

however, the transformed parameters are returned to equivalent values within283

[−π/2;π/2] before being passed back to the APSO strategy by284

θ̂APSO = arcsin(sin(θ̂LM )). (7)

where θ̂LM represents the unconstrained transformed parameters resulting from285

LM updating and θ̂APSO represents the constrained transformed parameters286

passed back to the APSO strategy, thereby ensuring that APSO receives pa-287

rameters within its explicitly defined, bounded parameter space. It is important288

to note that θ̂APSO and θ̂LM are equivalent in the non-transformed parameter289

space.290

4. Test functions291

The squads strategy is tested by optimizing the Rosenbrock and Griewank292

test functions. The Rosenbrock and Griewank functions present difficult opti-293

mization problems exhibiting frequently observed complexities in response sur-294

face topology in real world problems (e.g. Rosenbrock (1960); Griewank (1981);295

Clerc (2006); Cooren et al. (2009)).296

The response function defined by the Rosenbrock function is comprised of297

a large valley with an ill-defined, shallow global minimum. For D ≤ 3, the298

function is unimodal with a global minimum at x = 1 (where 1 = [1, . . . , 1]).299
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For 4 ≤ D ≤ 7, a local minimum exists at (x1, x2, . . . , xD) = (−1, 1, . . . , 1) in300

addition to the global minimum, while for D > 7, multiple suboptimal local301

minima exist (Shang and Qiu, 2006). In the case of two model parameters, the302

shape of the Rosenbrock function is presented in Figure 2. The Rosenbrock303

function generalized to any number of dimensions greater than or equal to two304

can be expressed as305

Φr(x1, . . . , xD) =
D−1∑
i=1

(1− xi)2 + 100(xi+1 − x2
i )

2. (8)

The estimation of the local gradient and curvature of the response surface by306

LM requires the test function to be represented as a summation of parts as in307

equation 3. The summation components of Φr(x1, . . . , xD) can be expressed as308

Φr,2i−1(xi) = (1− xi)2 i < D (9)

and309

Φr,2i(xi, xi+1) = 100(xi+1 − x2
i )

2 i < D (10)

producing 2(D − 1) OF components where equation 9 and 10 define the odd310

and even numbered components, respectively. The LM strategy uses the deriva-311

tives of Φr,i(x1, . . . , xD) with respect to model parameters to evaluate the local312

gradient and curvature of the response surface. In most real world problems,313

the analytical computation of derivatives is not feasible. Therefore, in all the314

examples presented below, the derivatives are computed numerically using a315

finite difference approach, even though the analytical derivation in this case is316

trivial. Other alternative representations of Φr as a sum of components are also317

possible.318

The D-dimensional Griewank function is defined as319

Φg(x1, . . . , xD) = 1 +
1

4000

D∑
i=1

x2
i −

D∏
i=1

cos
(

xi√
i

)
. (11)
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The Griewank function has numerous local areas of attraction, but a single320

global minimum of zero at x = 0. In the two-dimensional case, the function321

has the shape of an “egg carton” that is depressed in the center, as depicted in322

Figure 2).323

The summation components can be defined as324

Φg,i(x1, . . . , xD) =
1
D

+
x2

i

4000
− 1

D

D∏
i=1

cos
(

xi√
i

)
(12)

The multidimensional Griewank function is important for testing of hybrid325

optimization strategies because it becomes more difficult to minimize for global326

strategies as its dimensionality increases (Locatelli, 2003). However, although327

counterintuitive, the Griewank function becomes easier to minimize for local328

strategies as the dimensionality increases. Therefore, with the increase in di-329

mensionality, it is expected that LM performance will improve while the PSO,330

TRIBES and hPSO performance will decrease. For different parameter-space331

dimensionality, the performance of hybrid strategies will depend on how effi-332

ciently they adaptively balance between the local and global strategies. At low333

dimensionality (D = 2), the hybrid strategies should benefit from the global334

strategy; at high dimensionality, the hybrid strategies should benefit from the335

local strategy.336

5. Results and discussion337

The performance of squads on the Rosenbrock and Griewank functions is338

compared with (1) LM, (2) PSO, (3) TRIBES, and (4) hPSO. The LM strategy339

is an implementation of LevMar (Lourakis, Jul. 2004) (the same strategy as340

applied in squads), PSO is an implementation of Standard PSO 2006 (Paricle341

Swarm Central, 2006), TRIBES is an implementation of the code described in342

Clerc (2006), hPSO is freely available hybrid optimization code from Leontitsis343

(2004). LM, PSO, TRIBES and squads are built into the code MADS (Vesseli-344

nov, 2010), which is utilized for all analyses except hPSO. The hPSO analysis345

is performed using MATLAB version 7.8.0.347 (R2009a) (The MathWorks Inc.,346
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2003). The strategy parameters (i.e. optimization parameters) for PSO and347

hPSO are set to values that have been demonstrated to perform well in many348

test cases (Paricle Swarm Central, 2006) as w = 0.72, c1 = 1.2 and c2 = 1.2349

(refer to equation 1).350

The strategies are tested on both functions by performing 1,000 independent351

optimizations runs with random initial guesses distributed in the searchable pa-352

rameter space bounded by [-100:100] for all dimensions. In the case of LM, the353

searchable parameter space is not bounded. This did not influence its perfor-354

mance as the OFs of both functions have generally increasing trends towards355

the boundaries (Figure 2)). Optimization success is defined as identifying a so-356

lution with all parameters values within 0.1 of the global minimum parameter357

values (x = 1 for the Rosenbrock function and x = 0 for the Griewank func-358

tion). The maximum number of function (model) evaluations (Emax) for the359

strategies is set to 20,000. However, in performed analyses, LM runs terminate360

at fewer function evaluations as the convergence criteria of LM are designed to361

terminate its run once it identifies a minimum in the response surface. The362

robustness of LM depends on whether the identified minimum is local or global.363

Figures 3 and 4 present boxplots for the number of function evaluations for364

successful runs for 2D, 5D, and 10D Rosenbrock and Griewank functions, re-365

spectively. In the figures, the box represent the 25th to 75th percentile ranges,366

the bars inside of the boxes represent the median values, and the whiskers rep-367

resent the min and max values. The number of successful runs out of the 1000368

attempted runs are presented above the boxes. Note that the statistical defini-369

tions are not accurate for the cases where the number of successful runs does370

not present a statistically significant sample. The robustness of the strategies371

is defined as the percentage of successful runs (i.e. number of successful runs372

/ 1000 * 100). The efficiency of the strategies is summarized by the statistics373

presented in the boxplots.374

For the Rosenbrock function (Figure 3), the robustness of LM decreases from375

the 2D case to the 10D case from 36% to 0%. The robustness of PSO and TRIBE376

is comparable in the 2D case, albeit with TRIBES exhibiting higher efficiency in377
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general. In the 5D case, PSO has a higher robustness than TRIBES, however,378

at lower efficiency. hPSO achieves 100% robustness in the 2D and 5D cases,379

with a significant decrease in efficiency from the 2D to 5D case. The robustness380

of hPSO decreases significantly in the 10D case with only a single success out381

of 1000 (0.1%). In the 10D case, LM, PSO, TRIBES, and hPSO exhibit low382

robustness. Squads is 100% robust in all cases. The efficiency is observed to383

decrease from the 2D case to the 10D case for squads; however, the efficiency384

of squads is greater than PSO, TRIBES, and hPSO in all cases. The efficiency385

of squads and LM are on the same order of magnitude for the 2D and 5D cases386

(Figure 3). However, in these two cases, the robustness of squads is 100% which387

is considerably better than the robustness of LM (36% for 2D and 4% for 5D).388

In the 10D case, LM did not produce a single successful run while squads is still389

100% robust.390

For the Griewank function (Figure 4), as expected (see Locatelli (2003)),391

the robustness of LM increases as the dimensionality of the problem increases.392

In the 2D case, which is the most difficult for a local gradient-based strategy393

(Locatelli, 2003), the robustness is only 3%. Since LM is a local strategy, it is394

not surprising that LM frequently converges at non-global minima. As expected395

for the 2D case, the global strategies (PSO, TRIBES, hPSO and squads) are396

substantially more robust than LM. The robustness of PSO and TRIBES (both397

purely global strategies) decrease significantly from the 2D to the 5D case,398

while decreasing only slightly from the 5D to the 10D case (the efficiency of399

PSO decreases also). hPSO is 100% robust for the 2D case; however, is unable400

to locate the global minimum in the 5D and 10D cases. Squads is 100% robust401

in the 2D and 10D cases and 80% robust in the 5D case.402

As already discussed, the multidimensional Griewank function is important403

for testing of hybrid strategies such as squads. For different parameter-space di-404

mensionality, the performance of squads is influenced by the ability of the adap-405

tive rules in the optimization algorithm to balance between the local (LM) and406

global (APSO) strategies. With the increase of dimensionality, the local (LM)407

strategy becomes more robust, while the global (APSO) strategy becomes less408
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robust. At D = 2, squads is both more robust and efficient than the other global409

methods (Figure 4). At D = 10, squads benefits from the local gradient-based410

search strategy which performs better at higher dimensions. The 5D Griewank411

function is observed to be the most difficult test problem for squads as both412

the local and global strategies struggle in this dimensionality of the Griewank413

function. Nevertheless, for the 5D case, squads produces the highest robustness414

(80%) and efficiency (excluding LM) of all the tested strategies; squads is 100%415

robust if the maximum number of function evaluations is increased to 70000416

(results are not shown here). In summary for the Griewank cases, squads is ob-417

served to have the best performance in terms of robustness and efficiency than418

the other strategies (Figure 4).419

It is important to emphasize in all test cases, squads can converge at rela-420

tively low number of model evaluations when compared to PSO, TRIBES and421

hPSO. This is manifested by the minimum values of the boxplots in Figures 3422

and 4. Furthermore, the statistical distributions of the number of model evalu-423

ations required to achieve the global minimum for squads are skewed to the left424

in all cases (Figures 3 and 4). This demonstrates that more frequently squads425

may converge with lower number of functional evaluations.426

6. Conclusions427

A new adaptive global hybrid optimization strategy called squads is devel-428

oped for solving computationally intensive inverse problems involving models429

representing the behavior of complex systems; such models are commonly ap-430

plied in the geosciences. Squads utilizes a (1) global strategy for robust explo-431

ration of the parameter space to identify multiple areas of attraction and (2) a432

local gradient-based search strategy to efficiently locate the optimum of areas433

of attraction. In essence, squads is a global strategy that implements a local434

optimization speedup. Squads is sufficiently robust in avoiding becoming stuck435

in local minima during the optimization. The new strategy reduces the number436

of model runs typically required of other frequently used global strategies such437
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as Particle Swarm Optimization (PSO) by efficiently exploring local areas of438

attraction.439

The strategy is tested on 2D, 5D, and 10D variations of two commonly used440

polynomial test functions: the Rosenbrock and Griewank functions. The robust-441

ness of a strategy is defined as the percentage of runs that identify the global442

minimum of a test function. The efficiency of a strategy is evaluated through443

a statistical representation of the number of function evaluations necessary to444

identify the global optimum. In all cases, squads is as robust or more robust445

than the other tested strategies: LM, PSO, TRIBES, and hPSO. Squads is more446

efficient in general than PSO, TRIBES, and hPSO in all cases. For the Rosen-447

brock function, squads has comparable efficiency to LM, however, in these cases,448

the robustness of squads (100%) is considerably better than the robustness of449

LM (less than 36%). For other optimization problems, squads may converge for450

the same number of functional evaluations as LM (Figure 4)451

The application of the squads strategy is performed using the code MADS452

(Vesselinov, 2010). MADS and other files needed to execute the synthetic prob-453

lems presented in this paper are available at http://www.ees.lanl.gov/staff/monty/codes/mads.html454
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Figure 1: Flow diagram of squads strategy. E is the current number of model evaluations and

Emax is the allowable number of model evaluations. Decisions to “adapt swarm” or “update

shamans with LM” are determined by adaptive rules.
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Figure 2: Rosenbrock and Griewank polynomial test functions with global minima at (1,1)

and (0,0), respectively. Note the different parameter ranges on the top and bottom rows. The

top row shows the parameter space explored by the optimization strategies. The bottom row

focuses on the parameter space near the respective global minima.
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Figure 3: Boxplots of number of function evaluations to reach the global minimum for the 2D,

5D, and 10D Rosenbrock function. The boxes represent the 25th to 75th percentile ranges,

the bars inside of the boxes represent the median values, and the whiskers represent the min

and max values. Note that the statistical definitions are not accurate for TRIBES and hPSO

in the 10D case where the number of successful runs does not present a statistically significant

sample. The number of successful runs out of 1000 for each strategy is stated above the boxes.

The maximum allowable function evaluations for each run is 20,000.
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Figure 4: Boxplots of number of function evaluations to reach the global minimum for the

2D, 5D, 10D Griewank function. The boxes represent the 25th to 75th percentile ranges, the

bars inside of the boxes represent the median values, and the whiskers represent the min and

max values. The number of successful runs out of 1000 for each strategy is stated above the

boxes. The maximum allowable function evaluations for each run is 20,000.
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Table 1: Particle initialization rules and their selection criteria.

Particle initialization rules:

1. User specified

2. Randomly chosen position within parameter space:

pnewj
=U(pminj

, pmaxj
), j = 1, . . . , D

3. Randomly chosen within hyperparallelepid surrounding the best position

of the swarm with dimensions (2 · rj) determined by Euclidean distance

between the swarm’s and tribe’s best position:

rj = |pbestj
− ptribe bestj

| j = 1, . . . , D

pnewj =U(pbestj − rj , pbestj + rj)j = 1, . . . , D

4. On one of the vertices of the parameter space with equal probability of

being the max or min of each dimension:

if (U(0, 1) < 0.5) then pnewj
= pminj

, else pnewj
= pmaxj

j = 1, . . . , D

5. Randomly chosen within the largest empty hyperparallelepid of the pa-

rameter space

Criteria Initialization rule selection

First particle of the strategy 1

If initial population is greater
5

than 1, other initial particles

Particle added to “bad” tribe (tribe adaptation) randomly chosen between 2 and 5

Mono-particle tribe added (swarm adaptation) 5

LM unable to reduce OF of shaman by 2/3 5
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Table 2: Particle displacement rules and their selection criteria based on the status of the

particle. N(µ, σ) is a normal distribution with a mean µ and standard deviation σ, U(a, b)

is a uniform distribution with minimum a and maximum b, f(−) is the value of the ob-

jective function, g = [g1, g2, . . . , gD] is the location of the particles designated informer,

b = [b1, b2, . . . , bD] the particle’s current best location, and minj and maxj are the minimum

and maximum values for the jth dimension, respectively.

Particle displacement rules:

1. pj =U(minj ,maxj) j = 1, . . . , D, change displacement rule to 2 for next

time

2. pj =N(gj , 0.74 · |bj − gj |)

or, if no informer

pj =N(bj ,max(bj −minj ,maxj − bj))

3. pj = f(g)
f(g)+f(b) · U(bj − |bj − gj |, bj + |bj − gj |) + f(b)

f(g)+f(b) · U(gj − |bj −

gj |, gj + |bj − gj |)

or, if no informer

pj =N(bj , 3 ·max(bj −minj ,maxj − bj))

Particle status Displacement rule selection

(–=) randomly choose any rule other than current one

(==) randomly choose between rule 2 and 3

(+=) or (++) change to rule 1 with 50% probability
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