A SYNERGISTIC EFFECT OF NITROSODIMETHYLAMINE ON STERIGMATOCYSTIN CARCINOGENESIS IN RATS

K. Terao, T. Aikawa and K. Kera
Research Institute for Chemobiodynamics, Chiba University, 260 Chiba, Inohana 1-8-1, Japan

(Received 21 March 1978)

Summary—In a study of a possible synergistic effect of nitrosodimethylamine (NDMA) on sterigmatocystin (STG) carcinogenesis, male rats were fed diets containing 10 ppm STG, 10 ppm STG and 1 ppm NDMA, 1 ppm STG and 10 ppm NDMA or 10 ppm NDMA for 54 wk. Hepatic carcinomas developed in 75% of the rats fed 10 ppm STG plus 1 ppm NDMA and in 53% of those fed 10 ppm STG alone. The hepatic carcinomas developed more rapidly in the former group. About 50% of the hepatic carcinomas induced by STG or STG plus NDMA showed a tubular arrangement of tumour cells. Ultrastructurally, a mixture of the characteristic organelles of hepatocytes and ductular cells were frequently found in the same cells. Throughout the experiment, proliferation of smooth endoplasmic reticulum was observed in the hepatocytes of rats fed NDMA. Between wk 54 and 69, Leg-scler tumours developed in 47, 45 and 15% of the animals on the 10 ppm NDMA plus 10 ppm STG and the 1 ppm NDMA plus 10 ppm STG diets, respectively. Although, at this level, NDMA alone did not induce hepatic carcinomas, it may have a role in STG-carcinogenesis in the liver, as an inducer of carcinogen-activating enzymes.

Introduction

Sterigmatocystin (STG), a compound related to aflatoxin B₁, is a metabolite of Aspergillus versicolor, A. nidulans and Bipolaris species. Hepatocellular carcinomas and some other types of malignant tumours are induced by this mycotoxin although it is about ten times less carcinogenic than aflatoxin B₁ (Fujikura, Kurata, Odashima & Hatsuda, 1976; van der Watt, 1974). In the temperate and tropical zones where it is known to be an active food contaminant, STG may be an important factor in the incidence of human hepatic carcinoma.

The widespread presence of nitroso compounds in our environment, and the fact that these compounds are taken with food as well as formed in the stomach from precursors, necessitates careful study of their potential carcinogenic hazard to man (Eisendrath, Hanks, Preussmann, Schmahl & Wissler, 1975). There could be some relationship between the high incidence of hepatic carcinoma in the temperate and tropical zones and combined contamination by mycotoxins and nitroso compounds. Since the report of MacDonald, Miller & Rusch (1952), it is now well-established that several hepatic carcinogens act synergistically. Until recently, however, most of the experiments were performed on man-made compounds. The present study was undertaken to investigate the possibility of synergistic effects of nitrosodimethylamine (NDMA) and sterigmatocystin in rats, mainly from a morphological viewpoint.

Experimental

Crystalline STG used in these experiments was generously donated by Dr. Y. Hatsuda. Department of Agriculture, Tottori University, as was NDMA by Dr. M. Nakadate, National Institute of Hygienic Science, Tokyo.

From the age of 4 wk, groups of 15 or 20 male Wistar rats (supplied by Shizuoka Dobutsu Nokyo, Shizuoka) were given a basal diet (CE-2 from Nihon Clea Ltd., Tokyo) containing 10 ppm STG (group 1), 10 ppm STG and 1 ppm NDMA (group 2), 1 ppm STG and 10 ppm NDMA (group 3) or 10 ppm NDMA (group 4). A further 30 rats given the basal diet alone served as controls (group 5). The experimental diets were fed for 54 wk after which basal diet was given for the remaining period. After the first 5 wk of feeding, one animal from each experimental group was killed and autopsied. All surviving animals were kept under observation for a total period of 69 wk. Autopsies were performed on all animals that died or were killed during the experiment or at termination.

For light microscopy, samples of all the major organs were fixed in 10% formalin and stained with haematoxylin and eosin or periodic acid-Schiff or silver impregnation. For electron microscopy, pieces of the liver tissue and/or tumours were fixed in 2.5% glutaraldehyde for 12 hr, post-fixed in 1% osmium tetroxide for 2 hr and embedded in Epon 812 for sectioning. Ultrathin sections were double-stained with uranyl acetate and lead citrate.

Results

No pathological changes were detected grossly, or by light microscopy in the rats killed at wk 5. but electron microscopy showed a marked proliferation of the smooth endoplasmic reticulum (Fig. 1) and an
Table 1. Incidence of hepatic carcinomas and testicular Leydig-cell tumours in rats given stegimidpto-
cystin and/or dimethylaminorame

<table>
<thead>
<tr>
<th>Group no.</th>
<th>Carcinogen administered</th>
<th>No. of rats alive at wk</th>
<th>No. of rats with hepatic carcinoma</th>
<th>No. of rats with Leydig-cell tumours</th>
<th>Mean time to autopsy (wk)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STG (ppm)</td>
<td>NDMA (ppm)</td>
<td>1</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

Intracytoplasmic fibrils were abundant and they anchored frequently in desmosomes. The granular endoplasmic reticulum was relatively scanty. Ribosomes attached not separately but in contact with each other on the cisternae of the granular endoplasmic reticulum and were usually only on one side of the cisternae (Fig. 5 inset). Free ribosomes and polysomes were numerous in the cytoplasm of tubular types of the hepatic carcinoma cells. Smooth endoplasmic reticulum was frequently proliferated. Membrane whorls were often present in the cytoplasm of both lining cells and underlying hepatocellular carcinoma cells (Fig. 4). Glycogen particles had decreased in number. Peroxisomes were always present. Golgi apparatus was well-developed. Mitochondria were numerous and of normal shape, though electron-dense matrix granules were more numerous than usual. Nuclei were irregular in contour and nucleioli were always prominent.

Until wk 54 no macroscopic tumours apart from those in the liver were found in any rats fed NDMA. Tumours of the testis were encountered thereafter in all groups of rats that had received NDMA. The incidence of these tumours was 15% in group 2, 45% in group 3 and 47% in group 4. The contra-lateral
Fig. 1. Hepatocyte from a rat fed a diet containing 10 ppm STG and 1 ppm NDMA for 5 wk, showing proliferation of smooth endoplasmic reticulum in the cytoplasm. × 20,000.

Fig. 2. Hepatic carcinoma from a rat of group 2, that received a diet containing 10 ppm STG and 1 ppm NDMA for 54 wk, showing a glandular arrangement of carcinoma cells, and lining cells in direct contact with the underlying carcinoma cells. Haematoxylin and eosin. × 200.

Fig. 3. Hepatic carcinoma from a rat of group 2 showing transitional form between lining cells and trabecular hepatic carcinoma cells. Haematoxylin and eosin. × 500.
Fig. 4. Hepatic carcinoma of a group 2 rat showing lining cells (L) without basement membrane but having well-developed microvilli at the luminal surface of the cytoplasm, and a membrane whorl (arrowed). Inset. H: Malignant hepatocyte. x 3000. Inset: x 18,000.

Fig. 5. Hepatic carcinoma, induced by STG, showing distinct basement membrane (arrowed) around the carcinoma cells of glandular arrangement and several fibroblasts (Fb) under the membrane. In the cytoplasm of the tumour cells there are abundant microfibrils (F), proliferated smooth endoplasmic reticulum (S), interdigitations of and free ribosomes. x 5300. Inset showing an irregular arrangement of ribosomes on the cisternae of granular endoplasmic reticulum. x 60,000.

Fig. 6. Leydig-cell tumour cells in a rat fed 10 ppm NDMA for 69 wk. The tumour is composed of small cells with scanty cytoplasm and large cells with abundant eosinophilic vacuolated cytoplasm. Haematoxylin and eosin. x 200.
testis was occasionally atrophic. No macroscopic tumours were present in the testes of rats in group I and the control group.

Testicular neoplasms in rats treated with NDMA or NDMA plus STG were typical Leydig-cell tumours, soft and yellowish white, and were up to 15 cm in diameter. Large tumours were composed of small cells with scanty cytoplasm and large cells with abundant eosinophilic vacuolated cytoplasm (Fig. 6). In the immediate vicinity of the tumour tissue, seminiferous tubules were atrophic. The proliferation of Leydig cells in the testes of older rats in all groups was frequently seen. They were detected only on microscopic examination. Their histological pattern was essentially similar to that of interstitial cell tumours.

Discussion

The data presented here demonstrated that a low concentration of NDMA may act synergistically in STG hepatocarcinogenesis. This result agrees with the previous report of the synergistic effect of minute doses of the four carcinogens: NDMA, N-nitroso-2-diethylamine, N-nitroso-N-morpholine and 4-dimethylaminoazobenzene (Schmahl, 1970). The incidence of hepatic tumours was higher in group 2 fed STG and NDMA than in those fed STG alone and the tumours developed more rapidly in the former group, although under the conditions of this experiment the level of NDMA used was apparently below the effective hepatocarcinogenic dose. No pathological changes were detected in rats fed 10 ppm NDMA continuously for 54 wk, but Magee & Barnes (1956) found that 50 ppm NDMA induced tumours in almost all the treated animals.

There is increasing evidence that minimal doses of two carcinogens elicit either a synergistic response or an inhibitory effect on liver carcinogenesis. Although there is still some disagreement about the exact factors determining either accentuation or suppression of hepatocarcinogenesis, it was confirmed recently that many carcinogens, including NDMA and aflatoxin B, are activated by drug-metabolizing enzymes (Nagata & Kodama, 1976). Fous, Rogers & Gram (1966) have shown that there is a close relationship between the proliferation of smooth endoplasmic reticulum and the induction of drug-metabolizing enzymes such as P-450. It is interesting, therefore, that the proliferation of the smooth endoplasmic reticulum was always observed in the livers of rats fed with experimental diets containing NDMA. Although the hepatic level of NDMA in the present experiments induced no hepatic carcinomas, it may play an important role in STG-carcinogenesis as an inducer of carcinogen-activating enzymes.

About 90% of hepatic carcinomas induced by STG plus NDMA showed tubular arrangement of tumour cells. The histological pattern of this tumour is different from that of cholangiocarcinoma. Histologically, the classical cholangiocarcinoma is composed of single columnar tumour cells and tumours in which there are abundant fibroblasts, collagen fibers and capillaries. In contrast, tubularized hepatic carcinoma induced by STG or STG plus NDMA usually had only capillaries as stroma. The fine structure of these tumour cells was intermediate between ductular cells and hepatic parenchymal cells. The characteristic organelles of the hepatocyte, such as peroxisomes, proliferating agranular endoplasmic reticulum, and membrane whorls, were found in the same cells as were the typical organelles of ductular cells such as basement membrane, abundant intracytoplasmic fibrils, well-developed GoGi apparatus and free ribosomes. Glandular or tubular arrangement of hepatocytes has been observed in a variety of experimental conditions and in several human livers (Ghadially & Parry, 1966; Ma & Webber, 1966; Phillips & Steiner, 1966; Ruebner et al. 1967). However, little information is available about the hepatic carcinoma consisting of cells with organelles intermediate between ductular and hepatocyte types. Biliary hepatocytes, as designated by Phillips & Steiner (1966), are those hepatocytes which have a basement membrane and show distinctly a polarization of organelles toward a major biliary pole. Ruebner et al. (1967) reported a hepatoma with the coexistence of hepatomatous and cholangiocarcinomatous areas in the same cell. Such an observation was confirmed in rat hepatic carcinoma induced by 3'-methyl-4-dimethylaminoazobenzene (Ma & Webber, 1966). Whether these tubularized hepatic carcinomas represent ductular metaplasia of hepatocellular carcinoma cells or dedifferentiated hepatoblastone is not certain.

The subject of Leydig-cell tumours in the testis of laboratory animal species is well documented. Spontaneous Leydig-cell tumours are occasionally found in aged rats and the incidence of the tumour shows a wide range depending on the strain. Crain (1958) reported a 9.3% incidence of spontaneous testicular interstitial tumours in Wistar rats aged between 18 and 24 months, whereas the incidence was 68% in Fischer rats aged between 16 and 30 months (Jacobs & Huseby, 1967). These tumours can be induced experimentally by several methods including the subcutaneous injection of cadmium (Gunn, Gould & Anderson, 1965), ligation of testicular vessels (Takewaki, 1962), administration of exogenous oestrogens (Hooker & Pfeifer, 1942; Huseby, Dominguez & Samuels, 1961) and intrasplenic grafting of the testis (Twombly, Meisel & Stout, 1949). In this study, a relatively high incidence of Leydig-cell tumours was encountered only in rats receiving diets containing NDMA for a limited time. Moreover, a dose-response relationship for NDMA is indicated in the present experiment. Therefore, NDMA may accentuate the susceptibility of the testis to these tumours, although frequently spontaneous Leydig-cell tumours are encountered in the same strain. The histological features of NDMA-induced Leydig-cell tumours correspond in most respects with those reported for tumours of these cells (Crain, 1958; Gunn, Gould & Anderson, 1965; Hooker & Pfeifer, 1942; Jacobs & Huseby, 1967; Takewaki, 1962, Twombly et al. 1949).

The present results, indicating a possible synergistic effect of minute doses of naturally-occurring carcinogens such as STG and NDMA, may be of considerable significance to human health.

Acknowledgements—This work was supported in part by
Grants-in-Aid for Cancer Research from the Ministry of Health and Welfare of Japan. The authors are grateful to Dr. Y. Hattada, Department of Agriculture, Toitot University, and Dr. M. Nakada, National Institute of Hygienic Science, Tokyo, for providing the carcinogens.

REFERENCES

