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The natural background concentration of lead (Pb) in soils in the United States ranges from 10 to 700 ppm, with an average of 20 ppm (Demayo et al., 1982). However, as a result of anthropogenic activities, soils may be contaminated with elevated levels of Pb. For example, gasoline combustion releases Pb into the atmosphere, and this Pb can be deposited· onto roadside soils. 1,225 ppm Pb ~s noted in soil 0.3 m from a highway along which 8,10D vehicles/day traveled, whereas at 100 and 200 m from the highway, the level of Pb in the surface soil was only 13 ppm. For a highway on which 550 vehicles/day traveled, levels of 35 and 13 ppm Pb were noted 0.3 and 25 to 200m, respectively, from the highway (Wheeler and Rolfe, 1979). Another source of Pb in soil is from deteriorating Pb-based paints: soil sampled within 2 feet of old wooden-frame houses painted with Pb-based paints contained 1,586 to 2,349 ppm Pb, whereas samples from within 2 feet of brick-veneer houses contained 351 to 501 ppm Pb (Demayo et al., 1.982). Extremely high levels of Pb occur in soils near smelters: e.g., the level of Pb in soil samples was 28,000, 8,333, 4,800, 3,654, and 703 ppm at 15, 90, 150, 180, and 1,000 m, respectively, frau a secondary Pb smelter (Bisessar, 1982). Levels greater than 24,000 ppm Pb occurred in soils in the immediate vicinity of a Pb mine and smelter, whereas noncontaminated soil contained from 1 to 37 ppm Pb (Djuric et al ., 1971). 
As Pb has no known biological function, elevated levels of Pb in ~fls and in other natural environments may adversely affect the hdigenous biota, including the microbiota. For example, popula­tions of bacteria, actinomycetes, and fungi were decreased in ~ls surrounding a secondary Pb smelter (Bisessar, 1982). ~evated levels of Pb in soil may also adversely affect microbe­~diated ecologic processes. For example, amendments of soils with Pb resulted in reductions in carbon (C) mineralization (Jikkelsen, 1974; Doelman and Haanstra, 1979a), nitrogen (N) •1neralization, nitrification (Bhuiya and Cornfield, 1974; Rother et al., 1982) denitrification (Bollag and Barabasz, 1979), df!composition of animal (Doelman and Haanstra, 1979b) and plant lStrojan, 1978} litter, and activities of soil enzymes (Doelman · and Haanstra, 1979a}. 
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There is, however, relatively little information on the mediat1 influence of the physicochemical factors of the recipient envi ment on the toxicity of Pb to microbe-mediated ecologic proces.......,.~_.,.,.,.., Mikkelsen (1974) and Doelman and Haanstra (1979a) showed that Pb was more inhibitory to soil respiration in sandy soils of low cation exchange capacity (CEC) than in clay or peat soils with i higher CEC. This present study evaluated the influence of the ,, clay minerals, l<aol inite and montmorillonite, particulate h1.111ic /. acids, and compost on the degradation of glucose in soil. 

MATERIALS AND METHODS 

Soil, with a pH of 5.0, a CEC of 8.2 meq/100 g, consisting of 571 ~: sand, 34% silt, and 9% clay, and naturally containing the clay . ~ minerals, kaolinite, vermiculite, and mica-illite and a backgr~ concen tra ti on of 25 ppm Pb (acid extractab 1 e) was obtai ned froat - ;·~­the Kitchawan Research Laboratory of the Brooklyn Botanic Gardew.'-4 at Ossinin~, New York. The soil was amended with either 9% (v/~ kaolinite (Continental, R.T. Vanderbilt Co., with a CEC of apprax~. mately 6.5 meq/lOOg) or montmorillonite (Volclay, Panther Creek·/~ Aberdeen, ftmerican Colloid Co., with a CEC of approximately 60 ' meq/100 g) to yield a pH of 4.6 and 5.3, respectively, and a CEC ~­of 9.0 and 13.7 meq/100 g, respectively. A more detailed descrip~ tion of the physi'Cochemical properties of these soils is presentei elsewhere (Babich and Stotzky, 1982). The soils, both unamended ·· and clay-amended' were stored essentially air-dry. In some studte~ the soil was amended with particulate humic acids (Aldrich Chemi..: · cal Co.) or compost (obtained from the aerobic composting of domestic sewage sludge and sawdust in a Kneer Bioreactor in Gissen, Germany). One week before each experiment, the soils were preincubated with 12% water, with intermittent mixing, to reacti­vate their microbial activity. One day before the experiment, the soils were brought to their l/3 bar tension water content, stored overnight at 4 C, passed through a 2 mm sieve, and 100 g samples of each soil mixture were placed into wide-mouth incubation vessels. The incubation vessels were connected to a manifold and continuously aerated with water-saturated C02-free air at 24 ± 2 C. The amount of C released as C02 was determined titrimetrically with HCl after absorption in NaOH and precipitation with BaCl2 (Stotzky, 1965). Amendments (e.g., Pb as Pb(N03) 2, glucose, inorganic salts) were made in the water used to bring the soils to their l/3 bar tension. The pH of the soil systems was detennined on a 1:1 soil :water mixture. 

The natural and clay-amended soils were supplemented with 2.5 g glucose/100 g soil, 0.04% (w/w) P as Na2HP04-KH2P04, and 0, 500, 1,000, or 10,000 ppm Pb. To compensate for the added N in soils amended with 10,000 ppm Pb, soils amended with 0, 500, or 1,000 ppm Pb were supplemented with NH4N03 to yield aN level of 0.14~ (w/w) (i.e., the amount of N added with 10,000 ppm Pb). The addition of 10,000 ppm Pb lowered the pH of the unamended soil to 4.0, of the kaolinite-amended soil to 3.9, and of the montmoril­lonite-amended soil to 5.0. The soils were incubated for 16 
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days. 

The soil supplemented with either 0.5 or 2% (w/w) humic acids or 
with 1 or 4% (w/w) compost was amended with 1 g glucose/100 g soil 
and either 0 or 20,000 ppm Pb. To compensate for the additional 
N in the Pb-amended soils, the various soil controls (i.e., 
without Pb) were supplemented with an equivalent level of N03-
(i.e., 11,970 ppm) as Mg(N0~)2·6H20. The addition of 20,000 ppm 
Pb lowered the pH of the so1l without the supplements of humic 
acids or compost to 3.6. The pH of control soils (i.e., no Pb) 
supplemented with 0.5 to 2% humic acids was 5.0 and 6.0, 
respectively, and of those supplemented with 1 or 4% compost was 
4.5 and 4.8, respectively; the respective pH values for these 
soils amended with Pb were 3.8, 4.2, 3.6, and 3.6. The soils were 
incubated for 20 days. 

RESULTS AND DISCUSSION 

In the absence of Pb, the amount of glucose degraded, as indicated 
by the total amount of C02 evolved, was lower in the montmorillon­
ite-amended than in the kaolinite-amended or natural soil. The 
addition of 500 or 1,000 ppm Pb to the natural or clay-amended 
soils did not have an appreciably adverse effect on the extent of 
C mineralized after 16 days of incubation. The addition of 10,000 
ppm Pb resulted in a 28, 21, and 1% decrease in the total amount 
of C mineralized in the natural, kaolinite-amended, and montmor­
illonite-amended soils, respectively, as compared to their 
respective control soils. The lag in C mineralization caused by 
the addition of 10,000 ppm Pb was reduced in the montmorillonite­
amended soil: an accelerated rate of C minera1ization occurred 
after 3 days in the montmorillonite-amended soil but after 4 to 5 
days in the kaolinite-amended or natural soils. The rate of C min­
eralization in the montmorillonite-amended soil supplemented with 
10,000 ppm Pb was equivalent to that in its control soil (i.e., 
amended with montmorillonite but no Pb) after 6 days of incuba­
tion, whereas the rates of mineralization in the kaolinite­
amended and natural soils were approximately equivalent to that 
in their respective control soils only after 10 days of incuba­
tion (Fig. 1). 

The lower inhibition of C mineralization by Pb in the montmoril­
lonite-amended soil was probably the result of the higher CEC of 
this than of the kaolinite-amended and natural soils. Pb adsorbs 
to clay minerals, with montmorillonite adsorbing more than com­
parable concentrations of kaolinite (Hildebrand and Blum, l974a; 
Farrah and Pickering, 1977}, and the greater protection provided 
by montmorillonite than by comparable concentrations of kaolinite 
against the toxicity of Pb to mycelial growth of fungi in vitro 
was correlated with the CEC of the clays (Babich and Stotz~ 
1979). Doelman and Haartstra (1979a) also showed that the inhibi­
tory effect of Pb on C02 evolution from a variety of soil types 
was inversely correlated with their CEC. 
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In the absence of Pb, the addition of 0.5 or 2% humic acids did net appreciably affect the rate or extent of C mineralization. After 20 days of incubation in the presence of 20,000 ppm Pb, no COz evolution was detected in the natural soil or in the soil amended with 0.5% humic acids. However, in soil amended with 20,000 ppm Pb and 2% humic acids, there was some evolution of C02 (Fig. 2), indicating that the higher concentration of humic acids resulted in some reduction in the toxicity of Pb. Preliminary studies using the natural soil adjusted to pH 7 and amended with 15,000 ppm Pb, showed that 2% humic acids completely, and 0.5% humic acids greatly, reduced the inhibitory effects of Pb on C mineralization. Pb forms stable complexes with humic acids (Hildebrand and Blum, 1974b; Stevenson, 1976), and humic acids protected fungi against Pb toxicity in vitro, probably by com­plexing the Pb and, thereby, reducing-i~ailability for uptake by the fungi (Babich and Stotzky, 1979). 
In the absence of Pb, 1 and 4% compost did not affect the extent of C mineralization. In soil amended with 20,000 ppm Pb and 1% compost, C mineralization occurred at an exceedingly reduced rate that slowly increased with time. In soil amended with 20,000 ppm Pb and 4% compost, the low but progressively increasing rate of mineralization occurred until day 10 of incubation, but then mineralization proceeded very rapidly and approached the rates in the natural and compost-amended soils without Pb, and by day 20, the amount of C mineralized was almost equivalent to tnat in the ·natural and compost-amended soils without Pb (Fig. 3). The addi-tion of compost probably increased the CEC of the soil: the ap­plication of 40 and 240 metric tons/ha of dry sludge compost to a silt loam soil with a CEC of 5.5 meq/100 g increased the CEC to 6.3 and 10.7 meq/lOOg (Epstein et al., 1976). The compost appar­ently provided additional exchange sites in the soil for the sorption and sequestering of the Pb, thereby affording protection against the toxicity of Pb towards the microbiota. 

The protection afforded by compost against metal toxicity was in contrast to what usually occurs with the addition of uncomposted sewage sludge. If the sewage sludge contains high concentrations of heavy metals, its use for landfill and fertilizer may result in elevated levels of heavy metals in crops (e.g., Weber, 1972; Page, 1974; Valdares et al., 1983). In contrast, the bioavailability to plants of cadmium and zinc from composted sludge was less than that from uncomposted sludge (Chaney et al., 1975; Giordano et al., 1975; Simeoni et al., 1984), probably because the chemical speciation of the heavy metals changed during composting to reduce their bioavailability and, hence, toxicity. 
The toxicity of Pb, as well as of other heavy metals (e.g., cadmium and zinc; Bewley and Stotzky, 1983a, b), to C mineralization in soil is dependent on the physicochemical characteristics of the specific soil into which the metals are deposited. For example, the toxicity of Pb to C mineralization was reduced in soils with a high CEC (Doelman and Haanstra, 1979a; this study). Environments 
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in which the physicochemical characteristics tend to potentiate 
the toxicity of a pollutant have been referred to as "high risk" 
environments, and those in which the toxicity of a pollutant is 
reduced have been referred to as "low risk" environments (Babich 
and Stotzky, 1983; Babich et al., 1983). Such differential toxi­
cities of pollutants in environments that differ in physicochemi­
cal characteristics must be recognized by regulatory agencies when 
setting criteria and standards for toxicants in the environment 
(Babich and Stotzky, 1985). 
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