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DISCLAIMER 

This document is intended to assist Regional and State personnel in evaluating ground-water 

monitoring data from RCRA facilities. Conformance with this guidance is expected to result in 

statistical methods and sampling procedures that meet the regulatory standard of protecting 

human health and the environment. However, EPA will not in all cases limit its approval of 

statistical methods and sampling procedures to those that comport with the guidance set forth 

herein. This guidance is not a regulation (i.e., it does not establish a standard of conduct which 

has the force of law) and should not be used as such. Regional and State personnel should 

exercise their discretion in using this guidance document as well as other relevant information in 

choosing a statistical method and sampling procedure that meet the regulatory requirements for 

evaluating ground-water monitoring data from RCRA facilities. 

This document has been reviewed by the Office of Solid Waste, U.S. Environmental 

Protection Agency, Washington, D.C., and approved for publication. Approval does not signify 

that the contents necessarily reflect the views and policies of the U.S. Environmental Protection 

Agency, nor does mention of trade names, commercial products, or publications constitute 

endorsement or recommendation for use. 
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STATISTICAL ANALYSIS OF 
WATER MONITORING DATA 

FACILITIES 

GROUND
ATRCRA 

ADDENDUM TO INTERIM FINAL GUIDANCE 

JULY 1992 

This Addendum offers a series of recommendations and updated advice concerning the 

Interim Final Guidance document for statistical analysis of ground-water monitoring data. Some 

procedures in the original guidance are replaced by alternative methods that reflect more current 

thinking within the statistics profession. In other cases, further clarification is offered for 

currently recommended techniques to answer questions and address public comments that EPA 

has received both formally and informally since the Interim Final Guidance was published. 

1. CHECKING ASSUMPTIONS FOR STATISTICAL 
PROCEDURES 

Because any statistical or mathematical model of actual data is an approximation of reality, 

all statistical tests and procedures require certain assumptions for the methods to be used 

correctly and for the results to have a proper interpretation. Two key assumptions addressed in 

the Interim Guidance concern the distributional properties of the data and the need for equal 

variances among subgroups of the measurements. In the Addendum, new techniques are outlined 

for testing both assumptions that offer distinct advantages over the methods in the Interim Final 

Guidance. 

1.1 NORMALITYOFDATA 

Most statistical tests assume that the data come from a Normal distribution. Its density 

function is the familiar bell-shaped curve. The Normal distribution is the assumed underlying 

model for such procedures as parametric analysis of variance (ANOV A), t-tests, tolerance 

intervals, and prediction intervals for future observations. Failure of the data to follow a Normal 

distribution at least approximately is not always a disaster, but can lead to false conclusions if the 

data really follow a more skewed distribution like the Lognormal. This is because the extreme tail 



Draft 

behavior of a data distribution is often the most critical factor in deciding whether to apply a 

statistical test based on the assumption ofNormality. 

The Interim Final Guidance suggests that one begin by assuming that the original data are 

Normal prior to testing the distributional assumptions. If the statistical test rejects the model of 

Normality, the data can be tested for Lognormality instead by taking the natural logarithm of 

each observation and repeating the test. If the original data are Lognormal, taking the natural 

logarithm of the observations will result in data that are Normal. As a consequence, tests for 

Normality can also be used to test for Lognormality by applying the tests to the logarithms of the 

data. 

Unfortunately, all of the available tests for Normality do at best a fair job of rejecting non

Normal data when the sample size is small (say less than 20 to 30 observations). That is, the tests 

do not exhibit high degrees of statistical power. As such, small samples of untransformed 

Lognormal data can be accepted by a test ofNormality even though the skewness of the data may 

lead to poor statistical conclusions later. EPA's experience with environmental concentration 

data, and ground-water data in particular, suggests that a Lognormal distribution is generally 

more appropriate as a default statistical model than the Normal distribution, a conclusion shared 

by researchers at the United States Geological Survey (USGS, Dennis Helsel, personal 

communication, 1991). There also appears to be a plausible physical explanation as to why 

pollutant concentrations so often seem to follow a Lognormal pattern (Ott, 1990). In Ott's 

model, pollutant sources are randomly diluted in a multiplicative fashion through repeated dilution 

and mixing with volumes of uncontaminated air or water, depending on the surrounding medium. 

Such random and repeated dilution of pollutant concentrations can lead mathematically to a 

Lognormal distribution. 

Because the Lognormal distribution appears to be a better default statistical model than the 

Normal distribution for most ground-water data, it is recommended that all data first be logged 

prior to checking distributional assumptions. McBean and Rovers (1992) have noted that 

"[s]upport for the lognormal distribution in many applications also arises from the shape of the 

distribution, namely constrained on the low side and unconstrained on the high side.... The 

logarithmic transform acts to suppress the outliers so that the mean is a much better 

representation of the central tendency of the sample data." 

Transformation to the logarithmic scale is not done to make "large numbers look smaller." 

Performing a logarithmic or other monotonic transformation preserves the basic ordering within a 
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data set, so that the data are merely rescaled with a different set of units. Just as the physical 

difference between 80 Fahrenheit and 30 Fahrenheit does not change if the temperatures are 

rescaled or transformed to the numerically lower Celsius scale, so too the basic statistical 

relationships between data measurements remain the same whether or not the log transformation 

is applied. What does change is that the logarithms of Lognormally distributed data are more 

nearly Normal in character, thus satisfying a key assumption of many statistical procedures. 

Because of this fact, the same tests used to check Normality, if run on the logged data, become 

tests for Lognormality. 

If the assumption of Lognormality is not rejected, further statistical analyses should be 

performed on the logged observations, not the original data. If the Lognormal distribution !§ 

rejected by a statistical test, one can either test the Normality of the original data, if it was not 

already done, or use a non-parametric technique on the ranks of the observations. 

If no data are initially available to test the distributional assumptions, "referencing" may be 

employed to justify the use of, say, a Normal or Lognormal assumption in developing a statistical 

testing regimen at a particular site. "Referencing" involves the use of historical data or data from 

sites in similar hydrogeologic settings to justify the assumptions applied to currently planned 

statistical tests. These initial assumptions must be checked when data from the site become 

available, using the procedures described in this Addendum. Subsequent changes to the initial 

assumptions should be made if formal testing contradicts the initial hypothesis. 

1.1.1 Interim Final Guidance Methods for Checking Normality 

The Interim Final Guidance outlines three different methods for checking Normality: the 

Coefficient-of-Variation (CV) test, Probability Plots, and the Chi-squared test. Of these three, 

only Probability Plots are recommended within this Addendum. The Coefficient-of-Variation and 

the Chi-squared test each have potential problems that can be remedied by using alternative tests. 

These alternatives include the Coefficient of Skewness, the Shapiro-Wilk test, the Shapiro-Francia 

test, and the Probability Plot Correlation Coefficient. 

The Coefficient-of-Variation is recommended within the Interim Guidance because it is easy 

to calculate and is amenable to small sample sizes. To ensure that a Normal model which predicts 

a significant fraction of negative concentration values is not fitted to positive data, the Interim 

Final Guidance recommends that the sample Coefficient of Variation be less than one; otherwise 

this "test" of Normality fails. A drawback to using the sample CV is that for Normally distributed 
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data, one can often get a sample CV greater than one when the true CV is only between 0.5 and 

1. In other words, the sample CV, being a random variable, often estimates the true Coefficient 

of Variation with some error. Even if a Normal distribution model is appropriate, the Coefficient 

of Variation test may reject the model because the sample CV (but not the true CV) is too large. 

The real purpose of the CV is to estimate the skewness of a dataset, not to test Normality. 

Truly Normal data can have any non-zero Coefficient of Variation, though the larger the CV, the 

greater the proportion of negative values predicted by the model. As such, a Normal distribution 

with large CV may be a poor model for positive concentration data. However, if the Coefficient 

of Variation test is used on the logarithms of the data to test Lognormality, negative logged 

concentrations will often be expected, nullifying the rationale used to support the CV test in the 

first place. A better way to estimate the skewness of a dataset is to compute the Coefficient of 

Skewness directly, as described below. 

The Chi-square test is also recommended within the Interim Guidance. Though an 

acceptable goodness-of-fit test, it is not considered the most sensitive or powerful test of 

Normality in the current literature (Gan and Koehler, 1990). The major drawback to the Chi

square test can be explained by considering the behavior of parametric tests based on the Normal 

distribution. Most tests like the t-test or Analysis of Variance (ANOVA), which assume the 

underlying data to be Normally distributed, give fairly robust results when the Normality 

assumption fails over the middle ranges of the data distribution. That is, if the extreme tails are 

approximately Normal in shape even if the middle part of the density is not, these parametric tests 

will still tend to produce valid results. However, if the extreme tails are non-Normal in shape 

(e.g., highly skewed), Normal-based tests can lead to false conclusions, meaning that either a 

transformation of the data or a non-parametric technique should be used instead. 

The Chi-square test entails a division of the sample data into bins or cells representing 

distinct, non-overlapping ranges of the data values (see figure below). In each bin, an expected 

value is computed based on the number of data points that would be found if the Normal 

distribution provided an appropriate model. The squared difference between the expected number 

and observed number is then computed and summed over all the bins to calculate the Chi-square 

test statistic. 
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em SQUARE GOODNESS OF FIT 

If the Chi-square test indicates that the data are not Normally distributed, it may not be clear 

what ranges of the data most violate the Normality assumption. Departures from Normality in the 

middle bins are given nearly the same weight as departures from the extreme tail bins, and all the 

departures are summed together to form the test statistic. As such, the Chi-square test is not as 

powerful for detecting departures from Normality in the extreme tails of the data, the areas most 

crucial to the validity of parametric tests like the t-test or AN OVA (Miller, 1986). Furthermore, 

even if there are departures in the tails, but the middle portion of the data distribution is 

approximately Normal, the Chi-square test may not register as statistically significant in certain 

cases where better tests of Normality would. Because of this, four alternative, more sensitive 

tests ofNormality are suggested below which can be used in conjunction with Probability Plots. 

1.1.2 Probability Plots 

As suggested within the Interim Final Guidance, a simple, yet useful graphical test for 

Normality is to plot the data on probability paper. The y-axis is scaled to represent probabilities 

according to the Normal distribution and the data are arranged in increasing order. An observed 

value is plotted on the x-axis and the proportion of observations less than or equal to each 

observed value is plotted as the y-coordinate. The scale is constructed so that, if the data are 

Normal, the points when plotted will approximate a straight line. Visually apparent curves or 

bends indicate that the data do not follow a Normal distribution (see Interim Final Guidance, pp. 

4-8to4-11). 

Probability Plots are particularly useful for spotting irregularities within the data when 

compared to a specific distributional model like the Normal. It is easy to determine whether 

departures from Normality are occurring more or less in the middle ranges of the data or in the 

extreme tails. Probability Plots can also indicate the presence of possible outlier values that do 

not follow the basic pattern of the data and can show the presence of significant positive or 

negative skewness. 
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If a (Normal) Probability Plot is done on the combined data from several wells and 

Normality is accepted, it implies that all of the data came from the same Normal distribution. 

Consequently, each subgroup of the data set (e.g., observations from distinct wells), has the same 

mean and standard deviation. If a Probability Plot is done on the data residuals (each value minus 

its subgroup mean) and is not a straight line, the interpretation is more complicated. In this case, 

either the residuals are not Normal, or there is a subgroup of the data with a Normal distribution 

but a different mean or standard deviation than the other subgroups. The Probability Plot will 

indicate a deviation from the underlying Normality assumption either way. 

The same Probability Plot technique may be used to investigate whether a set of data or 

residuals follows the Lognormal distribution. The procedure is the same, except that one first 

replaces each observation by its natural logarithm. After the data have been transformed to their 

natural logarithms, the Probability Plot is constructed as before. The only difference is that the 

natural logarithms of the observations are used on the x-axis. If the data are Lognormal, the 

Probability Plot (on Normal probability paper) of the logarithms of the observations will 

approximate a straight line. 

Many statistical software packages for personal computers will construct Probability Plots 

automatically with a simple command or two. If such software is available, there is no need to 

construct Probability Plots by hand or to obtain special graph paper. The plot itself may be 

generated somewhat differently than the method described above. In some packages, the 

observed value is plotted as before on the x-axis. The y-axis, however, now represents the 

quantile of the Normal distribution (often referred to as the "Normal score of the observation") 

corresponding to the cumulative probability of the observed value. The y-coordinate is often 

computed by the following formula: 

= q,-l(_i ) 
yi n+l 

where <P-1 denotes the inverse of the cumulative Normal distribution, n represents the sample 

size, and i represents the rank position of the ith ordered concentration. Since the computer does 

these calculations automatically, the formula does not have to be computed by hand. 

6 
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EXAMPLE 1 

Determine whether the following data set follows the Normal distribution by using a 

Probability Plot. 

Nickel Concentration (ppb) 

Month Well1 Wel12 Well3 Well4 

1 58.8 19 39 3.1 
2 1.0 81.5 151 942 
3 262 331 27 85.6 
4 56 14 21.4 10 
5 8.7 64.4 578 637 

SOLUTION 

Step 1. List the measured nickel concentrations in order from lowest to highest. 

Nickel 
Concentration Order Probability Normal 

(ppb) (i) 100*(il(n+1)) Quantile 

1 1 5 -1.645 
3.1 2 10 -1.28 
8.7 3 14 -1.08 
10 4 19 -0.88 
14 5 24 -0.706 
19 6 29 -0.55 

21.4 7 33 -0.44 
27 8 38 -0.305 
39 9 43 -0.176 
56 10 48 -0.05 

58.8 11 52 0.05 
64.4 12 57 0.176 
81.5 13 62 0.305 
85.6 14 67 0.44 
151 15 71 0.55 
262 16 76 0.706 
331 17 81 0.88 
578 18 86 1.08 
637 19 90 1.28 
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942 20 95 1.645 

Step 2. The cumulative probability is given in the third column and is computed as 
IOO*(i/(n+l)) where n is the total number of samples (n=20). The last column gives the 
Normal quantiles corresponding to these probabilities. 

Step 3. If using special graph paper, plot the probability versus the concentration for each 
sample. Otherwise, plot the Normal quantile versus the concentration for each sample, 
as in the plot below. The curvature found in the Probability Plot indicates that there is 
evidence of non-Normality in the data. 

PROBABILITY PLOT 
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1.1.3 Coefficient of Skewness 

The Coefficient of Skewness (YI) indicates to what degree a data set is skewed or 

asymmetric with respect to the mean. Data from a Normal distribution will have a Skewness 

Coefficient of zero, while asymmetric data will have a positive or negative skewness depending on 

whether the right- or left-hand tail of the distribution is longer and skinnier than the opposite tail. 

Since ground-water monitoring concentration data are inherently nonnegative, one often 

expects the data to exhibit a certain degree of skewness. A small degree of skewness is not likely 

to affect the results of statistical tests based on an assumption of Normality. However, if the 

Skewness Coefficient is larger than 1 (in absolute value) and the sample size is small (e.g., n<25), 
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statistical research has shown that standard Normal theory-based tests are much less powerful 

than when the absolute skewness is less than 1 (Gayen, 1949). 

Calculating the Skewness Coefficient is useful and not much more difficult than computing 

the Coefficient of Variation. It provides a quick indication of whether the skewness is minimal 

enough to assume that the data are roughly symmetric and hopefully Normal in distribution. If the 

original data exhibit a high Skewness Coefficient, the Normal distribution will provide a poor 

approximation to the data set. In that case, 'Yl can be computed on the logarithms of the data to 

test for symmetry of the logged data. 

The Skewness Coefficient may be computed using the following formula: 

l L
1
(x1 -x)3 

'Y 1 = 3 

( n ~~y (SD)3 

where the numerator represents the average cubed residual and SD denotes the standard deviation 

of the measurements. Most statistics computer packages (e.g., Mini tab, GEO-EAS) will compute 

the Skewness Coefficient automatically via a simple command. 

EXAMPLE2 

Using the data in Example 1, compute the Skewness Coefficient to test for approximate 

symmetry in the data. 

SOLUTION 

Step 1. Compute the mean, standard deviation (SD), and average cubed residual for the nickel 
concentrations: 

x = 169.52 ppb 

SD = 259.72 ppb 

1 ~ 3 8 3 
- ~~ (x1 - X) = 2. 98923 * 10 ppb 
n 

Step 2. Calculate the Coefficient of Skewness using the previous formula to get '¥1=1.84. Since 
the skewness is much larger than 1, the data appear to be significantly positively 
skewed. Do not assume that the data follow a Normal distribution. 

9 
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Step 3. Since the original data evidence a high degree of skewness, one can attempt to compute 
the Skewness Coefficient on the logged data instead. In that case, the skewness works 
out to be IY1I= 0.24 < 1, indicating that the logged data values are slightly skewed, but 
not enough to reject an assumption of Normality in the logged data. In other words, 
the original data may be Lognormally distributed. 

1.1.4 The Shapiro-Wilk Test ofNormality (n~O) 

The Shapiro-Wilk test is recommended as a superior alternative to the Chi-square test for 

testing Normality of the data. It is based on the premise that if a set of data are Normally 

distributed, the ordered values should be highly correlated with corresponding quantiles taken 

from a Normal distribution (Shapiro and Wilk, 1965). In particular, the Shapiro-Wilk test gives 

substantial weight to evidence ofnon-Normality in the tails of a distribution, where the robustness 

of statistical tests based on the Normality assumption is most severely affected. The Chi-square 

test treats departures from Normality in the tails nearly the same as departures in the middle of a 

distribution, and so is less sensitive to the types of non-Normality that are most crucial. One 

cannot tell from a significant Chi-square goodness-of-fit test what sort of non-Normality is 

indicated. 

The Shapiro-Wilk test statistic (W) will tend to be large when a Probability Plot of the data 

indicates a nearly straight line. Only when the plotted data show significant bends or curves will 

the test statistic be small. The Shapiro-Wilk test is considered to be one of the very best tests of 

Normality available (Miller, 1986; Madansky, 1988). 

To calculate the test statistic W, one can use the following formula: 

where the numerator is computed as 

In this last formula, x(j) represents the jth smallest ordered value in the sample and 

coefficients aj depend on the sample size n. The coefficients can be found for any sample size 

10 
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from 3 up to SO in Table A-1 of Appendix A. The value ofk can be found as the greatest integer 

less than or equal to n/2. 

Normality of the data should be rejected if the Shapiro-Wilk statistic is too low when 

compared to the critical values provided in Table A-2 of Appendix A. Otherwise one can assume 

the data are approximately Normal for purposes of further statistical analysis. As before, it is 

recommended that the test first be performed on the logarithms of the original data to test for 

Lognormality. If the logged data indicate non-Normality by the Shapiro-Wilk test, a re-test can 

be performed on the original data to test for Normality of the original concentrations. 

EXAMPLE3 

Use the data of Example 1 to compute the Shapiro-Wilk test ofNormality. 

SOLUTION 

Step 1. Order the data from smallest to largest and list, as in the following table. Also list the 
data in reverse order alongside the first column. 

Step 2. Compute the differences X(n-i+ 1 rx(i) in column 3 of the table by subtracting column 1 
from column 2. 

X(i) X(n-i+ 1) X(n-i+ 1 tX(i) an-i+1 bi 

1 1.0 942.0 941.0 .4734 445.47 
2 3.1 637.0 633.9 .3211 203.55 
3 8.7 578.0 569.3 .2565 146.03 
4 10.0 331.0 321.0 .2085 66.93 
5 14.0 262.0 248.0 .1686 41.81 
6 19.0 151.0 132.0 .1334 17.61 
7 21.4 85.6 64.2 .1013 6.50 
8 27.0 81.5 54.5 .0711 3.87 
9 39.0 64.4 25.4 .0422 1.07 

10 56.0 58.8 2.8 .0140 0.04 
11 58.8 56.0 -2.8 b=932.88 
12 64.4 39.0 -25.4 
13 81.5 27.0 -54.5 
14 85.6 21.4 -64.2 
15 151.0 19.0 -132.0 
16 262.0 14.0 -248.0 
17 331.0 10.0 -321.0 
18 578.0 8.7 -569.3 
19 637.0 3.1 -633.9 
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20 942.0 1.0 -941.0 

Step 3. Compute k as the greatest integer less than or equal to n/2. Since n=20, k=lO in this 
example. 

Step 4. Look up the coefficients an-i+ 1 from Table A-1 and list in column 4. Multiply the 
differences in column 3 by the coefficients in column 4 and add the first k products to 
get quantity b. In this case, b=932.88. 

Step 5. Compute the standard deviation of the sample, SD=259.72. Then 

w = [ 932.88 ]2 = 0.679. 
259. n.!f9 

Step 6. Compare the computed value of W=0.679 to the 5% critical value for sample size 20 in 
Table A-2, namely W.os,2o=0.905. Since W < 0.905, the sample shows significant 
evidence of non-Normality by the Shapiro-Wilk test. The data should be transformed 
using natural logs and rechecked using the Shapiro-Wilk test before proceeding with 
further statistical analysis (Actually, the logged data should have been tested first. The 
original concentration data are used in this example to illustrate how the assumption of 
Normality can be rejected.) 

1.1.5 The Shapiro-Francia Test of Normality (n>SO) 

The Shapiro-Wilk test of Normality can be used for sample sizes up to 50. When the 

sample is larger than 50, a slight modification of the procedure called the Shapiro-Francia test 

(Shapiro and Francia, 1972) can be used instead. 

Like the Shapiro-Wilk test, the Shapiro-Francia test statistic (W') will tend to be large when 

a Probability Plot of the data indicates a nearly straight line. Only when the plotted data show 

significant bends or curves will the test statistic be small. 

To calculate the test statistic W', one can use the following formula: 

12 
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where x(i) represents the ith ordered value of the sample and where mi denotes the approximate 

expected value of the ith ordered Normal quantile. The values for mi can be approximately 

computed as 

mi = <1>-l(_i ) 
n+l 

where <I>-1 denotes the inverse of the standard Normal distribution with zero mean and unit 

variance. These values can be computed by hand using a Normal probability table or via simple 

commands in many statistical computer packages. 

Normality of the data should be rejected if the Shapiro-Francia statistic is too low when 

compared to the critical values provided in Table A-3 of Appendix A. Otherwise one can assume 

the data are approximately Normal for purposes of further statistical analysis. As before, the 

logged data should be tested first to see if a Lognormal model is appropriate. If these data 

indicate non-Normality by the Shapiro-Francia test, a re-test can be performed on the original 

data. 

1.1.6 The Probability Plot Correlation Coefficient 

One other alternative test for Normality that is roughly equivalent to the Shapiro-Wilk and 

Shapiro-Francia tests is the Probability Plot Correlation Coefficient test described by Filliben 

(1975). This test fits in perfectly with the use ofProbability Plots, because the essence of the test 

is to compute the common correlation coefficient for points on a Probability Plot. Since the 

correlation coefficient is a measure of the linearity of the points on a scatterplot, the Probability 

Plot Correlation Coefficient, like the Shapiro-Wilk test, will be high when the plotted points fall 

along a straight line and low when there are significant bends and curves in the Probability Plot. 

Comparison of the Shapiro-Wilk and Probability Plot Correlation Coefficient tests has indicated 

very similar statistical power for detecting non-Normality (Ryan and Joiner, 1976). 

The construction of the test statistic is somewhat different from the Shapiro-Wilk W, but 

not difficult to implement. Also, tabled critical values for the correlation coefficient have been 

derived for sample sizes up to n=lOO (and are reproduced in Table A-4 of Appendix A). The 

Probability Plot Correlation Coefficient may be computed as 

13 
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r- L~-Jx(i)Mi -nXM 
- CnxSD.Jn=l 

where X(i) represents the ith smallest ordered concentration value, Mi is the median of the ith 

order statistic from a standard Normal distribution, and X and M represent the average values of 

X(i) and M(i). The ith Normal order statistic median may be approximated as Mi=<I>-l(mi), where 

as before, <I>-1 is the inverse of the standard Normal cumulative distribution and mi can be 

computed as follows (given sample size n): 

r 1 - (. 5 fn for i = 1 

mi =i li-.3175)/ (n+.365) for 1 < i < n 

l (.5)1~ fori =n 

Quantity Cn represents the square root of the sum of squares of the Mi'S minus n times the 

average value M, that is 

When working with a complete sample (i.e., containing no nondetects or censored values), the 

average value M=O, and so the formula for the Probability Plot Correlation Coefficient simplifies 

to 

EXAMPLE4 

Use the data of Example 1 to compute the Probability Plot Correlation Coefficient test. 

SOLUTION 

Step 1. Order the data from smallest to largest and list, as in the following table. 

Step 2. Compute the quantities mi from Filliben's formula above for each i in column 2 and the 
order statistic medians, Mi, in column 3 by applying the inverse Normal transformation 
to column 2. 

Step 3. Since this sample contains no nondetects, the simplified formula for r may be used. 
Compute the products X(i)*Mi in column 4 and sum to get the numerator of the 
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correlation coefficient (equal to 3,836.81 in this case). Also compute Mi2 in column 5 

and sum to find quantity Cn2=17.12. 

X(i) mi Mi X(i)*Mi Mi2 

1 1.0 .03406 -1.8242 -1.824 3.328 
2 3.1 .08262 -1.3877 -4.302 1.926 
3 8.7 .13172 -1.1183 -9.729 1.251 
4 10.0 .18082 -0.9122 -9.122 0.832 
5 14.0 .22993 -0.7391 -10.347 0.546 
6 19.0 .27903 -0.5857 -11.129 0.343 
7 21.4 .32814 -0.4451 -9.524 0.198 
8 27.0 .37724 -0.3127 -8.444 0.098 
9 39.0 .42634 -0.1857 -7.242 0.034 

10 56.0 .47545 -0.0616 -3.448 0.004 
11 58.8 .52455 0.0616 3.621 0.004 
12 64.4 .57366 0.1857 11.959 0.034 
13 81.5 .62276 0.3127 25.488 0.098 
14 85.6 .67186 0.4451 38.097 0.198 
15 151.0 .72097 0.5857 88.445 0.343 
16 262.0 .77007 0.7391 193.638 0.546 
17 331.0 .81918 0.9122 301.953 0.832 
18 578.0 .86828 1.1183 646.376 1.251 
19 637.0 .91738 1.3877 883.941 1.926 
20 942.0 .96594 1.8242 1718.408 3.328 

Step 4. Compute the Probability Plot Correlation Coefficient using the simplified formula for r, 
where SD=259.72 and Cn=4.1375, to get 

r = 3836.81 =0. 819 
( 4.1375) (259. 72) .jf§ 

Step 5. Compare the computed value of r-0.819 to the 5% critical value for sample size 20 in 
Table A-4, namely R.o5,2o=0.950. Since r < 0.950, the sample shows significant 
evidence of non-Normality by the Probability Plot Correlation Coefficient test. The 
data should be transformed using natural logs and the correlation coefficient 
recalculated before proceeding with further statistical analysis. 
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EXAMPLES 

The data in Examples 1, 2, 3, and 4 showed significant evidence of non-Normality. Instead 

of first logging the concentrations before testing for Normality, the original data were used. This 

was done to illustrate why the Lognormal distribution is usually a better default model than the 

Normal. In this example, use the same data to determine whether the measurements better follow 

a Lognormal distribution. 

Computing the natural logarithms of the data gives the table below. 

Logged Nickel Concentrations log (ppb) 

Month Well1 We112 Wel13 Wel14 

1 4.07 2.94 3.66 1.13 
2 0.00 4.40 5.02 6.85 
3 5.57 5.80 3.30 4.45 
4 4.03 2.64 3.06 2.30 
5 2.16 4.17 6.36 6.46 

SOLUTION 

Method 1. Probability Plots 

Step 1. List the natural logarithms of the measured nickel concentrations in order from lowest 
to highest. 

Log Nickel 
Order Concentration Probability Normal 

(i) log(ppb) 100*(i/(n+ 1)) Quantiles 

1 0.00 5 -1.645 
2 1.13 10 -1.28 
3 2.16 14 -1.08 
4 2.30 19 -0.88 
5 2.64 24 -0.706 
6 2.94 29 -0.55 
7 3.06 33 -0.44 
8 3.30 38 -0.305 
9 3.66 43 -0.176 

10 4.03 48 -0.05 
11 4.07 52 0.05 
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12 4.17 57 0.176 
13 4.40 62 0.305 
14 4.45 67 0.44 
15 5.02 71 0.55 
16 5.57 76 0.706 
17 5.80 81 0.88 
18 6.36 86 1.08 
19 6.46 90 1.28 
20 6.85 95 1.645 

Step 2. Compute the probability as shown in the third column by calculating lOO*(i/n+l), 
where n is the total number of samples (n=20). The corresponding Normal quantiles 
are given in column 4. 

Step 3. Plot the Normal quantiles against the natural logarithms of the observed concentrations 
to get the following graph. The plot indicates a nearly straight line fit (verified by 
calculation of the Correlation Coefficient given in Method 4). There is no substantial 
evidence that the data do not follow a Lognormal distribution. The Normal-theory 
procedure(s) should be performed on the log-transformed data. 

PROBABILITY PLOT 

-2 0 2 4 6 8 

LN(Nickcl) LN(ppb) 

Method 2. Coefficient of Skewness 

Step 1. Calculate the mean, SD, and average cubed residuals of the natural logarithms of the 
data. 
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x = 3. 918 log(ppb) 

SO= 1.802log(ppb) 

1 ( _)3 3 -:E 1 X 1-x =-1.325log (ppb) 
n 

Step 2. Calculate the Skewness Coefficient, Yl. 

I = -}· 325 = -Q. 244 t (. 95)2 (1.802 )3 

Step 3. Compute the absolute value of the skewness, IYII=I-0.2441=0.244. 

Step 4. Since the absolute value of the Skewness Coefficient is less than 1, the data do not 
show evidence of significant skewness. A Normal approximation to the log
transformed data may therefore be appropriate, but this model should be further 
checked. 

Method 3. Shapiro-Wilk Test 

Step 1. Order the logged data from smallest to largest and list, as in following table. Also list 
the data in reverse order and compute the differences x(n-i+ 1)-x(i)· 

LN(X(i)) LN(x(n-i+ 1)) an-i+ I bj 

1 0.00 6.85 .4734 3.24 
2 1.13 6.46 .3211 1.71 
3 2.16 6.36 .2565 1.08 
4 2.30 5.80 .2085 0.73 
5 2.64 5.57 .1686 0.49 
6 2.94 5.02 .1334 0.28 
7 3.06 4.45 .1013 0.14 
8 3.30 4.40 .0711 0.08 
9 3.66 4.17 .0422 0.02 

10 4.03 4.07 .0140 0.00 
11 4.07 4.03 b=7.77 
12 4.17 3.66 
13 4.40 3.30 
14 4.45 3.06 
15 5.02 2.94 
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16 5.57 2.64 
17 5.80 2.30 
18 6.36 2.16 
19 6.46 1.13 
20 6.85 0.00 

Step 2. Compute k=10, since n/2=10. Look up the coefficients an-i+l from Table A-1 and 
multiply by the first k differences between columns 2 and 1 to get the quantities bi. 
Add these 1 0 products to get b=7. 77. 

Step 3. Compute the standard deviation of the logged data, SD=l.8014. Then the Shapiro
Wilk statistic is given by 

[ 
7. 77 ]

2 

W= l.S014.JI9 =0.979. 

Step 4. Compare the computed value of W to the 5% critical value for sample size 20 in Table 
A-2, namely W.os,2o=0.905. Since W=0.979>0.905, the sample shows no significant 
evidence of non-Normality by the Shapiro-Wilk test. Proceed with further statistical 
analysis using the log-transformed data. 

Method 4. Probability Plot Correlation Coefficient 

Step 1. Order the logged data from smallest to largest and list below. 

Log Nickel 
Order Concentratio 

Mi X(i)*Mi Mi2 (i) n 
mj 

log(ppb) 

1 0.00 .03406 -1.8242 0.000 3.328 
2 1.13 .08262 -1.3877 -1.568 1.926 
3 2.16 .13172 -1.1183 -2.416 1.251 
4 2.30 .18082 -0.9122 -2.098 0.832 
5 2.64 .22993 -0.7391 -1.951 0.546 
6 2.94 .27903 -0.5857 -1.722 0.343 
7 3.06 .32814 -0.4451 -1.362 0.198 
8 3.30 .37724 -0.3127 -1.032 0.098 
9 3.66 .42634 -0.1857 -0.680 0.034 

10 4.03 .47545 -0.0616 -0.248 0.004 
11 4.07 .52455 0.0616 0.251 0.004 
12 4.17 .57366 0.1857 0.774 0.034 
13 4.40 .62276 0.3127 1.376 0.098 
14 4.45 .67186 0.4451 1.981 0.198 
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15 5.02 .72097 0.5857 2.940 0.343 
16 5.57 .77007 0.7391 4.117 0.546 
17 5.80 .81918 0.9122 5.291 0.832 
18 6.36 .86828 1.1183 7.112 1.251 
19 6.46 .91738 1.3877 8.965 1.926 
20 6.85 .96594 1.8242 12.496 3.328 

Step 2. Compute the quantities mi and the order statistic medians Mi, according to the 
procedure in Example 4 (note that these values depend only on the sample size and are 
identical to the quantities in Example 4). 

Step 3. Compute the products X(i) *Mi in column 4 and sum to get the numerator of the 
correlation coefficient (equal to 32.226 in this case). Also compute Mi2 in column 5 

and sum to fmd quantity Cn2= 17 .12. 

Step 4. Compute the Probability Plot Correlation Coefficient using the simplified formula for r, 
where SD=1.8025 and Cn=4.1375, to get 

r = 32.226 = 0.991 
( 4.137 5) ( 18025)-li9 

Step 5. Compare the computed value ofr=0.991 to the 5% critical value for sample size 20 in 
Table A-4, namely R.os,zo=0.950. Since r > 0.950, the logged data show no significant 
evidence of non-Normality by the Probability Plot Correlation Coefficient test. 
Therefore, Lognormality of the original data could be assumed in subsequent statistical 
procedures. 

1.2 TESTING FOR HOMOGENEITY OF VARIANCE 

One of the most important assumptions for the parametric analysis of variance (ANOV A) is 

that the different groups (e.g., different wells) have approximately the same variance. If this is not 

the case, the power of the F-test (its ability to detect differences among the group means) is 

reduced. Mild differences in variance are not too bad. The effect becomes noticeable when the 

largest and smallest group variances differ by a ratio of about 4 and becomes quite severe when 

the ratio is 10 or more (Milliken and Johnson, 1984). 

The procedure suggested in the EPA guidance document, Bartlett's test, is one way to test 

whether the sample data give evidence that the well groups have different variances. However, 

Bartlett's test is sensitive to non-Normality in the data and may give misleading results unless one 

knows in advance that the data are approximately Normal (Milliken and Johnson, 1984). As an 
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alternative to Bartlett's test, two procedures for testing homogeneity of the variances are 

described below that are less sensitive to non-Normality. 

1.2.1 Box Plots 

Box Plots were first developed for exploratory data analysis as a quick way to visualize the 

"spread" or dispersion within a data set. In the context of variance testing, one can construct a 

Box Plot for each well group and compare the boxes to see if the assumption of equal variances is 

reasonable. Such a comparison is not a formal test procedure, but is easier to perform and is 

often sufficient for checking the group variance assumption. 

The idea behind a Box Plot is to order the data from lowest to highest and to trim off 25 

percent of the observations on either end, leaving just the middle 50 percent of the sample values. 

The spread between the lowest and highest values of this middle 50 percent (known as the 

interquartile range or IQR) is represented by the length of the box. The very middle observation 

(i.e., the median) can also be shown as a line cutting the box in two. 

To construct a Box Plot, calculate the median and upper and lower quantiles of the data set 

(respectively, the 50th, 25th, and 75th percentiles). To do this, calculate k=p(n+ 1)/100 where 

n=number of samples and p=percentile of interest. Ifk is an integer, let the kth ordered or ranked 

value be an estimate of the pth percentile of the data. If k is not an integer, let the pth percentile 

be equal to the average of the two values closest in rank position to k. For example, if the data 

set consists ofthe 10 values {1, 4, 6.2, 10, 15, 17.1, 18, 22, 25, 30.5}, the position ofthe median 

would be found as 50*(1 0+ 1 )/1 00=5.5. The median would then be computed as the average of 

the 5th and 6th ordered values, or (15+17.1)/2=16.05. 

Likewise, the position of the lower quartile would be 25*(10+1)/100=2.75. Calculate the 

average of the 2nd and 3rd ordered observations to estimate this percentile, i.e., (4+6.2)/2=5.1. 

Since the upper quartile is found to be 23.5, the length of Box Plot would be the difference 

between the upper and lower quartiles, or (23.5-5.1)=18.4. The box itself should be drawn on a 

graph with the y-axis representing concentration and the x-axis denoting the wells being plotted. 

Three horizontal lines are drawn for each well, one line each at the lower and upper quartiles and 

another at the median concentration. Vertical connecting lines are drawn to complete the box. 

Most statistics packages can directly calculate the statistics needed to draw a Box Plot, and 

many will construct the Box Plots as well. In some computer packages, the Box Plot will also 
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have two "whiskers" extending from the edges of the box. These lines indicate the positions of 

extreme values in the data set, but generally should not be used to approximate the overall 

dispersion. 

If the box length for each group is less than 3 times the length of the shortest box, the 

sample variances are probably close enough to assume equal group variances. If, however, the 

box length for any group is at least triple the length of the box for another group, the variances 

may be significantly different (Kirk Cameron, SAIC, personal communication). In that case, the 

data should be further checked using Levene's test described in the following section. If Levene's 

test is significant, the data may need to be transformed or a non-parametric rank procedure 

considered before proceeding with further analysis. 

EXAMPLE6 

Construct Box Plots for each well group to test for equality of variances. 

Arsenic Concentration (ppm) 

Month Weill Well2 Well3 Well4 Well5 Well6 

1 22.9 2.0 2.0 7.84 24.9 0.34 
2 3.09 1.25 109.4 9.3 1.3 4.78 
3 35.7 7.8 4.5 25.9 0.75 2.85 
4 4.18 52 2.5 2.0 27 1.2 

SOLUTION 

Step 1. Compute the 25th, 50th, and 75th percentiles for the data in each well group. To 
calculate the pth percentile by hand, order the data from lowest to highest. Calculate 
p*(n+l)/100 to find the ordered position of the pth percentile. If necessary, interpolate 
between sample values to estimate the desired percentile. 

Step 2. Using well 1 as an example, n+1=5 (since there are 4 data values). To calculate the 
25th percentile, compute its ordered position (i.e., rank) as 25*5/100=1.25. Average 
the 1st and 2nd ranked values at well 1 (i.e., 3.09 and 4.18) to find an estimated lower 
quartile of 3.64. This estimate gives the lower end of the Box Plot. The upper end or 
75th percentile can be computed similarly as the average of the 3rd and 4th ranked 
values, or (22.9+35.7)/2=29.3. The median is the average of the 2nd and 3rd ranked 
values, giving an estimate of 13.14. 

Step 3. Construct Box Plots for each well group, lined up side by side on the same axes. 
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Step 4. Since the box length for well 3 is more than three times the box lengths for wells 4 and 
6, there is evidence that the group variances may be significantly different. These data 
should be further checked using Levene's test described in the next section. 

1.2.2 Levene's Test 

Levene's test is a more formal procedure than Box Plots for testing homogeneity of variance 

that, unlike Bartlett's test, is not sensitive to non-Normality in the data. Levene's test has been 

shown to have power nearly as great as Bartlett's test for Normally distributed data and power 

superior to Bartlett's for non-Normal data (Milliken and Johnson, 1984). 

To conduct Levene's test, first compute the new variables 
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where Xij represents the jth value from the ith well and xi is the ith well mean. The values Zij 

represent the absolute values of the usual residuals. Then run a standard one-way analysis of 
variance (AN OVA) on the variables zij. If the F-test is significant, reject the hypothesis of equal 

group variances. Otherwise, proceed with analysis of the xij's as initially planned. 

EXAMPLE7 

Use the data from Example 6 to conduct Levene's test of equal variances. 

SOLUTION 

Step 1. Calculate the group mean for each well ~) 

Weill mean= 16.47 

Well2 mean= 15.76 

Well3 mean= 29.60 

Well4 mean= 11.26 

Well 5 mean= 13.49 

Well 6 mean = 2.29 

Step 2. Compute the absolute residuals Zij in each well and the well means of the residuals (Z i). 

Absolute Residuals 

Month Weill Well2 Well3 Well4 WellS Well6 

1 6.43 13.76 27.6 3.42 11.41 1.95 
2 13.38 14.51 79.8 1.96 12.19 2.49 
3 19.23 7.96 25.1 14.64 12.74 0.56 
4 12.29 36.24 27.1 9.26 13.51 1.09 

Well 
Mean (Zi) = 12.83 18.12 39.9 7.32 12.46 1.52 

Overall 
Mean {z} = 15.36 
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Step 3. Compute the sums of squares for the absolute residuals. 

SSTaTAL = (N-1) SDz2 = 6300.89 

SSm:LLs = ~ .n.z~ - Nz2 = 3522.90 ~11 

SSERROR = SSTOTAL-SSWELLS = 2777.99 

Step 4. Construct an analysis of variance table to calculate the F-statistic. The degrees of 
freedom (df) are computed as (#groups-1)=(6--1)=5 df and (#samples--#groups)=(24--
6)=18 df. 

Source 

Between Wells 
Error 

Total 

Sum-of-Squares 

3522.90 
2777.99 

6300.89 

ANOVA Table 

df 

5 
18 

23 

Mean-Square 

704.58 
154.33 

F-Ratio p 

4.56 0.007 

Step 5. Since the F-statistic of 4.56 exceeds the tabulated value ofF.05=2.77 with 5 and 18 df, 

the assumption of equal variances should be rejected. Since the original concentration 
data are used in this example, the data should be logged and retested. 
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2. RECOMMENDATIONS FOR HANDLING 
NONDETECTS 

The basic recommendations within the Interim Final Guidance for handling nondetect 

analyses include the following (seep. 8-2): 1) ifless than 15 percent of all samples are nondetect, 

replace each nondetect by half its detection or quantitation limit and proceed with a parametric 

analysis, such as AN OVA, Tolerance Limits, or Prediction Limits; 2) if the percent of nondetects 

is between 15 and 50, either use Cohen's adjustment to the sample mean and variance in order to 

proceed with a parametric analysis, or employ a non-parametric procedure by using the ranks of 

the observations and by treating all nondetects as tied values; 3) if the percent of nondetects is 

greater than 50 percent, use the Test of Proportions. 

As to the first recommendation, experience at EPA and research at the United States 

Geological Survey (USGS, Dennis Helsel, personal communication, 1991) has indicated that if 

less than 15 percent of the samples are non detect, the results of parametric statistical tests will not 

be substantially affected if nondetects are replaced by half their detection limits. When more than 

15 percent of the samples are nondetect, however, the handling of nondetects is more crucial to 

the outcome of statistical procedures. Indeed, simple substitution methods tend to perform 

poorly in statistical tests when the nondetect percentage is substantial (Gilliom and Helsel, 1986). 

Even with a small proportion of non detects, however, care should be taken when choosing 

between the method detection limit (MDL) and the practical quantitation limit (PQL) in 

characterizing "nondetect" concentrations. Many nondetects are characterized by analytical 

laboratories with one of three data qualifier flags: "U," "J," or "E." Samples with a "U" data 

qualifier represent "undetected" measurements, meaning that the signal characteristic of that 

analyte could not be observed or distinguished from "background noise" during lab analysis. 

Inorganic samples with an "E" flag and organic samples with a "J" flag may or may not be 

reported with an estimated concentration. If no concentration is estimated, these samples 

represent "detected but not quantified" measurements. In this case, the actual concentration is 

assumed to be positive, but somewhere between zero and the PQL. Since all of these non-detects 

may or may not have actual positive concentrations between zero and the PQL, the suggested 

substitution for parametric statistical procedures is to replace each nondetect by one-half the PQL 

(note, however, that "E" and "J" samples reported with estimated concentrations should be 

treated, for statistical purposes, as valid measurements. Substitution of one-half the PQL is not 

recommended for these samples). 
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In no case should nondetect concentrations be assumed to be bounded above by the MDL. 

The MDL is estimated on the basis of ideal laboratory conditions with ideal analyte samples and 

does not account for matrix or other interferences encountered when analyzing specific, actual 

field samples. For this reason, the PQL should be taken as the most reasonable upper bound for 

nondetect concentrations. 

It should also be noted that the distinction between "undetected" and "detected but not 

quantified" measurements has more specific implications for rank-based non-parametric 

procedures. Rather than assigning the same tied rank to all nondetects (see below and in Section 

3 ), "detected but not quantified" measurements should be given larger ranks than those assigned 

to "undetected" samples. In fact the two types of nondetects should be treated as two distinct 

groups of tied observations for use in the Wilcoxon and Kruskal-Wallis non-parametric 

procedures. 

2.1 NONDETECTS IN ANOVA PROCEDURES 

For a moderate to large percentage of nondetects (i.e., over 15%), the handling of 

non detects should vary depending on the statistical procedure to be run. If background data from 

one or more upgradient wells are to be compared simultaneously with samples from one or more 

downgradient wells via a t-test or ANOV A type procedure, the simplest and most reliable 

recommendation is to switch to a non-parametric analysis. The distributional assumptions for 

parametric procedures can be rather difficult to check when a substantial fraction of nondetects 

exists. Furthermore, the non-parametric alternatives described in Section 3 tend to be efficient at 

detecting contamination when the underlying data are Normally distributed, and are often more 

powerful than the parametric methods when the underlying data do not follow a Normal 

distribution. 

Nondetects are handled easily in a nonparametric analysis. All data values are first ordered 

and replaced by their ranks. Nondetects are treated as tied values and replaced by their midranks 

(see Section 3). Then a Wilcoxon Rank-Sum or Kruskal-Wallis test is run on the ranked data 

depending on whether one or more than one downgradient well is being tested. 

The Test of Proportions is not recommended in this Addendum, even if the percentage of 

nondetects is over 50 percent. Instead, for all two-group comparisons that involve more than 15 

percent nondetects, the non-parametric Wilcoxon Rank-Sum procedure is recommended. 

Although acceptable as a statistical procedure, the Test of Proportions does not account for 
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potentially different magnitudes among the concentrations of detected values. Rather, each 

sample is treated as a 0 or 1 depending on whether the measured concentration is below or above 

the detection limit. The Test of Proportions ignores information about concentration magnitudes, 

and hence is usually less powerful than a non-parametric rank-based test like the Wilcoxon Rank

Sum, even after adjusting for a large fraction of tied observations (e.g., nondetects). This is 

because the ranks of a dataset preserve additional information about the relative magnitudes of the 

concentration values, information which is lost when all observations are scored as O's and l's. 

Another drawback to the Test of Proportions, as presented in the Interim Final Guidance, is 

that the procedure relies on a Normal probability approximation to the Binomial distribution of O's 

and l's. This approximation is recommended only when the quantities n x (%NDs) and n 

x (1-%NDs) are no smaller than 5. If the percentage of nondetects is quite high and/or the 

sample size is fairly small, these conditions may be violated, leading potentially to inaccurate 

results. 

Comparison ofthe Test of Proportions to the Wilcoxon Rank-Sum test shows that for small 

to moderate proportions of nondetects (say 0 to 60 percent), the Wilcoxon Rank-Sum procedure 

adjusted for ties is more powerful in identifying real concentration differences than the Test of 

Proportions. When the percentage of nondetects is quite high (at least 70 to 75 percent), the Test 

of Proportions appears to be slightly more powerful in some cases than the Wilcoxon, but the 

results of the two tests almost always lead to the same conclusion, so it makes sense to simply 

recommend the Wilcoxon Rank-Sum test in all cases where nondetects constitute more than 15 

percent of the samples. 

2.2 NONDETECTS IN STATISTICAL INTERVALS 

If the chosen method is a statistical interval (Confidence, Tolerance or Prediction limit) used 

to compare background data against each downgradient well separately, more options are 

available for handling moderate proportions of non detects. The basis of any parametric statistical 

interval limit is the formula x ± K·s, where x and s represent the sample mean and standard 

deviation of the (background) data and K depends on the interval type and characteristics of the 

monitoring network. To use a parametric interval in the presence of a substantial number of 

nondetects, it is necessary to estimate the sample mean and standard deviation. But since 

nondetect concentrations are unknown, simple formulas for the mean and standard deviation 

cannot be computed directly. Two basic approaches to estimating or "adjusting" the mean and 

standard deviation in this situation have been described by Cohen (1959) and Aitchison (1955). 
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The underlying assumptions of these procedures are somewhat different. Cohen's 

adjustment (which is described in detail on pp. 8-7 to 8-11 ofthe Interim Final Guidance) assumes 

that all the data (detects and nondetects) come from the same Normal or Lognormal population, 

but that nondetect values have been "censored" at their detection limits. This implies that the 

contaminant of concern is present in nondetect samples, but the analytical equipment is not 

sensitive to concentrations lower than the detection limit. Aitchison's adjustment, on the other 

hand, is constructed on the assumption that nondetect samples are free of contamination, so that 

all nondetects may be regarded as zero concentrations. In some situations, particularly when the 

analyte of concern has been detected infrequently in background measurements, this assumption 

may be practical, even if it cannot be verified directly. 

Before choosing between Cohen's and Aitchison's approaches, it should be cautioned that 

Cohen's adjustment may not give valid results if the proportion of nondetects exceeds 50%. In a 

case study by McNichols and Davis (1988), the false positive rate associated with the use oft

tests based on Cohen's method rose substantially when the fraction of non detects was greater than 

50%. This occurred because the adjusted estimates of the mean and standard deviation are more 

highly correlated as the percentage of non detects increases, leading to less reliable statistical tests 

(including statistical interval tests). 

On the other hand, with less than 50% nondetects, Cohen's method performed adequately in 

the McNichols and Davis case study, provided the data were not overly skewed and that more 

extensive tables than those included within the Interim Final Guidance were available to calculate 

Cohen's adjustment parameter. As a remedy to the latter caveat, a more extensive table of 

Cohen's adjustment parameter is provided in Appendix A (Table A-5). It is also recommended 

that the data (detected measurements and nondetect detection limits) first be log-transformed 

prior to computing either Cohen's or Aitchison's adjustment, especially since both procedures 

assume that the underlying data are Normally distributed. 

2.2.1 Censored and Detects-Only Probability Plots 

To decide which approach is more appropriate for a particular set of ground water data, two 

separate Probability Plots can be constructed. The first is called a Censored Probability Plot and 

is a test of Cohen's underlying assumption. In this method, the combined set of detects and 

nondetects is ordered (with nondetects being given arbitrary but distinct ranks). Cumulative 

probabilities or Normal quantiles (see Section 1.1) are then computed for the data set as in a 

regular Probability Plot. However, only the detected values and their associated Normal quantiles 
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are actually plotted. If the shape of the Censored Probability Plot is reasonably linear, then 

Cohen's assumption that nondetects have been "censored" at their detection limit is probably 

acceptable and Cohen's adjustment can be made to estimate the sample mean and standard 

deviation. If the Censored Probability Plot has significant bends and curves, particularly in one or 

both tails, one might consider Aitchison's procedure instead. 

To test the assumptions of Aitchison's method, a Detects-Only Probability Plot may be 

constructed. In this case, nondetects are completely ignored and a standard Probability Plot is 

constructed using only the detected measurements. Thus, cumulative probabilities or Normal 

quantiles are computed only for the ordered detected values. Comparison of a Detects-Only 

Probability Plot with a Censored Probability Plot will indicate that the same number of points and 

concentration values are plotted on each graph. However, different Normal quantiles are 

associated with each detected concentration. If the Detects-Only Probability Plot is reasonably 

linear, then the assumptions underlying Aitchison's adjustment (i.e., that "nondetects" represent 

zero concentrations, and that detects and nondetects follow separate probability distributions) are 

probably reasonable. 

If it is not clear which of the Censored or Detects-Only Probability Plots is more linear, 

Probability Plot Correlation Coefficients can be computed for both approaches (note that the 

correlations should only involve the points actually plotted, that is, detected concentrations). The 

plot with the higher correlation coefficient will represent the most linear trend. Be careful, 

however, to use other, non-statistical judgments to help decide which of Cohen's and Aitchison's 

underlying assumptions appears to be most reasonable based on the specific characteristics of the 

data set. It is also likely that these Probability Plots may have to be constructed on the logarithms 

of the data instead of the original values, if in fact the most appropriate underlying distribution is 

the Lognormal instead of the Normal. 

EXAMPLES 

Create Censored and Detects-Only Probability Plots with the following zinc data to 

determine whether Cohen's adjustment or Aitchison's adjustment is most appropriate for 

estimating the true mean and standard deviation. 
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Zinc Concentrations (ppb) at Background Wells 

Sample Well1 Well2 Well3 Well4 WellS 

1 <7 <7 <7 11.69 <7 
2 11.41 <7 12.85 10.90 <7 
3 <7 13.70 14.20 <7 <7 
4 <7 11.56 9.36 12.22 11.15 
5 <7 <7 <7 11.05 13.31 
6 10.00 <7 12.00 <7 12.35 
7 15.00 10.50 <7 13.24 <7 
8 <7 12.59 <7 <7 8.74 

SOLUTION 

Step 1. Pool together the data from the five background wells and list in order in the table 
below. 

Step 2. To construct the Censored Probability Plot, compute the probabilities il(n+l) using the 
combined set of detects and nondetects, as in column 3. Find the Normal quantiles 
associated with these probabilities by applying the inverse standard Normal 
transformation, <I>-1. 

Step 3. To construct the Detects-Only Probability Plot, compute the probabilities in column 5 
using only the detected zinc values. Again apply the inverse standard Normal 
transformation to find the associated Normal quantiles in column 6. Note that 
nondetects are ignored completely in this method. 
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Order (i) Zinc Cone. Censored Normal Detects-Only Normal 
(ppb) Probs. Quantiles Probs. Quantiles 

1 <7 .024 -1.971 
2 <7 .049 -1.657 
3 <7 .073 -1.453 
4 <7 .098 -1.296 
5 <7 .122 -1.165 
6 <7 .146 -1.052 
7 <7 .171 -0.951 
8 <7 .195 -0.859 
9 <7 .220 -0.774 

10 <7 .244 -0.694 
11 <7 .268 -0.618 
12 <7 .293 -0.546 
13 <7 .317 -0.476 
14 <7 .341 -0.408 
15 <7 .366 -0.343 
16 <7 .390 -0.279 
17 <7 .415 -0.216 
18 <7 .439 -0.153 
19 <7 .463 -0.092 
20 <7 .488 -0.031 
21 8.74 .512 0.031 .048 -1.668 
22 9.36 .537 0.092 .095 -1.309 
23 10.00 .561 0.153 .143 -1.068 
24 10.50 .585 0.216 .190 -0.876 
25 10.90 .610 0.279 .238 -0.712 
26 11.05 .634 0.343 .286 -0.566 
27 11.15 .659 0.408 .333 -0.431 
28 11.41 .683 0.476 .381 -0.303 
29 11.56 .707 0.546 .429 -0.180 
30 11.69 .732 0.618 .476 -0.060 
31 12.00 .756 0.694 .524 0.060 
32 12.22 .780 0.774 .571 0.180 
33 12.35 .805 0.859 .619 0.303 
34 12.59 .829 0.951 .667 0.431 
35 12.85 .854 1.052 .714 0.566 
36 13.24 .878 1.165 .762 0.712 
37 13.31 .902 1.296 .810 0.876 
38 13.70 .927 1.453 .857 1.068 
39 14.20 .951 1.657 .905 1.309 
40 15.00 .976 1.971 .952 1.668 
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Step 4. Plot the detected zinc concentrations versus each set of probabilities or Normal 
quantiles, as per the procedure for constructing Probability Plots (see figures below). 
The nondetect values should not be plotted. As can be seen from the graphs, the 
Censored Probability Plot indicates a definite curvature in the tails, especially the lower 
tail. The Detects-Only Probability Plot, however, is reasonably linear. This visual 
impression is bolstered by calculation of a Probability Plot Correlation Coefficient for 
each set of detected values: the Censored Probability Plot has a correlation of r=.969, 
while the Detects-Only Probability Plot has a correlation of r=.998. 

Step 5. Because the Detects-Only Probability Plot is substantially more linear than the 
Censored Probability Plot, it may be appropriate to consider detects and nondetects as 
arising from statistically distinct distributions, with nondetects representing "zero" 
concentrations. Therefore, Aitchison's adjustment may lead to better estimates of the 
true mean and standard deviation than Cohen's adjustment for censored data. 

CENSORED PROBABILITY PLOT 

2.5 

1.5 

Vl 
~ ...:. 

~ 0.5 

~ 
0' 

~ -0.5 

0 z 

-1.5 

-2.5 
8 9 10 11 12 13 14 15 16 

ZINC CONCENTRATIONS (ppb) 

33 



Draft 

DETECTS-ONLY PROBABILITY PLOT 
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2.2.2 Aitchison's Adjustment 

To actually compute Aitchison's adjustment (Aitchison, 1955), it is assumed that the 

detected samples follow an underlying Normal distribution. If the detects are Lognormal, 

compute Aitchison's adjustment on the logarithms of the data instead. Let d=# nondetects and let 

n=total # of samples (detects and nondetects combined). Then if x* and s* denote respectively 

the sample mean and standard deviation of the detected values, the adjusted overall mean can be 

estimated as 

- ( d \;· 
Jl= 1-~r 

and the adjusted overall standard deviation may be estimated as the square root of the quantity 

- 2 n - ( d + 1) ( • ) 2 d ( n - d ) (-• ) 2 ()= S +- -- X 
n-1 n n-1 

The general formula for a parametric statistical interval adjusted for nondetects by Aitchison's 

method is given by j ± I<· 6-; with K depending on the type of interval being constructed. 
I j 
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EXAMPLE9 

In Example 8, it was determined that Aitchison's adjustment might lead to more appropriate 

estimates of the true mean and standard deviation than Cohen's adjustment. Use the data in 

Example 8 to compute Aitchison's adjustment. 

SOLUTION 

Step 1. The zinc data consists of 20 nondetects and 20 detected values; therefore d=20 and 
n=40 in the above formulas. 

Step 2. Compute the average x' = 11.891 and the standard deviations'= 1.595 of the set of 
detected values. 

Step 3. Use the formulas for Aitchison's adjustment to compute estimates of the true mean and 
standard deviation: 

" ( 20) _)Ar= 1-
40 

X 11.891 = 5.95 

~ 2 
a-= 

If Cohen's adjustment is mistakenly computed on these data instead, with a detection 
limit of 7 ppb,the estimates become ~ = 7. 63 and ~ = 4. 83. Thus, the choice of 
adjustment can have a significant impact on the upper limits computed for statistical 
intervals. 

2.2.3 More Than 50% Nondetects 

If more than 50% but less than 90% of the samples are nondetect or the assumptions of 

Cohen's and Aitchison's methods cannot be justified, parametric statistical intervals should be 

abandoned in favor of non-parametric alternatives (see Section 3 below). Nonparametric 

statistical intervals are easy to construct and apply to ground water data measurements, and no 

special steps need be taken to handle nondetects. 

When 90% or more of the data values are nondetect (as often occurs when measuring 

volatile organic compounds [VOCs] in ground water, for instance), the detected samples can 

often be modeled as "rare events" by using the Poisson distribution. The Poisson model describes 

the behavior of a series of independent events over a large number of trials, where the probability 

of occurrence is low but stays constant from trial to trial. The Poisson model is similar to the 

Binomial model in that both models represent "counting processes." In the Binomial case, 
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nondetects are counted as 'misses' or zeroes and detects are counted (regardless of contamination 

level) as 'hits' or ones; in the case of the Poisson, each particle or molecule of contamination is 

counted separately but cumulatively, so that the counts for detected samples with high 

concentrations are larger than counts for samples with smaller concentrations. As Gibbons (1987, 

p. 574) has noted, it can be postulated 

... that the number of molecules of a particular compound out of a much larger 
number of molecules of water is the result of a Poisson process. For example, 
we might consider 12 ppb of benzene to represent a count of 12 units of 
benzene for every billion units examined. In this context, Poisson's approach is 
justified in that the number of units (i.e., molecules) is large, and the probability 
of the occurrence (i.e., a molecule being classified as benzene) is small. 

For a detect with concentration of 50 ppb, the Poisson count would be 50. Counts for 

nondetects can be taken as zero or perhaps equal to half the detection limit (e.g., if the detection 

limit were 10 ppb, the Poisson count for that sample would be 5). Unlike the Binomial (Test of 

Proportions) model, the Poisson model has the ability to utilize the magnitudes of detected 

concentrations in statistical tests. 

The Poisson distribution is governed by the average rate of occurrence, A, which can be 

estimated by summing the Poisson counts of all samples in the background pool of data and 

dividing by the number of samples in the pool. Once the average rate of occurrence has been 

estimated, the formula for the Poisson distribution is given by 

P-Ap 
Pr{X=x}=~ 

x! 

where x represents the Poisson count and A represents the average rate of occurrence. To use the 

Poisson distribution to predict concentration values at downgradient wells, formulas for 

constructing Poisson Prediction and Tolerance limits are given below. 

2.2.4 Poisson Prediction Limits 

To estimate a Prediction limit at a particular well using the Poisson model, the approach 

described by Gibbons (1987b) and based on the work of Cox and Hinkley (1974) can be used. In 

this case, an upper limit is estimated for an interval that will contain all of k future measurements 

of an analyte with confidence level 1-a, given n previous background measurements. 
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To do this, let T n represent the sum of the Poisson counts of n background samples. The 

goal is to predict Tk*, representing the total Poisson count of the next k sample measurements. 

As Cox and Hinkley show, if T n has a Poisson distribution with mean Jl and if no contamination 

has occurred, it is reasonable to assume that Tk * will also have a Poisson distribution but with 

mean CJ..l, where c depends on the number of future measurements being predicted. 

In particular, Cox and Hinckley demonstrate that the quantity 

has an approximate standard Normal distribution. From this relation, an upper prediction limit for 

Tk * is calculated by Gibbons to be approximately 

T* = cT + ct
2 

+ct T (t+l)+f 
k n 2 n C 4 

where t=tn-1 a is the upper (1-a) percentile of the Student's t distribution with (n-1) degrees of 
' 

freedom. The quantity c in the above formulas may be computed as k/n, where, as noted, k is the 

number of future samples being predicted. 

EXAMPLE 10 

Use the following benzene data from six background wells to estimate an upper 99% 

Poisson Prediction limit for the next four measurements from a single downgradient well. 

Benzene Concentrations (ppb) 

Month Wel11 Wel12 We113 We114 WellS We116 
1 <2 <2 <2 <2 <2 <2 
2 <2 <2 <2 15.0 <2 <2 
3 <2 <2 <2 <2 <2 <2 
4 <2 12.0 <2 <2 <2 <2 
5 <2 <2 <2 <2 <2 10.0 
6 <2 <2 <2 <2 <2 <2 
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SOLUTION 

Step 1. Pooling the background data yields n=36 samples, of which, 33 (92%) are nondetect. 
Because the rate of detection is so infrequent (i.e., <10%), a Poisson-based Prediction 
limit may be appropriate. Since four future measurements are to be predicted, k=4, and 
hence, c=k/n= 119. 

Step 2. Set each nondetect to half the detection limit or 1 ppb. Then compute the Poisson 
count of the sum of all the background samples, in this case, 
Tn=33(1)+(12.0+15.0+10.0) = 70.0. To calculate an upper 99% Prediction limit, the 
upper 99th percentile of the t-distribution with (n-1)=35 degrees of freedom must be 
taken from a reference table, namely t3s,.ol=2.4377. 

Step 3. Using Gibbons' formula above, calculate the upper Prediction limit as: 

T·=!(70)+(2.4377)z +2.4377 70(1+9)+(2.4377)2 =15.3 b 
k 9 2 (9) 9 4 pp 

Step 4. To test the upper Prediction limit, the Poisson count of the sum of the next four 
downgradient wells should be calculated. If this sum is greater than 15.3 ppb, there is 
significant evidence of contamination at the downgradient well. If not, the well may be 
regarded as clean until the next testing period. 

The procedure for generating Poisson prediction limits is somewhat flexible. The value k 

above, for instance, need not represent multiple samples from a single well. It could also denote a 

collection of single samples from k distinct wells, all of which are assumed to follow the same 

Poisson distribution in the absence of contamination. The Poisson distribution also has the 

desirable property that the sum of several Poisson variables also has a Poisson distribution, even if 

the individual components are not identically distributed. Because of this, Gibbons (1987b) has 

suggested that if several analytes (e.g., different VOCs) can all be modeled via the Poisson 

distribution, the combined sum of the Poisson counts of all the analytes will also have a Poisson 

distribution, meaning that a single prediction limit could be estimated for the combined group of 

analytes, thus reducing the necessary number of statistical tests. 

A major drawback to Gibbons' proposal of establishing a combined prediction limit for 

several analytes is that if the limit is exceeded, it will not be clear which analyte is responsible for 

"triggering" the test. In part this problem explains why the ground-water monitoring regulations 

mandate that each analyte be tested separately. Still, if a large number of analytes must be 

regularly tested and the detection rate is quite low, the overall facility-wide false positive rate may 

be unacceptably high. To remedy this situation, it is probably wisest to do enough initial testing 
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of background and facility leachate and waste samples to determine those specific parameters 

present at levels substantially greater than background. By limiting monitoring and statistical tests 

to a few parameters meeting the above conditions, it should be possible to contain the overall 

facility-wide false positive rate while satisfying the regulatory requirements and assuring reliable 

identification of ground-water contamination if it occurs. 

Though quantitative information on a suite of VOCs may be automatically generated as a 

consequence of the analytical method configuration (e.g., SW-846 method 8260 can provide 

quantitative results for approximately 60 different compounds), it is usually unnecessary to 

designate all of these compounds as leak detection indicators. Such practice generally aggravates 

the problem of many comparisons and results in elevated false positive rates for the facility as a 

whole. This makes accurate statistical testing especially difficult. EPA therefore recommends 

that the results of leachate testing or the waste analysis plan serve as the primary basis for 

designating reliable leak detection indicator parameters. 

2.2.5 Poisson Tolerance Limits 

To apply an upper Tolerance limit using the Poisson model to a group of downgradient 

wells, the approach described by Gibbons (1987b) and based on the work of Zacks (1970) can be 

taken. In this case, if no contamination has occurred, the estimated interval upper limit will 

contain a large fraction of all measurements from the downgradient wells, often specified at 95% 

or more. 

The calculations involved in deriving Poisson Tolerance limits can seem non-intuitive, 

primarily because the argument leading to a mathematically rigorous Tolerance limit is 

complicated. The basic idea, however, uses the fact that if each individual measurement follows a 

common Poisson distribution with rate parameter, A, the sum of n such measurements will also 

follow a Poisson distribution, this time with rate n'A. 

Because the Poisson distribution has the property that its true mean is equal to the rate 

parameter A, the concentration sum of n background samples can be manipulated to estimate this 

rate. But since we know that the distribution of the concentration sum is also Poisson, the 

possible values of A can actually be narrowed to within a small range with fixed confidence 

probability (y). 
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For each "possible" value of/.. in this confidence range, one can compute the percentile of 

the Poisson distribution with rate /..that would lie above, say, 95% of all future downgradient 

measurements. By setting as the "probable" rate, that /.. which is greater than all but a small 

percentage a of the most extreme possible A.'s, given the values of n background samples, one can 

compute an upper tolerance limit with, say, 95% coverage and (1-a)% confidence. 

To actually make these computations, Zacks (1970) shows that the most probable rate /.. 

can be calculated approximately as 

where as before Tn represents the Poisson count of the sum of n background samples (setting 

nondetects to half the method detection limit), and 

represents the ypercentile of the Chi-square distribution with (2Tn+2) degrees of freedom. 

To find the upper Tolerance limit with~% coverage (e.g., 95%) once a probable rate/.. has 

been estimated, one must compute the Poisson percentile that is larger than ~% of all possible 

measurements from that distribution, that is, the ~% quantile of the Poisson distribution with 

mean rate ATn. denoted by p-l(~,ATn). Using a well-known mathematical relationship between 

the Poisson and Chi-square distributions, finding the ~% quantile of the Poisson amounts to 

determining the least positive integer k such that 

where, as above, the quantity [2k+2] represents the degrees of freedom of the Chi-square 
distribution. By calculating two times the estimated probable rate ATn on the right-hand-side of 

the above inequality, and then finding the smallest degrees of freedom so that the (1-
~)% percentile of the Chi-square distribution is bigger than 2/..Tn, the upper tolerance limit k can 

be determined fairly easily. 
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Once the upper tolerance limit, k, has been estimated, it will represent an upper Poisson 

Tolerance limit having approximately P% coverage with 'flo confidence in all comparisons with 

downgradient well measurements. 

EXAMPLE 11 

Use the benzene data of Example 10 to estimate an upper Poisson Tolerance limit with 95% 

coverage and 95% confidence probability. 

SOLUTION 

Step 1. The benzene data consist of 33 nondetects with detection limit equal to 2 ppb and 3 
detected values for a total of n=36. By setting each nondetect to half the detection limit 
as before, one finds a total Poisson count of the sum equal to Tn=70.0. It is also 
known that the desired confidence probability is y=.95 and the desired coverage is 
P=.95. 

Step 2. Based on the observed Poisson count of the sum of background samples, estimate the 
probable occurrence rate ATn using Zacks' formula above as 

Step 3. Compute twice the probable occurrence rate as 2ATn=4.74. Now using a Chi-square 
table, find the smallest degrees of freedom ( dt), k, such that 

x~5 [2k + 21 ~ 4. 74 

Since the 5th percentile of the Chi-square distribution with 12 df equals 5.23 (but only 
4.57 with 11 dt), it is seen that (2k+2)=12, leading to k=5. Therefore, the upper 
Poisson Tolerance limit is estimated as k=5 ppb. 

Step 4. Because the estimated upper Tolerance limit with 95% coverage equals 5 ppb, any 
detected value among downgradient samples greater than 5 ppb may indicate possible 
evidence of contamination. 
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3. NON-PARAMETRIC COMPARISON OF COMPLIANCE 
WELL DATA 

TO BACKGROUND 

When concentration data from several compliance wells are to be compared with 

concentration data from background wells, one basic approach is analysis of variance (ANOV A). 

The ANOV A technique is used to test whether there is statistically significant evidence that the 

mean concentration of a constituent is higher in one or more of the compliance wells than the 

baseline provided by background wells. Parametric ANOV A methods make two key 

assumptions: 1) that the data residuals are Normally distributed and 2) that the group variances 

are all approximately equal. The steps for calculating a parametric ANOVA are given in the 

Interim Final Guidance (pp. 5-6 to 5-14). 

If either of the two assumptions crucial to a parametric ANOV A is grossly violated, it is 

recommended that a non-parametric test be conducted using the ranks of the observations rather 

than the original observations themselves. The Interim Final Guidance describes the Kruskal

Wallis test when three or more well groups (including background data, see pp. 5-14 to 5-20) are 

being compared. However, the Kruskal-Wallis test is not amenable to two-group comparisons, 

say of one compliance well to background data. In this case, the Wilcoxon Rank-Sum procedure 

(also known as the Mann-Whitney U Test) is recommended and explained below. Since most 

situations will involve the comparison of at least two downgradient wells with background data, 

the Kruskal-Wallis test is presented first with an additional example. 

3.1 KRUSKAL-WALLISTEST 

When the assumptions used in a parametric analysis of variance cannot be verified, e.g., 

when the original or transformed residuals are not approximately Normal in distribution or have 

significantly different group variances, an analysis can be performed using the ranks of the 

observations. Usually, a non-parametric procedure will be needed when a substantial fraction of 

the measurements are below detection (more than 15 percent), since then the above assumptions 

are difficult to verify. 

The assumption of independence of the residuals is still required. Under the null hypothesis 

that there is no difference among the groups, the observations are assumed to come from identical 

distributions. However, the form of the distribution need not be specified. 
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A non-parametric ANOV A can be used in any situation that the parametric analysis of 

variance can be used. However, because the ranks of the data are being used, the minimum 

sample sizes for the groups must be a little larger. A useful rule of thumb is to require a minimum 

of three well groups with at least four observations per group before using the Kruskal-Wallis 

procedure. 

Non-parametric procedures typically need a few more observations than parametric 

procedures for two reasons. On the one hand, non-parametric tests make fewer assumptions 

concerning the distribution of the data and so more data is often needed to make the same 

judgment that would be rendered by a parametric test. Also, procedures based on ranks have a 

discrete distribution (unlike the continuous distributions of parametric tests). Consequently, a 

larger sample size is usually needed to produce test statistics that will be significant at a specified 

alpha level such as 5 percent. 

The relative efficiency of two procedures is defined as the ratio of the sample sizes needed 

by each to achieve a certain level of power against a specified alternative hypothesis. As sample 

sizes get larger, the efficiency of the Kruskal-Wallis test relative to the parametric analysis of 

variance test approaches a limit that depends on the underlying distribution of the data, but is 

always at least 86 percent. This means roughly that in the worst case, if 86 measurements are 

available for a parametric ANOVA, only 100 sample values are needed to have an equivalently 

powerful Kruskal-Wallis test. In many cases, the increase in sample size necessary to match the 

power of a parametric ANOV A is much smaller or not needed at all. The efficiency of the 

Kruskal-Wallis test is 95 percent if the data are really Normal, and can be much larger than 100 

percent in other cases (e.g., it is 150 percent if the residuals follow a distribution called the double 

exponential). 

These results concerning efficiency imply that the Kruskal-Wallis test is reasonably powerful 

for detecting concentration differences despite the fact that the original data have been replaced 

by their ranks, and can be used even when the data are Normally distributed. When the data are 

not Normal or cannot be transformed to Normality, the Kruskal-Wallis procedure tends to be 

more powerful for detecting differences than the usual parametric approach. 

3.1.1 Adjusting for Tied Observations 

Frequently, the Kruskal-Wallis procedure will be used when the data contain a significant 

fraction ofnondetects (e.g., more than 15 percent of the samples). In these cases, the parametric 
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assumptions necessary for the usual one-way ANOV A are difficult or impossible to verify, making 

the non-parametric alternative attractive. However, the presence of nondetects prevents a unique 

ranking of the concentration values, since nondetects are, up to the limit of measurement, all tied 

at the same value. 

To get around this problem, two steps are necessary. First, in the presence of ties (e.g., 

nondetects), all tied observations should receive the same rank. This rank (sometimes called the 

midrank (Lehmann, 1975)) is computed as the average of the ranks that would be given to a 

group of ties if the tied values actually differed by a tiny amount and could be ranked uniquely. 

For example, if the first four ordered observations are all nondetects, the midrank given to each of 

these samples would be equal to (1 +2+3+4)/4=2.5. If the next highest measurement is a unique 

detect, its rank would be 5 and so on until all observations are appropriately ranked. 

The second step is to compute the Kruskal-Wallis statistic as described in the Interim Final 

Guidance, using the midranks computed for the tied values. Then an adjustment to the Kruskal

Wallis statistic must be made to account for the presence of ties. This adjustment is described on 

page 5-17 of the Interim Final Guidance and requires computation ofthe formula: 

H 

H'= 1-(:Et t~ -t~ ) 
1-l N3 -N 

where g equals the number of groups of distinct tied observations and ti is the number of 

observations in the ith tied group. 

EXAMPLE 12 

Use the non-parametric analysis of variance on the following data to determine whether 

there is evidence of contamination at the monitoring site. 

Toluene Concentration (ppb) 
Background Wells Compliance Wells 

Month Weill Well2 Well3 Well4 WellS 

1 <5 <5 <5 <5 <5 
2 7.5 <5 12.5 13.7 20.1 
3 <5 <5 8.0 15.3 35.0 
4 <5 <5 <5 20.2 28.2 
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5 6.4 <5 11.2 25.1 19.0 

SOLUTION 

Step 1. Compute the overall percentage of nondetects. In this case, nondetects account for 48 
percent of the data. The usual parametric analysis of variance would be inappropriate. 
Use the Kruskal-Wallis test instead, pooling both background wells into one group and 
treating each compliance well as a separate group. 

Step 2. Compute ranks for all the data including tied observations (e.g., nondetects) as in the 
following table. Note that each nondetect is given the same midrank, equal to the 
average of the first 12 unique ranks. 

Toluene Ranks 
Background Wells Compliance Wells 

Month Weill Well2 Well3 We114 WellS 

1 6.5 6.5 6.5 6.5 6.5 
2 14 6.5 17 18 21 
3 6.5 6.5 15 19 25 
4 6.5 6.5 6.5 22 24 
5 13 6.5 16 23 20 

Rank Sum Rb=79 R3=61 R4=88.5 R5=96.5 

Rank Mean Rb=7.9 R 3=12.2 R 4=17.7 R 5=19.3 

Step 3. Calculate the sums of the ranks in each group (Ri) and the mean ranks in each group 

(R i). These results are given above. 

Step 4. Compute the Kruskal-Wallis statistic H using the formula on p. 5-15 of the Interim 
Final Guidance 

[ 
12 K R~] 

H = N (N + 1) Li=l ~ - 3(N + 1) 

where N=total number of samples, Ni=number of samples in ith group, and K=number 

of groups. In this case, N=25, K=4, and H can be computed as 
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Step 5. Compute the adjustment for ties. There is only one group of distinct tied observations, 
containing 12 samples. Thus, the adjusted Kruskal-Wallis statistic is given by: 

H' = 10.56 = ll.S7. 1-(1i-12) 
253 -25 

Step 6. Compare the calculated value of H' to the tabulated Chi-square value with (K-1)= (# 

groups-1)=3 df, X 23,.05=7.81. Since the observed value of 11.87 is greater than the 

Chi-square critical value, there is evidence of significant differences between the well 
groups. Post-hoc pairwise comparisons are necessary. 

Step 7. Calculate the critical difference for compliance well comparisons to the background 
using the formula on p. 5-16 of the Interim Final Guidance document. Since the 
number of samples at each compliance well is four, the same critical difference can be 
used for each comparison, namely, 

Step 8. Form the differences between the average ranks of each compliance well and the 
background and compare these differences to the critical value of 8.58. 

Well3: R 3-R b = 12.2-7.9 = 4.3 

Well4: R4-Rb= 17.7-7.9=9.8 

WellS: R s-R b = 19.3-7.9 = 11.4 

Since the average rank differences at wells 4 and 5 exceed the critical difference, there 
is significant evidence of contamination at wells 4 and 5, but not at wel13. 

3.2 WILCOXON RANK-SUM TEST FOR TWO GROUPS 

When a single compliance well group is being compared to background data and a non

parametric test is needed, the Kruskal-Wallis procedure should be replaced by the Wilcoxon 

Rank-Sum test (Lehmann, 1975; also known as the two-sample Mann-Whitney U test). For most 

ground-water applications, the Wilcoxon test should be used whenever the proportion of 

nondetects in the combined data set exceeds 15 percent. However, to provide valid results, do 
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not use the Wilcoxon test unless the compliance well and background data groups both contain at 

least four samples each. 

To run the Wilcoxon Rank-Sum Test, use the following algorithm. Combine the compliance 

and background data and rank the ordered values from 1 toN. Assume there are n compliance 

samples and m background samples so that N=m+n. Denote the ranks of the compliance samples 
by Ci and the ranks of the background samples by Bi. Then add up the ranks of the compliance 

samples and subtract n(n+l)/2 to get the Wilcoxon statistic W: 

The rationale of the Wilcoxon test is that if the ranks of the compliance data are quite large 

relative to the background ranks, then the hypothesis that the compliance and background values 

came from the same population should be rejected. Large values of the statistic W give evidence 

of contamination at the compliance well site. 

To find the critical value of W, a Normal approximation to its distribution is used. The 

expected value and standard deviation of W under the null hypothesis of no contamination are 

given by the formulas 

1 
E(W)=-zmn; SD(W) = J-1 

mn(N + 1) 
12 

An approximate Z-score for the Wilcoxon Rank-Sum Test then follows as: 

1 W-E(W)--
Zz 2 

SD(W) 

The factor of 112 in the numerator serves as a continuity correction since the discrete distribution 

of the statistic W is being approximated by the continuous Normal distribution. 

Once an approximate Z-score has been computed, it may be compared to the upper 0.01 

percentile of the standard Normal distribution, zm=2.326, in order to determine the statistical 

significance of the test. If the observed Z-score is greater than 2.326, the null hypothesis may be 
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rejected at the 1 percent significance level, suggesting that there is significant evidence of 

contamination at the compliance well site. 

EXAMPLE 13 

The table below contains copper concentration data (ppb) found in water samples at a 

monitoring facility. Wells 1 and 2 are background wells and well 3 is a single compliance well 

suspected of contamination. Calculate the Wilcoxon Rank-Sum Test on these data. 

SOLUTION 

Month 

1 
2 
3 
4 
5 
6 

Copper Concentration (ppb) 

Background 

Wel11 Well2 

4.2 
5.8 

11.3 
7.0 
7.3 
8.2 

5.2 
6.4 

11.2 
11.5 
10.1 
9.7 

Compliance 

We113 

9.4 
10.9 
14.5 
16.1 
21.5 
17.6 

Step 1. Rank the N=18 observations from 1 to 18 (smallest to largest) as in the following table. 

Month 

1 
2 
3 
4 
5 
6 

Ranks of Copper Concentrations 

Background Compliance 

Wel11 Well 2 Well 3 

1 
3 

13 
5 
6 
7 

2 
4 

12 
14 
10 
9 

8 
11 
15 
16 
18 
17 

Step 2. Compute the Wilcoxon statistic by adding up the compliance well ranks and subtracting 
n(n+1)/2, so that W=85-21=64. 

Step 3. Compute the expected value and standard deviation ofW. 
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1 
E (W) = - rnn = 36 

2 

SD(W) = /_!_ rnn (N + 1) = .JTI4 = 10.677 
~12 

Step 4. Form the approximate Z-score. 

1 W -E(W) --
z"' 2 = 64-36-0.5 = 2.576 

SD(W) 10.677 

Step 5. Compare the observed Z-score to the upper 0.01 percentile of the Normal distribution. 
Since Z=2.576>2.326=z.ol. there is significant evidence of contamination at the 
compliance well at the 1 percent significance level. 

3.2.1 Handling Ties in the Wilcoxon Test 

Tied observations in the Wilcoxon test are handled in similar fashion to the Kruskal-Wallis 

procedure. First, midranks are computed for all tied values. Then the Wilcoxon statistic is 

computed as before but with a slight difference. To form the approximate Z-score, an adjustment 

is made to the formula for the standard deviation of W in order to account for the groups of tied 

values. The necessary formula (Lehmann, 1975) is: 

so· (W) = rnn (N + 1) ( 1- L? t~- ti ) 
12 l=l N 3

- N 

where, as in the Kruskal-Wallis method, g equals the number of groups of distinct tied 
observations and ti represents the number of tied values in the ith group. 
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4. STATISTICAL INTERVALS: CONFIDENCE, 
TOLERANCE, AND PREDICTION 

Three types of statistical intervals are often constructed from data: Confidence intervals, 

Tolerance intervals, and Prediction intervals. Though often confused, the interpretations and uses 

of these intervals are quite distinct. The most common interval encountered in a course on 

statistics is a Confidence interval for some parameter of the distribution (e.g., the population 

mean). The interval is constructed from sample data and is thus a random quantity. This means 

that each set of sample data will generate a different Confidence interval, even though the 

algorithm for constructing the interval stays the same every time. 

A Confidence interval is designed to contain the specified population parameter (usually the 

mean concentration of a well in ground-water monitoring) with a designated level of confidence 

or probability, denoted as 1-a.. The interval will fail to include the true parameter in 

approximately a percent of the cases where such intervals are constructed. 

The usual Confidence interval for the mean gives information about the average 

concentration level at a particular well or group of wells. It offers little information about the 

highest or most extreme sample concentrations one is likely to observe over time. Often, it is 

those extreme values one wants to monitor to be protective of human health and the environment. 

As such, a Confidence interval generally should be used only in two situations for ground-water 

data analysis: (1) when directly specified by the permit or (2) in compliance monitoring, when 

downgradient samples are being compared to a Ground-Water Protection Standard (GWPS) 

representing the average of onsite background data, as is sometimes the case with an Alternate 

Contaminant Level (ACL) . In other situations it is usually desirable to employ a Tolerance or 

Prediction interval. 

A Tolerance interval is designed to contain a designated proportion of the population (e.g., 

95 percent of all possible sample measurements). Since the interval is constructed from sample 

data, it also is a random interval. And because of sampling fluctuations, a Tolerance interval can 

contain the specified proportion of the population only with a certain confidence level. Two 

coefficients are associated with any Tolerance interval. One is the proportion of the population 

that the interval is supposed to contain, called the coverage. The second is the degree of 

confidence with which the interval reaches the specified coverage. This is known as the tolerance 

coefficient. A Tolerance interval with coverage of 95 percent and a tolerance coefficient of 95 
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percent is constructed to contain, on average, 95 percent of the distribution with a probability of 

95 percent. 

Tolerance intervals are very useful for ground-water data analysis, because in many 

situations one wants to ensure that at most a small fraction of the compliance well sample 

measurements exceed a specific concentration level (chosen to be protective of human health and 

the environment). Since a Tolerance interval is designed to cover all but a small percentage of the 

population measurements, observations should very rarely exceed the upper Tolerance limit when 

testing small sample sizes. The upper Tolerance limit allows one to gauge whether or not too 

many extreme concentration measurements are being sampled from compliance point wells. 

Tolerance intervals can be used in detection monitoring when comparing compliance data to 

background values. They also should be used in compliance monitoring when comparing 

compliance data to certain Ground-Water Protection Standards. Specifically, the tolerance 

interval approach is recommended for comparison with a Maximum Contaminant Level (MCL) or 

with an ACL if the ACL is derived from health-based risk data. 

Prediction intervals are constructed to contain the next sample value(s) from a population or 

distribution with a specified probability. That is, after sampling a background well for some time 

and measuring the concentration of an analyte, the data can be used to construct an interval that 

will contain the next analyte sample or samples (assuming the distribution has not changed). A 

Prediction interval will thus contain a future value or values with specified probability. Prediction 

intervals can also be constructed to contain the average of several future observations. 

Prediction intervals are probably most useful for two kinds of detection monitoring. The 

first kind is when compliance point well data are being compared to background values. In this 

case the Prediction interval is constructed from the background data and the compliance well data 

are compared to the upper Prediction limits. The second kind is when intrawell comparisons are 

being made on an uncontaminated well. In this case, the Prediction interval is constructed on past 

data sampled from the well, and used to predict the behavior of future samples from the same 

well. 

In summary, a Confidence interval usually contains an average value, a Tolerance interval 

contains a proportion of the population, and a Prediction interval contains one or more future 

observations. Each has a probability statement or "confidence coefficient" associated with it. For 

further explanation of the differences between these interval types, see Hahn (1970). 
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One should note that all of these intervals assume that the sample data used to construct the 

intervals are Normally distributed. In light of the fact that much ground-water concentration data 

is better modeled by a Lognormal distribution, it is recommended that tests for Normality be run 

on the logarithms of the original data before constructing the random intervals. If the data follow 

the Lognormal model, then the intervals should be constructed using the logarithms of the sample 

values. In this case, the limits of these intervals should not be compared to the original 

compliance data or GWPS. Rather, the comparison should involve the logged compliance data or 

logged GWPS. When neither the Normal or Lognormal models can be justified, a non-parametric 

version of each interval may be utilized. 

4.1 TOLERANCE INTERVALS 

In detection monitoring, the compliance point samples are assumed to come from the same 

distribution as the background values until significant evidence of contamination can be shown. 

To test this hypothesis, a 95 percent coverage Tolerance interval can be constructed on the 

background data. The background data should first be tested to check the distributional 

assumptions. Once the interval is constructed, each compliance sample is compared to the upper 

Tolerance limit. If any compliance point sample exceeds the limit, the well from which it was 

drawn is judged to have significant evidence of contamination (note that when testing a large 

number of samples, the nature of a Tolerance interval practically ensures that a few measurements 

will be above the upper Tolerance limit, even when no contamination has occurred. In these 

cases, the offending wells should probably be resampled in order to verify whether or not there is 

definite evidence of contamination.) 

If the Tolerance limit has been constructed using the logged background data, the 

compliance point samples should first be logged before comparing with the upper Tolerance limit. 

The steps for computing the actual Tolerance interval in detection monitoring are detailed in the 

Interim Final Guidance on pp. 5-20 to 5-24. One point about the table of factors K used to adjust 

the width of the Tolerance interval is that these factors are designed to provide at least 95% 

coverage of the population. Applied over many data sets, the average coverage of these intervals 

will often be close to 98% or more (see Guttman, 1970). To construct a one-sided upper 

Tolerance interval with average coverage of (1-~)%, the K multiplier can be computed directly 

with the aid of a Student's t-distribution table. In this case, the formula becomes 
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where the t-value represents the (1-~)th upper percentile of the t-distribution with (n-1) degrees 

of freedom. 

In compliance monitoring, the Tolerance interval is calculated on the compliance point data, 

so that the upper one-sided Tolerance limit may be compared to the appropriate Ground-Water 

Protection Standard (i.e., MCL or ACL). If the upper Tolerance limit exceeds the fixed standard, 

and especially if the Tolerance limit has been constructed to have an average coverage of 95% as 

described above, there is significant evidence that as much as 5 percent or more of all the 

compliance well measurements will exceed the limit and consequently that the compliance point 

wells are in violation of the facility permit. The algorithm for computing Tolerance limits in 

compliance monitoring is given on pp. 6-11 to 6-15 ofthe Interim Final Guidance. 

EXAMPLE 14 

The table below contains data that represent chrysene concentration levels (ppb) found in 

water samples obtained from the five compliance wells at a monitoring facility. Compute the 

upper Tolerance limit at each well for an average of 95% coverage with 95% confidence and 

determine whether there is evidence of contamination. The alternate concentration limit (ACL) is 

80 ppb. 

Chrysene Concentration (ppb) 

Month Weill Wel12 We113 Well4 WellS 

1 19.7 10.2 68.0 26.8 47.0 
2 39.2 7.2 48.9 17.7 30.5 
3 7.8 16.1 30.1 31.9 15.0 
4 12.8 5.7 38.1 22.2 23.4 

Mean 19.88 9.80 46.28 24.65 28.98 
SD 13.78 4.60 16.40 6.10 13.58 

SOLUTION 

Step 1. Before constructing the tolerance intervals, check the distributional assumptions. The 
algorithm for a parametric Tolerance interval assumes that the data used to compute the 
interval are Normally distributed. Because these data are more likely to be Lognormal 
in distribution than Normal, check the assumptions on the logarithms of the original 
data given in the table below. Since each well has only four observations, Probability 
Plots are not likely to be informative. The Shapiro-Wilk or Probability Plot Correlation 

53 



Draft 

Month 

1 
2 
3 
4 

Mean 
SD 

Coefficient tests can be run, but in this example only the Skewness Coefficient is 
examined to ensure that gross departures from Lognormality are not missed. 

Logged Chrysene Concentration [log(ppb)] 

Well1 Well2 Well3 Well4 WellS 

2.98 2.32 4.22 3.29 3.85 
3.67 1.97 3.89 2.87 3.42 
2.05 2.78 3.40 3.46 2.71 
2.55 1.74 3.64 3.10 3.15 

2.81 2.20 3.79 3.18 3.28 
0.68 0.45 0.35 0.25 0.48 

Step 2. The Skewness Coefficients for each well are given in the following table. Since none of 
the coefficients is greater than 1 in absolute value, approximate Lognormality (that is, 
Normality of the logged data) is assumed for the purpose of constructing the tolerance 
intervals. 

Well Skewness I Skewness I 
1 .210 .210 

2 .334 .334 

3 .192 .192 

4 -.145 .145 

5 -.020 .020 

Step 3. Compute the tolerance interval for each compliance well using the logged concentration 
data. The means and SDs are given in the second table above. 

Step 4. The tolerance factor for a one-sided Normal tolerance interval with an average of 95% 
coverage with 95% probability and n=4 observations is given by 

=t3,.05~1+~ =2.631 

The upper tolerance limit is calculated below for each of the five wells. 

Well1 2.81+2.631(0.68)= 4.61log(ppb) 
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Wel12 

We113 

We114 

We115 

2.20+2.631(0.45)= 3.38log(ppb) 

3.79+2.631(0.35)= 4.71log(ppb) 

3.18+2.631(0.25)= 3.85 log(ppb) 

3.28+2.631(0.48)= 4.54log(ppb) 

Step 5. Compare the upper tolerance limit for each well to the logarithm of the ACL, that is 
log(80)=4.38. Since the upper tolerance limits for wells 1, 3, and 5 exceed the logged 
ACL of 4.38 log(ppb ), there is evidence of chrysene contamination in wells 1, 3, and 5. 

4.1.1 Non-parametric Tolerance Intervals 

When the assumptions of Normality and Lognormality cannot be justified, especially when a 

significant portion of the samples are nondetect, the use of non-parametric tolerance intervals 

should be considered. The upper Tolerance limit in a non-parametric setting is usually chosen as 

an order statistic of the sample data (see Guttman, 1970), commonly the maximum value or 

maybe the second largest value observed. As a consequence, non-parametric intervals should be 

constructed only from wells that are not contaminated. Because the maximum sample value is 

often taken as the upper Tolerance limit, non-parametric Tolerance intervals are very easy to 

construct and use. The sample data must be ordered, but no ranks need be assigned to the 

concentration values other than to determine the largest measurements. This also means that 

nondetects do not have to be uniquely ordered or handled in any special manner. 

One advantage to using the maximum concentration instead of assigning ranks to the data is 

that non-parametric intervals (including Tolerance intervals) are sensitive to the actual magnitudes 

of the concentration data. Another plus is that unless all the sample data are nondetect, the 

maximum value will be a detected concentration, leading to a well-defmed upper Tolerance limit. 

Once an order statistic of the sample data (e.g., the maximum value) is chosen to represent 

the upper tolerance limit, Guttman (1970) has shown that the coverage of the interval, 

constructed repeatedly over many data sets, has a Beta probability density with cumulative 

distribution 

( ) rt r (n + 1) n-m ( )m-1 d 
It n-m+l,m =J ( ) ( )u 1-u u 0 rn-m+lrm 
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where n=# samples in the data set and m=[(n+ 1)-(rank of upper tolerance limit value)]. If the 

maximum sample value is selected as the tolerance limit, its rank is equal to n and so m= 1. If the 

second largest value is chosen as the limit, its rank would be equal to (n-1) and so m=2. 

Since the Beta distribution is closely related to the more familiar Binomial distribution, 

Guttman has shown that in order to construct a non-parametric tolerance interval with at least ~% 

coverage and (1-a.) confidence probability, the number of (background) samples must be chosen 

such that 

Table A-6 in Appendix A provides the minimum coverage levels with 95% confidence for 

various choices of n, using either the maximum sample value or the second largest measurement 

as the tolerance limit. As an example, with 16 background measurements, the minimum coverage 

is ~=83% if the maximum background value is designated as the upper Tolerance limit and 

~=74% if the Tolerance limit is taken to be the second largest background value. In general, 

Table A-6 illustrates that if the underlying distribution of concentration values is unknown. more 

background samples are needed compared to the parametric setting in order to construct a 

tolerance interval with sufficiently high coverage. Parametric tolerance intervals do not require as 

many background samples precisely because the form of the underlying distribution is assumed to 

be known. 

Because the coverage of the above non-parametric Tolerance intervals follows a Beta 

distribution, it can also be shown that the average (not the minimum as discussed above) level of 

coverage is equal to 1-[m/(n+l)] (see Guttman, 1970). In particular, when the maximum sample 

value is chosen as the upper tolerance limit, m= 1, and the expected coverage is equal to n/(n+ 1 ). 

This implies that at least 19 background samples are necessary to achieve 95% coverage on 

average. 

EXAMPLE 15 

Use the following copper background data to establish a non-parametric upper Tolerance 

limit and determine if either compliance well shows evidence of copper contamination. 

Copper Concentration (ppb) 
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Background Wells Compliance Wells 

Month Welll Well2 Well3 Well4 WellS 

1 <5 9.2 <5 
2 <5 <5 5.4 
3 7.5 <5 6.7 
4 <5 6.1 <5 
5 <5 8.0 <5 6.2 <5 
6 <5 5.9 <5 <5 <5 
7 6.4 <5 <5 7.8 5.6 
8 6.0 <5 <5 10.4 <5 

SOLUTION 

Step 1. Examine the background data in Wells 1, 2, and 3 to determine that the maximum 
observed value is 9.2 ppb. Set the 95% confidence upper Tolerance limit equal to this 
value. Because 24 background samples are available, Table A-6 indicates that the 
minimum coverage is equal to 88% (the expected average coverage, however, is equal 
to 24/25=96%). To increase the coverage level, more background samples would have 
to be collected. 

Step 2. Compare each sample in compliance Wells 4 and 5 to the upper Tolerance limit. Since 
none of the measurements at Well 5 is above 9.2 ppb, while one sample from Well4 is 
above the limit, conclude that there is significant evidence of copper contamination at 
Well4 but not WellS. 

4.2 PREDICTION INTERVALS 

When comparing background data to compliance point samples, a Prediction interval can be 

constructed on the background values. If the distributions of background and compliance point 

data are really the same, all the compliance point samples should be contained below the upper 

Prediction interval limit. Evidence of contamination is indicated if one or more of the compliance 

samples lies above the upper Prediction limit. 

With intrawell comparisons, a Prediction interval can be computed on past data to contain a 

specified number of future observations from the same well, provided the well has not been 

previously contaminated. If any one or more of the future samples falls above the upper 

Prediction limit, there is evidence of recent contamination at the well. The steps to calculate 

parametric Prediction intervals are given on pp. 5-24 to 5-28 of the Interim Final Guidance. 
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EXAMPLE 16 

The data in the table below are benzene concentrations measured at a groundwater 

monitoring facility. Calculate the Prediction interval and determine whether there is evidence of 

contamination. 

Background Well Data 

Sampling Date 

Month 1 

Month2 

Month3 

SOLUTION 

Benzene 
Concentration (ppb) 

12.6 
30.8 
52.0 
28.1 
33.3 
44.0 
3.0 
12.8 

58.1 
12.6 
17.6 
25.3 

n=l2 
Mean=27.52 

SD=17.10 

Compliance Well Data 

Sampling Date 

Month4 

Month 5 

Benzene 
Concentration (ppb) 

48.0 
30.3 
42.5 
15.0 

n=4 
Mean=33.95 

SD=14.64 

47.6 
3.8 
2.6 
51.9 

n=4 
Mean=26.48 

SD=26.94 

Step 1. First test the background data for approximate Normality. Only the background data 
are included since these values are used to construct the Prediction interval. 

Step 2. A Probability Plot of the 12 background values is given below. The plot indicates an 
overall pattern that is reasonably linear with some modest departures from Normality. 
To further test the assumption of Normality, run the Shapiro-Wilk test on the 
background data. 
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PROBABILITY PLOT 

0 10 20 30 40 50 60 

BENZENE (ppb) 

Step 3. List the data in ascending and descending order as in the following table. Also calculate 
the differences X(n-i+lfX(i) and multiply by the coefficients au-i+l taken from Table A-1 
to get the components of vector bi used to calculate the Shapiro-Wilk statistic (W). 

59 



Draft 

X(i) X(n-i+l) an-i+l bj 

1 3.0 58.1 0.548 30.167 
2 12.6 52.0 0.333 13.101 
3 12.6 44.0 0.235 7.370 
4 12.8 33.3 0.159 3.251 
5 17.6 30.8 0.092 1.217 
6 25.3 28.1 0.030 0.085 
7 28.1 25.3 b=55.191 
8 30.8 17.6 
9 33.3 12.8 

10 44.0 12.6 
11 52.0 12.6 
12 58.1 3.0 

Step 4. Sum the components bi in column 5 to get quantity b. Compute the standard deviation 

of the background benzene values. Then the Shapiro-Wilk statistic is given as 

w _ r b 1
2 

= r 55.191 1
2 

= 0.947 . 
- Lso.rn=t J Ll7.101.JI1 J 

Step 5. The critical value at the 5% level for the Shapiro-Wilk test on 12 observations is 0.859. 
Since the calculated value of W=0.947 is well above the critical value, there is no 
evidence to reject the assumption of Normality. 

Step 6. Compute the Prediction interval using the original background data. The mean and 
standard deviation of the 12 background samples are given by 27.52 ppb and 17.10 
ppb, respectively. 

Step 7. Since there are two future months of compliance data to be compared to the Prediction 
limit, the number of future sampling periods is k=2. At each sampling period, a mean 
of four independent samples will be computed, so m=4 in the prediction interval 
formula (see Interim Final Guidance, p. 5-25). The Bonferroni t-statistic, t01 ,2,.9S)• 

with k=2 and 11 df is equivalent to the usual t-statistic at the .975 level with 11 df, i.e., 
t 11,.975=2.20 1. 

Step 8. Compute the upper one-sided Prediction limit (UL) using the formula: 

- JR1 X+t S -+-(n-l,k,.95) m n 

Then the UL is given by: 
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Step 9. Compare the UL to the compliance data. The means of the four compliance well 
observations for months 4 and 5 are 33.95 ppb and 26.48 ppb, respectively. Since the 
mean concentrations for months 4 and 5 are below the upper Prediction limit, there is 
no evidence of recent contamination at the monitoring facility. 

4.2.1 Non-parametric Prediction Intervals 

When the parametric assumptions of a Normal-based Prediction limit cannot be justified, 

often due to the presence of a significant fraction of nondetects, a non-parametric Prediction 

interval may be considered instead. A non-parametric upper Prediction limit is typically 

constructed in the same way as a non-parametric upper Tolerance limit, that is, by estimating the 

limit to be the maximum value of the set of background samples. 

The difference between non-parametric Tolerance and Prediction limits is one of 

interpretation and probability. Given n background measurements and a desired confidence level, 

a non-parametric Tolerance interval will have a certain coverage percentage. With high 

probability, the Tolerance interval is designed to miss only a small percentage of the samples from 

downgradient wells. A Prediction limit, on the other hand, involves the confidence probability 

that the next future sample or samples will definitely fall below the upper Prediction limit. In this 

sense, the Prediction limit may be thought of as a 100% coverage Tolerance limit for the next k 

future samples. 

As Guttman (1970) has indicated, the confidence probability associated with predicting that 

the next single observation from a downgradient well will fall below the upper Prediction limit -

estimated as the maximum background value -- is the same as the expected coverage of a similarly 

constructed upper Tolerance limit, namely (1-a)=n/(n+l). Furthermore, it can be shown from 

Gibbons (1991b) that the probability of having k future samples all fall below the upper non

parametric Prediction limit is (1-a)=n/(n+k). Table A-7 in Appendix A lists these confidence 

levels for various choices of n and k. The false positive rate associated with a single Prediction 

limit can be computed as one minus the confidence level. 

Balancing the ease with which non-parametric upper Prediction limits are constructed is the 

fact that, given fixed numbers of background samples and future sample values to be predicted, 

the maximum confidence level associated with the Prediction limit is also fixed. To increase the 
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level of confidence, the only choices are to 1) decrease the number of future values to be 

predicted at any testing period, or 2) increase the number of background samples used in the test. 

Table A-7 can be used along these lines to plan an appropriate sampling strategy so that the false 

positive rate can be minimized and the confidence probability maximized to a desired level. 

EXAMPLE 17 

Use the following arsenic data from a monitoring facility to compute a non-parametric upper 

Prediction limit that will contain the next 2 monthly measurements from a downgradient well and 

determine the level of confidence associated with the Prediction limit. 

Arsenic Concentrations (ppb) 

Background Wells Compliance 

Month We111 Well2 We113 We114 

1 <5 7 <5 
2 <5 6.5 <5 
3 8 <5 10.5 
4 <5 6 <5 
5 9 12 <5 8 
6 10 <5 9 14 

SOLUTION 

Step 1. Determine the maximum value of the background data and use this value to estimate 
the upper Prediction limit. In this case, the Prediction limit is set to the maximum value 
of the n=18 samples, or 12 ppb. As is true of non-parametric Tolerance intervals, only 
uncontaminated wells should be used in the construction of Prediction limits. 

Step 2. Compute the confidence level and false positive rate associated with the Prediction 
limit. Since two future samples are being predicted and n=18, the confidence level is 
found to be n/(n+k)=l8/20=90%. Consequently, the Type I error or false positive rate 
is equal to ( 1-.90)= 10%. If a lower false positive rate is desired, the number of 
background samples used in the test must be enlarged. 

Step 3. Compare each of the downgradient samples against the upper Prediction limit. Since 
the value of 14 ppb for month 2 exceeds the limit, conclude that there is significant 
evidence of contamination at the downgradient well at the 10% level of significance. 
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4.3 CONFIDENCE INTERVALS 

Confidence intervals should only be constructed on data collected during compliance 

monitoring, in particular when the Ground-Water Protection Standard (GWPS) is an ACL 

computed from the average of background samples. Confidence limits for the average 

concentration levels at compliance wells should not be compared to MCLs. Unlike a Tolerance 

interval, Confidence limits for an average do not indicate how often individual samples will exceed 

the MCL. Conceivably, the lower Confidence limit for the mean concentration at a compliance 

well could fall below the MCL, yet 50 percent or more of the individual samples might exceed the 

MCL. Since an MCL is designed to set an upper bound on the acceptable contamination, this 

would not be protective of human health or the environment. 

When comparing individual compliance wells to an ACL derived from average background 

levels, a lower one-sided 99 percent Confidence limit should be constructed. If the lower 

Confidence limit exceeds the ACL, there is significant evidence that the true mean concentration 

at the compliance well exceeds the GWPS and that the facility permit has been violated. Again, in 

most cases, a Lognormal model will approximate the data better than a Normal distribution 

model. It is therefore recommended that the initial data checking and analysis be performed on 

the logarithms of the data. If a Confidence interval is constructed using logged concentration 

data, the lower Confidence limit should be compared to the logarithm of the ACL rather than the 

original GWPS. Steps for computing Confidence intervals are given on pp. 6-3 to 6-11 of the 

Interim Final Guidance. 
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5. STRATEGIES FOR MULTIPLE COMPARISONS 

5.1 BACKGROUND OF PROBLEM 

Multiple comparisons occur whenever more than one statistical test is performed during any 

given monitoring or evaluation period. These comparisons can arise as a result of the need to test 

multiple downgradient wells against a pool of upgradient background data or to test several 

indicator parameters for contamination on a regular basis. Usually the same statistical test is 

performed in every comparison, each test having a fixed level of confidence (1-a), and a 

corresponding false positive rate, a. 

The false positive rate (or Type I error) for an individual comparison is the probability that 

the test will falsely indicate contamination, i.e., that the test will "trigger," though no 

contamination has occurred. If ground-water data measurements were always constant in the 

absence of contamination, false positives would never occur. But ground-water measurements 

typically vary, either due to natural variation in the levels of background concentrations or to 

variation in lab measurement and analysis. 

Applying the same test to each comparison is acceptable if the number of comparisons is 

small, but when the number of comparisons is moderate to large the false positive rate associated 

with the testing network as a whole (that is, across all comparisons involving a separate statistical 

test) can be quite high. This means that if enough tests are run, there will be a significant chance 

that at least one test will indicate contamination, even if no actual contamination has occurred. As 

an example, if the testing network consists of 20 separate comparisons (some combination of 

multiple wells and/or indicator parameters) and a 99% confidence level Prediction interval limit is 

used on each comparison, one would expect an overall network-wide false positive rate of over 

18%, even though the Type I error for any single comparison is only 1%. This means there is 

nearly 1 chance in 5 that one or more comparisons will falsely register potential contamination 

even if none has occurred. With 100 comparisons and the same testing procedure, the overall 

network-wide false positive rate jumps to more than 63%, adding additional expense to verify the 

lack of contamination at falsely triggered wells. 

To lower the network-wide false positive rate, there are several important considerations. 

As noted in Section 2.2.4, only those constituents that have been shown to be reliable indicators 

of potential contamination should be statistically tested on a regular basis. By limiting the number 

of tested constituents to the most useful indicators, the overall number of statistical comparisons 
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that must be made can be reduced, lowering the facility-wide false alarm rate. In addition, 

depending on the hydrogeology of the site, some indicator parameters may need to be tested only 

at one (or a few adjacent) regulated waste units, as opposed to testing across the entire facility, as 

long as the permit specifies a common point of compliance, thus further limiting the number of 

total statistical comparisons necessary. 

One could also try to lower the Type I error applied to each individual comparison. 

Unfortunately, for a given statistical test in general, the lower the false positive rate, the lower the 

power of the test to detect real contamination at the well. If the statistical power drops too much, 

real contamination will not be identified when it occurs, creating a situation not protective of the 

environment or human health. Instead, alternative testing strategies can be considered that 

specifically account for the number of statistical comparisons being made during any evaluation 

period. All alternative testing strategies should be evaluated in light of two basic goals: 

1. Is the network-wide false positive rate (across all constituents and wells being 
tested) acceptably low? and 

2. Does the testing strategy have adequate statistical power to detect real 
contamination when it occurs? 

To establish a standard recommendation for the network-wide overall false positive rate, it 

should be noted that for some statistical procedures, EPA specifications mandate that the Type I 

error for any individual comparison be at least 1 %. The rationale for this minimum requirement is 

motivated by statistical power. For a given test, if the Type I error is set too low, the power of 

the test will dip below "acceptable" levels. EPA was not able to specify a minimum level of 

acceptable power within the regulations because to do so would require specification of a 

minimum difference of environmental concern between the null and alternative hypotheses. 

Limited current knowledge about the health and/or environmental effects associated with 

incremental changes in concentration levels of Appendix IX constituents greatly complicates this 

task. Therefore, minimum false positive rates were adopted for some statistical procedures until 

more specific guidance could be recommended. EPA's main objective, however, as in the past, is 

to approve tests that have adequate statistical power to detect real contamination of ground 

water, and not to enforce minimum false positive rates. 

This emphasis is evident in §264.98(g)(6) for detection monitoring and §264.99(i) for 

compliance monitoring. Both of these provisions allow the owner or operator to demonstrate that 

the statistically significant difference between background and compliance point wells or between 

compliance point wells and the Ground-Water Protection Standard is an artifact caused by an 
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error in sampling, analysis, statistical evaluation, or natural variation in ground-water chemistry. 

To make the demonstration that the statistically significant difference was caused by an error in 

sampling, analysis, or statistical evaluation, re-testing procedures that have been approved by the 

Regional Administrator can be written into the facility permit, provided their statistical power is 

comparable to the EPA Reference Power Curve given below. 

For large monitoring networks, it is almost impossible to maintain a low network-wide 

overall false positive rate if the Type I errors for individual comparisons must be kept above 1 %. 

As will be seen, some alternative testing strategies can achieve a low network-wide false positive 

rate while maintaining adequate power to detect contamination. EPA therefore recommends hat 

instead of the 1% criterion for individual comparisons, the overall network-wide false positive 

rate (across all wells and constituents) of any alternative testing strategy should be kept to 

approximately 5% for each monitoring or evaluation period, while maintaining statistical power 

comparable to the procedure below. 

The other goal of any testing strategy should be to maintain adequate statistical power for 

detecting contamination. Technically, power refers to the probability that a statistical testing 

procedure will register and identify evidence of contamination when it exists. However, power is 

typically defined with respect to a single comparison, not a network of comparisons. Since some 

testing procedures may identify contamination more readily when several wells in the network are 

contaminated as opposed to just one or two, it is suggested that all testing strategies be compared 

on the following more stringent, but common, basis. Let the effective power of a testing 

procedure be defined as the probability of detecting contamination in the monitoring network 

when one and only one well is contaminated with a single constituent. Note that the effective 

power is a conservative measure of how a testing regimen will perform over the network, because 

the test must uncover one contaminated well among many clean ones (i.e., like "finding a needle 

in a haystack"). 

To establish a recommended standard for the statistical power of a testing strategy, it must 

be understood that the power is not single number, but rather a function of the level of 

contamination actually present. For most tests, the higher the level of contamination, the higher 

the statistical power; likewise, the lower the contamination level, the lower the power. As such, 

when increasingly contaminated ground water passes a particular well, it becomes easier for the 

statistical test to distinguish background levels from the contaminated ground water; 

consequently, the power is an increasing function of the contamination level. 
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Perhaps the best way to describe the power function associated with a particular testing 

procedure is via a graph, such as the example below of the power of a standard Normal-based 

upper Prediction limit with 99% confidence. The power in percent is plotted along the y-axis 

against the standardized mean level of contamination along the x-axis. The standardized 

contamination levels are in units of standard deviations above the baseline (estimated from 

background data), allowing different power curves to be compared across indicator parameters, 

wells, and so forth. The standardized units, ~. may be computed as 

~ = (Mean Contamination Level) - (Mean Background Level) 
(SD of Background Data) 

In some situations, the probability that contamination will be detected by a particular testing 

procedure may be difficult if not impossible to derive analytically and will have to be simulated on 

a computer. In these cases, the power is typically estimated by generating Normally-distributed 

random values at different mean levels and repeatedly simulating the test procedure. With enough 

repetitions a reliable power curve can be plotted (e.g., see figure below). 
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Notice that the power at .:1=0 represents the false positive rate of the test, because at that 

point no contamination is actually present and the curve is indicating how often contamination will 

be "detected" anyway. As long as the power at .:1=0 is approximately 5% (except for tests on an 

individual constituent at an individual well where the false positive rate should approximate 1%) 

and the rest of the power curve is acceptably high, the testing strategy should be adequately 

comparable to EPA standards. 

To determine an acceptable power curve for comparison to alternative testing strategies, the 

following EPA Reference Power Curve is suggested. For a given and fixed number of 

background measurements, and based on Normally-distributed data from a single downgradient 

well generated at various mean levels above background, the EPA Reference Power Curve will 

represent the power associated with a 99% confidence upper prediction limit on the next single 

future sample from the well (see figure above for n=16). 

Since the power of a test depends on several factors, including the background sample size, 

the type of test, and the number of comparisons, a different EPA Reference Power Curve will be 

associated with each distinct number of background samples. Power curves of alternative tests 

should only be compared to the EPA Reference Power Curve using a comparable number of 

background measurements. If the power of the alternative test is at least as high as the EPA 

reference, while maintaining an approximate 5% overall false positive rate, the alternative 

procedure should be acceptable. 

With respect to power curves, keep in mind three important considerations: 1) the power of 

any testing method can be increased merely by relaxing the false positive rate requirement, letting 

a become larger than 5%. This is why an approximate 5% alpha level is suggested as the 

standard guidance, to ensure fair power comparisons among competing tests and to limit the 

overall network-wide false positive rate. 2) The simulation of alternative testing methods should 

incorporate every aspect of the procedure, from initial screens of the data to final decisions 

concerning the presence of contamination. This is especially applicable to strategies that involve 

some form of retesting at potentially contaminated wells. 3) When the testing strategy 

incorporates multiple comparisons, it is crucial that the power be gauged by simulating 

contamination in one and only one indicator parameter at a single well (i.e., by measuring the 

effective power). As noted earlier, EPA recommends that power be defmed conservatively, 

forcing any test procedure to find "the needle in the haystack." 
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5.2 POSSIBLE STRATEGIES 

5.2.1 Parametric and Non-parametric ANOV A 

As described in the Interim Final Guidance, ANOV A procedures (either the parametric 

method or the Kruskal-Wallis test) allow multiple downgradient wells (but not multiple 

constituents) to be combined into a single statistical test, thus enabling the network-wide false 

positive rate for any single constituent to be kept at 5% regardless of the size ofthe network. The 

ANOV A method also maintains decent power for detecting real contamination, though only for 

small to moderately-sized networks. In large networks, even the parametric ANOV A has a 

difficult time finding the "needle in a haystack." The reason for this is that the ANOVA F-test 

combines all downgradient wells simultaneously, so that "clean" wells are mixed together with the 

single contaminated well, potentially masking the test's ability to detect the source of 

contamination .. 

Because of these characteristics, the ANOV A procedure may have poorer power for 

detecting a narrow plume of contamination which affects only one or two wells in a much larger 

network (say 20 or more comparisons). Another drawback is that a significant ANOVA test 

result will not indicate which well or wells is potentially contaminated without further post-hoc 

testing. Furthermore, the power of the ANOV A procedure depends significantly on having at 

least 3 to 4 samples per well available for testing. Since the samples must be statistically 

independent, collection of 3 or more samples at a given well may necessitate a several-month wait 

if the natural ground-water velocity at that well is low. In this case, it may be tempting to look 

for other strategies (e.g., Tolerance or Prediction intervals) that allow statistical testing of each 

new ground water sample as it is collected and analyzed. Finally, since the simple one-way 

ANOV A procedure outlined in the Interim Final Guidance is not designed to test multiple 

constituents simultaneously, the overall false positive rate will be approximately 5% 00 

constituent, leading to a potentially high overall network-wide false positive rate (across wells and 

constituents) if many constituents need to be tested. 

5.2.2 Retesting with Parametric Intervals 

One strategy alternative to ANOV A is a modification of approaches suggested by Gibbons 

(199la) and Davis and McNichols (1987). The basic idea is to adopt a two-phase testing 

strategy. First, new samples from each well in the network are compared, for each designated 

constituent parameter, against an upper Tolerance limit with pre-specified average coverage 
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(Note that the upper Tolerance limit will be different for each constituent). Since some 

constituents at some wells in a large network would be expected to fail the Tolerance limit even in 

the absence of contamination, each well that triggers the Tolerance limit is resampled and only 

those constituents that "triggered" the limit are retested via an upper Prediction limit (again 

differing by constituent). If one or more resamples fails the upper Prediction limit, the specific 

constituent at that well failing the test is deemed to have a concentration level significantly greater 

than background. The overall strategy is effective for large networks of comparisons (e.g., 100 or 

more comparisons), but also flexible enough to accommodate smaller networks. 

To design and implement an appropriate pair of Tolerance and Prediction intervals, one 

must know the number of background samples available and the number of comparisons in the 

network. Since parametric intervals are used, it is assumed that the background data are either 

Normal or can be transformed to an approximate Normal distribution. The tricky part is to 

choose an average coverage for the Tolerance interval and confidence level for the Prediction 

interval such that the twin goals are met of keeping the overall false positive rate to approximately 

5% and maintaining adequate statistical power. 

To derive the overall false positive rate for this retesting strategy, assume that when no 

contamination is present each constituent and well in the network behaves independently of other 
constituents and wells. Then if Ai denotes the event that well i is triggered falsely at some stage 

of the testing, the overall false positive rate across m such comparisons can be written as 

m 

totalol= Pr{A1 or A2 or K or A1 orK or Am)= 1- IJPr{AJ 
t~l 

where A i denotes the complement of event Ai. Since P{Ai} is the probability of not registering a 

false trigger at uncontaminated well i, it may be written as 

Pr{A1) = Pr{X1 :::;; TL) + Pr{X 1 > TL )x Pr{Y1 :::;; PL I X1 > TL) 

where Xi represents the original sample at well i, Yi represents the concentrations of one or more 

resamples at well i, TL and PL denote the upper Tolerance and Prediction limits respectively, and 

the right-most probability is the conditional event that all resample concentrations fall below the 

Prediction limit when the initial sample fails the Tolerance limit. 
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Letting x=Pr{Xi::;TL} and y=Pr{Yi::;PL I Xi>TL}, the overall false positive rate across m 

constituent-well combinations can be expressed as 

total d..= 1-lx + (1- x) ·yJ m 

As noted by Guttman (1970), the probability that any random sample will fall below the 

upper Tolerance limit (i.e., quantity x above) is equal to the expected or average coverage of the 

Tolerance interval. If the Tolerance interval has been constructed to have average coverage of 

95%, x=0.95. Then given a predetermined value for x, a fixed number of comparisons m, and a 

desired overall false positive rate a, we can solve for the conditional probability y as follows: 

~-X 
y= 

1-x 

If the conditional probability y were equal to the probability that the resample(s) for the ith 

constituent-well combination falls below the upper Prediction limit, one could fix a at, say, 5%, 

and construct the Prediction interval to have confidence level y. In that way, one could guarantee 

an expected network-wide false positive rate of 5%. Unfortunately, whether or not one or more 

resamples falls below the Prediction limit depends partly on whether the initial sample for that 

comparison eclipsed the Tolerance limit. This is because the same background data are used to 

construct both the Tolerance limit and the Prediction limit, creating a statistical dependence 

between the tests. 

The exact relationship between the conditional probability y and the unconditional 

probability Pr{Yi:5;PL} is not known; however, simulations of the testing strategy suggest that 

when the confidence level for the Prediction interval is equated to the above solution for y, the 

overall network-wide false positive rate turns out to be higher than 5%. How much higher 

depends on the number of background samples and also the number of downgradient 

comparisons. Even with a choice of y that guarantees an expected facility-wide false positive rate 

of 5%, the power characteristics of the resulting testing strategy are not necessarily equivalent to 

the EPA Reference Power Curve, again depending on the number of background samples and the 

number of monitoring well-constituent combinations in the network. 

In practice, to meet the selection criteria of 1) establishing an overall false positive rate of 

approximately 5% and 2) maintaining adequate statistical power, the confidence level chosen for 

the upper Prediction limit should be somewhat higher than the solution y to the preceding 
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equation. The table below provides recommended choices of expected coverage and confidence 

levels for the Tolerance interval-Prediction interval pair when using specific combinations of 

numbers of downgradient comparisons and background samples. In general, one should pick 

lower coverage Tolerance limits for smaller networks and higher coverage Tolerance limits for 

larger networks. That way (as can be seen in the table), the resulting Prediction limit confidence 

levels will be low enough to allow the construction of Prediction limits with decent statistical 

power. 

# 
COMPARISONS 

5 

20 

50 

100 

PARAMETRIC RETESTING STRATEGIES 

# BG TOLERANCE PREDICTION 
SAMPLES COVERAGE(%) LEVEL(%) 

8 
16 
16 
24 
24 

8 
16 
24 
16 
16 
24 
24 
16 
24 
24 

95 
95 
95 
95 
95 
95 
95 
95 
98 
99 
98 
99 
98 
99 
98 

90 
90 
85 
85 
90 
98 
97 
97 
97 
92 
95 
90 
98 
95 
98 

Note: **=strongly recommended 
* =recommended 

RATING 

** 
** 

* 
** 

* 
** 
** 

** 
** 
* 

** 

** 
* 
* 
* 

Only strategies that approximately met the selection criteria are listed in the table. It can be 

seen that some, but not all, of these strategies are strongly recommended. Those that are merely 

"recommended" failed in the simulations to fully meet one or both of the selection criteria. The 

performance of all the recommended strategies, however, should be adequate to correctly identify 

contamination while maintaining a modest facility-wide false positive rate. 

Once a combination of coverage and confidence levels for the Tolerance-Prediction interval 

pair is selected, the statistical power of the testing strategy should be estimated in order to 

compare with the EPA Reference Power Curve (particularly if the testing scenario is different 
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from those computed in this Addendum). Simulation results have suggested that the above 

method for choosing a two-phase testing regimen can offer statistical power comparable to the 

EPA Reference for almost any sized monitoring network (see power curves in Appendix B). 

Several examples of simulated power curves are presented in Appendix B. The range of 

downgradient wells tested is from 5 to 100 (note that the number of wells could actually represent 

the number of constituent-well combinations if testing multiple parameters), and each curve is 

based on either 8, 16, or 24 background samples. The y-axis of each graph measures the effective 

power of the testing strategy, i.e., the probability that contamination is detected when one and 

only one constituent at a single well has a mean concentration higher than background level. For 

each case, the EPA Reference Power Curve is compared to two different two-phase testing 

strategies. In the first case, wells that trigger the initial Tolerance limit are resampled once. This 

single resample is compared to a Prediction limit for the next future sample. In the second case, 

wells that trigger the Tolerance limit are resampled twice. Both resamples are compared to an 

upper Prediction limit for the next two future samples at that well. 

The simulated power curves suggest two points. First, with an appropriate choice of 

coverage and prediction levels, the two-phase retesting strategies have comparable power to the 

EPA Reference Power Curve, while maintaining low overall network-wide false positive rates. 

Second, the power of the retesting strategy is slightly improved by the addition of a second 

resample at wells that fail the initial Tolerance limit, because the sample size is increased. 

Overall, the two-phase testing strategy defined above--i.e., first screening the network of 

wells with a single upper Tolerance limit, and then applying an upper Prediction limit to resamples 

from wells which fail the Tolerance interval--appears to meet EPA's objectives of maintaining 

adequate statistical power for detecting contamination while limiting network-wide false positive 

rates to low levels. Furthermore, since each compliance well is compared against the interval 

limits separately, a narrow plume of contamination can be identified more efficiently than with an 

ANOVA procedure (e.g., no post-hoc testing is necessary to finger the guilty wells, and the two

phase interval testing method has more power against the "needle-in-a-haystack" contamination 

hypothesis). 

5.2.3 Retesting with Non-parametric Intervals 

When parametric intervals are not appropriate for the data at hand, either due to a large 

fraction of nondetects or a lack of fit to Normality or Lognormality, a network of individual 
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comparisons can be handled via retesting using non-parametric Prediction limits. The strategy is 

to establish a non-parametric prediction limit for each designated indicator parameter based on 

background samples that accounts for the number of well-constituent comparisons in the overall 

network. 

In order to meet the twin goals of maintaining adequate statistical power and a low overall 

rate of false positives, a non-parametric strategy must involve some level of retesting at those 

wells which initially indicate possible contamination. Retesting can be accomplished by taking a 

specific number of additional, independent samples from each well in which a specific constituent 

triggers the initial test and then comparing these samples against the non-parametric prediction 

limit for that parameter. 

Because more independent data is added to the overall testing procedure, retesting of 

additional samples, in general, enables one to make more powerful and more accurate 

determinations of possible contamination. Retesting does, however, involve a trade-off. Because 

the power of the test increases with the number of resamples, one must decide how quickly 

resamples can be collected to ensure 1) quick identification and confirmation of contamination 

and yet, 2) the statistical independence of successive resamples from any particular well. Do not 

forget that the performance of a non-parametric retesting strategy depends substantially on the 

independence of the data from each well. 

Two basic approaches to non-parametric retesting have been suggested by Gibbons (1990 

and 1991 b). Both strategies define the upper Prediction limit for each designated parameter to be 

the maximum value of that constituent in the set of background data. Consequently, the 

background wells used to construct the limits must be uncontaminated. After the Prediction limits 

have been calculated, one sample is collected from each downgradient well in the network. If any 

sample constituent value is greater than its upper prediction limit, the initial test is "triggered" and 

one or more resamples must be collected at that downgradient well on the constituent for further 

testing. 

At this point, the similarity between the two approaches ends. In his 1990 article, Gibbons 

computes the probability that at least one of m independent samples taken from each of k 

downgradient wells will be below (i.e., pass) the prediction limit. Them samples include both the 

initial sample and (m-1) resamples. Because retesting only occurs when the initial well sample fails 

the limit, a given well fails the overall test (initial comparison plus retests) only if all ( m-1) 
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resamples are above the prediction limit. If any resample passes the prediction limit, that well is 

regarded as showing no significant evidence of contamination. 

Initially, this first strategy may not appear to be adequately sensitive to mild contamination 

at a given downgradient well. For example, suppose two resamples are to be collected whenever 

the initial sample fails the upper prediction limit. If the initial sample is above the background 

maximum and one of the resamples is also above the prediction limit, the well can still be 

classified as "clean" if the other resample is below the prediction limit. Statistical power 

simulations (see Appendix B), however, suggest that this strategy will perform adequately under a 

number of monitoring scenarios. Still, EPA recognizes that a retesting strategy which might 

classify a well as "clean" when the initial sample .and a resample both fail the upper Prediction limit 

could offer problematic implications for permit writers and enforcement personnel. 

A more stringent approach was suggested by Gibbons in 1991. In that article (1991b), 

Gibbons computes, as "passing behavior," the probability that all but one ofm samples taken from 

each of k wells pass the upper prediction limit. Under this definition, if the initial sample fails the 

upper Prediction limit, all (m-1) resamples must pass the limit in order for well to be classified as 

"clean" during that testing period. Consequently, if any single resample falls above the background 

maximum, that well is judged as showing significant evidence of contamination. 

Either non-parametric retesting approach offers the advantage of being extremely easy to 

implement in field testing of a large downgradient well network. In practice, one has only to 

determine the maximum background sample to establish the upper prediction limit against which 

all other comparisons are made. Gibbons' 1991 retesting scheme offers the additional advantage 

of requiring less overall sampling at a given well to establish significant evidence of 

contamination. Why? If the testing procedure calls for, say, two resamples at any well that fails 

the initial prediction limit screen, retesting can end whenever either one of the two resamples falls 

above the prediction limit. That is, the well will be designated as potentially contaminated if the 

first resample fails the prediction limit even if the second resample has not yet been collected. 

In both of his papers, Gibbons offers tables that can be used to compute the overall 

network-wide false positive rate, given the number of background samples, the number of 

downgradient comparisons, and the number of retests for each comparison. It is clear that there is 

less flexibility in adjusting a non-parametric as opposed to a parametric prediction limit to achieve 

a certain Type I error rate. In fact, if only a certain number of retests are feasible at any given 

well (e.g., in order to maintain independence of successive samples), the only recourse to maintain 
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a low false positive rate is to collect a larger number of background samples. In this way, the 

inability to make parametric assumptions about the data illustrates why non-parametric tests are 

on the whole less efficient and less powerful than their parametric counterparts. 

Unfortunately, the power of these non-parametric retesting strategies is not explored m 

detail by Gibbons. To compare the power ofboth Gibbons' strategies against the EPA Reference 

Power Curve, Normally distributed data were simulated for several combinations of numbers of 

background samples and downgradient wells (again, if multiple constituents are being tested, the 

number of wells in the simulations may be regarded as the number of constituent-well 

combinations). Up to three resamples were allowed in the simulations for comparative purposes. 

EPA recognizes, however, that it will be feasible in general to collect only one or two independent 

resamples from any given well. Power curves representing the results of these simulations are 

given in Appendix B. For each scenario, the EPA Reference Power Curve is compared with the 

simulated powers of six different testing strategies. These strategies include collection of no 

resamples, one resample, two resamples under Gibbons' 1990 approach (designated as A on the 

curves) and his 1991 approach (labelled as B), and three resamples (under approaches A and B). 

Under the one resample strategy, a potentially contaminated compliance well is designated as 

"clean" if the resample passes the retest and "contaminated" otherwise. 

The following table lists the best-performing strategies under each scenario. As with the use 

of parametric intervals for retesting, the criteria for selecting the best-performing strategies 

required 1) an approximate 5% facility-wide false positive rate and 2) power equivalent to or 

better than the EPA Reference Power Curve. Because Normal data were used in these power 

simulations, more realistically skewed data would likely result in greater advantages for the non

parametric retesting strategies over the EPA Reference test. 

Examination of the table and the power curves in Appendix B shows that the number of 

background samples has an important effect on the recommended testing strategy. For instance, 

with 8 background samples in a network of at least 20 wells, the best performing strategies all 

involve collection of 3 resamples per "triggered" compliance well (EPA regards such a strategy as 

impractical for permitting and enforcement purposes at most RCRA facilities). It tends to be true 

that as the number of available background samples grows, fewer resamples are needed from each 

potentially contaminated compliance well to maintain adequate power. If, as is expected, the 

number of feasible, independent retests is limited, a facility operator may have to collect additional 

background measurements in order to establish an adequate retesting strategy. 

76 



Draft 

NON-PARAMETRIC RETESTING STRATEGIES 

# #BG 
WELLS SAMPLES STRATEGY REFERENCE RATING 

8 1 Resample * 
5 8 2 Resamples (A) Gibbons, 1990 ** 

16 1 Resample ** 
16 2 Resamples (B) Gibbons, 1991 ** 
24 2 ResamQles {B} Gibbons, 1991 ** 

8 2 Resamples (A) Gibbons, 1990 * 
16 1 Resample * 

20 16 2 Resamples (A) Gibbons, 1990 * 
24 1 Resample ** 
24 2 Resamples (B) Gibbons, 1991 * 
32 1 Resample * 
32 2 ResamQles {B2 Gibbons, 1991 ** 
16 2 Resamples (A) Gibbons, 1990 ** 

50 24 1 Resample * 
24 2 Resamples (A) Gibbons, 1990 * 
32 1 ResamQle ** 

100 16 2 Resamples (A) Gibbons, 1990 ** 
24 2 Resamples (A) Gibbons, 1990 * 
32 1 Resample * 

Note: **=very good performance *=good performance 

6. OTHER TOPICS 

6.1 CONTROL CHARTS 

Control Charts are an alternative to Prediction limits for performing either intrawell 

comparisons or comparisons to historically monitored background wells during detection 

monitoring. Since the baseline parameters for a Control Chart are estimated from historical data, 

this method is only appropriate for initially uncontaminated compliance wells. The main 

advantage of a Control Chart over a Prediction limit is that a Control Chart allows data from a 

well to be viewed graphically over time. Trends and changes in the concentration levels can be 

seen easily, because all sample data is consecutively plotted on the chart as it is collected, giving 

the data analyst an historical overview of the pattern of contamination. Prediction limits allow 

only point-in-time comparisons between the most recent data and past information, making long

term trends difficult to identify. 
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More generally, intrawell comparison methods eliminate the need to worry about spatial 

variability between wells in different locations. Whenever background data is compared to 

compliance point measurements, there is a risk that any statistically significant difference in 

concentration levels is due to spatial and/or hydrogeological differences between the wells rather 

than contamination at the facility. Because intrawell comparisons involve but a single well, 

significant changes in the level of contamination cannot be attributed to spatial differences 

between wells, regardless of whether the method used is a Prediction limit or Control Chart. 

Of course, past observations can be used as baseline data in an intrawell comparison only if 

the well is known to be uncontaminated. Otherwise, the comparison between baseline data and 

newly collected samples may negate the goal in detection monitoring of identifying evidence of 

contamination. Furthermore, without specialized modification, Control Charts do not efficiently 

handle truncated data sets (i.e., those with a significant fraction of nondetects), making them 

appropriate only for those constituents with a high frequency of occurrence in monitoring wells. 

Control Charts tend to be most useful, therefore, for inorganic parameters (e.g., some metals and 

geochemical monitoring parameters) that occur naturally in the ground water. 

The steps to construct a Control Chart can be found on pp. 7-3 to 7-10 of the Interim Final 

Guidance. The way a Control Chart works is as follows. Initial sample data is collected (from the 

specific compliance well in an intrawell comparison or from background wells in comparisons of 

compliance data with background) in order to establish baseline parameters for the chart, 

specifically, estimates of the well mean and well variance. These samples are meant to 

characterize the concentration levels of the uncontaminated well, before the onset of detection 

monitoring. Since the estimate of well variance is particularly important, it is recommended that 

at least 8 samples be collected (say, over a year's time) to estimate the baseline parameters. Note 

that none of these 8 or more samples is actually plotted on the chart. 

As future samples are collected, the baseline parameters are used to standardize the data. 

At each sampling period, a standardized mean is computed using the formula below, where m 

represents the baseline mean concentration and s represents the baseline standard deviation. 

A cumulative sum (CUSUM) for the ith period is also computed, using the formula Si = max{O, 

(Zi-k)+Si-d, where Zi is the standardized mean for that period and k represents a pre-chosen 

Control Chart parameter. 
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Once the data have been standardized and plotted, a Control Chart is declared out-of

control if the sample concentrations become too large when compared to the baseline parameters. 

An out-of-control situation is indicated on the Control Chart when either the standardized means 

or CUSUMs cross one of two pre-determined threshold values. These thresholds are based on 

the rationale that if the well remains uncontaminated, new sample values standardized by the 

original baseline parameters should not deviate substantially from the baseline level. If 

contamination does occur, the old baseline parameters will no longer accurately represent 

concentration levels at the well and, hence, the standardized values should significantly deviate 

from the baseline levels on the Control Chart. 

In the combined Shewhart-cumulative sum (CUSUM) Control Chart recommended by the 

Interim Final Guidance (Section 7), the chart is declared out-of-control in one of two ways. First, 

the standardized means (Zi) computed at each sampling period may cross the Shewhart control 

limit (SCL). Such a change signifies a rapid increase in well concentration levels among the most 

recent sample data. Second, the cumulative sum (CUSUM) of the standardized means may 

become too large, crossing the "decision internal value" (h). Crossing the h threshold can mean 

either a sudden rise in concentration levels or a gradual increase over a longer span of time. A 

gradual increase or trend is particularly indicated if the CUSUM crosses its threshold but the 

standardized mean Zi does not. The reason for this is that several consecutive small increases in 

Zi will not trigger the SCL threshold, but may trigger the CUSUM threshold. As such, the 

Control Chart can indicate the onset of either sudden or gradual contamination at the compliance 

point. 

As with other statistical methods, Control Charts are based on certain assumptions about the 

sample data. The first is that the data at an uncontaminated well (i.e., a well process that is "in 

control") are Normally distributed. Since estimates of the baseline parameters are made using 

initially collected data, these data should be tested for Normality using one of the goodness-of-fit 

techniques described earlier. Better yet, the logarithms of the data should be tested first, to see if 

a Lognormal model is appropriate for the concentration data. If the Lognormal model is not 

rejected, the Control Chart should be constructed solely on the basis of logged data. 

The methodology for Control Charts also assumes that the sample data are independently 

distributed from a statistical standpoint. In fact, these charts can easily give misleading results if 

the consecutive sample data are not independent. For this reason, it is important to design a 

sampling plan so that distinct volumes of water are analyzed each sampling period and that 
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duplicate sample analyses are not treated are independent observations when constructing the 

Control Chart. 

The final assumption is that the baseline parameters at the well reflect current background 

concentration levels. Some long-term fluctuation in background levels may be possible even 

though contamination has not occurred at a given well. Because of this possibility, if a Control 

Chart remains "in control" for a long period of time, the baseline parameters should be updated to 

include more recent observations as background data. After all, the original baseline parameters 

will often be based only on the first year's data. Much better estimates of the true background 

mean and variance can be obtained by including more data at a later time. 

To update older background data with more recent samples, a two-sample t-test can be run 

to compare the older concentration levels with the concentrations of the proposed update 

samples. If the t-test does not show a significant difference at the 5 percent significance level, 

proceed to re-estimate the baseline parameters by including more recent data. If the t-test does 

show a significant difference, the newer data should not be characterized as background unless 

some specific factor can be pinpointed explaining why background levels on the site have naturally 

changed. 

EXAMPLE 18 

Construct a control chart for the 8 months of data collected below. 

j.t=27 ppb 
cr=25 ppb 

Month 

1 
2 
3 
4 
5 
6 
7 
8 

Nickel Concentration (ppb) 

Sample 1 Sample 2 

15.3 
41.1 
17.5 
15.7 
37.2 
25.1 
19.9 
99.3 

80 

22.6 
27.8 
18.1 
31.5 
32.4 
32.5 
27.5 
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SOLUTION 

Step 1. The three parameters necessary to construct a combined Shewhart-CUSUM chart are 
h=5, k= 1, and SCL=4.5 in units of standard deviation (SD). 

Step 2. List the sampling periods and monthly means, as in the following table. 

Month T· l Mean (ppb) Z· l Zi- k S· 1 

1 1 19.0 -0.45 -1.45 0.00 
2 2 34.5 0.42 -0.58 0.00 
3 3 17.8 -0.52 -1.52 0.00 
4 4 23.6 -0.19 -1.19 0.00 
5 5 34.8 0.44 -0.56 0.00 
6 6 28.8 0.10 -0.90 0.00 
7 7 23.7 -0.19 -1.19 0.00 
8 8 81.8 3.10 2.10 2.10 

Step 3. Compute the standardized means Zi and the quantities Si. List in the table above. Each 

Si is computed for consecutive months using the formula on p. 7-8 of the EPA 

guidance document. 

s1 =max {0, -1.45 + 0} = 0.00 

s2 =max {0, -0.58 + 0} = 0.00 

s3 =max {0, -1.52 + 0} = 0.00 

s4 =max {0, -1.19 + 0} = 0.00 

S5 =max {0, -0.56 + 0} = 0.00 

s6 =max {0, -0.90 + 0} = 0.00 

s7 =max {0, -1.19 + 0} = 0.00 

S8 =max {0, 2.10 + 0} = 2.10 

Step 4. Plot the control chart as given below. The combined chart indicates that there is no 
evidence of contamination at the monitoring facility because neither the standardized 
mean nor the CUSUM statistic exceeds the Shewhart control limits for the months 
examined. 
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Note: In the above Control Chart, the CUSUMs are compared to threshold h, while the 

standardized means (Z) are compared to the SCL threshold. 

6.2 OUTLIER TESTING 

Formal testing for outliers should be done only if an observation seems particularly high (by 

orders of magnitude) compared to the rest of the data set. If a sample value is suspect, one should 

run the outlier test described on pp. 8-11 to 8-14 of the EPA guidance document. It should be 

cautioned, however, that this outlier test assumes that the rest of the data values, except for the 

suspect observation, are Normally distributed (Barnett and Lewis, 1978). Since Lognormally 

distributed measurements often contain one or more values that appear high relative to the rest, it 

is recommended that the outlier test be run on the logarithms of the data instead of the original 

observations. That way, one can avoid classifying a high Lognormal measurement as an outlier 

just because the test assumptions were violated. 

If the test designates an observation as a statistical outlier, the sample should not be treated 

as such until a specific reason for the abnormal measurement can be determined. Valid reasons 

may, for example, include contaminated sampling equipment, laboratory contamination of the 
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sample, or errors in transcription of the data values. Once a specific reason is documented, the 

sample should be excluded from any further statistical analysis. If a plausible reason cannot be 

found, the sample should be treated as a true but extreme value, not to be excluded from further 

analysis. 

EXAMPLE 19 

The table below contains data from five wells measured over a 4-month period. The value 

7066 is found in the second month at well 3. Determine whether there is statistical evidence that 

this observation is an outlier. 

SOLUTION 

Well1 

1.69 
3.25 

7.3 
12.1 

Carbon Tetrachloride Concentration (ppb) 

Well2 Well 3 We114 

302 
35.1 
15.6 
13.7 

16.2 
7066 

350 
70.14 

199 
41.6 
75.4 
57.9 

WellS 

275 
6.5 

59.7 
68.4 

Step 1. Take logarithms of each observation. Then order and list the logged concentrations. 
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Concentration Logged 
Order (ppb) Concentration 

1 1.69 0.525 
2 3.25 1.179 
3 6.5 1.872 
4 7.3 1.988 
5 12.1 2.493 
6 13.7 2.617 
7 15.6 2.747 
8 16.2 2.785 
9 35.1 3.558 
10 41.6 3.728 
11 57.9 4.059 
12 59.7 4.089 
13 68.4 4.225 
14 70.1 4.250 
15 75.4 4.323 
16 199 5.293 
17 275 5.617 
18 302 5.710 
19 350 5.878 
20 7066 8.863 

Step 2. Calculate the mean and SD of all the logged measurements. In this case, the mean and 
SD are 3.789 and 1.916, respectively. 

Step 3. Calculate the outlier test statistic T2o as 

T = X(zo;- X= 8.863-3.789 = 2.648. 
20 SD 1.916 

Step 4. Compare the observed statistic T2o with the critical value of 2.557 for a sample size 
n=20 and a significance level of 5 percent (taken from Table 8 on p. B-12 of the Interim 
Final Guidance). Since the observed value T2o=2.648 exceeds the critical value, there 
is significant evidence that the largest observation is a statistical outlier. Before 
excluding this value from further analysis, a valid explanation for this unusually high 
value should be found. Otherwise, treat the outlier as an extreme but valid 
concentration measurement. 
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i/n 2 
1 0.7071 
2 
3 
4 
5 

i/n 11 
1 0.5601 
2 .3315 
3 .2260 
4 .1429 
5 .0695 

6 0.0000 
7 
8 
9 
10 

iln 21 
1 0.4643 
2 .3185 
3 .2578 
4 .2119 
5 .1736 

6 0.1399 
7 .1092 
8 .0804 
9 .0530 
10 .0263 

11 0.0000 
12 
13 
14 
15 

i/n 31 
1 0.4220 
2 .2921 
3 .2475 
4 .2145 
5 .1874 

6 0.1641 
7 .1433 
8 .1243 
9 .1066 
10 .0899 

TABLE A-1. 

COEFFICIENTS {AN-I+tl FOR W TEST OF NORMALITY, 
FOR N=2(1)50 

3 4 5 6 7 8 9 10 
0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739 

.0000 .1677 .2413 .2806 .3031 .3164 .3244 .3291 
.0000 .0875 .1401 .1743 .1976 .2141 

.0000 .0561 .0947 .1224 
.0000 .0399 

12 13 14 15 16 17 18 19 
0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886 0.4808 

.3325 .3325 .3318 .3306 .3290 .3273 .3253 .3232 

.2347 .2412 .2460 .2495 .2521 .2540 .2553 .2561 

.1586 .1707 .1802 .1878 .1939 .1988 .2027 .2059 

.0922 .1099 .1240 .1353 .1447 .1524 .1587 .1641 

0.0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 0.1271 
.0000 .0240 .0433 .0593 .0725 .0837 .0932 

.0000 .0196 .0359 .0496 .0612 
.0000 .0163 .0303 

.0000 

22 23 24 25 26 27 28 29 
0.4590 0.4542 0.4493 0.4450 0.4407 0.4366 0.4328 0.4291 

.3156 .3126 .3098 .3069 .3043 .3018 .2992 .2968 

.2571 .2563 .2554 .2543 .2533 .2522 .2510 .2499 

.2131 .2139 .2145 .2148 .2151 .2152 .2151 .2150 

.1764 .1787 .1807 .1822 .1836 .1848 .1857 .1864 

0.1443 0.1480 0.1512 0.1539 0.1563 0.1584 0.1601 0.1616 
.1150 .1201 .1245 .1283 .1316 .1346 .1372 .1395 
.0878 .0941 .0997 .1046 .1089 .1128 .1162 .1192 
.0618 .0696 .0764 .0823 .0876 .0923 .0965 .1002 
.0368 .0459 .0539 .0610 .0672 .0728 .0778 .0822 

0.0122 0.0228 0.0321 0.0403 0.0476 0.0540 0.0598 0.0650 
.0000 .0107 .0200 .0284 .0358 .0424 .0483 

.0000 .0094 .0178 .0253 .0320 
.0000 .0084 .0159 

.0000 

32 33 34 35 36 37 38 39 
0.4188 0.4156 0.4127 0.4096 0.4068 0.4040 0.4015 0.3989 

.2898 .2876 .2854 .2834 .2813 .2794 .2774 .2755 

.2463 .2451 .2439 .2427 .2415 .2403 .2391 .2380 

.2141 .2137 .2132 .2127 .2121 .2116 .2110 .2104 

.1878 .1880 .1882 .1883 .1883 .1883 .1881 .1880 

0.1651 0.1660 0.1667 0.1673 0.1678 0.1683 0.1686 0.1689 
.1449 .1463 .1475 .1487 .1496 .1503 .1513 .1520 
.1265 .1284 .1301 .1317 .1331 .1344 .1356 .1366 
.1093 .1118 .1140 .1160 .1179 .1196 .1211 .1225 
.0931 .0961 .0988 .1013 .1036 .1056 .1075 .1092 

A-1 

20 
0.4734 

.3211 

.2565 

.2085 

.1686 

0.1334 
.1013 
.0711 
.0422 
.0140 

30 
0.4254 

.2944 

.2487 

.2148 

.1870 

0.1630 
.1415 
.1219 
.1036 
.0862 

0.0697 
.0537 
.0381 
.0227 
.0076 

40 
0.3964 

.2737 

.2368 

.2098 

.1878 

0.1691 
.1526 
.1376 
.1237 
.1108 



i/n 31 
11 0.0739 
12 .0585 
13 .0435 
14 .0289 
15 .0144 

16 0.0000 
17 
18 
19 
20 

i!n 41 
1 0.3940 
2 .2719 
3 .2357 
4 .2091 
5 .1876 

6 0.1693 
7 .1531 
8 .1384 
9 .1249 
10 .1123 

11 0.1004 
12 .0891 
13 .0782 
14 .0677 
15 .0575 

16 0.0476 
17 .0379 
18 .0283 
19 .0188 
20 .0094 

21 0.0000 
22 
23 
24 
25 

TABLE A-1. (CONTINUED) 

COEFFICIENTS {AN-I+l} FOR W TEST OF NORMALITY, 
FOR N=2(1)50 

32 33 34 35 36 37 38 39 
0.0777 0.0812 0.0844 0.0873 0.0900 0.0924 0.0947 0.0967 

.0629 .0669 .0706 .0739 .0770 .0798 .0824 .0848 

.0485 .0530 .0572 .0610 .0645 .0677 .0706 .0733 

.0344 .0395 .0441 .0484 .0523 .0559 .0592 .0622 

.0206 .0262 .0314 .0361 .0404 .0444 .0481 .0515 

0.0068 0.0131 0.0187 0.0239 0.0287 0.0331 0.0372 0.0409 
.0000 .0062 .0119 .0172 .0220 .0264 .0305 

.0000 .0057 .0110 .0158 .0203 
.0000 .0053 .0101 

.0000 

42 43 44 45 46 47 48 49 
0.3917 0.3894 0.3872 0.3850 0.3830 0.3808 0.3789 0.3770 

.2701 .2684 .2667 .2651 .2635 .2620 .2604 .2589 

.2345 .2334 .2323 .2313 .2302 .2291 .2281 .2271 

.2085 .2078 .2072 .2065 .2058 .2052 .2045 .2038 

.1874 .1871 .1868 .1865 .1862 .1859 .1855 .1851 

0.1694 0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692 
.1535 .1539 .1542 .1545 .1548 .1550 .1551 .1553 
.1392 .1398 .1405 .1410 .1415 .1420 .1423 .1427 
.1259 .1269 .1278 .1286 .1293 .1300 .1306 .1312 
.1136 .1149 .1160 .1170 .1180 .1189 .1197 .1205 

0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0.1105 
.0909 .0927 .0943 .0959 .0972 .0986 .0998 .1010 
.0804 .0824 .0842 .0860 .0876 .0892 .0906 .0919 
.0701 .0724 .0745 .0775 .0785 .0801 .0817 .0832 
.0602 .0628 .0651 .0673 .0694 .0713 .0731 .0748 

0.0506 0.0534 0.0560 0.0584 0.0607 0.0628 0.0648 0.0667 
.0411 .0442 .0471 .0497 .0522 .0546 .0568 .0588 
.0318 .0352 .0383 .0412 .0439 .0465 .0489 .0511 
.0227 .0263 .0296 .0328 .0357 .0385 .0411 .0436 
.0136 .0175 .0211 .0245 .0277 .0307 .0335 .0361 

0.0045 0.0087 0.0126 0.0163 0.0197 0.0229 0.0259 0.0288 
.0000 .0042 .0081 .0118 .0153 .0185 .0215 

.0000 .0039 .0076 .0111 .0143 
.0000 .0037 .0071 

.0000 

A-2 

40 
0.0986 

.0870 

.0759 

.0651 

.0546 

0.0444 
.0343 
.0244 
.0146 
.0049 

50 
0.3751 

.2574 

.2260 

.2032 

.1847 

0.1691 
.1554 
.1430 
.1317 
.1212 

0.1113 
.1020 
.0932 
.0846 
.0764 

0.0685 
.0608 
.0532 
.0459 
.0386 

0.0314 
.0244 
.0174 
.0104 
.0035 



TABLEA-2. 

PERCENTAGE POINTS OF THEW TEST FOR N=3(1)50 

n 0.01 0.05 

3 0.753 0.767 
4 .687 .748 
5 .686 .762 

6 0.713 0.788 
7 .730 .803 
8 .749 .818 
9 .764 .829 
10 .781 .842 

11 0.792 0.850 
12 .805 .859 
13 .814 .866 
14 .825 .874 
15 .835 .881 

16 0.844 0.887 
17 .851 .892 
18 .858 .897 
19 .863 .901 
20 .868 .905 

21 0.873 0.908 
22 .878 .911 
23 .881 .914 
24 .884 .916 
25 .888 .918 

26 0.891 0.920 
27 .894 .923 
28 .896 .924 
29 .898 .926 
30 .900 .927 

31 0.902 0.929 
32 .904 .930 
33 .906 .931 
34 .908 .933 
35 .910 .934 
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TABLE A-2. (CONTINUED) 

PERCENTAGE POINTS OF THEW TEST FOR N=3(1)50 

n 0.01 0.05 

36 0.912 0.935 
37 .914 .936 
38 .916 .938 
39 .917 .939 
40 .919 .940 

41 0.920 0.941 
42 .922 .942 
43 .923 .943 
44 .924 .944 
45 .926 .945 

46 0.927 0.945 
47 .928 .946 
48 .929 .947 
49 .929 .947 
50 .930 .947 
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TABLEA-3. 

PERCENTAGE POINTS OF THEW' TEST FOR N,2:35 

0 .01 .05 

35 0.919 0.943 
50 .935 .953 
51 0.935 0.954 
53 .938 .957 
55 .940 .958 
57 .944 .961 
59 .945 .962 

61 0.947 0.963 
63 .947 .964 
65 .948 .965 
67 .950 .966 
69 .951 .966 

71 0.953 0.967 
73 .956 .968 
75 .956 .969 
77 .957 .969 
79 .957 .970 

81 0.958 0.970 
83 .960 .971 
85 .961 .972 
87 .961 .972 
89 .961 .972 

91 0.962 0.973 
93 .963 .973 
95 .965 .974 
97 .965 .975 
99 .967 .976 
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TABLE A-4. 

PERCENT POINTS OF THE NORMAL PROBABILITY PLOT 
CORRELETION COEFFICIENT FOR N=3(1)50(5)100 

n .01 .025 .05 

3 .869 .872 .879 
4 .822 .845 .868 
5 .822 .855 .879 
6 .835 .868 .890 
7 .847 .876 .899 
8 .859 .886 .905 
9 .868 .893 .912 
10 .876 .900 .917 

11 .883 .906 .922 
12 .889 .912 .926 
13 .895 .917 .931 
14 .901 .921 .934 
15 .907 .925 .937 
16 .912 .928 .940 
17 .912 .931 .942 
18 .919 .934 .945 
19 .923 .937 .947 
20 .925 .939 .950 

21 .928 .942 .952 
22 .930 .944 .954 
23 .933 .947 .955 
24 .936 .949 .957 
25 .937 .950 .958 
26 .939 .952 .959 
27 .941 .953 .960 
28 .943 .955 .962 
29 .945 .956 .962 
30 .947 .957 .964 

31 .948 .958 .965 
32 .949 .959 .966 
33 .950 .960 .967 
34 .951 .960 .967 
35 .952 .961 .968 
36 .953 .962 .968 
37 .955 .962 .969 
38 .956 .964 .970 
39 .957 .965 .971 
40 .958 .966 .972 
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TABLE A-4. (CONTINUED) 

PERCENT POINTS OF THE NORMAL PROBABILITY PLOT 
CORRELETION COEFFICIENT FOR N=3(1)50(5)100 

n .01 .025 .05 

41 .958 .967 .973 
42 .959 .967 .973 
43 .959 .967 .973 
44 .960 .968 .974 
45 .961 .969 .974 
46 .962 .969 .974 
47 .963 .970 .975 
48 .963 .970 .975 
49 .964 .971 .977 
50 .965 .972 .978 

55 .967 .974 .980 
60 .970 .976 .981 
65 .972 .977 .982 
70 .974 .978 .983 
75 .975 .979 .984 
80 .976 .980 .985 
85 .977 .981 .985 
90 .978 .982 .985 
95 .979 .983 .986 
100 .981 .984 .987 
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TABLEA-5. 

VALUES OF LAMBDA FOR COHEN'S METHOD 

Percentage of Non-detects 
.01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 

.01 .0102 .0530 .1111 .1747 .2443 .3205 .4043 .4967 .5989 .7128 .8403 

.05 .0105 .0547 .1143 .1793 .2503 .3279 .4130 .5066 .6101 .7252 .8540 

.10 .0110 .0566 .1180 .1848 .2574 .3366 .4233 .5184 .6234 .7400 .8703 

.15 .0113 .0584 .1215 .1898 .2640 .3448 .4330 .5296 .6361 .7542 .8860 

.20 .0116 .0600 .1247 .1946 .2703 .3525 .4422 .5403 .6483 .7678 .9012 

.25 .0120 .0615 .1277 .1991 .2763 .3599 .4510 .5506 .6600 .7810 .9158 

.30 .0122 .0630 .1306 .2034 .2819 .3670 .4595 .5604 .6713 .7937 .9300 

.35 .0125 .0643 .1333 .2075 .2874 .3738 .4676 .5699 .6821 .8060 .9437 

.40 .0128 .0657 .1360 .2114 .2926 .3803 .4755 .5791 .6927 .8179 .9570 

.45 .0130 .0669 .1385 .2152 .2976 .3866 .4831 .5880 .7029 .8295 .9700 

.50 .0133 .0681 .1409 .2188 .3025 .3928 .4904 .5967 .7129 .8408 .9826 

.55 .0135 .0693 .1432 .2224 .3073 .3987 .4976 .6051 .7225 .8517 .9950 

.60 .0137 .0704 .1455 .2258 .3118 .4045 .5046 .6133 .7320 .8625 1.0070 

.65 .0140 .0715 .1477 .2291 .3163 .4101 .5114 .6213 .7412 .8729 1.0188 

.70 .0142 .0726 .1499 .2323 .3206 .4156 .5180 .6291 .7502 .8832 1.0303 

.75 .0144 .0736 .1520 .2355 .3249 .4209 .5245 .6367 .7590 .8932 1.0416 

.80 .0146 .0747 .1540 .2386 .3290 .4261 .5308 .6441 .7676 .9031 1.0527 

.85 .0148 .0756 .1560 .2416 .3331 .4312 .5370 .6515 .7761 .9127 1.0636 

.90 .0150 .0766 .1579 .2445 .3370 .4362 .5430 .6586 .7844 .9222 1.0743 

.95 .0152 .0775 .1598 .2474 .3409 .4411 .5490 .6656 .7925 .9314 1.0847 

1.00 .0153 .0785 .1617 .2502 .3447 .4459 .5548 .6725 .8005 .9406 1.0951 
1.05 .0155 .0794 .1635 .2530 .3484 .4506 .5605 .6793 .8084 .9496 1.1052 
1.10 .0157 .0803 .1653 .2557 .3521 .4553 .5662 .6860 .8161 .9584 1.1152 
1.15 .0159 .0811 .1671 .2584 .3557 .4598 .5717 .6925 .8237 .9671 1.1250 
1.20 .0160 .0820 .1688 .2610 .3592 .4643 .5771 .6990 .8312 .9756 1.1347 
1.25 .0162 .0828 .1705 .2636 .3627 .4687 .5825 .7053 .8385 .9841 1.1443 
1.30 .0164 .0836 .1722 .2661 .3661 .4730 .5878 .7115 .8458 .9924 1.1537 
1.35 .0165 .0845 .1738 .2686 .3695 .4773 .5930 .7177 .8529 1.0006 1.1629 
1.40 .0167 .0853 .1754 .2710 .3728 .4815 .5981 .7238 .8600 1.0087 1.1721 
1.45 .0168 .0860 .1770 .2735 .3761 .4856 .6031 .7298 .8670 1.0166 1.1812 

1.50 .0170 .0868 .1786 .2758 .3793 .4897 .6081 .7357 .8738 1.0245 1.1901 
1.55 .0171 .0876 .1801 .2782 .3825 .4938 .6130 .7415 .8806 1.0323 1.1989 

1.60 .0173 .0883 .1817 .2805 .3856 .4977 .6179 .7472 .8873 1.0400 1.2076 
1.65 .0174 .0891 .1832 .2828 .3887 .5017 .6227 .7529 .8939 1.0476 1.2162 
1.70 .0176 .0898 .1846 .2851 .3918 .5055 .6274 .7585 .9005 1.0551 1.2248 

1.75 .0177 .0905 .1861 .2873 .3948 .5094 .6321 .7641 .9069 1.0625 1.2332 

1.80 .0179 .0913 .1876 .2895 .3978 .5132 .6367 .7696 .9133 1.0698 1.2415 
1.85 .0180 .0920 .1890 .2917 .4007 .5169 .6413 .7750 .9196 1.0771 1.2497 
1.90 .0181 .0927 .1904 .2938 .4036 .5206 .6458 .7804 .9259 1.0842 1.2579 
1.95 .0183 .0933 .1918 .2960 .4065 .5243 .6502 .7857 .9321 1.0913 1.2660 
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TABLE A-5. (CONTINUED) 

VALUES OF LAMBDA FOR COHEN'S METHOD 

Percentage of Non-detects 
.01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 

2.00 .0184 .0940 .1932 .2981 .4093 .5279 .6547 .7909 .9382 1.0984 1.2739 
2.05 .0186 .0947 .1945 .3001 .4122 .5315 .6590 .7961 .9442 1.1053 1.2819 
2.10 .0187 .0954 .1959 .3022 .4149 .5350 .6634 .8013 .9502 1.1122 1.2897 
2.15 .0188 .0960 .1972 .3042 .4177 .5385 .6676 .8063 .9562 1.1190 1.2974 
2.20 .0189 .0967 .1986 .3062 .4204 .5420 .6719 .8114 .9620 1.1258 1.3051 
2.25 .0191 .0973 .1999 .3082 .4231 .5454 .6761 .8164 .9679 1.1325 1.3127 
2.30 .0192 .0980 .2012 .3102 .4258 .5488 .6802 .8213 .9736 1.1391 1.3203 
2.35 .0193 .0986 .2025 .3122 .4285 .5522 .6844 .8262 .9794 1.1457 1.3278 
2.40 .0194 .0992 .2037 .3141 .4311 .5555 .6884 .8311 .9850 1.1522 1.3352 
2.45 .0196 .0998 .2050 .3160 .4337 .5588 .6925 .8359 .9906 1.1587 1.3425 

2.50 .0197 .1005 .2062 .3179 .4363 .5621 .6965 .8407 .9962 1.1651 1.3498 
2.55 .0198 .1011 .2075 .3198 .4388 .5654 .7005 .8454 1.0017 1.1714 1.3571 
2.60 .0199 .1017 .2087 .3217 .4414 .5686 .7044 .8501 1.0072 1.1777 1.3642 
2.65 .0201 .1023 .2099 .3236 .4439 .5718 .7083 .8548 1.0126 1.1840 1.3714 
2.70 .0202 .1029 .2111 .3254 .4464 .5750 .7122 .8594 1.0180 1.1902 1.3784 
2.75 .0203 .1035 .2123 .3272 .4489 .5781 .7161 .8639 1.0234 1.1963 1.3854 
2.80 .0204 .1040 .2135 .3290 .4513 .5812 .7199 .8685 1.0287 1.2024 1.3924 
2.85 .0205 .1046 .2147 .3308 .4537 .5843 .7237 .8730 1.0339 1.2085 1.3993 
2.90 .0206 .1052 .2158 .3326 .4562 .5874 .7274 .8775 1.0392 1.2145 1.4061 

2.95 .0207 .1058 .2170 .3344 .4585 .5905 .7311 .8819 1.0443 1.2205 1.4129 
3.00 .0209 .1063 .2182 .3361 .4609 .5935 .7348 .8863 1.0495 1.2264 1.4197 
3.05 .0210 .1069 .2193 .3378 .4633 .5965 .7385 .8907 1.0546 1.2323 1.4264 
3.10 .0211 .1074 .2204 .3396 .4656 .5995 .7422 .8950 1.0597 1.2381 1.4330 
3.15 .0212 .1080 .2216 .3413 .4679 .6024 .7458 .8993 1.0647 1.2439 1.4396 
3.20 .0213 .1085 .2227 .3430 .4703 .6054 .7494 .9036 1.0697 1.2497 1.4462 
3.25 .0214 .1091 .2238 .3447 .4725 .6083 .7529 .9079 1.0747 1.2554 1.4527 
3.30 .0215 .1096 .2249 .3464 .4748 .6112 .7565 .9121 1.0796 1.2611 1.4592 
3.35 .0216 .1102 .2260 .3480 .4771 .6141 .76 .9163 1.0845 1.2668 1.4657 
3.40 .0217 .1107 .2270 .3497 .4793 .6169 .7635 .9205 1.0894 1.2724 1.4720 
3.45 .0218 .1112 .2281 .3513 .4816 .6197 .7670 .9246 1.0942 1.2779 1.4784 

3.50 .0219 .1118 .2292 .3529 .4838 .6226 .7704 .9287 1.0990 1.2835 1.4847 
3.55 .0220 .1123 .2303 .3546 .4860 .6254 .7739 .9328 1.1038 1.2890 1.4910 
3.60 .0221 .1128 .2313 .3562 .4882 .6282 .7773 .9369 1.1086 1.2945 1.4972 
3.65 .0222 .1133 .2324 .3578 .4903 .6309 .7807 .9409 1.1133 1.2999 1.5034 
3.70 .0223 .1138 .2334 .3594 .4925 .6337 .7840 .9449 1.1180 1.3053 1.5096 
3.75 .0224 .1143 .2344 .3609 .4946 .6364 .7874 .9489 1.1226 1.3107 1.5157 
3.80 .0225 .1148 .2355 .3625 .4968 .6391 .7907 .9529 1.1273 1.3160 1.5218 
3.85 .0226 .1153 .2365 .3641 .4989 .6418 .7940 .9568 1.1319 1.3213 1.5279 
3.90 .0227 .1158 .2375 .3656 .5010 .6445 .7973 .9607 1.1364 1.3266 1.5339 
3.95 .0228 .1163 .2385 .3672 .5031 .6472 .8006 .9646 1.1410 1.3318 1.5399 
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TABLE A-5. (CONTINUED) 

VALUES OF LAMBDA FOR COHEN'S METHOD 

Percentage of Non-detects 
.01 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 

4.00 .0229 .1168 .2395 .3687 .5052 .6498 .8038 .9685 1.1455 1.3371 1.5458 
4.05 .0230 .1173 .2405 .3702 .5072 .6525 .8070 .9723 1.1500 1.3423 1.5518 
4.10 .0231 .1178 .2415 .3717 .5093 .6551 .8102 .9762 1.1545 1.3474 1.5577 
4.15 .0232 .1183 .2425 .3732 .5113 .6577 .8134 .9800 1.1590 1.3526 1.5635 
4.20 .0233 .1188 .2435 .3747 .5134 .6603 .8166 .9837 1.1634 1.3577 1.5693 
4.25 .0234 .1193 .2444 .3762 .5154 .6629 .8198 .9875 1.1678 1.3627 1.5751 
4.30 .0235 .1197 .2454 .3777 .5174 .6654 .8229 .9913 1.1722 1.3678 1.5809 
4.35 .0236 .1202 .2464 .3792 .5194 .6680 .8260 .9950 1.1765 1.3728 1.5866 
4.40 .0237 .1207 .2473 .3806 .5214 .6705 .8291 .9987 1.1809 1.3778 1.5924 
4.45 .0238 .1212 .2483 .3821 .5234 .6730 .8322 1.0024 1.1852 1.3828 1.5980 

4.50 .0239 .1216 .2492 .3836 .5253 .6755 .8353 1.0060 1.1895 1.3878 1.6037 
4.55 .0240 .1221 .2502 .3850 .5273 .6780 .8384 1.0097 1.1937 1.3927 1.6093 
4.60 .0241 .1225 .2511 .3864 .5292 .6805 .8414 1.0133 1.1980 1.3976 1.6149 
4.65 .0241 .1230 .2521 .3879 .5312 .6830 .8445 1.0169 1.2022 1.4024 1.6205 
4.70 .0242 .1235 .2530 .3893 .5331 .6855 .8475 1.0205 1.2064 1.4073 1.6260 
4.75 .0243 .1239 .2539 .3907 .5350 .6879 .8505 1.0241 1.2106 1.4121 1.6315 
4.80 .0244 .1244 .2548 .3921 .5370 .6903 .8535 1.0277 1.2148 1.4169 1.6370 
4.85 .0245 .1248 .2558 .3935 .5389 .6928 .8564 1.0312 1.2189 1.4217 1.6425 
4.90 .0246 .1253 .2567 .3949 .5407 .6952 .8594 1.0348 1.2230 1.4265 1.6479 
4.95 .0247 .1257 .2576 .3963 .5426 .6976 .8623 1.0383 1.2272 1.4312 1.6533 

5.00 .0248 .1262 .2585 .3977 .5445 .7000 .8653 1.0418 1.2312 1.4359 1.6587 
5.05 .0249 .1266 .2594 .3990 .5464 .7024 .8682 1.0452 1.2353 1.4406 1.6641 
5.10 .0249 .1270 .2603 .4004 .5482 .7047 .8711 1.0487 1.2394 1.4453 1.6694 
5.15 .0250 .1275 .2612 .4018 .5501 .7071 .8740 1.0521 1.2434 1.4500 1.6747 
5.20 .0251 .1279 .2621 .4031 .5519 .7094 .8768 1.0556 1.2474 1.4546 1.6800 
5.25 .0252 .1284 .2629 .4045 .5537 .7118 .8797 1.0590 1.2514 1.4592 1.6853 
5.30 .0253 .1288 .2638 .4058 .5556 .7141 .8825 1.0624 1.2554 1.4638 1.6905 
5.35 .0254 .1292 .2647 .4071 .5574 .7164 .8854 1.0658 1.2594 1.4684 1.6958 
5.40 .0255 .1296 .2656 .4085 .5592 .7187 .8882 1.0691 1.2633 1.4729 1.7010 
5.45 .0255 .1301 .2664 .4098 .5610 .7210 .8910 1.0725 1.2672 1.4775 1.7061 

5.50 .0256 .1305 .2673 .4111 .5628 .7233 .8938 1.0758 1.2711 1.4820 1.7113 
5.55 .0257 .1309 .2682 .4124 .5646 .7256 .8966 1.0792 1.2750 1.4865 1.7164 
5.60 .0258 .1313 .2690 .4137 .5663 .7278 .8994 1.0825 1.2789 1.4910 1.7215 
5.65 .0259 .1318 .2699 .4150 .5681 .7301 .9022 1.0858 1.2828 1.4954 1.7266 
5.70 .0260 .1322 .2707 .4163 .5699 .7323 .9049 1.0891 1.2866 1.4999 1.7317 
5.75 .0260 .1326 .2716 .4176 .5716 .7346 .9077 1.0924 1.2905 1.5043 1.7368 
5.80 .0261 .1330 .2724 .4189 .5734 .7368 .9104 1.0956 1.2943 1.5087 1.7418 
5.85 .0262 .1334 .2732 .4202 .5751 .7390 .9131 1.0989 1.2981 1.5131 1.7468 
5.90 .0263 .1338 .2741 .4215 .5769 .7412 .9158 1.1021 1.3019 1.5175 1.7518 
5.95 .0264 .1342 .2749 .4227 .5786 .7434 .9185 1.1053 1.3057 1.5218 1.7568 
6.00 .0264 .1346 .2757 .4240 .5803 .7456 .9212 1.1085 1.3094 1.5262 1.7617 
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TABLEA-6. 

MINIMUM COVERAGE (BETA) OF 95% CONFIDENCE 
NON-PARAMETRIC UPPER TOLERANCE LIMITS 
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N f3(maximum) f3(2nd largest) 

1 5.0 
2 22.4 2.6 
3 36.8 13.6 
4 47.3 24.8 
5 54.9 34.2 
6 60.7 41.8 
7 65.2 48.0 
8 68.8 53.0 
9 71.7 57.0 

10 74.1 60.6 

11 76.2 63.6 
12 77.9 66.2 
13 79.4 68.4 
14 80.7 70.4 
15 81.9 72.0 
16 82.9 73.6 
17 83.8 75.0 
18 84.7 76.2 
19 85.4 77.4 
20 86.1 78.4 

21 86.7 79.4 
22 87.3 80.2 
23 87.8 81.0 
24 88.3 81.8 
25 88.7 82.4 
26 89.1 83.0 
27 89.5 83.6 
28 89.9 84.2 
29 90.2 84.6 
30 90.5 85.2 

31 90.8 85.6 
32 91.1 86.0 
33 91.3 86.4 
34 91.6 86.8 
35 91.8 87.2 
36 92.0 87.4 
37 92.2 87.8 
38 92.4 88.2 
39 92.6 88.4 
40 92.8 88.6 

A-13 



N k=l 

1 50.0 
2 66.7 
3 75.0 
4 80.0 
5 83.3 
6 85.7 
7 87.5 

TABLE A-6. (CONTINUED) 

MINIMUM COVERAGE (BETA) OF 95% CONFIDENCE 
NON-PARAMETRIC UPPER TOLERANCE LIMITS 

N j3(maximum) j3(2nd largest) 

41 93.0 89.0 
42 93.1 89.2 
43 93.3 89.4 
44 93.4 89.6 
45 93.6 89.8 
46 93.7 90.0 
47 93.8 90.2 
48 93.9 90.4 
49 94.1 90.6 
50 94.2 90.8 

55 94.7 91.6 
60 95.1 92.4 
65 95.5 93.0 
70 95.8 93.4 
75 96.1 93.8 
80 96.3 94.2 
85 96.5 94.6 
90 96.7 94.8 
95 96.9 95.0 

100 97.0 95.4 

TABLEA-7. 

CONFIDENCE LEVELS FOR NON-PARAMETRIC 
PREDICTION LIMITS FOR N=1(1)100 

NUMBER OF FUTURE SAMPLES 

k=2 k=3 k=4 k=S k=6 k=7 

33.3 25.0 20.0 16.7 14.3 12.5 
50.0 40.0 33.3 28.6 25.0 22.2 
60.0 50.0 42.9 37.5 33.3 30.0 
66.7 57.1 50.0 44.4 40.0 36.4 
71.4 62.5 55.6 50.0 45.5 41.7 
75.0 66.7 60.0 54.5 50.0 46.2 
77.8 70.0 63.6 58.3 53.8 50.0 
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k=S 

11.1 
20.0 
27.3 
33.3 
38.5 
42.9 
46.7 



8 88.9 80.0 72.7 66.7 61.5 57.1 53.3 50.0 
9 90.0 81.8 75.0 69.2 64.3 60.0 56.3 52.9 

10 90.9 83.3 76.9 71.4 66.7 62.5 58.8 55.6 

11 91.7 84.6 78.6 73.3 68.8 64.7 61.1 57.9 
12 92.3 85.7 80.0 75.0 70.6 66.7 63.2 60.0 
13 92.9 86.7 81.3 76.5 72.2 68.4 65.0 61.9 
14 93.3 87.5 82.4 77.8 73.7 70.0 66.7 63.6 
15 93.8 88.2 83.3 78.9 75.0 71.4 68.2 65.2 
16 94.1 88.9 84.2 80.0 76.2 72.7 69.6 66.7 
17 94.4 89.5 85.0 81.0 77.3 73.9 70.8 68.0 
18 94.7 90.0 85.7 81.8 78.3 75.0 72.0 69.2 
19 95.0 90.5 86.4 82.6 79.2 76.0 73.1 70.4 
20 95.2 90.9 87.0 83.3 80.0 76.9 74.1 71.4 

21 95.5 91.3 87.5 84.0 80.8 77.8 75.0 72.4 
22 95.7 91.7 88.0 84.6 81.5 78.6 75.9 73.3 
23 95.8 92.0 88.5 85.2 82.1 79.3 76.7 74.2 
24 96.0 92.3 88.9 85.7 82.8 80.0 77.4 75.0 
25 96.2 92.6 89.3 86.2 83.3 80.6 78.1 75.8 
26 96.3 92.9 89.7 86.7 83.9 81.3 78.8 76.5 
27 96.4 93.1 90.0 87.1 84.4 81.8 79.4 77.1 
28 96.6 93.3 90.3 87.5 84.8 82.4 80.0 77.8 
29 96.7 93.5 90.6 87.9 85.3 82.9 80.6 78.4 
30 96.8 93.8 90.9 88.2 85.7 83.3 81.1 78.9 

31 96.9 93.9 91.2 88.6 86.1 83.8 81.6 79.5 
32 97.0 94.1 91.4 88.9 86.5 84.2 82.1 80.0 
33 97.1 94.3 91.7 89.2 86.8 84.6 82.5 80.5 
34 97.1 94.4 91.9 89.5 87.2 85.0 82.9 81.0 
35 97.2 94.6 92.1 89.7 87.5 85.4 83.3 81.4 
36 97.3 94.7 92.3 90.0 87.8 85.7 83.7 81.8 
37 97.4 94.9 92.5 90.2 88.1 86.0 84.1 82.2 
38 97.4 95.0 92.7 90.5 88.4 86.4 84.4 82.6 
39 97.5 95.1 92.9 90.7 88.6 86.7 84.8 83.0 
40 97.6 95.2 93.0 90.9 88.9 87.0 85.1 83.3 
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N k=l 

41 97.6 
42 97.7 
43 97.7 
44 97.8 
45 97.8 
46 97.9 
47 97.9 
48 98.0 
49 98.0 
50 98.0 

51 98.1 
52 98.1 
53 98.1 
54 98.2 
55 98.2 
56 98.2 
57 98.3 
58 98.3 
59 98.3 
60 98.4 

61 98.4 
62 98.4 
63 98.4 
64 98.5 
65 98.5 
66 98.5 
67 98.5 
68 98.6 
69 98.6 
70 98.6 

71 98.6 
72 98.6 
73 98.6 
74 98.7 
75 98.7 
76 98.7 
77 98.7 

TABLE A-7. (CONTINUED) 

CONFIDENCE LEVELS FOR NON-PARAMETRIC 
PREDICTION LIMITS FOR N=l(l)lOO 

NUMBER OF FUTURE SAMPLES 

k=2 k=3 k=4 k=S k=6 k=7 

95.3 93.2 91.1 89.1 87.2 85.4 
95.5 93.3 91.3 89.4 87.5 85.7 
95.6 93.5 91.5 89.6 87.8 86.0 
95.7 93.6 91.7 89.8 88.0 86.3 
95.7 93.8 91.8 90.0 88.2 86.5 
95.8 93.9 92.0 90.2 88.5 86.8 
95.9 94.0 92.2 90.4 88.7 87.0 
96.0 94.1 92.3 90.6 88.9 87.3 
96.1 94.2 92.5 90.7 89.1 87.5 
96.2 94.3 92.6 90.9 89.3 87.7 

96.2 94.4 92.7 91.1 89.5 87.9 
96.3 94.5 92.9 91.2 89.7 88.1 
96.4 94.6 93.0 91.4 89.8 88.3 
96.4 94.7 93.1 91.5 90.0 88.5 
96.5 94.8 93.2 91.7 90.2 88.7 
96.6 94.9 93.3 91.8 90.3 88.9 
96.6 95.0 93.4 91.9 90.5 89.1 
96.7 95.1 93.5 92.1 90.6 89.2 
96.7 95.2 93.7 92.2 90.8 89.4 
96.8 95.2 93.8 92.3 90.9 89.6 

96.8 95.3 93.8 92.4 91.0 89.7 
96.9 95.4 93.9 92.5 91.2 89.9 
96.9 95.5 94.0 92.6 91.3 90.0 
97.0 95.5 94.1 92.8 91.4 90.1 
97.0 95.6 94.2 92.9 91.5 90.3 
97.1 95.7 94.3 93.0 91.7 90.4 
97.1 95.7 94.4 93.1 91.8 90.5 
97.1 95.8 94.4 93.2 91.9 90.7 
97.2 95.8 94.5 93.2 92.0 90.8 
97.2 95.9 94.6 93.3 92.1 90.9 

97.3 95.9 94.7 93.4 92.2 91.0 
97.3 96.0 94.7 93.5 92.3 91.1 
97.3 96.1 94.8 93.6 92.4 91.3 
97.4 96.1 94.9 93.7 92.5 91.4 
97.4 96.2 94.9 93.8 92.6 91.5 
97.4 96.2 95.0 93.8 92.7 91.6 
97.5 96.3 95.1 93.9 92.8 91.7 
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k=8 

83.7 
84.0 
84.3 
84.6 
84.9 
85.2 
85.5 
85.7 
86.0 
86.2 

86.4 
86.7 
86.9 
87.1 
87.3 
87.5 
87.7 
87.9 
88.1 
88.2 

88.4 
88.6 
88.7 
88.9 
89.0 
89.2 
89.3 
89.5 
89.6 
89.7 

89.9 
90.0 
90.1 
90.2 
90.4 
90.5 
90.6 

l 
::. 
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78 
79 
80 

98.7 
98.8 
98.8 

97.5 
97.5 
97.6 

96.3 
96.3 
96.4 

95.1 
95.2 
95.2 
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94.0 
94.0 
94.1 

92.9 
92.9 
93.0 

91.8 
91.9 
92.0 

90.7 
90.8 
90.9 



N k=l 

81 98.8 
82 98.8 
83 98.8 
84 98.8 
85 98.8 
86 98.9 
87 98.9 
88 98.9 
89 98.9 
90 98.9 

91 98.9 
92 98.9 
93 98.9 
94 98.9 
95 99.0 
96 99.0 
97 99.0 
98 99.0 
99 99.0 

100 99.0 

TABLE A-7. (CONTINUED) 

CONFIDENCE LEVELS FOR NON-PARAMETRIC 
PREDICTION LIMITS FOR N=l{l)lOO 

NUMBER OF FUTURE SAMPLES 

k=2 k=3 k=4 k=S k=6 k=7 

97.6 96.4 95.3 94.2 93.1 92.0 
97.6 96.5 95.3 94.3 93.2 92.1 
97.6 96.5 95.4 94.3 93.3 92.2 
97.7 96.6 95.5 94.4 93.3 92.3 
97.7 96.6 95.5 94.4 93.4 92.4 
97.7 96.6 95.6 94.5 93.5 92.5 
97.8 96.7 95.6 94.6 93.5 92.6 
97.8 96.7 95.7 94.6 93.6 92.6 
97.8 96.7 95.7 94.7 93.7 92.7 
97.8 96.8 95.7 94.7 93.8 92.8 

97.8 96.8 95.8 94.8 93.8 92.9 
97.9 96.8 95.8 94.8 93.9 92.9 
97.9 96.9 95.9 94.9 93.9 93.0 
97.9 96.9 95.9 94.9 94.0 93.1 
97.9 96.9 96.0 95.0 94.1 93.1 
98.0 97.0 96.0 95.0 94.1 93.2 
98.0 97.0 96.0 95.1 94.2 93.3 
98.0 97.0 96.1 95.1 94.2 93.3 
98.0 97.1 96.1 95.2 94.3 93.4 
98.0 97.1 96.2 95.2 94.3 93.5 
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k=8 

91.0 
91.1 
91.2 
91.3 
91.4 
91.5 
91.6 
91.7 
91.8 
91.8 

91.9 
92.0 
92.1 
92.2 
92.2 
92.3 
92.4 
92.5 
92.5 
92.6 



I. CONSTRUCfiON OF POWER CURVES 

To construct power curves for each of the parametric and non-parametric retesting strategies, 

random standard Normal deviates were generated on an IBM mainframe computer using SAS. The 

background level mean concentration was set to zero, while the alternative mean concentration level 

was incremented in steps of ~=0.5 standardized units above the background level. At each increment, 

5000 iterations of the retesting strategy were simulated; the proportion of iterations indicating 

contamination at any one of the wells in the downgradient monitoring network was designated as the 

effective power of the retesting strategy (for that ~ and configuration of background samples and 

monitoring wells). 

Power values for the EPA Reference Power Curves were not simulated, but represent analytical 

calculations based on the non-central t-distribution with non-centrality parameter~- SAS programs 

for simulating the effective power of any of the parametric or non-parametric retesting strategies are 

presented below. 

II********************************************************************; 
DESCRIPTION: *** PARAMETRIC SIMULATIONS *** II* 

II* 
II* 
II* 
II* 
II* 
II* 
II* 
II* 
II* 
II* 
II* 

This program produces power curves for 35 different curve 
simulations (refer to the %LET statements below). Delta ranges 
from 0 to 5 by 0.5. The variable list is as follows for the 
input parameters: 

BG Background 
WL Well 
TL Tolerance Limit 
PL Prediction Limit 

II********************************************************************; 
II EXEC SAS 
II OUTSAS DD DSN=XXXXXXX.GWT03000.SJA3092.CURVES, 
II DISP=OLD 
II SYSIN DD * 

OPTIONS LS=132 PS=57; 
%LET ISTART=l; 
%LET CURVENUM=35; 
%LET RSEED=2020; 
%LET REPEAT=5000; 
%LET ITPRINT=lOOO; 

%LET BGl =24; 
%LET BG2 =24; 
%LET BG3 =8; 
%LET BG4 =8; 
%LET BGS =24; 
%LET BG6 =24; 
%LET BG7 =8; 
%LET BG8 =8; 
%LET BG9 =24; 

%LET WLl 
%LET WL2 
%LET WL3 
%LET WL4 
%LET WL5 
%LET WL6 
%LET WL7 
%LET WLS 
%LET WL9 

=5; 
=5; 
=5; 
=5; 
=20; 
=20; 
=20; 
=20; 
=50; 

%LET BG10=24; %LET WL10=50; 

%LET TLl =0.95; 
%LET TL2 =0.95; 
%LET TL3 =0.95; 
%LET TL4 =0.95; 
%LET TL5 =0.95; 
%LET TL6 =0.95; 
%LET TL7 =0.95; 
%LET TLS =0.95; 
%LET TL9 =0.95; 
%LET TL10=0.95; 
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%LET PLl =0.80; 
%LET PL2 =0.85; 
%LET PL3 =0.80; 
%LET PL4 =0.85; 
%LET PL5 =0.95; 
%LET PL6 =0.97; 
%LET PL7 =0.95; 
%LET PLS =0.97; 
%LET PL9 =0.98; 
%LET PL10=0.99; 



%LET BG11=24; %LET WL11=50; %LET TLll=O. 99; %LET PLll=O. 90; 
%LET BG12=24; %LET WL12=50; %LET TL12=0.99; %LET PL12=0.93; 
%LET BG13=24; %LET WL13=50; %LET TL13=0. 99; %LET PL13=0. 94; 
%LET BG14=24; %LET WL14=50; %LET TL14=0.98; %LET PL14=0.95; 
%LET BG15=24; %LET WL15=50; %LET TL15=0.98; %LET PL15=0.97; 
%LET BG16=24; %LET WL16=100; %LET TL16=0.98; %LET PL16=0.97; 
%LET BG17=24; %LET WL17=100; %LET TL17=0.98; %LET PL17=0.99; 
%LET BG18=24; %LET WL18=100; %LET TL18=0.99; %LET PL18=0.95; 
%LET BG19=24; %LET WL19=100; %LET TL19=0.99; %LET PL19=0.97; 
%LET BG20=24; %LET WL20=100; %LET TL20=0.99; %LET PL20=0.98; 
%LET BG21=8; %LET WL21=20; %LET TL21=0.95; %LET PL21=0.98; 
%LET BG22=8; %LET WL22=5; %LET TL22=0.95; %LET PL22=0.90; 
%LET BG23=16; %LET WL23=5; %LET TL23=0.95; %LET PL23=0.85; 
%LET BG24=16; %LET WL24=5; %LET TL24=0.95; %LET PL24=0.90; 
%LET BG25=24; %LET WL25=5; %LET TL25=0.95; %LET PL25=0.90; 
%LET BG26=16; %LET WL26=20; %LET TL26=0.95; %LET PL26=0.95; 
%LET BG27=16; %LET WL27=20; %LET TL27=0.95; %LET PL27=0.97; 
%LET BG28=16; %LET WL28=50; %LET TL28=0.98; %LET PL28=0.95; 
%LET BG29=16; %LET WL29=50; %LET TL29=0.98; %LET PL29=0.97; 
%LET BG30=16; %LET WL30=50; %LET TL30=0.99; %LET PL30=0.90; 
%LET BG31=16; %LET WL31=50; %LET TL31=0.99; %LET PL31=0.92; 
%LET BG32=24; %LET WL32=100; %LET TL32=0.98; %LET PL32=0.98; 
%LET BG33=16; %LET WL33=100; %LET TL33=0.98; %LET PL33=0.98; 
%LET BG34=16; %LET WL34=100; %LET TL34=0.99; %LET PL34=0.95; 
%LET BG35=16; %LET WL35=100; %LET TL35=0.99; %LET PL35=0.96; 

%MACRO PARSIM; 
DATA ITERATE; 
*** Set changing simulation variable to common variable names; 

BG=&&BG&I; 
WL=&&WL&I; 
TL=&&TL&I; 
PL=&&PL&I; 

DO DELTA=O TO 5 BY 0.5; 
*** Initialize TPO, TP1 & TP2 to 0 before entering simulation; 

TPO=O; 
TP1=0; 
TP2=0; 

DO J=1 TO &REPEAT; 
*** Initialize CNTO, CNT1 & CNT2 to 0; 

CNTO=O; 
CNT1=0; 
CNT2=0; 

XB=RANNOR(&RSEED)/SQRT(BG); 
SB=SQRT(2*RANGAM(&RSEED, (BG-1)/2)/(BG-1)); 

PL2=XB+SB*SQRT(1+1/BG)*TINV((1-(1-PL)/2), (BG-1)); 
PL1=XB+SB*SQRT(1+1/BG)*TINV((1-(1-PL)), (BG-1)); 
PLO=XB+SB*SQRT(1+1/BG)*TINV((1-(1-TL)), (BG-1)); 
TLIM=XB+SB*SQRT(1+1/BG)*TINV((1-(1-TL)), (BG-1)); 

DO K=1 TO WL; 
IF K<WL THEN DO; 
X1=RANNOR(&RSEED); 
X2=RANNOR(&RSEED); 
X3=RANNOR(&RSEED); 
END; 
ELSE DO; 
X1=RANNOR(&RSEED)+DELTA; 
X2=RANNOR(&RSEED)+DELTA; 
X3=RANNOR(&RSEED)+DELTA; 
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END; 

END; 
IF X1>TLIM THEN DO; 
CNTO=CNT0+1; 
IF X2>PL1 THEN CNT1=CNT1+1; 
IF X2>PL2 OR X3>PL2 THEN CNT2=CNT2+1; 
END; 

IF CNTO>O THEN TPO=TP0+100I&REPEAT; 
IF CNT1>0 THEN TP1=TP1+100I&REPEAT; 
IF CNT2>0 THEN TP2=TP2+100I&REPEAT; 

*** Print iteration information every 100 iterations; 
I=&I; 
IF MOD(J,&ITPRINT)=O THEN 

PUT 1 >>> CURVE I I I ITERATION I J II I BG= II I WL= II I TL= I 

PL= I I I DELTA= I I I TPO= I I TP1= II I TP2= 1 <<< 1 i 

END; 
OUTPUT; 
END; 
RUN; 

DATA OUTSAS.PCURVE&I; SET ITERATE(KEEP=BG WL TL PL TPO TP1 TP2 DELTA); 
RUN; 

PROC PRINT DATA=OUTSAS.PCURVE&I; 
FORMAT TPO TP1 TP2 8.4; 
TITLE1"TEST PRINT OF PARAMETRIC SIMULATION PCURVE&I"; 
TITLE2"NUMBER OF ITERATIONS= &REPEAT"; 

RUN; 

%MEND PARSIM; 
%MACRO CURVE; 

%DO I=&ISTART %TO &CURVENUM; 
%PARSIM 

%END; 
%MEND CURVE; 

%CURVE 

II********************************************************************; 
II* DESCRIPTION: *** NON-PARAMETRIC SIMULATION*** 
II* 
II* 
II* 
II* 
II* 
II* 
II* 
II* 
II* 

This program produces power curves for 15 
simulations (refer to the %LET statements 
from 0 to 5 by 0.5. The variable list is 
input parameters: 

BG 
WL 

Background 
Well 

different curve 
below). Delta ranges 
as follows for the 

II********************************************************************; 
II EXEC SAS 
II 
II 

OUTSAS DD DSN=XXXXXXX.GWT03000.SJA3092.CURVES,DISP=OLD 
SYSIN DD * 

OPTIONS LS=132 PS=57; 
%LET ISTART=1; 
%LET CURVENUM=15; 
%LET RSEED=3030; 
%LET REPEAT=5000; 
%LET ITPRINT=1000; 

%LET BGl =8; %LET WLl =5; 
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%LET BG2 =16; 
%LET BG3 =24; 
%LET BG4 =8; 
%LET BG5 =16; 
%LET BG6 =24; 
%LET BG7 =8; 
%LET BG8 =16; 
%LET BG9 =24; 
%LET BG10=8; 
%LET BG11=16; 
%LET BG12=24; 
%LET BG13=32; 
%LET BG14=32; 
%LET BG15=32; 

%MACRO NPARSIM; 
DATA ITERATE; 

%LET WL2 =5; 
%LET WL3 =5; 
%LET WL4 =20; 
%LET WL5 =20; 
%LET WL6 =20; 
%LET WL7 =50; 
%LET WL8 =50; 
%LET WL9 =50; 
%LET WL10=100; 
%LET WL11=100; 
%LET WL12=100; 
%LET WL13=100; 
%LET WL14=20; 
%LET WL15=50; 

*** Set changing simulation variable to common variable names; 
BG=&&BG&I; 
WL=&&WL&I; 

DO DELTA=O TO 5 BY 0.5; 
*** Initialize PLx variables to 0 before entering simulation; 
PLO=O; 
PL1=0; 
PL2A=O; 
PL2B=O; 
PL3A=0; 
PL3B=0; 

DO J=1 TO &REPEAT; 
*** Initialize CNTx variables to 0; 
CNTO=O; 
CNT1=0; 
CNT2=0; 
CNT3=0; 
CNT4=0; 
CNT5=0; 

DO K=1 TO BG; 
TEST=RANNOR(&RSEED); 
IF K=1 THEN MAX=TEST; 

ELSE IF TEST>MAX THEN MAX=TEST; 
END; 

DO L=1 TO WL; 

END; 

IF L<WL THEN DO; 
X1=RANNOR(&RSEED); 
X2=RANNOR(&RSEED); 
X3=RANNOR(&RSEED); 
X4=RANNOR(&RSEED); 
END; 
ELSE DO; 
X1=RANNOR(&RSEED)+DELTA; 
X2=RANNOR(&RSEED)+DELTA; 
X3=RANNOR(&RSEED)+DELTA; 
X4=RANNOR(&RSEED)+DELTA; 

IF X1>MAX THEN DO; 
CNTO=CNT0+1; 
IF X2>MAX THEN CNT1=CNT1+1; 
IF X2>MAX & X3>MAX THEN CNT2=CNT2+1; 
IF X2>MAX OR X3>MAX THEN CNT3=CNT3+1; 
IF X2>MAX & X3>MAX & X4>MAX THEN CNT4=CNT4+1; 
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IF X2>MAX OR X3>MAX OR X4>MAX THEN CNTS=CNTS+l; 
END; 

IF CNTO>O THEN PLO=PL0+100/&REPEAT; 
IF CNTl>O THEN PLl=PLl+lOO/&REPEAT; 
IF CNT2>0 THEN PL2A=PL2A+100/&REPEAT; 
IF CNT3>0 THEN PL2B=PL2B+l00/&REPEAT; 
IF CNT4>0 THEN PL3A=PL3A+100/&REPEAT; 
IF CNTS>O THEN PL3B=PL3B+100/&REPEAT; 

*** Print iteration information every X iterations; 
I=&I; 
IF MOD(J,&ITPRINT)=O THEN 

PUT 1 >>> CURVE I I 1 , ITERATION I J I I BG= 1 , I 

END; 
OUTPUT; 
END; 
RUN; 

I PLO= 1 , I PLl= 1 , I PL2A= I I PL2B= I 

WL= I I I DELTA= 
I PL3A= 1

, I PL3B= '<<<'; 

DATA OUTSAS.NCURVE&I; SET ITERATE(KEEP=BG WL PLO PLl PL2A PL2B PL3A PL3B DELTA); 
RUN; 

PROC PRINT DATA=OUTSAS.NCURVE&I; 
FORMAT PLO PLl PL2A PL2B PL3A PL3B 8.4; 
TITLEl"TEST PRINT OF NON-PARAMETRIC SIMULATION NCURVE&I"; 
TITLE2"NUMBER OF ITERATIONS= &REPEAT"; 

RUN; 

%MEND NPARSIM; 
%MACRO CURVE; 

%DO I=&ISTART %TO &CURVENUM; 
%NPARSIM 

%END; 
%MEND CURVE; 

%CURVE 
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III. NON-PARAMETRIC RETESTING STRATEGIES 
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