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Flow in unsaturated fractured porous media: 
Hydraulic conductivity of rough surfaces 

Dani Or and Markus Tuller 
Department of Plants, Soils, and Biometeorology, Utah State University, Logan 

Abstract. The general trend in models for flow in unsaturated fractured porous media is 
to regard desaturated fractures as nonparticipating elements that impede flow. Mounting 
experimental and theoretical evidence shows that fractures retain and conduct liquid in 
the form of film and partially filled corner flow to a relatively low degree of saturation. A 
simple geometrical model for rough fracture surfaces is developed offering a tractable 
geometry for calculations of surface liquid storage due to adsorbed films and capillary 
menisci. Assuming that under slow laminar flow the equilibrium liquid configurations on 
the fracture surface are not modified significantly, the average hydraulic conductivities for 
film and corner flows were derived and used as building blocks for a representative 
fracture roughness element and an assemblage of statistically distributed surface roughness 
elements. Calculations for a single representative element yielded excellent agreement 
with surface storage and unsaturated hydraulic conductivity measurements of Tokunaga 
and Wan [1997]. A statistical representation of surface roughness using a gamma 
distribution of pit depths tesulted in closed-form expressions for unsaturated hydraulic 
conductivity averaged across the fracture length (transverse to flow) or weighted by the 
liquid cross section occupying the fracture surface. An important attribute of the surface 
roughness model is the direct link between fracture surface and matrix processes unified 
by the matric potential. The proposed model represents a first step toward development of 
a comprehensive approach for liquid retention and hydraulic conductivity of unsaturated 
fractured porous media based on details of liquid configuration for different matric potentials. 

1. Introduction 

The large disparity in hydraulic behavior between fractures 
and matrix in unsaturated fractured porous media (FPM) pre­
sents practical and theoretical challenges to modeling of total 
system response [Glass et al., 1995]. Naturally fractured porous 
media consist of interconnected fracture and pore networks 
forming two distinct pore spaces (in some cases, multiple con­
tinua are considered [Prness and Narasimhan, 1982]). Large 
pores and crevices (10-4-10-2 m [Tsang and Tsang, 1987; 
Fischer et at., 1998]) are often associated with fractures, and a 
system of much smaller pores (10-7-10-5 m [Thoma et al., 
1992]) is associated with the porous matrix. Although fractures 
are generally considered fast transport pathways [Zimmerman 
and Bodvarsson, 1996], under partial saturation fractures can 
impede flow [Wang and Narasimhan, 1985]. As saturation de­
creases, wide aperture fractures drain first when bulk liquid is 
displaced by a gaseous or a nonwetting phase. However, the 
wetting phase is not completely displaced, as some liquid re­
mains adsorbed on surfaces in the form of films or held by 
capilla1y forces in crevices, asperities, and pits on rough frac­
ture surfaces [Wang and Narasimhan, 1985; Glass et al., 1995]. 
Some aperture-based conceptual models assume that such 
empty fractures do not participate in flow except at a few 
contact areas [Wang and Narasimhan, 1985] or only through a 
network of locally saturated channels [Tsang and Tsang, 1987] 
and wedges [Rasmussen, 1987]. However, recent evidence 
shows that film and groove flow along ( unbridged) fracture 
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surfaces is a potentially important transport mechanism under 
partial fracture saturation [Tokunaga and Wan, 1997]. The 
practical significance of such a transport mechanism and its 
contribution to overall FPM permeability is a matter of ongo­
ing debate. In a recent study, Pruess [ 1999] concluded that the 
potential conuibution to FPM permeability of flow on rough 
fracture surfaces (represented by vertical half capillaries) un­
der the matric potential conditions prevailing in Yucca Moun­
tain ( ~-3 bars) is likely to be small. 

Modeling liquid retention and flow in grooves and films is 
sensitive to surface roughness characteristics. Experiments 
conducted by Rye et al. [1996] on flow in open V-shaped sur­
face grooves showed strong dependence of flow rates on 
groove angle and solid-liquid contact angle. Theoretical anal­
yses of Philip [1978] and Novy et a!. [1989] demonstrated the 
significance of surface roughness geometry on liquid adsorp­
tion and capillary condensation. A numerical method based on 
the boundary integral formulation for Stokes flow was intro­
duced by Pozrikidis [1988] to analyze the flow of liquid films 
along rough surfaces. Experimental data for flow along rough 
fracture surfaces were presented by Fourar et al. [1993] and 
more recently by Tok-unaga and Wan [1997]. 

The objective of this study was to develop a model for flow 
on rough surfaces of unsaturated fractures based on hydro­
static liquid configuration due to adsorptive and capillary 
forces. This is a first step toward developing a framework for 
liquid retention and hydraulic conductivity in partially satu­
rated fractured porous media that combines realistic models of 
matrix and fracture pore space geometry and explicitly consid­
ers the roles of adsorption, capillarity, and hydrodynamic pro­
cesses in such pore geometry. The basis for the proposed 
hydrodynamic modeling of flow in thin liquid films and surface 
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Figure 1. Definition sketch for a unit element representing unsaturated fracture surface with a single pit of 
depth L and angle 'Y· Liquid-vapor interfaces are functions of the matric potential p,, which determines the 
radius of curvature in the pit r(p,) and film thickness h(p,). The inset represents the partially saturated porous 
rock matrix forming the fracture; water in the rock matrix pore space is in equilibrium with water on the 
fracture surface. 

grooves at various matric potentials was the equilibrium liquid­
vapor interfacial configuration. For slow laminar flow these 
interfaces are considered stable and thus provide the necessary 
boundary conditions for the Navier-Stokes equations in the 
assumed geometry. A statistical distribution of an elementary 
roughness element is introduced to characterize fracture sur­
face roughness. Model calculations for various surface geom­
etries are presented and compared with experimental data 
published by Tokunaga and Wan (1997]. Detailed analytical 
solutions for average hydraulic fracture surface conductivity 
are presented. 

2. Theoretical Considerations 
Thermodynamic considerations for adsorbed film thickness 

and capillary-dependent interface curvature are combined to 
obtain a detailed picture of liquid-vapor interfaces under hy­
drostatic equilibrium [Tuller eta!., 1999; Or and Tuller, 1999]. 
Various types of long- and short-range surface forces induce 
liquid adsorption as films on solid surfaces [Derjaguin et al., 
1987]; additional volumes of liquid are held in crevices and pits 
by capillary forces. Equilibrium liquid-vapor interfacial config­
urations as a function of matric potential provide well-defined 
boundaries for the introduction of hydrodynamic consider­
ations. The underlying assumption is that for slow laminar flow 
regimes, these liquid configurations and interfaces remain rel­
atively stable. These simplifications provide the starting point 
for developing a model for average unsaturated hydraulic con­
ductivity of rough fracture surfaces. 

2.1. Fracture Surface Geometry 

The cross-sectional profile of surface roughness of a rela­
tively wide fracture is represented by an assemblage of indi­
vidual roughness elements with cross-sectional geomet1y as 

depicted in Figure 1. (A similar roughness geometry was used 
by Colbeck [1996] to study capillary adhesion of grooved sur­
faces.) Each roughness element contains a groove or an iso­
lated pit attached to an essentially flat surface segment (more 
generally, to a surface segment with roughness much smaller 
than pit depth L). Pit geometry is defined by its depth L, an 
angle y, and by pit spacing {3L. The nondimensional parame­
ter {3 defines the pit/groove density per unit fracture surface, 
assumed to be proportional to pit depth L. 

The fracture aperture is assumed to be sufficiently wide to 
preclude fracture snap-off (spontaneous filling of the gap or 
the entire aperture) at all matric potentials and flow rates 
under consideration. The extension of the analysis to fully 
saturated fractures is simple for a known aperture size (or a 
distribution of aperture sizes). In assembling the unsaturated 
hydraulic conductivity for the rough surface, we consider the 
individual contributions of film and groove (corner) flows to 
the total flow on the fracture surface. If fracture surface rough­
ness is primarily in the form of isolated pits, the dominating 
hydraulic regime is expected to be in the form of liquid film 
flow. In the presence of an appreciable number of continuous 
grooves most of the flow is expected to be conducted as "cor­
ner" flow [Ransohoft and Radke, 1988; Dullien et al., 1986]. 
Under most realistic conditions, flow on unsaturated fracture 
surfaces is likely to be a result of these two processes. 

2.2. Liquid Retention in a Surface Roughness Element 

The ability to describe the amount of liquid retained and the 
configuration of liquid-vapor interfaces is key to subsequent 
calculations of hydraulic conductivity. The thickness (h) of a 
liquid film adsorbed on a planar surface and confined by a 
vapor phase may be calculated as a function of matric potential 
{p,) as [Iwamatsu and Horii, 1996] 
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(1) 

where A svl is the Hamaker constant for solid-vapor interac­
tions through the intervening liquid and pis the density of the 
liquid. The matric potential is expressed in terms of energy per 
unit mass [ J kg - 1

] and may be converted to pressure (energy/ 
volume) [Pascals] by multiplication by water density (p). Equa­
tion (1) represents the simplest form of liquid adsorption on 
solid surfaces considering van der Waals forces only [Derjaguin 
et al., 1987]. The total amount of liquid associated with films is 
determined not only by the area of the film of the flat segment, 
(3Lh(fL), but also by films exposed on the pit/groove surfaces 
as the radius of curvature decreases and liquid recedes deeper 
into the groove (Figure 1). To calculate these additional film 
surfaces, we need first to discuss liquid retention by capillary 
forces. 

The radius of liquid-vapor interface curvature (r) for unsat­
urated conditions is dependent on matric potential (fl.) accord­
ing to the Young-Laplace relationship: 

(2) 

where u is the surface tension of the liquid. An interesting 
feature of this uniform capillary radius of curvature is that all 
grooves with an angle -y retain the same amount of liquid-filled 
cross-sectional area regardless of the groove's depth ( L). The 
amount of liquid retained in a corner A c (expressed in this 
analysis as cross-sectional area) is given by (Figure 2) 

(3) 

where F( -y) is pit angularity factor defined as [Tuller et al., 
1999] 

1 7T(l80 - -y) 
F( -y) = tan ( -y/2) - 360 (4) 

With the liquid cross-sectional area associated with capillar­
ity defined, we may now calculate the cross-sectional film area 
Ap(fl.) as (see Figure 1) 

A ( ) - h( ){ 0-L + 2[ L - r(f!) ] } 
FfL- fL '"' cos(-y/2) tan(-y/2) ' (5) 

where h ( fL) is the thickness of the adsorbed film (equation ( 1)) 
and r(f!) is the radius of interface curvature (equation (2)). 

When the curved liquid-vapor interface reaches the pit edge, 
the pit is considered completely filled, and no further increase 
of interface curvature is possible (i.e., a "jump" to a flat liquid­
vapor interface is assumed). The relationships between pit 
geometry and the critical matric potential fLc at this point are 
defined by 

(T cos ( y/2) 
J.Lc=- pL tan(-y/2)' (6) 

and the critical radius of curvature is simply rc(J.Lc) = 
[ L tan ( -y/2) ]/[cos ( -y/2) ]. 

2.3. Flow in Thin Liquid Films Adsorbed 
on Fracture Surfaces 

The flow velocity distribution normal to film cross section is 
obtained from a solution of the following simplified Navier­
Stokes equation [Spurk, 1997]: 

r 

tan(~) 

Figure 2. Liquid-vapor interfacial configuration and liquid­
filled cross-sectional area in a corner. 

dP d 2v 
- dz = 110 dy 2 ' 

(7) 

where v is the velocity, y is the distance taken normal to the 
solid surface, dP!dz is the hydraulic gradient in flow direction 
z, and Tlo is the viscosity of bulk liquid. Double integration of 
(7) yields the velocity profile normal to the solid su1iace: 

y
2

- 2hy ( dP) v(y) = --. 
2Tjo dz 

(8) 

The velocity profile (equation (8)) may be integrated again and 
divided by film thickness (h) to yield an average liquid velocity 
for a given matric potential: 

v = h
2
(fl.) ( _ dP). 

3Tj0 dz 
(9) 

This expression relates the film thickness h (equation (1)) as a 
function of the matric potential f.L and the mean velocity and is 
valid only when the liquid viscosity is constant throughout the 
film. Experimental and theoretical evidence shows a presence 
of a thin layer with modified viscosity close to the solid surface. 
Liquid viscosity is elevated relative to bulk liquid because of 
short- and long-range interfacial forces [Low, 1976, 1979; Der­
jaguin et al., 1987; McBride and Baveye, 1995]. Expressions 
derived by Low [1979] for viscosity profiles of water altered by 
interfacial forces were recently modified by Or and Wraith 
[1999] to represent viscosity in terms of distance from the solid 
surface: 

Tl(Y, T) = Tlo exp (;;) , (10) 

where y is the distance from the solid surface (angstroms), T is 
temperature (Kelvins), and a* = 1621 (A K) is a constant 
modified from Low [1979]. While these relationships are not 
universal, they provide a first approximation for the effect of 
surface forces on liquid viscosity. Substituting (10) into (7) and 
performing the integrations yields an expression for average 
velocity considering effects of modified liquid viscosity near 
solid surfaces: 
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Figure 3. Nondimensional corner resistance to flow as a 
function of corner angle 'Y calculated from tabulated values of 
Ransohoff and Radke (1988]. 

B(J.L) ( dP) 
v = 121)0h(J.L) - dz ' (11) 

with the function B(J.L) for a given film thickness h(J.L): 

B(J.L) = (4h(J.L) 3
- 5ah(J.L) 2

- a2h(J.L)) exp (- h~J.L)) 

- (6a 2h(J.L) + a3) Ei [-_a_] 
- h(J.L) 

where Ei[x] = f-:_~ fexp (t)/t] dt is the exponential integral 
[Abramowitz and Stegzm, 1964] and a for room temperature 
(293 K) is defined as a = (a* /293) X w--to = 5.53 X 10- 10 m. 

Sample calculations show that the average velocities for con­
stant (equation (9)) and variable viscosity (equation (11)) be­
come indistinguishable for liquid films greater than about 10 
nm. We therefore use the simpler expression in (9) for flow in 
films thicker than 10 nm and the more complex (11) for flow in 
very thin films. 

2.4. Liquid Flow in Comers Bounded by a Vapor Phase 

Mathematical expressions for average liquid velocity in cor­
ners bounded by liquid-vapor interfaces were derived by Ran­
sohoff and Radke [ 1988]. They used a detailed numerical 
scheme to solve the Navier-Stokes equations for the assumed 
geometty and boundary conditions. Their results were reduced 
to the following general form: 

v = r(J.L)~ ( _ dP), 
C:1Jo dz 

(12) 

where e is a dimensionless flow resistance parameter depen­
dent on the corner angle 'Y [Ransohoff and Radke, 1988]. The 
tabulated values of Ransohoff and Radke (1988] for e for dif­
ferent corner angles and for zero surface shear stress (i.e., 
liquid-vapor interface) were fitted with the following paramet­
ric expression (Figure 3): 

(b + dy) 
e( y) = exp 1 + C')l , (13) 

with b = 2.124, c = -0.00415, and d = 0.00783 (r 2 = 0.995) 
for 'Y values in the range of 10° < 'Y < 150° (Figure 3). 

2.5. Unsaturated Hydraulic Conductivity for Films 
and Corners 

Analogy between average velocity calculated from the 
Navier-Stokes solutions (equations (9), (11), and (12)) and 
Darcy's law representation of the liquid flux was used to obtain 
the hydraulic conductivity for films and corners. Darcy's law is 
given as 

v = g_ = ~ ( _ dP) 
A pg dz ' 

(14) 

where Q is the volumetric discharge rate, A is the cross­
sectional area occupied by the liquid, K is the hydraulic con­
ductivity, and g is the acceleration of gravity. Assuming a unit 
hydraulic gradient, rearranging (14), and inserting the solution 
in (9), (11), and (12) yield the following expressions for K(J.L): 
Flow in films with constant liquid viscosity 

Flow in films with variable liquid viscosity 

Corner flow [Ransohoff and Radke, 1988] 

pg 3rz(J.L) 
K(n)----

C ,... - 31)o e · 

(15) 

(16) 

(17) 

First, we note that in the derivation of ( 15)-(17), we implicitly 
assume vertical fracture surfaces. The results may be extended 
to tilted fracture surfaces by simply multiplying the terms on 
the right-hand side of (15)-(17) by the cosine of the tilt angle. 
Second, effects of gravity on the shape of liquid vapor inter­
faces are neglected. Third, the definition of unsaturated hy­
draulic conductivity in the derivations above (and subse­
quently) is slightly different than the commonly accepted 
definition requiring knowledge of a cross-sectional area of the 
porous medium. For known fracture aperture size and average 
spacing between adjacent fractures these two definitions could 
be reconciled by redefinition of A in (14). For lack of a better 
term, for simplicity, and to maintain the usual form of Darcy's 
law, we use "surface hydraulic conductivity" to describe and 
characterize the inverse of "surface hydraulic resistivity." 

2.6. Hydraulic Conductivity of an Individual Surface 
Roughness Element 

Two averaging methods are applied to derive the effective, 
unsaturated, hydraulic conductivity for fracture surface rough­
ness elements from their respective film (equations (15) and 
( 16)) and corner (equation ( 17)) conductivities. One method 
involves averaging over liquid cross-sectional area in the films 
and occupying the corner. The other approach averages over 
the projected lengths of film and partially filled corner seg­
ments tran!>verse to flow direction as depicted in Figure 1. The 
latter method appears advantageous from a practical point of 
view because quantities can be measured directly. In other 
words, experimental information on the average hydraulic con­
ductivity per fracture length (transverse to flow) is likely to be 
more observable than total liquid cross-sectional area. How­
ever, for the sake of completeness and to facilitate compari­
sons, both methods will be developed and discussed. 
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(a) 

Figure 4. (a) Wet fracture surface of Apache Leap Tuff (Arizona) with visible surface grooves and isolated 
areas. (b) Geometrical idealization of a rough fracture surface formed by a distribution of roughness elements 
and illustration of pit/groove connectivity between two adjacent cross sections transverse to flow direction. 

2.6.1. Liquid area averaged hydraulic conductivity: KA(f.l.). 
To obtain expressions for individual roughness clement liquid 
area averaged hydraulic conductivity as a function of matric 
potential, we must distinguish between two stages of pit filling 
(completely full and partially filled pits). These two states are 
separated by the critical matric potential 1-tc (equation (6)). 
The average hydraulic conductivity for matric potentials, which 
are more negative than the critical matric potential (1-t < ILc• 
where pits are partially filled), is given as 

Kf(~-t)Afi(l-t) + Kc(~-t)Ac1(1-t)8 
KAI(!L) = AFI(!L) + Ad~-t) ' (18) 

where A,.. 1 and Ac1 are the liquid-filled cross-sectional areas 
of the film and the corner/pit (prior to pit filling), respectively, 
and /5 is a connectivity factor (0.0 < /5 < 1.0). The factor /5 
accounts for partial connectivity among neighboring pits or 
grooves in the direction of flow (i.e., the fraction of pits and 
grooves in the cross section that participates in corner flow). 
When observing adjacent cross sections, not all pits on the 
fracture wall are likely to be connected to form continuous 
grooves (see Figure 4). These "isolated" pits are not contrib­
uting to corner flow and thus are not considered as part of the 
Kc contribution (see equation (18)). This spatial connectivity 
factor is required even at the individual roughness element 
level for (1) proper introduction of connectivity issues operat­
ing at the fracture surface scale and (2) facilitating the use of 
a single roughness element for representation of the entire 
fracture surface roughness behavior. For clarity, we show the 
individual contributions of film KAFI(IL) and corner flows 
KAc 1 (~-t) from (18): 

KF(~-t)AFJ(!L) 
K.m(/L) = AFI(/L) + An(/L) 

Kc(~-t)ACI(/L)/5 
K.w(~-t) = AFI(~-t) + ACI(/L) · 

(19) 

For matric potentials greater than or equal to I-to the liquid 
area averaged hydraulic conductivity is given as 

KF(~-t)An(~-t) + Kc(~-t)Acz/5 
KAz(/L) = An(~-t) + Acz ' (20) 

where An(!L) and AC2 are the liquid-filled cross-sectional 
areas after a complete filling of the pit. Detailed derivations of 
AF1 (~-t), Ac 1(1L), An(!L), andAC2 are given in Appendix A 
The individual contributions of film and corner flows for this 
case are derived in the same fashion as for partially filled pits 
(equation (19)). 

2.6.2. Length-averaged hydraulic conductivity: KL (fl.). 
Expressions for averaging hydraulic conductivity by the rough­
ness element's projected length transverse to flow are derived 
in the same fashion considering two pit-filling stages. The frac­
ture length-averaged hydraulic conductivity as a function of 
matric potential prior to pit filling is given as 

KAIL)LFJ(/L) + Kc(~-t)L 0(~-t) 
Kl.l(~-t) = LFI(~-t) + Ln(IL) ' (21) 

and the average hydraulic conductivity after pit filling is de­
fined as 

KF(~-t)Ln + KcC~-t)Lc2 
K ( ) (22) Lz~-t= L +L ' 

F2 C2 
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with LF 1(/L), LCl(!L), Ln, and Lc2 as the projected lengths 
derived in Appendix A 

2, 7, Surface Hydraulic Conductivity for an Assemblage 
of Roughness Elements 

A more realistic representation of natural fracture surfaces 
requires a distribution of roughness element geometric at­
tributes (pit sizes, angles, and associated "flat" segments). A 
conceptual sketch for a distribution of sUiface roughness cle­
ments on a fracture surface. is depicted in Figure 4. 

2. 7.1. Statistical distribution of pit/groove depths. Frac­
ture surface roughness is represented by a statistical gamma 
distribution of pit depths ( L). The pit angle ( y) is kept con­
stant in subsequent de.rivations to retain mathematical tracta­
bility. The gamma distribution [Rice, 1995] facilitates deriva­
tion of closed-form expressions for the expected value of 
fracture surface unsaturated hydraulic conductivity. The 
gamma density function for the pit depth, f( L), is dependent 
on two parameters g and w: 

Le ( L) 
.f(L) = ~!wf+l exp - ~ L =::: 0 . (23) 

' The parameter~ is limited to integer values only, and~= 2 was 
used in this study (to obtain simple and closed-form expres­
sions). The cumulative gamma distribution is expressed as 

{L (2 ( t ) 
F(L) = Jo W exp - ~ dt t 2: 0. (24) 

The range of admissible L values for the assumed gamma 
distribution was limited to values between Lmin and Lmax• 

representing the smallest and largest pit depths, respectively. 
To ensure that the integration of (23) within the limits L min 

and Lmax is as close to unity as possible or to truncate the 
distribution tail effect at L max• we minimize the expression 

min (fLm.,f(L) dL -1) 

Lmm 

(i.e., the deviation between the cumulative gamma distribution 
and unity) by adjusting w for a given Lmax· 

2.7.2. Expected value of unsaturated surface hydraulic 
conductivity. Analogous to hydraulic conductivity calcula­
tions for individual clements, we use two different averaging 
methods, projected length average and liquid cross-sectional 
area average, to determine unsaturated hydraulic conductivity 
for an assemblage of elements. In the following we focus on 
developing expressions for length-averaged hydraulic conduc­
tivity because of the more realistic application to observable 
quantities (see section 2.6). 

The average hydraulic conductivity KL is related to the pro­
jected lengths of film and corner flow regions as shown in 
Figure 1. Closed-form expressions for projected length con­
ductivity KL as a function of matric potential /L are derived 
considering two filling stages: partially liquid-filled pits and 
completely filled pits. 

Pits are considered completely full when the curved liquid­
vapor interface reaches the pit edge (contact point with the flat 
segment). The critical pit depth L 1 separating full and partially 
filled pits varies with the matric potential /L and is calculated 
from the radius of liquid-vapor interface curvature r(~-t) and 
pit depth L by rearranging (6): 

a cos ( y/2) 
Ll(/L) = - P-~-t-ta-n--:-(-y/-:-:2,.-) · (25) 

The expected value of averaged surface hydraulic conductivity 
as a function of matric potential (Kd /L)) is thus expressed as 
the sum of two terms related to the pit-filling stages: 

with 

J
L,(!'I K •. (,)L., + Kc·(")Lc·, 

(Kd~-t)) = r ,... r- . ,_ - f(L) dL. 
Ln + Lcz 

Lmin 

(26c) 

The first term (equation (26b)) is the expected value of surface 
conductivity for partially filled pits obtained by integrating 
from L 1 (~-t) (equation (25)) to the maximum pit depth Lmax· 

Equations (15), (16), and (17) are used to calculate corner and 
film conductivities. The second term KL2(~-t) considers all full 
pits/grooves. The lower limit of integration is the smallest pit 
depth Lmin• set to an arbitrary value of 10 ~-tm in this study, and 
the upper integration limit is calculated according to (25). To 
observe the limiting condition for pit filling (when the radius of 
curvature used in the estimation of Kc (equation (17)) touches 
pit edge), we relate the curvature to pit geometry by solving 
(25) for r(~-t) (r = -a/ P/L) and substitute the resulting ex­
pression into (17). The resulting equation for corner hydraulic 
conductivity Kc( /L) for full pits is given as 

2 
tan2 (y/2)pg 

K (n) = L 
c r- cos2 (y/2)e7j0 • 

(27) 

The film conductivity Kp(/L) is independent offracture geom­
etry and is calculated according to (15) and (16), taking into 
consideration variable liquid viscosity for films thinner than 10 
nm. The projected lengths LF 1 (~-t), LC!(!L), LF2 , and Lc2 

are defined in Appendix A. Detailed solutions for the integrals 
in (26) are given in Appendix B. 

Analytical expressions for the expected value of liquid area 
averaged hydraulic conductivity (KA ( /L)) are derived in the 
same fashion as for length-averaged conductivity and are sub­
jected to identical limits of integration: 

with 

(KAz(/L)) = F./L n /L c /L c2 f(L) dL. 
J

LJ(!L) K ( )A ( ) + K ( )A 8 

Ad~-t) + Ao 
Lmin 

(28c) 

Detailed derivations and closed-form solutions for the inte­
grals are given in Appendix B. 
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3. Illustrative Examples 
We proceed with illustrative examples first for an individual 

surface roughness element, and then we discuss an ensemble of 
elements forming rough fracture surfaces. Both the projected 
surface length (transverse to flow) and the liquid-area­
averaging methods are presented. We consider the effects of 
different groove angles ('y), spacing ({3L ), and connectivity 
factors (o) on calculated surface hydraulic conductivity. These 
model calculations are compared with experimental results 
reported by Tokunaga and Wan [1997). All physical constants 
used in the calculations are listed in Table 1. 

3.1. Hydraulic Conductivity of a Representative Surface 
Roughness Element 

The modeling approach was tested using a unique data set 
obtained by Tokunaga and Wan [1997) from flow measure­
ments on a Bishop tuff sample. Liquid retention on the rock 
surface as a function of matric potential was calculated and 
compared with experimental results expressed as a uniform 
"effective" film thickness. Representative geometrical param­
eters (L, {3, o, and y) were adjusted to yield the best match 
between model calculations and measurements (Figure Sa). 
The modeled "effective" film~ thickness as a function of J.L was 
calculated by dividing the liquid-filled cross-sectional area by 
the projected roughness element length ((3L + 2L tan ( y/2), 
see Figure 1). The potential range of L was constrained to 
observed values reported by Tokunaga and Wan [1997) where 
most of the variations in surface "elevation" were between 0.5 
and 2 mm. The individual contributions of capillarity and ad­
sorption to liquid storage are illustrated and show a crossover 
for matric potential values of J.L = -1 to -2 J kg- 1 (very wet 
conditions). These values of matric potential represent a rough 
demarcation between fast corner and slow film flows. 

Fracture length-averaged unsaturated hydraulic conductivity 
KL(J.L) (equation (26)) was calculated for the same element 
geometry as used for "effective film" calculations (i.e., L = 
10- 3 m, {3 = 4, and y = 120°). TI1e average film velocity 
reported by Tokunaga and Wan [1997, Figure 8) was obtained 
by two methods: (1) using the average film thickness in the 
smooth film (equation (15), denoted as v-bar) and (2) dividing 
the estimated transmissivity by the effective film thickness (de­
noted as T). The connectivity factor o is an additional param­
eter required for matching calculated and experimental surface 
hydraulic conductivity. The results with o = 0.1 are depicted in 
Figure Sb showing a reasonable agreement between calculated 
KdJ.L) and Tokunaga and Wan's [1997) average film velocities 
that were measured under unit hydraulic gradient conditions. 

Table 1. Physical Constants and Dimensions Used in the 
Illustrative Example Calculations 

Property Symbol Value Unit 

Acceleration of gravity g 9.81 m s-2 

Density of water, 20°C p 998 kg m-3 

Hamaker constant A.,, -1.9E-19 J 
(solid-vapor through 
intervening liquid) 

Surface tension water- u 0.07275 Nm- 1 

vapor interface, 20°C 
Viscosity constant a 5.53E-10 m 
Viscosity of water, 20°C Tlo 0.001002 kg m- 1 s- 1 

Read -1.9E-19 as -1.9 X 10- 19• 

(~ - "Effective Film" 
---Film I --Corner 

['WI\ e Tokunaga 1o Wan (1997] 

L=10-3m 

~- ~=4 

1'\ 
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I --
I I I I 

! I i '\, 
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I 1'\. r-t-! 
I I 
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i i ' I 
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......,'"" I 
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~[II • T (Tokunaga lo Wan, 1997) 

• v-bar (Tokunaga lo Won,1997) 
I 

~ I 
- ' '-f.. I -- -- I 

L= 10-3m -' -t-
~=4 
y= 120° 
li=0.1 '·t---

103 

- Matric Potential [J/kg] 

Figure 5. Comparison of model calculations for an individ­
ual fracture element with experimental data of Tokunaga and 
Wan [1997]: (a) effective film thickness and (b) average hy­
draulic conductivity with T denoting transmissivity divided by 
the average film thickness; v-bar denotes average film velocity 
evaluated with the smooth film equation [Tokunaga and Wan, 
1997). 

The contributions of corners (KLc) and films (Ku) to the 
overall value of K1,(J.L) are shown. Similar to liquid storage 
behavior, a crossover from comer domination to film domina­
tion is observed near matric potential values of J.L < -6 J kg -J. 

The simultaneous agreement with average film thickness and 
film velocity (which for a unit gradient equals surface conduc­
tivity) is remarkable considering the use of only one surface 
roughness element for both processes. These results illustrate 
the potential usefulness of the proposed approach for model­
ing liquid retention and conductivity on rough rock surfaces. 

We investigated effects of surface roughness on liquid stor­
age and surface hydraulic conductivity for 8 = 1.0 (100% 
connectivity) by comparing two different groove densities char­
acterized by the spacing parameter {3. The results for a surface 
represented by an individual element are depicted in Figure 6a 
for {3 = 1 (small spacing equals rough surface) and are de­
picted in Figure 6b for {3 = 100 (large spacing equals smooth 
surface). As expected, surface liquid retention (expressed as 
effective film thickness) for a given matric potential was larger 
for the rough surface relative to the smooth surface. The stor­
age difference diminishes with decreasing matric potential 
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Figure 6. Model calculations of individual element's effective film thickness and unsaturated hydraulic 
conductivity for (a) small {3 (rough surface) and (b) high {3 (smooth surface). Note the increase in film 
contribution to hydraulic conductivity. 

(more negative), and the amount of liquid storage for IL < 
-100 J kg- 1 is very similar (dominated by thin liquid films). 
The crossover between capillaty- and film-dominated storage 
occurs at lower potential values for the rough surface. 

Significant differences were found in the behavior of Kt_{~-t) 
and K4 (~J.), especially for the smooth surface (Figure 6b, bot­
tom). The KL(IL) value for a rough surface is approximately in 
the same range as that of K A ( IL) at high potentials, whereas 
for smooth surfaces a difference of about 2 orders of magni­
tude exists [KA(IL) > KtJ~-t)]. These differences diminish 
with decreasing matric potential (as it becomes more negative) 
until they practically vanish when film flow becomes dominant. 
These differences are attributed to the large canying capacity 
of corner flow over a similar liquid cross section in a film 
configuration. The transition from corner- to film-dominated 
flow regimes for a smooth surface occurs at higher potentials 
than for the rough surface (similar to the liquid storage behavior). 

An interesting transitional behavior in film contribution 
(KAF) to KA(IL) as a function of IL is observed for the two 
surfaces (more pronounced in the rough surface). The increase 
and later a decrease in film contribution represent an interplay 
between the reduction of film thickness with decreasing poten­
tial and the creation of new film surfaces with the receding 
menisci into the grooves and pits. The total response is depen­
dent on the proportions of these two opposing processes as 
shown in Figure 6. 

3.2. Hydraulic Conductivity of Rough Fracture Surfaces: 
Statistical Considerations 

The statistical representation of pit depth (L) yields analyt­
ical expressions for the expected values of "effective" film 
thickness, liquid-area-averaged hydraulic conductivity 
(KA(!L)) (where angle brackets denote the expected value 
operation), and fracture length-weighted unsaturated hydrau­
lic conductivity (Kd~-t)). To test the analytical solutions, we 
again used the experimental data of Tokunaga and Wan [1997] 
in the same fashion as for the representative (individual) 
roughness element. The maximum pit depth for the gamma­
distributed L was set to 3 mm, and the pit angle was fixed at 
120°. The other parameters that provided the best fit to the 
data were {3 = 8 and a = 0.1. Surprisingly, there was little 
difference in model performance between the individual rep­
resentative element and the statistical representation using a 
population of roughness elements (Figure 7). The only differ­
ence was smoother transitions in the hydraulic conductivity 
curve (and slightly different fitting parameters). The results of 
this limited test reinforce our conclusion that a representative 
surface roughness element is capable of modeling effective film 
thickness and unsaturated conductivity of rough fracture surfaces. 

The relationships between surface length-weighted hydrau­
lic conductivity, (KL(!L)), and liquid-area-averaged hydraulic 
conductivity (KA ( IL)) for two different pit angles ( y = 30° and 
120°) are depicted in Figure 8. Liquid-area-averaged hydraulic 
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conductivity (KA(IL)) was higher than the projected length­
averaged conductivity (Kd~J.)) (for the assumed geometry) 
over the entire range of matric potentials considered 
( -0.001 < IL < -400,000 J kg- 1

). While calculations for 'Y = 
30° are reasonably close to the 1:1 line, large differences at 
midrange of matric potential values are observed for 'Y = 120°. 
These differences may be attributed to the relatively large 
carrying capacity of corner flow for 'Y = 120° that tends to be 
underestimated by the length-averaging procedure. Note that 
the cross-sectional area of grooves with a larger angle ( 'Y = 
120°) tend to be larger than that for a smaller angle ( 'Y = 30°). 

4. Summary and Conclusions 
A simple geometrical model for rough fracture surfaces was 

proposed to provide a tractable geometry for calculations of 
surface liquid retention due to adsorbed films and capillary 
liquid. Assuming slow laminar flow and stable liquid configu­
rations, the average hydraulic conductivity for film and corner 
flows was derived. Coupled with information on the relative 
fracture area under each flow regime, the proposed modelled 
to calculation of unsaturated hydraulic conductivity for a rep­
resentative element (includiRg connectivity factor) and an en­
semble of gamma-distributed surface roughness elements. The 
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Figure 7. Comparison of model calculations for a statistical 
distribution of surface roughness elements with experimental 
data of Tokunaga and Wan [1997]: (a) effective film thickness 
and (b) average hydraulic conductivity. 
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Figure 8. The relationships between the expected values 
(statistical representation) of unsaturated hydraulic conductiv­
ity for liquid cross-sectional area average (KA) versus fracture 
length average (KL) for groove angles of 30° and 120°. 

calculated values of surface storage and hydraulic conductivity 
with geometrical parameter fitting resulted in excellent agree­
ment with the experimental data of Tokunaga and Wan [1997]. 
Similar results were obtained for the statistical representation 
of roughness elements and the same experimental data. These 
findings illustrate the usefulness of the proposed roughness 
geometry where a single representative roughness element was 
sufficient to explain both surface storage and unsaturated hy­
draulic conductivity data of Tokunaga and Wan [1997]. 

An interesting transitional behavior in film contribution 
(KAF) to the overall hydraulic conductivity can be observed, 
showing an increase and later a decrease in film flow contri­
bution with decreasing matric potential. This response repre­
sents interplay between the reduction of film thickness with 
decreasing potential and the creation of new film surfaces with 
the receding menisci into grooves and pits. It is clear from 
model calculations and experimental evidence that film contri­
bution to unsaturated flow is not negligible as argued by some 
earlier studies [Dullien et al., 1986]; it becomes a dominating 
mechanism for relatively wet conditions on the order of JL < 
-5 J kg- 1• 

One of the primary advantages of the proposed model is the 
direct link with rock matrix processes through the system's 
matric potential. However, this is limited (at this stage) to 
equilibrium liquid configurations, because dynamic exchange 
processes between the two flow systems are not considered. 
The unsaturated hydraulic conductivity of rough fracture sur­
faces represents a first step toward development of a compre­
hensive model for liquid retention and hydraulic conductivity 
of unsaturated fractured porous media using a similar model­
ing approach and a distribution of fracture apertures. Liquid 
behavior near asperities and in contact points between two 
fracture surfaces is not addressed in this study. These impor­
tant geometrical features found in many fractured systems will 
be a subject of future analyses of fractured porous media using 
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derivations for liquid configuration presented by Tuller et al. 
[1999]. 

Appendix A: Solutions for a Single Roughness 
Element 

In the following we derive the expressions for film- and 
corner-associated liquid-filled cross-sectional areas and pro­
jected lengths used in sections 2.6.1 and 2.6.2 to calculate 
average fracture element conductivities prior and after to pit 
filling. 

AI. Liquid-Filled Cross-Sectional Areas Prior to Pit Filling 
(JL < JLc) 

The derivations for liquid-filled cross-sectional areas prior to 
pit filling were principally already introduced in section 2.2. 
The liquid-filled cross-sectional area in corners A c 1 ( fL) is cal­
culated according to (3), and the film area A F 1 ( fL) is calcu­
lated according to (5). 

A2. Liquid-Filled Cross-Sectional Areas After Pit Filling 
(JL 2: JLJ 

The cross-sectional area of liquid retained in the corner is 
given as 

Ae2 = U tan (y/2). (Al) 

The cross-sectional area of the liquid film is defined as 

An(fL) = h(JL)[L/3 + 2(1 - S)L tan ( y/2)]. (A2) 

It seems reasonable to ignore the contribution of the film 
fmming over a flowing groove area because of surface pertur­
bations introduced by the hydrodynamic regime within the 
groove below. The situation must be rectified for nonflowing 
pits where local depressions in the liquid-vapor intetface (after 
pit filling) are not likely to be sustainable (from surface energy 
considerations). Thus we propose to base the correction on the 
fraction of connected and flowing pits (1 - S), where Sis a "pit 
connectivity" factor. 

A3. Calculating the Projected Lengths Prior to Pit Filling 
(JL < J.lc) 

The average surface conductivity KdfL) (equations (21) and 
(22)) is related to the projected lengths (transverse to flow 
direction) of the regions with film and corner flow as shown in 
Figure 1. The projected length of film- and corner-covered 
sudace area prior to pit filling is given as 

LFI(fL) = L[/3 + 2 tan ( y/ 2)] - 215r( fL) cos ( y/2), (A3) 

Ln(fL) = 215r(fL) cos ( y/2). (A4) 

A4. Calculating the Projected Lengths after Pit Filling 
(JL 2: JLJ 

The projected lengths after pit filling are defined as 

Ln = L[/3 + 2(1- 15) tan (y/2)], 

Lc2 = 2L/5 tan (y/2). 

(AS) 

(A6) 

Appendix B: Analytical Solutions for a Population 
of Roughness Elements 

In the following we outline detailed solutions for the pro­
jected lengths and liquid cross-section-averaged hydraulic con­
ductivities of a fracture surface. 

Bl. Projected Length-Averaged Hydraulic Conductivity 

The solution for fracture elements with partially filled pits 
(equation (26b)) is given as 

1 
(KLI(fL)) = 2(2C

1 
+ f3)w2 [VI(JL)(ViJL)(Kc(fL)- KF(fL)) 

· (Lt(JL) + w) + Kt(fL)(2C 1 + f3)(LJJL) 2 

+ 2L 1(JL)w + 2w2
)) 

- Cz(Vz(fL)(Kc(fL) - KF(JL)) 

. (Lmax + w) + KF(fL)(2Cl + /3) 

• (L~ax + 2LmaxW + 2w2
))], 

with the constants 

C 1 = tan ( y/2), 

( 
Lmax) C2 = exp ---;;;-'" 

and the variables 

V2(JL) = 2/5r(JL) cos (y/2). 

(Bl) 

The contribution of the films in fracture elements with partially 
filled pits is calculated as 

Kt(JL) 
(Kw(fL)) = 2(2C

1 
+ {J)wz {VJ(JL)[ -ViJL)(L 1(fL) + w) 

+ (2Ct + f3)(Lt(fL) 2 + 2L 1(JL)W + 2w2
)] 

- Cz[-Vz(fL)(Lmax+ w) + (2CI + /3) 

• (L~tax + 2LmaxW + 2w2
)]}. 

The contribution of corners is given as 

Vz(fL) Kc(JL) 
(Kuc(fL)) = 2(2Ct + f3)w2 

(B2) 

· [VI(fL)(Lt(JL) + w)- Cz(Lmax + w)]. (B3) 

The solution for the second term (equation (26c)) is given as 

(Ku{JL)) = [2(C4 + C;)w2]- 1{-VI(JL)[C4KF(fL) 

· (LI(fL) 2 + 2Lt(fL)W + 2w2
) + C3C 5(L 1(JL) 4 

+ 4Lt(JL) 3w + 12L 1(JL) 2w2 + 24L 1w
3 + 24w4

)] 

+ C6[C$F(JL)(L~in + 2Lminw + 2w2
) 

(B4) 

with the constants 

c _ crpu 
3

- cos2 ( y/2)e7Jo' 
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( 
Lmin) Cr.= exp -w . 

The contribution of the films in fracture elements with full pits 
is calculated as 

and must be evaluated numerically using standard mathemat­
ical software (e.g., Mathematica, Wolfram Res., Inc.). For ar­
guments in the range 0 < U ::s 15 the following series expan­
sion may be applied for the evaluation: 

1su ( -l)"U" 
E 1[U] = -y*- In [U]- L nn! · 

n=l 

+ 2L I(J.l) w + 2w2
) + C6(L~,;n + 2Lm;nw + 2w2

)]. (B5) where y* = 0.57721566 ... (Euler's constant). The contribu-

111e contribution of corners is given as tion of films is given as 

_ C3Cs 4 3 
(Kuc(J.l))- 2(C

4 
+ Cs)w2 [ -VJ(J.l){LI(J.l) + 4L 1(1L) w 

+ 12L 1(J.l)
2w2 + 24L 1(J.l)W

3 + 24w4
) 

+ C6(L~;n + 4L~;11W + 12L~;11W 2 

(B6) 

B2. Liquid Cross-Section-Averaged Hydraulic Conductivity 

Closed-form expressions for liquid cross-sectional area av­
eraged hydraulic conductivity are somewhat more complicated 
involving exponential integrals. The analytical solution for 
(28b) is given as 

1 
(KAI) = zv_

1
(J.l)2w2 {VI (J.l)lV4(J.l)(J/s(J.l)c'lKc{J.l) - V5(J.l)Kp(J.l)) 

+ V5(J.l)«'lKc{J.l)[ -Vs(IL) + V3(IL)(L 1(1L) + w)] 

+ Kr(J.l)[V5(J.l) 2
- V3(J.l)V5(J.l)(L 1(J.l) + w) 

+ Vl(J.l) 2(LJ(J.l) 2 + 2L 1(J.l)W + 2w2)]] 

- Cc.(ViiL)(Vs(IL)«'lKc(IL)- Vs(IL)Kp(IL)) 

+ Vs(IL) c'lKc{J.l)[- Vs(IL) + VliL)(Lmax + w)] 

+ Kf(J.l)[Vs(J.l) 2
- Vl(J.l)Vs(J.l)(Lmax + w) 

+ V3(J.l) 2(L~ax + 2LmaxW + 2w2
)]]} 

+ {(V4(J.l)- v_,(J.l))2V6(J.l)(- V5 (J.l)c'lKc(J.l) + V5(J.l)KF(J.l)) 

· (-EJ[UI(J.l)] + EI[U2(J.l)])}[2V3(J.l)3w3
]-

1
, (B7) 

with the variables 

2h(J.l)r(J.l) 
ViiL) = cl , 

Vs(IL) = r(J.l) 2F, 

_ (-V4(J.l) + Vs(IL)) 
V6(IL) - exp V

3
(1L)w 

and the arguments of the exponential integrals E 1 [ U) 

- V4(J.l) + Vs(J.l) + V3(1L) L 1(J.l) 
U;(J.l) = V3(1L)w 

-ViiL) + Vs(IL) + V3(J.l)Lmax 
Vz(IL) = VJ(J.l)lu 

The exponential integral E 1 [ U] is defined as 

E1[U] = r [exp ( -t)lt] dt 

Kt(IL) ' 
(KA;f) = ZViiL)3w3 {Vl(J.l)w[C6[V4(J.l)Vs(J.l)- Vs(J.l)" 

+ V3(IL)Vs(J.l)Lmax- V3(J.l) 2L~ax + V3(J.l)W(Vs(IL) 

- 2ViiL) Lmaxl - 2V3(p.) 2w2
] + V;(J.l)[- V4(J.l) Vs(J.l) 

+ Vs(p.) 2 - V3(p.)V5(J.l)(L 1(p.) + w) + V3(J.l)
2(L 1(J.l)

2 

+ 2LI(J.l)w + 2w2
)]] + (ViiL)- Vs(p.)) 2Vs(IL)V6(IL) 

The contribution of corners is given as 

V5(p.)c'lKc(J.l) 
(KAJd = zV

3
(p.)3w3 {V3(J.l)w[VI(J.l)[V4(p.) - V5(p.) 

(B8) 

+ V3(J.l)(L 1(J.l) + w)]- C6[V4(IL)- Vs(J.l) + Vl(J.l) 

'(Lmax + w)]]- {ViJ.l)- Vs(f.L)) 2V6(f.L)( -El[U;(f.L)] 

(B9) 

The analytical solution for (28c) representing full pits is given as 

(K.dM)) = zc\w3 { C;w{ -VI(f.L)[ CiVif.L)Kr(IL) 

· [ -V7(f.L) + C 1(L 1(f.L) + w)] 

c4 + Cz T [V7(f.L) 4- CIV7(f.L) 3(Lt(f.L) + w) 

+ CTV7(f.L) 2(Ll(P.)2 + 2Lt(f.L)W + 2w2
) - cw7(f.L) 

· (L 1(M) 3 + 3L 1(M) 2w + 6L 1(f.L)w2 + 6w3
) + Cj(L 1(M) 4 

+ 4L 1(f.L) 3w + 12L 1(p.) 2w2 + 24L 1(f.L)w3 + 24w4)]] 

+ Cs[ CiViM)KF(f.L)[ -V7(f.L) + C1(Lmin + w)] 

+ CTViM)2(L~in + 2LminW + 2w2
) - cw7(f.L)(L~in 

+ 3L~;11W + 6L 111; 11 W
2 + 6w3) + Cj(L~in + 4L~;11W 

+ 12L~111w2 + 24Lm;11w
3 + 24w4)l]} 

- V7(f.L) 3VR(f.L)( CzV7(f.L) 2 ~4 - CiKF(f.L)) 

· (-E1[U3(f.L)] + E1[U4(f.L)]) }. 

with the variables 

(BlO) 
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V8(J.t) = exp ( ~;:)) 

and the arguments of the exponential integrals E 1 [ U] 

V7(J.t) + CIL,(~-t) 
UJ(J.t) = Clw ' 

The contribution of films to (28c) is given as 

V7(J.t)Kf(J.t) 
(KA2F) = ZCiw3 (CIVI(J.t)w[Vi~-t)- C 1(L 1(J.t) + w)] 

+ C,Csw[ -Vi~-t) + C,(Lmin + w)] + V7(J.t) 2Vs(J.t) 

(Bll) 

The corner contribution is given as 

_ c2c4 4 3 (KAzc)- 4C~w3 (C,w(-Vl():L)(V7(J.t) - C 1V7(J.t) (L 1 (~-t) 

+ w) + CiV7(J.t) 2(LI(J.t) 2 + 2L 1 (~-t)w + 2w2
) 

- cw7(J.t)(L ,(J.t) 3 + 3L I(J.t) 2w + 6L I(J.t)W2 + 6w3
) 

+ Ci(L 1(J.t)
4 + 4L 1 (~-t) 3w + 12L 1(J.t)

2w2 + 24L 1(J.t)w
3 

+ 24w4
)) + Cs(V7(J.t)4

- C,V7(J.t) 3(Lmin + w) 

+ CiV7(J.t) 2(L~;. + 2Lm;nw + 2w2
) - C~Vi~-t)(L~;. 

(B12) 

Notation 
f3 dimensionless parameter relating pit spacing to pit 

depth. 
y pit angle [ deg]. 
li dimensionless pit connectivity factor. 
e dimensionless flow resistance parameter. 
'YJ modified liquid viscosity in vicinity of solid 

surfaces [kg m- 1 s- 1]. 

TJo liquid viscosity (kg m- 1 s- 1
]. 

J.t matric potential [J kg- 1
]. 

J.tc critical matric potential separating partially filled 
and full pits (J kg- 1

]. 

g gamma distribution parameter. 
p density of the liquid [kg m-3]. 

cr surface tension at the liquid-vapor interface [N m- 1
]. 

w gamma distribution parameter. 
a* constant for modified liquid viscosity in vicinity of 

solid surfaces [A K]. 
a viscosity constant [m]. 

A c( J.t) liquid-occupied cross-sectional area in a comer [ m2]. 

A 1.(J.t) liquid-occupied cross-sectional film area [m2]. 

A svL Hamaker constant for solid-vapor interactions 
through intervening liquid [J]. 

B(~-t) thin film variable viscosity function in equation (11). 

E 1 exponential integral [Abramowitz and Stegun, 1964]. 
F(L) cumulative gamma distribution. 
f(L) gamma density distribution. 
F(-y) angularity factor. 

g acceleration of gravity [m s- 2
]. 

h(~-t) film thickness [m]. 
K(J.t) unsaturated hydraulic conductivity [m s·- 1

]. 

Kc(J.t) mean corner hydraulic conductivity [m s- 1
]. 

Kp(J.t) mean film hydraulic conductivity [m s- 1
]. 

L pit depth [m]. 
Lmax maximal pit depth [m]. 
Lmin minimal pit depth [mJ. 

P hydraulic pressure head [m]. 
r( J.t) radius of liquid-vapor interface curvature [ m ]. 

U argument of the exponential integral E 1• 

v average liquid velocity [m s- 1
]. 

z spatial coordinate along flow path [m]. 
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