Strontium (CASRN 7440-24-6)

Main Contents

Reference Dose for Chronic Oral Exposure (RfD)

0550

Strontium; CASRN 7440-24-6

Health assessment information on a chemical substance is included in IRIS only after a comprehensive review of chronic toxicity data by U.S. EPA health scientists from several Program Offices and the Office of Research and Development. The summaries presented in Sections I and II represent a consensus reached in the review process. Background information and explanations of the methods used to derive the values given in IRIS are provided in the Background Documents.

STATUS OF DATA FOR Strontium

File First On-Line 10/01/1992

<table>
<thead>
<tr>
<th>Category (Section)</th>
<th>Status</th>
<th>Last Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral RfD Assessment (I.A.)</td>
<td>on-line</td>
<td>12/01/1996</td>
</tr>
<tr>
<td>Inhalation RfC Assessment (I.B.)</td>
<td>no data</td>
<td></td>
</tr>
<tr>
<td>Carcinogenicity Assessment (II.)</td>
<td>no data</td>
<td></td>
</tr>
</tbody>
</table>

I. Chronic Health Hazard Assessments for Noncarcinogenic Effects

I.A. Reference Dose for Chronic Oral Exposure (RfD)

Substance Name -- Strontium
CASRN -- 7440-24-6
Last Revised -- 12/01/1996

The oral Reference Dose (RfD) is based on the assumption that thresholds exist for certain toxic effects such as cellular necrosis. It is expressed in units of mg/kg-day. In general, the RfD is an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime. Please refer to the Background Document for an elaboration of these concepts. RfDs can also be derived for the noncarcinogenic health effects.
of substances that are also carcinogens. Therefore, it is essential to refer to other sources of information concerning the carcinogenicity of this substance. If the U.S. EPA has evaluated this substance for potential human carcinogenicity, a summary of that evaluation will be contained in Section II of this file.

I.A.1. Oral RfD Summary

<table>
<thead>
<tr>
<th>Critical Effect</th>
<th>Experimental Dose</th>
<th>LOAEL: 0.38% Sr (as SrCO₃)</th>
<th>NOAEL: 0.19% Sr (as SrCO₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rachitic bone</td>
<td>NOAEL: 0.19% Sr</td>
<td>300 mg Sr/kg/day</td>
<td>190 mg Sr/kg/day</td>
</tr>
<tr>
<td>20-Day, 9-Week, and 3-Year Oral Studies in Young and Adult Rats</td>
<td>LOAEL: 0.38% Sr</td>
<td>380 mg/kg/day</td>
<td></td>
</tr>
</tbody>
</table>

Storey, 1961; Marie et al., 1985; Skoryna, 1981

* Conversion Factors: 0.19% Sr = 1900 mg Sr/kg diet. Assuming young rats consume food equivalent to 10% of their body weight/day, the actual intake is calculated to be 190 mg Sr/kg bw/day.

I.A.2. Principal and Supporting Studies (Oral RfD)

Storey (1961) fed young (40-60 g) and adult (200-250 g) female rats (strain unspecified; 3/group) diets with adequate calcium (1.6%), phosphorous (0.9%) and vitamin D for 20 days. The dietary levels of strontium (as strontium carbonate) given to both adult and young rats were 0.19, 0.38, 0.75, 1.0 (young rats only), 1.5 and 3.0%. Assuming young rats consume 10% and adult rats consume 5% of their body weight in food per day, these doses correspond to 0.19, 0.38, 0.75, 1.5 and 3.0% of their body weight/day, the actual intake is calculated to be 190 mg Sr/kg bw/day.

Marie et al. (1985) administered stable strontium to weanling male Spraque-Dawley rats. The purpose of this study was to determine the effect of low doses of stable strontium on mineral homeostasis and bone histology. Rats were divided into groups (8/group) receiving 0, 0.19, 0.27, 0.34 and 0.40% of SrCl₂ in distilled water for 9 weeks. The diet contained 0.5% calcium. Based on body weight and water consumption data, the authors estimated average strontium intakes of 0, 316, 425, 525 and 633 mg/kg-day. The authors concluded that an oral dose lower than 0.40% (633 mg/kg-day) did not produce adverse effects on body growth or on bone mineralization. Rats in the 0.40% (633 mg/kg-day) dose group showed signs of increased mineralization lag time; excessive osteoid thickness associated with a decline in the rate of
calcification, which resulted in slow growth rate; and a decreased double-labeled osteoid surface, which frequently resulted in defective long bone growth. This study identified a NOAEL of 525 mg/kg and a LOAEL of 633 mg/kg-day.

Skoryna (1981) investigated the oral toxicity of stable strontium in male adult RVH hooded rats. The rats (12/group, starting weight of 250 g) were fed ad libitum a standard laboratory diet and divided into four groups, which were administered 0.002, 900, 1900 or 3400 ppm strontium chloride (55% strontium) in their drinking water for 3 years. Assuming that an adult rat consumes water at a rate of 49 mL/day, the experimental doses correspond to 70, 147 and 263 mg/kg Sr/day. The control and experimental groups received adequate amounts of calcium (0.35 ppm) and magnesium (0.0682 ppm) in their drinking water. The animals were weighed and examined weekly. Histologic examinations of bone and observation of body weight changes in rats receiving strontium in drinking water revealed no abnormalities (Skoryna and Fuskova, 1981). The animal tissues from different organs (kidney, lungs, adrenal, brain, heart and muscle) were examined on gross and histologic levels. No evidence of changes in morphology was observed; organs were not weighed. The concentration of strontium in tissues was determined by heated graphite atomization. In addition, strontium levels in the animals’ serum were analyzed by standard atomic absorption spectrophotometry. Except for bone, no organ predilection for strontium was observed in either group. A chronic NOAEL of 263 mg/kg-day was identified from this study.

__I.A.3. Uncertainty and Modifying Factors (Oral RfD)__

UF -- The uncertainty factor of 300 includes 10 for species-to-species extrapolation and 10 for an incomplete data base (including a lack of developmental and reproductive data) and to account for uncertainties in using data for strontium carbonate to derive a risk estimate that may apply to other salts of strontium. An uncertainty factor of 3 was applied for sensitive subpopulations; a factor of 10 was not warranted because the critical study was performed in young animals, a recognized sensitive subpopulation.

MF -- None

__I.A.4. Additional Studies/Comments (Oral RfD)__

Pertinent data to derive an oral RfD based on the toxicity of stable strontium in humans were not located in the available literature. Estimates of dietary strontium intake range from 0.98-2.2 mg/day for adults, with milk providing about one-third of this (Snyder et al., 1975). Absorption of strontium from the gastrointestinal tract varies greatly, ranging from 9-63% (average of 38%) (Snyder et al., 1975). The bioavailability of strontium was estimated to be 20% in 6 healthy adult males administered 2.5 mmol of strontium chloride (Leeuwenkamp et al., 1990). Deficiency of dietary calcium leads to an increased absorption of strontium (Stokinger, 1981).

Use of strontium in the treatment of patients with osteoporosis has been reported. McCaslin and Janes (1959) reported treating 72 patients with daily doses of 1.7 g strontium (as strontium lactate) for periods ranging from 3 months to 3 years. Of the 32 patients who were available for follow-up, 84% experienced marked improvement. Assuming an average body weight of 70 kg, the supplementation to these patients was about 24 mg Sr/kg/day. Skoryna (1981) also reported subjective improvement in patients with osteoporosis receiving 274-1750 mg Sr/day as the gluconate, carbonate or lactate. No adverse side effects were reported in either study. Although these cases have been reported, strontium is not recognized as a standard therapy for osteoporosis (Krane, 1977).

Ingested strontium is distributed in the body in three compartments: plasma extracellular fluid; soft tissue and superficial zone of bone tissue; and bone itself (El Solh and Rousselet, 1981). The average adult is estimated to have a body burden of 320 mg strontium, 99% of which is in the bones (Snyder et al., 1975; Stokinger, 1981). The toxic effect of excessive strontium intakes is inhibition of calcification of epiphyseal cartilage and deformities of long bones at high doses. Strontium causes adverse effects on bone by substituting for calcium in the hydroxyapatite crystal during bone calcification or by displacing calcium from existing calcified matrix (Skoryna, 1984; Kshirsagar, 1985).

As opposed to calcium, which is under homostatic regulation, strontium appears to be passively absorbed (Comar and Wasserman, 1964). However, several factors may affect the bioavailability of ingested strontium, for example, age and species, the form of strontium, and the composition of the diet, especially with regard to phosphorus, vitamin D and calcium levels.
Strontium (CASRN 7440-24-6), IRIS, Environmental Protection Agency

These factors are reviewed in U.S. EPA (1990, 1992).

The adequacy of calcium nutrition is a critical factor regarding strontium toxicity; rachitic changes are exacerbated by inadequate calcium levels (El Solh and Rousselet, 1981). The effect of dietary calcium on strontium toxicity was also demonstrated by Engfeldt and Hjerquist (1969). Rachitic changes were observed in weanling Sprague-Dawley rats fed a diet containing 0.95% strontium (950 mg/kg-day) and "optimal" 0.69% calcium for 4 weeks. When dietary calcium was raised to 1.6%, no rachitic changes were seen at the same dose of strontium.

Because their bones are actively growing, young animals are more sensitive than adult animals to excessive strontium intakes. In addition to the information presented in the critical study (Storey, 1961), the greater sensitivity of young animals was also demonstrated by Storey (1962). Both young (50-70 g) and adult (200-250 g) rats of both sexes (strain not specified) were provided a diet containing 1.8% strontium as strontium carbonate. The exposure continued for up to 7 months with several interim sacrifices. After only 3 weeks of exposure, the young rats exhibited a "rachitic gait" with the most obvious changes occurring in the distal end of the femur and the proximal end of the tibia. The epiphyseal plate was reported to be "grossly widened" and the "metaphysis was a mass of soft white tissue." Conversely, it was 3 months before any change was observed in the adult rats, this being the appearance of fine traverse lines in the upper tibial metaphysis. The author goes on to portray significant differences in the effects seen in young animals vs. adults provided the same dietary concentration of strontium. Because young rats consume more food per kg body weight, it is difficult to ascertain how much more sensitive young animals would be at a dose adjusted on a mg/kg bw/day basis.

Relatively little information is available regarding the potential for developmental toxicity resulting from exposure to strontium. Pregnant female Wistar rats (3/group) were administered subcutaneous doses of 0, 25, 50, 100 or 200 mg/kg of strontium nitrate (10.3, 20.7, 41.4 or 82.8 mg Sr/kg/day, respectively) during gestational days 9-19 (Lansdown et al., 1972). No effects were seen on the size or body weight of fetuses, litter sizes or the number of resorption sites. Skeletons and zones of calcification were normal and no histologic changes were seen in soft tissues. Although this study reported no teratogenic effects of strontium, the small number of dams exposed and fetuses examined preclude a definite evaluation of the results.

In addition to the information available in rats, Marie and Hott (1986) studied the effects of strontium on weanling mice. Eleven male C57BL/6J mice were provided with drinking water containing 0.27% strontium chloride from 21 to 50 days of age. Another group of 13 untreated mice served as controls. The dose of strontium was based on the earlier study by Marie et al. (1985), which determined this level of strontium to be effective in stimulating bone formation without affecting bone mineralization in rats. In mice, no significant effects were observed in bone formation parameters except an increase in the osteoid surface and a decrease in the number of osteoclasts involved in bone resorption. No effect was seen on total calcified bone volume.

Skeletal abnormalities have also been observed in dogs administered oral doses of strontium (1-3 g strontium phosphate/day) in conjunction with low levels of dietary calcium (Lehnerdt, 1910). Substitute for calcium in

In addition to the effects exerted on bones, strontium can also physiologic processes such as heart and other skeletal muscle contraction, and ionic transport across red blood cell membranes and nerve cells (reviewed in U.S. EPA, 1990, 1992). However, these effects are reported following intravenous infusion of large doses of strontium, which is of questionable relevance to oral exposures.

Initially, the primary concern of most investigators was the retention and absorption of radioactive strontium from water and food sources. Radioactive strontium is generally used as a tracer element to evaluate toxicokinetic properties (absorption, distribution and excretion). The actual dose of radioactive strontium used for this purpose is frequently unreported. The kinetics of trace amounts of radioisotopes and of stable isotopes, which are usually administered in much higher quantities, may differ.

I.A.5. Confidence in the Oral RfD

Study -- Medium
Database -- Medium
RfD -- Medium

http://www.epa.gov/iris/subst/0550.htm 8/21/02
Confidence in the critical studies is rated as medium because together they determine the critical effect and suggest a sensitive population but have difficulties with incomplete reporting of experimental details (e.g., number of animals, experimental protocol). The data base is rated as medium to low because although several studies exist to support these critical studies, they are all in one species and little information is available on reproductive or developmental effects. Also, little is known about the speciation of strontium (e.g., how the toxicity of SrCO3 relates to other strontium compounds). The confidence in the RfD is medium, reflecting the confidence in the study and the data base.

I.A.6. EPA Documentation and Review of the Oral RfD

Source Document -- This assessment is not presented in any existing U.S. EPA document.

Verification Date -- 06/23/1992

I.A.7. EPA Contacts (Oral RfD)

Please contact the IRIS Hotline for all questions concerning this assessment or IRIS, in general, at (301)345-2870 (phone), (301)345-2876 (FAX) or Hotline.IRIS@epamail.epa.gov (internet address).

Back to top

I.B. Reference Concentration for Chronic Inhalation Exposure (RfC)

Substance Name -- Strontium

CASRN -- 7440-24-6

Not available at this time.

Back to top

II. Carcinogenicity Assessment for Lifetime Exposure

Substance Name -- Strontium

CASRN -- 7440-24-6

This substance/agent has not undergone a complete evaluation and determination under US EPA's IRIS program for evidence of human carcinogenic potential.

Back to top

III. [reserved]

IV. [reserved]

V. [reserved]

VI. Bibliography

Substance Name -- Strontium

http://www.epa.gov/iris/subst/0550.htm 8/21/02
VI.A. Oral RfD References

http://www.epa.gov/iris/subst/0550.htm

_VI.B. Inhalation RfC References

None

_VI.C. Carcinogenicity Assessment References

None

_VII. Revision History

Substance Name -- Strontium
CASRN -- 7440-24-6

<table>
<thead>
<tr>
<th>Date</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/01/1991</td>
<td>I.A.</td>
<td>Oral RfD now under review</td>
</tr>
<tr>
<td>08/01/1992</td>
<td>I.A.6.</td>
<td>Work group review dates added</td>
</tr>
<tr>
<td>10/01/1992</td>
<td>I.A.</td>
<td>Oral RfD summary on-line</td>
</tr>
<tr>
<td>10/01/1992</td>
<td>VI.A.</td>
<td>Oral RfD references on-line</td>
</tr>
<tr>
<td>12/01/1996</td>
<td>I.A.7.</td>
<td>Primary contact removed</td>
</tr>
</tbody>
</table>
| 04/01/1997 | III., IV., V. | Drinking Water Health Advisories, EPA Regulatory Actions, and Supplementary Data were removed from IRIS on or before April 1997. IRIS users were directed to the appropriate EPA Program Offices for this information.

_VIII. Synonyms

http://www.epa.gov/iris/subst/0550.htm 8/21/02
Substance Name -- Strontium
CASRN -- 7440-24-6
Last Revised -- / /

7440-24-6
strontium
stable strontium
HSDB 2545