The solvents were administered to CD-1 mice by gavage (s.c.d.) from Days 6 through 15 of gestation at levels of 0.3, 0.5, and 1.0 ml/kg body wt/dose or from Days 12 through 15 of gestation at 1.0 ml/kg body wt/dose. The vehicle used was cottonseed oil (0.5% of maternal body wt/dose). Exposure to benzene (Days 6-15) at the 0.5 and 1.0 ml/kg dose levels was followed by a significant increase in maternal lecithin and in embryonic resorption. Fetal weight was significantly reduced at all dose levels. The same findings were obtained after shorter exposure to benzene (Days 12-15) at the 1.0 ml/kg dose level, but the resorptions occurred later in gestation. No statistically significant benzene-related change was seen in the incidence of malformations after exposure to benzene for Days 6-15 or 12-15 of gestation. Maternal toxicity was not seen after exposure to toluene (Days 6-15) at any dose level, but a significant increase in maternal lethality occurred at all dose levels, and a significant reduction in fetal weight was measured in the 0.5 and 1.0 mg/kg groups. After exposure to toluene (Days 6-15) at 1.0 mg/kg, a statistically significant increase in the incidence of cleft palate was noted which did not appear to be due merely to a general retardation in growth rate. The same toluene regimen given from Days 12-15 yielded only decreased maternal weight gain. Hence, benzene was shown to be teratogenic in the mouse, but it was not embryotoxic and fetotoxic even at the 0.3 ml/kg dose level; toluene was shown to be teratogenic at 1.0 ml/kg, embryolethal at 0.1 ml/kg, and decreased fetal weight occurred at 0.5 or 1.0 ml/kg.

Nelson, B. K., Behavioral and Motivational Factors Branch, Division of Biomedical and Behavioral Science, National Institute for Occupational Safety and Health, Cincinnati, Ohio Behavioral Teratology of Perchloroethylene

Perchloroethylene (PCE), the degreasing solvent used by the military and industry in the U.S., was evaluated for possible functional effects in offspring of rats exposed during gestation. Pregnant Sprague-Dawley rats were exposed to 900 ppm PCE 7 hours/day during gestation days 7-13 or 14-20. The dams exposed to PCE consumed less food and gained less weight during the exposure period than the controls, and had a significant reduction in the proportion of pups born alive (p < 0.005). Behavioral testing of offspring from dams exposed to PCE on days 7-13 of gestation showed them to perform poorer than controls (p < 0.02) on a rotorod test of neuromuscular ability. Offspring from dams exposed to PCE on days 14-20 of gestation performed more poorly (p < 0.01) on a simple neuromuscular test (ascent on a wire mesh screen). However, later in development these pups were found superior to their controls (p < 0.01) on the rotorod and were relatively more active in the open field test (p < 0.02). In whole brain (minus cerebellum) analyses of the neurotransmitters dopamine, norepinephrine, and acetylcholine from newborn and 21-day-old offspring, significant reductions were observed in the levels of acetylcholine in offspring from both exposure periods (p < 0.05) and dopamine for the group whose dams were exposed during the second week of gestation (p < 0.05). Another group of animals was exposed 7 hours/day, during the third week of gestation to 100 ppm PCE, the current OSHA permissible exposure limit. No significant differences were observed between the offspring of these animals and their controls on any of the behavioral tests.

Nelson, B. K. Behavioral and Motivational Factors Branch, Division of Biomedical and Behavioral Science, National Institute for Occupational Safety and Health, Cincinnati, Ohio Behavioral Teratology of Perchloroethylene

Perchloroethylene (PCE), the degreasing solvent used by the military and industry in the U.S., was evaluated for possible functional effects in offspring of rats exposed during gestation. Pregnant Sprague-Dawley rats were exposed to 900 ppm PCE 7 hours/day during gestation days 7-13 or 14-20. The dams exposed to PCE consumed less food and gained less weight during the exposure period than the controls, and had a significant reduction in the proportion of pups born alive (p < 0.005). Behavioral testing of offspring from dams exposed to PCE on days 7-13 of gestation showed them to perform poorer than controls (p < 0.02) on a rotorod test of neuromuscular ability. Offspring from dams exposed to PCE on days 14-20 of gestation performed more poorly (p < 0.01) on a simple neuromuscular test (ascent on a wire mesh screen). However, later in development these pups were found superior to their controls (p < 0.01) on the rotorod and were relatively more active in the open field test (p < 0.02). In whole brain (minus cerebellum) analyses of the neurotransmitters dopamine, norepinephrine, and acetylcholine from newborn and 21-day-old offspring, significant reductions were observed in the levels of acetylcholine in offspring from both exposure periods (p < 0.05) and dopamine for the group whose dams were exposed during the second week of gestation (p < 0.05). Another group of animals was exposed 7 hours/day, during the third week of gestation to 100 ppm PCE, the current OSHA permissible exposure limit. No significant differences were observed between the offspring of these animals and their controls on any of the behavioral tests.