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Statistical Considerations and Survey of Plutonium Concentration Variability 
in So~e Terrestrial Ecosystem Components1 

GARY C. WHITE AND THOMAS E. HAKONSONz 

ABSTRACT 

Statlsdcalllpedl of tbe use of tbe coefficient of variadoa (c) Ia tbe 
..-18 of eavlroameatal plutoalum studies are couidered. Smallnm­
ple properties of die esdmate of c are stuclied for botb normal aad loa· 
IIOf1dl populadou witb Moate Carlo limuladou. A mlalmam sam­
ple lize of 50 Is aecaurJ to esdmate c with macll predlloa, ud u 
esthdte of c from a sample sJze of lea tbaa 5 Is aearty wortblesa. Tbe 
dlfflcalty of acbJevlaaaood esdmates of c lacreues 11 tbe true value 

of c IDcnUCS· 
Ia adclldoa, some of tbe available data oa tbe varlabUity of plutoal­

.. coaceatradou Ia terrestrial ecosystem compoaeats Is 
IIUIJIIartzed. Tbe data were pooled to acbieve better esdmates of tbe 
coeffldeat of variadoa tbaa mlabt be available from lacllvldual 
st1ldles. Pooled esdmates of c are: soils, 1.35; veaeaadoa, 0.70; aad 
rodent dllael, 1.10. Tbe esdmates of c presented should be usefalla 
deslplq a field samplllla prop11m for plutoalum. 

AddltiOIIIIIIndu Words: mpu, ....... Pu, raclloacdve wastes, coef· 
fldeat of varladoa, terrestrial ecosystems. 

Deming (1950) discusses how c can be used to deter­
mine the necessary sample size (n) to estimate a mean 
with some standard error "Y X, when the standard error is 
expressed as a percent of the mean. Deming denotes "Y as 
the coefficient of variation of the estimate, that is 

"Y = SE(X)/X. 

Without any knowledge of the mean (X), the sample 
size required to estimate X with standard error "Y X is 

The above equation ignores the finite population correc­
tion factor used when sampling a large proportion of a 
finite population. From this equation, we see that n in­
creases as the square of c, or that as c doubles, n quad­
ruples. 

) 

The large variability associated with environmental plu­
tonium data is a major consideration in designing field 
studies for this element because of the large number of 
samples required for acceptable statistical conclusions. 
The high cost of sample analyses severely restricts the 
kinds of experiments that can be performed economical­
ly and still produce conclusive results. 

The above exercise demonstrates the importance of 
good estimates of the expected variability in the experi­
ment. Hence an efficient experimental design is con­
tingent on the best available estimate of c. Before large 
sums of money are expended, we should consider the ex­
pected precision of the results to determine whether the 
experiment is worth the cost. 

Plutonium data from 7 geographical regions, repre­
senting 15 terrestrial study sites, were selected for sum­
marization based on the availability of the data, source 
of plutonium in the study area, sampling methodology, 
and climate. The intent in selecting these study areas 
was to present plutonium concentration variability esti­
mates from diverse conditions. 

) 
The purpose of this paper is to present some statistical 

considerations concerning the coefficient of variation 
summarize some of the available data on variability of 
plutonium concentrations in terrestrial ecosystem com­
ponents, and identify the potential sources of this vari­
ability toward providing guidelines for designing studies 
that will efficiently achieve acceptable experimental re­
sults. 

The num~er of observations (n) required for accept­
able results IS dependent on (i) the desired precision of 
the estimate (confidence interval length) or the power of 
the test to be obtained, and (ii) the variance of the data. 
_The relationship between sample size (n), precision of 
the estimate, and the calculated variability expressed as 
the coefficient of variation (c = a/ p., where a is the 
standard deviation and p. is the mean), is given in Fig. 1 
~or the case c = 0.7. Ninety-five percent confidence 
mtervals are given as the percent of the mean for various 
s~mple sizes. It is apparent from Fig. 1 that large sample 
s_1ze.s are necessary to obtain acceptable confidence 
hm1ts on the mean. In addition, note that reducing the 
leng~h of the confidence interval by half requires quad­
rupling the sample size. 
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We have pooled the data to produce better estimates 
of the coefficient of variation than might be available. 
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The coefficient of variation appears to be constant over 
a wide range of concentrations, and hence a is pro­
portional to p.. We recognize that pooling values from 
diverse origins results in the risk of combining values 
that are actually different. However the approach of not 
pooling is likewise dangerous, as the investigator may 
use a poorly estimated c based on relatively little data to 
design a study. In general, cis poorly estimated for any 
particular study. Given that different estimates from 
different locations actually represent the same c, we 
believe that the pooled estimate is much preferred to the 
individual values. The applicability of the pooled esti­
mates we obtain are a matter of judgment of the investi­
gator designing a study. If prior information on the plu­
tonium concentration is lacking for a particular study, 
then the pooled estimate will be particularly useful. 

STATISTICAL ASPECTS OF THE COEFFICIENT 
OF VARIATION 

Before discussing the coefficient of variation of the plutonium con­
centrations found at selected sites, we need to consider the precision 
associated with c for a set of data. Cramer (1946, P.· 358) developed an 
approximate equation for the variance of~. Var(c), based on the true 
value of c (see also Sokal and Rohlf, 1969). The caret (A) signifies an 
estimate of the quantity. Substituting the estimate of c, we obtained 
an approximate estimate of the variance pf the estimated coefficient 
of variation: ~ 

~ Var(~) = ? (I + 2cl)/2n 

where~= [t(X;- X)'l(n- 1))"'/X. Approximate9511Jo confidence 
intervals are then constructed for cas~ ± t(0.05, n - I)[V~r(~))'" 
where t(0.05. n - I) is the t-statistic with n - I degrees of freedom. 

Cramer's variance estimate assumes the sample is from a normal 
distribution truncated at zero and that cis "fairly small," (Cramer, 
1946, p. 358). Neither of these assumptions are commonly met with 
plutonium data. However, we want an easily calculated approxima­
tion of Var(~ instead of an exact result. Other methods of calculating 
confidence intervals are summarized by lglewicz' and Owen (1963). 
However, the more precise methods require a great deal more calcula­
tion and often still assume a normally distributed sample. We have 
opted for Cramer's estimate so that the researcher can quickly put a 
confidence interval around c for his data and as a result have some 
feeling for the variability. 

The use of the t distribution to provide a confidence interval for c 

'B. lnglewicz. 1967. Some properties of the sample coefficient of 
variation. Ph.D. Diss. Virginia Polytech. Jnst. and State Univ., 
Blacksburg, Va. 147 p. 
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implies c is normally distributed. lglewicz' discusses the asymptouc 
convergence of the distribution of c to normality. We are well aware 
of the problems of assuming the normal distribution of c with small 
sample sizes. However, we emphasize, again, the advantages of an 
easily calculated confidence interval at the expense of statisucal rigor. 

The achieved coverage (proportion of time the confidence interval 
includes the true value of c) of the above approximate confidence 
interval was compared to the expected 9511Jo for small sample sizes 
using Monte Carlo simulation techniques. One thousand replications 
of populations with ll = 100, c = 0.1 to 5.0, and n = 5, 10, 20, 30. SO, 
100 were simulated for a normal population using Bell's (1968) 
algorithm. The achieved coverages for some values of n are plotted in 
Fig. 2. The achieved coverage was at least 8511Jo for c s 2, even for n = 
5. For small samples with a confidence interval derived from an 
asymptotic approximation, this value was much closer to the expected 
9511Jo than we had anticipated. For values of c > 2, however, the 
achieved coverage drops, even for n = 100. With c = 5, the achieved 
coverage for n = 5, 30, 100 is 68, 84, and 9011Jo, respectively. For n = 
100, the achieved coverage was always > 9211Jo for c s 2. In almost all 
cases where the true value of c was not covered, the confidence inter­
val constructed was low, i.e.,~+ f(O.os. n- 1) [Var(~))'" was less than 
c. This would be expected based on the estimator of Var(~. A low 
value of c results in a very low value of Var(~. 

There is an additional aspect of this confidence interval which is 
worth noting. The lower confidence bound is more likely to include 
zero for large c than for small c. Assume that we want to find the 
value of c for a particular sample size for which the lower confidence 
bound (LCB) is greater than zero, i.e., the confidence interval does 
not include the value zero. Let 

LCB = c- f(o.os. n - I)[Var(~)) "'. 

Setting LCB to zero and substituting for Var(c), we see 

c = f(o.os.n- 1)[?(1 + ~)/2n]'". 

Rearranging to solve for c, 
C = (n/t'(O.OS,n- 1)-1/2) 112

• 

From this equation, we find that the confidence interval for sample 
sizes of four and less all include the value of zero. That is. no matter 
what the value of c, a sample size of four always estimates c so poorly 
that LCB <0. Also, for a particular value of n, a small cis more likely 
to have a LCB > 0 than a large c. In Fig. 3, we have plotted for a range 
of n a lower limit of c such that any greater value of c will result in 
LCB <0 for fiXed n. We conclude that (i) ~based on ann of lc.-ss than 
five is nearly worthless; and (ii) for c in the range 0.1 to 2.0. an n = 50 
is the minimum sample size for which much confidence can be associ­
ated with c. 

Another aspect of estimating the coefficient of variation that should 
be mentioned is that the estimate is always less than n' ., for a sample 
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Fig. 2-The achieved coverage of the confidence interval plotted as a function of c for various sample sizes. 
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from a population which takes only positive values (Cramer, 1946). 
Hence, if n = 5, the largest value that~ can have is 5"' = 2.24. There­
fore, a biased estimate of c will be obtained for c > n'". 

A criticism of the Monte Carlo study is that plutonium concentra­
tions are not normally distributed, such as the simulated values. We 
cannot conclusively resolve this criticism since we cannot determine 
the true distribution of plutonium concentrations. Something can be 
learned here, however, by studying the coverage of the confidence 
interval suggested above when the distribution is skewed. Hence, we 
reran the Monte Carlo simulation with the lognormal distribution. In 
this case 

c = [exp(u')- 1)'", 

where a' is the variance of the normally distributed log-transformed 
variable. More efficient estimators (i.e., maximum likelihood esti­
mator) of c are available than the one simulated, but researchers sel­
dom "know" the distribution they are working with. Hence the esti­
mator we simulated is generally used. Aitchison and Brown (1969) 
compared the efficiency of moment and maximum likelihood esti­
mators of E(X) and Var(X) for the lognormal distribution, and often 
found large differences. Therefore, we did not expect the confidence 
intervals constructed for c from lognormal data to be as good as those 
constructed for normal data. Koopmans et al. (1964) provide a 
method of putting a confidence interval on c when the sample is from 
a lognormal population. 

The estimate siX was simulated for 1,000 replications of a = 0.1 to 
l.S in increments of 0.1, 1.65, and 1.805, providing a range of c from 
0.1 to S.O. Additionally, simulations with n = S, 10, 20, 30, SO, and 
100 were used with each value of a. The mean of the normal distribu­
tion was 10.0 for all values of a. Results of some of the simulations are 
presented in Fig. 2. The coverage reached the expected 9SOJo only for 
the case a = 0.1 and n = 100. Generally the sample size, n, did not 
have much effect on coverage. For c = 0.947 (a = 0.8), the achieved 
coverage was approximately 800Jo; for c = 2.102 (a = 1.3), approxi­
mately S80Jo; and for c = S.OOO (a= 1.805), approximately 2SOJo. The 
poor performance of the confidence interval can be attributed largely 
to the bias of the estimate of c. The average relative bias [RB = 100 (~ 
- c)/c) of~ was -430Jo for c = S.O, n = 100. The average relative 
bias decreased as c was reduced, but was still serious for c = 0. 947 
(relative bias = - 2.80Jo, n = 100). As with the normal distribution, 
the upper confidence bound tended to be less than c when the confi­
dence interval did not cover the true value. 

As a result of this simulation, we believe many of the c values given 
in the following sections are biased low because siX was used to 
estimate c. Plutonium concentrations are known to be skewed, and 
often the lognormal distribution is considered a reasonable probabili­
ty density function (Eberhardt, 1976). In addition, the coverage of the 
confidence interval described is much less than expected. However, re­
searchers have traditionally used the methods simulated, and the re-
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suits reponed in the literature provide the only data on plutonium 
concentration variability. 

Researchers are often tempted to regress c with the observed con­
centration X.._ We feel this practice is generally unpractical as cis 1 

function of X, and hence negative slope is expected, so that a sig­
nificant but inapplicable relationship is present . 

Additionally, we would discourage testing values of~ by analysis of 
variance and linear regression techniques without correcting for the 
heterogeneity of variance. As demonstrated above, the Vir(~ is at 
least proportional to ? , so that these methods are invalid unless 
properly weighted. Likewise, many nonparametric tests (cf., Kruskal­
Wallis, Friedman) require constant dispersion (Hollander and Wolfe, 
1973) so that these tests will not be valid . 

The basic conclusion we can draw from the material discussed 
above is that c = siX has a large variance and is biased with poor 
coverage, and that the difficulty increases as c increases. Thus to de­
sign an experiment with a c based on a small sample will often give un­
satisfactory results. A good estimate of c needs to be used to achieve a 
research design meeting the investigators need. 

In the remainder of this paper, to roughly compare values of c, we 
check pairwise for overlap in the 9Sifo confidence intervals. This 
method is approximate. However, keep in mind the poor quality of 
the estimates, and don't be misled into thinking that we have a more 
precise estimate than we do. Pair-wise checking will provide us with 
guidelines to use in interpreting the data. 

Regression analyses are done with the weight of the observation c 
being Var(~-·. This procedure is described clearly by Frank ( 1971 ). 

DESCRIPTION OF SOME ENVIRONMENTAL 
PLUTONIUM STUDY AREAS 

The seven sites chosen to represent the varied conditions under 
which plutonium is presently distributed in the environment are liSted 
in Table I. Sources of plutonium in these areas include indu~tnal 
liquid effluents (Los Alamos), accidental releases from industnal and 
military sources (Rocky Flats, Thule), localized fallout from both 
single and multiple weapons tests (Trinity Site, Glenn, and Janet). 
nonfission explosive tests with plutonium devices (Nevada T~1 Sn• 
[NTS)), and world-wide fallout from nuclear weapons tesllntt 1 north· 
ern Alaska). 

The physical size of the study plots varied from 0.01 ha m n,,rr hern 
Alaska to 124 ha of Strata I, Area 13, at the Nevada Tes! S11e Hnw-

Table !-Environmental plutonium study areaa 

Mean 

Location 
Source 
ofPu 

annualpr& 
cipitation 

(em) Ref.......--
--------------------------------
Los Alamos 

Mortandad Canyon { 
DP-Los Alamos 

Canyon 

Industrial 
liquid 

effluent 
} 

Acid-Pueblo Canyon 

Trinity Site 
GZ 

Area 21 

Enewetak Atoll 
Janet 
Glenn 

Rocky Flats 
Macroplot 1 
Macroplot2 

Nevada Test Site 
Area 13 

Strata 1 
Strata 6 

Area51GMXl 
Strata 1 
Strata 4 

Northern Alaska 
Thule. Greenland 

Single Weapons Test: 
1 km from ground zero 

44 km from ground zero 

{ 

Weapons Test: 
Multiple ground zeros 
and multiple fallout 

{ 

Unintentional } 
release from 

leaking drums 

{ 

Safety } 
test slwts 

Worldwide fallout 
Aircraft accident 

46 {Nytuon f't al 
46 (19o6h• 

Hakon~on end 
46 Bo•t•cil : ,-.,, 

15 (197~· 

{

Nytuon f't •• 

20 Hakon"'"' and 

} 145 
145 

40 
40 

8 
8 

John .. ..-. ~ I 

USAE! . ;"l 

Littl.. '4 ~,.. 

20 Han-. 
13 Han-.-~ 



ever, the size of the study area has little bearing on sample size re­
quirements in the absence of a plutonium concentration gradient 
(Eberhardt, 1976). 

Annual precipitation in the study areas varied from about 8 em in 
the desert at Nevada Test Site to 145 em on tropical island Janet in the 
central Pacific Ocean. 

The predominant plutonium isotope present in most study areas is 
"'·

14'Pu, with the exception of the Mortandad Canyon Site at Los 
Alamos, where the principal radioisotope is "'Pu. Little is known 
concerning the present physical and chemical forms of the plutonium 
at the sites in Table I or what changes in form may occur as the ma­
terial weathers. The "age" of the plutonium at these sites varies from 
less than I 0 years to nearly 35 vears. 

Results from the Rocky Flats Site suggest that the "' '"Pu particles 
in study plot soils are very small, probably < I I'm in diameter (Little, 
1976). Preliminary studies at Los Alamos indicate that as much as 
600Jo of the plutonium in liquid effluent is associated with particles less 
than 0.45 I'm diam, although the amount of plutonium which passes 
through a 0.45-"m membrane filter varies greatly, presumably due to 
variable amounts of chelates in the effluent. The physical character­
istics of the plutonium probably varies considerably within and among 
the sites, depending on circumstances related to the particular source. 

The predominant chemical form of plutonium at most of the study 
sites is likely the oxide (PuO,) because plutonium metal rapidly oxi­
dizes in the air (Coleman, 1965). However, little data supporting this 
view are available. Some recent work (Dunaway and White, 1974) in­
dicates that "'·'"PuO, is the predominant chemical form in the soils 
at the safety shot areas of NTS. 

The data to be presented from the study areas listed in Table I in­
clude variance components due to within sample or aliquot variability, 
between samples collected at different locations and soil depths and 
hence possibly including a gradient effect, and between samples col­
lected at the same location. However, none of the data include vari­
ability attributable to time. By pooling estimates of c from. these areas, 
we have combined the variance components listed above to give an 
estimate of the expected c for a "typical study." 

VARIABILITY OF PLUTONIUM 
CONCENTRATIONS IN STUDY 

AREA SOILS 

The variability in soil plutonium concentrations, as 
expressed by c, from several study locations is presented 
in Table 2 along with the average concentrations and 
sample sizes from which the c's were calculated. Based 
on the pairwise overlapping confidence interval method 
for testing the equality of two estimates of cas described 

Table 2-Plutonium concentration and variability estimates in 
some study area soils. 

Location Depth(cm) Mean(pCilg) . 
n c 

Los Alamos 
Mortandad 15 30 90 0.79 
DP-Los Alamos 21 30 0.73 1.6 
Acid-Pueblo 21 30 21 1.7 

Trinity Site 
Ground Zero 8 25 O.D7 0.68 
Area 21 8 33 0.14 0.68 

Enewetak Atoll 
Janet 138 15 16 1.3 
Glenn 29 15 0.11 0.62 

Nevada Test Site 
Area 13 

Stratum 1 39 5 36 1.4 
StratumS 47 5 14,000 3.1 

Area5 
Stratum 1 41 5 59 1.4 
Stratum4 23 5 7,300 1.1 

Thule, Greenland 6 5 0.16 1.5 
Rocky Flats 

Macroplot I 381 21 1.263 2.7 
Macroplot 2 550 21 48.4 8.4 

earlier in the paper, we found that most of the interval 
estimates for data in Table 2 overlapped, with the ex­
ception of the two Rocky Flats samples, If the Rocky 
Flats data are excluded, then the only confidence inter­
vals not overlapping are the samples from Janet and 
Glenn Islands in the Enewetak Atoll. 

Because much of the variability in flora and fauna 
may be attributed to soil variability, additional em­
phasis has been made here in determining the com­
ponents of variability. We examined three sets of data 
using weighted linear least squares to determine the sig­
nificance of the plutonium concentration coefficient of 
variation vs. depth and soil particle size fraction. The 
assumptions of least squares are a linear, additive model 
with independent and normally distributed error terms. 
The regression equation fitted to the data was 

c; = {3. + {3,d; + {32pi + e; 

where 
d; = the depth of the 11h sample (em), 
p; = the midrange of the size fraction of the r1h sam­

ple {Jtm), 
e; =the error term, 
c; = the coefficient of variation of the ,,h sample' 

and 
{3j = thelh parameter to be estimat~d from the data. 

The three equations resulting from the data given in 
Nyhan et al. (1976b) and Little (1976) are given in Table 
3. 

Note that all three data sets produce the same -:on­
elusions about the depth of the sample and the -;od 
particle size fraction, i.e., cis reduced on the average t'>\ 
0.03 for each centimeter of depth, but is relati,el\ un­
affected by the particle size fraction. Visual exam 1 r.a · 
tion of the residuals in each data set showed the t"qua­
tions adequately fit the data. 

A lingering question about the regression anal\ \I' , ' 

whether the soil particle size fraction is nonlinear I\ ~ e 
lated to c. We checked for a more general relauomh;r 
by treating particle size as a discrete variable (cla,,tfi..a 
tion variable) and doing an analysis of covarian-:c fn~ 
the Los Alamos data set. No significant differen.:e' .. cr e 
found between the size fractions. Hence we con..!uJe 
that cis significantly reduced with depth, but thert" aro:­
no apparent differences due to different soil paru.:lc "'c 
classes. This result implies that the variability is ldr!(e 1r 
all soil particle size fractions. 

In the preceding paragraphs we have identified d 'a •' 
ety of factors which we feel should affect plutun•um 
concentration variability. However, as shown tn i h.­
section on the statistical aspects of c, the es!lrndtu•n 
problems are severe and the values of c are \eld. •n' 
statistically different. Our calculations show t hd t ! ~" 
Rocky Flats samples are generally more variable t • 'r 
sequently, we have excluded them from the follo"'•n11 
calculations. A pooled estimate was made of t h..- · r 
maining values of c from Table 2 to provide an e'ttn ..•. , 
of the coefficient of variation based upon field sam ri: ~1.: 
experience. One possible approach is the r!1" ·': 

(weighted by sample size) of the c values given • n 
right-hand column of Table 2 as recommemk,: " 
Ziegler (1973). 

J. Environ. Qual., Vol. 8, no. 2, 19"'•; 1 ''-' 



Table 3-Results of weighted least squares analysis of~ vs. depth and soil particle size (Anova table). 

Source 
df ss F Significance Complete equation Reduced equati<'· 

Los Alamos, Mortandad Can~ont 

Depth(d) 1 0.4164 

Particle size (p} 1 0.0078 

Regression 2 0.4714 

Residual 21 0.1595 

55.3 0.000 
0.91 0.324 

31.0 0.000 

ci = 0.6860 - o.0314cli 
+ 0.6086 x 10-'Pi + e; 

ci = 0.7124 
- 0.0325di + ei 

Rocky Flats, Macroelot 1t 

Depthldl 1 1.66 28.4 0.000 

Particle size (p} 1 0.17 2.97 0.091 

Regression 2 1.68 14.5 0.000 

Residual 53 3.07 

~i = 0.7472 - 0.0251di 
+ 0.2155 X 10-'P; + e; 

~i = 0.7906 
- 0.023di + ei 

Rock~ Flata, Macroelot 2t 

Depth(dl 1 2.34 25.8 
Particle size (p} 1 0.00 0.02 
Regression 2 2.38 13.1 
Residual 53 4.82 

t From Nyhan et al (1976}. 
t From Little (1976}. 

However, we have pointed out earlier the ad hoc 
nature of our methods to test between values of c, and 
thus would suspect that some of the values presented in 
Table 2 may actually be significantly different, but our 
methods lack the power to detect these differences. An 
estimator of the central value of c is desired which is 
robust to outliers, and such an estimator is the median. 
For the values of c in Table 2 (excluding the Rocky Flats 
samples), the median is 1.35 with a 950Jo confidence 
interval of 0.68 - 1.6. Methods for determining con­
fidence intervals for a median and n < 25 are given by 
Hollander and Wolfe (1973, p. 48-49). If the soil sam­
pling is strafied by depth, then the value of c used to de­
termine sample size should be estimated from the appro­
priate regression equation given in Table 3. 

0.000 ~i = 1.413 - 0.0326di ~i = 1.4189 
0.888 + 0.1326 x 10-"pi + ei - 0.0327di + ei 
0.000 

PLUTONIUM CONCENTRATION VARIABILITY 
IN NATIVE VEGETATION 

Plutonium concentrations and the associated c for na­
tive vegetation are presented in Table 4. Average con­
centrations of plutonium in or on various species ranged 
over five orders of magnitude (0.003-870 pCi/g) while c 
varied by a factor of 11 (0.36-4.05). The range in con­
centrations and c in vegetation are of the same mag­
nitude as observed in soils (Table 2). As with soils, the 
consistency of c between species and sites is remarkablt> 
considering the diversity of ecosystems, climat 
sources of plutonium, and sampling methodologies. 

All of the interval estimates for the data in Table 4 
overlapped one another, with the exception of the 

Table 4-Variability of Pu concentrations in native vegetation samples. 

Location Sampling technique Vegetation type n Mean(pCilgdry} c 
Los Alamos 

Mortandard Grab Grass 5 17.0 0.64 
DP·Los Alamos Grab Grass 9 0.09 1.00 
Acid-Pueblo Grab Grass 3 0.33 0.70 

Trinity Site 
Ground Zero 1 m'quadrat Grass 7 0.003 0.40 
Area 21 1 m'quadrat Grass 8 0.160 0.36 

Rocky Flats 
Macroplot 1 0.5 m' quadrat Grass 76 140.7 2.02 
Macroplot 2 0.5 m' quadrat Grass 78 2.78 4 05 

Los Alamos 
Mortandad Grab Tree 6 0.18 0.82 
DP·Los Alamos Grab Tree 13 0.05 2.00 
Acid-Pueblo Grab Tree 8 0.006 0.70 

Enewetak Atoll 
Janet Island Grab Lichen 7 0.007 0.70 

Northern Alaska 0.25 m' quadrat Lichen 8 0.15 0 52 
Thule, Greenland 0.25 m' quadrat Lichen 10 0.26 0.49 
Nevada Test Site 

Area 5, Stratum 4 Random grab Shrub 9 280 0 50 

Area 13, Stratum 1 Random grab Shrub 31 4.7 0 66 

Area 13, Stratum 6 Random grab Shrub 11 870 0 Yl 

Area 5, Stratum 1 Random grab Shrub 27 11 l 42 

Los Alamos 
Mortandad Grab Shrub 13 0.71 ! 70 

DP·Los Alamos Grab Shrub 8 0.02 0 ~2 

Acid-Pueblo Grab Shrub 10 0.009 () 70 

Enewetak Atoll 
116 Janet Island Shrub 6 0.008 
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Table 5-Plutonium concentration lX) and variability l~) in native animal tissues. 

Lung Liver 

x • x 2 I.,oeation n c n 

J.,osAlamos 
Mortandad 15 1.30 1.6 5 0.12 0.65 
DP-Los Alamos 19 0.08 1.0 19 0.04 2.0 
Acid-Pueblo 5 0.08 0.91 5 0.08 2.0 

Trinity Site 
Ground Zero 7 0.30 1.0 7 0.01 2.0 
Area 21 2 0.01 1.0 

Rocky Flats 
Macroplot 1 47 3.6 1.9 0 46 8.4 5.4 
Macroplot2 27 45.0 2.8 27 1.3 1.6 

Enewetak 
Janet Island 5 0.90 0.45 

Rocky Flats Macroplot 1 sample. Hence, we eliminated 
the Rocky Flats data and pooled the remaining data in 
Table 4 to estimate an overall coefficient of variation. 
The median was 0.70 with a 950Jo confidence interval of 
0.64-0.82. 

Variable amounts of soil associated with the external 
plant surface may result in a major portion of the plu­
tonium sampling variability in vegetation samples from 
the field. Development of a method for measuring plant 
surface area as a means of expressing plutonium con­
centrations in spatial units (i.e., pCi/cm2 plant surface) 
may reduce the variability. 

With the large relative variability shown in Table 4, 
research questions such as the change in plutonium 
availability to plants through time can only be answered 
at the expense of considerable cost and time. 

PLUTONIUM CONCENTRATION VARIABILITY 
IN NATIVE ANIMALS 

Plutonium concentrations and variability of data for 
rodents from four study sites are given in Table 5. Plu­
tonium concentrations in the various species ranged 
from 0.004 to 45.0 pCi/g dry tissue while the values of c 
varied from 0.10 to 5.4. 

The relationship of c to the plutonium source' was 
similar to that observed in soils and vegetation, with the 
Rocky Flats data being the most variable. There was a 
tendency for lower values of c to be associated with fall­
out and liquid effluent sources of plutonium, although 
all of the interval estimates for the data in Table 5 over­
lapped. 

A central value of c was obtained by pooling the data 
in Table 5. The median was 1.1 with a 950Jo confidence 
interval of 1.0-1. 9 and 1.0 with confidence interval of 
0.79-1.1 when the Rocky Flats data are excluded. The 
median was much higher than the estimate for vegetation. 
Analytical uncertainties are a large component of c for 
rodent tissues due to the low plutonium concentrations. 
However, the Rocky Flats data had both the largest con­
centrations and variability, which would not be ex­
pected if detection problems were the cause of the in­
creased c. Until a better understanding of plutonium 
concentration variability in rodents is achieved, we 
believe there are very few research questions that can be 
asked for which conclusive results can be obtained. 

Pelt Viscera Carcass 

x . x . . n c n c n X c 

pCi/g 

6 1.9 . 0.79 5 0.07 1.1 
19 0.11 1.1 19 O.Ql 1.0 

5 0.03 1.0 5 0.004 0.7 

7 0.03 2.0 7 0.11 1.6 
2 0.01 0.10 2 0.02 0.40 

47 1.5 1.8 40 7.1 2.5 
27 2.6 4.0 22 2.2 1.9 

5 0.67 0.64 5 0.007 0.60 

CONCLUSIONS 

The ·usual estimator of the coefficient of variation, 
siX, has a large negative bias for lognormal distribu­
tions. The variance of c, derived by Cramer (1946) is 
useful in constructing approximate confidence intervals 
on c for normally distributed populations, but performs 
poorly when the population is a sample from a log­
normal distribution. Estimation of c requires large 
sample sizes. 

Coefficient of variation for plutonium concentrations 
in terrestrial ecosystem components from seven 
geographical regions ranged from 0.62-8.4 in whole soil 
samples, 0.36 to 4.05 in vegetation, and 0.10 to 5.4 in 
rodent tissues. From these data pooled estimates and 
confidence intervals were obtained for use in the design 
of future studies: soil, 1.35(CI = 0.68 - 1.6); vegeta­
tion, 0.70(CI = 0.64 - 0.82); and rodent tissues, l.l(CI 
= 1.0- 1.9). 

The range inc in ecosystem components was generally 
consistent between sample types and between study 
areas, although lower c's were generally associated with 
fallout and effluent sources of plutonium. However, the 
large uncertainty associated with c precludes any mean­
ingful interpretation of results. 

In the absence of adequate site specific data, we be­
lieve that the estimates of c presented in this paper will 
be useful in designing a field sampling program for plu­
tonium. 
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