

Environmental Programs P.O. Box 1663, MS M991 Los Alamos, New Mexico 87545 (505) 606-2337/FAX (505) 665-1812

게으

NEC 2013 **NECNECNEC** 2013 **NECNEC** 2013 **NECNECNECNEC** 2013 **NECNEC** 2013 **NEC** 2013 **NEC** 2013 **NEC** 2013 **NECNEC** 2013 **NEC** National Nuclear Security Administration Los Alamos Field Office, MS A316 Environmental Projects Office Los Alamos, New Mexico 87544 (505) 667-4255/FAX (505) 606-2132

Date: **DEC 1 9 2013** *Refer To*: EP2013-0291

John Kieling, Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303

Subject: Submittal of the Completion Report for Sandia Canyon Wetland Grade-Control Structure

Dear Mr. Kieling:

Enclosed please find two hard copies with electronic files of the Completion Report for Sandia Canyon Wetland Grade-Control Structure. This submittal completes the requirements for stabilization of the Sandia Canyon Wetland as approved in the Work Plan and Final Design for Stabilization of the Sandia Canyon Wetland.

If you have any questions, please contact John McCann at (505) 665-1091 (jmccann@lanl.gov) or Ramoncita Massey at (505) 665-7771 (ramoncita.massey@nnsa.doe.gov).

Sincerely,

Jeff Mousseau, Associate Director Environmental Programs Los Alamos National Laboratory

Sincerely,

Peter Maggiore, Assistant Manager Environmental Projects Office Los Alamos Field Office

John Kieling

JM/PM/DM/JM:sm

- Enclosures: Two hard copies with electronic files Completion Report for Sandia Canyon Wetland Grade-Control Structure (LA-UR-13-29285)
- Cy: (w/enc.) Ramoncita Massey, DOE-NA-00-LA, MS A316 John McCann, EP-CAP, MS M992 Public Reading Room (hard copy) RPF (electronic copy)
- Cy: (Letter and CD and/or DVD) Laurie King, EPA Region 6, Dallas, TX Steven Rydeen, San Ildefonso Pueblo Joe Chavarria, Santa Clara Pueblo Steve Yanicak, NMED-DOE-OB, MS M894 Debbie Apodaca-Persiri (w/ MS Word files on CD) Mike Fichtel (w/ MS Word files on CD) Wendy Staples, EP-REG (date-stamped letter emailed)

Cy: (w/o enc.)

Tom Skibitski, NMED-DOE-OB (date-stamped letter emailed) lasomailbox@nnsa.doe.gov Annette Russell, DOE-NA-00-LA (date-stamped letter emailed) David Rhodes, DOE-NA-00-LA (date-stamped letter emailed) Dave McInroy, EP-CAP (date-stamped letter emailed) Jeff Mousseau, ADEP (date-stamped letter emailed)

LA-UR-13-29285 December 2013 EP2013-0291

Completion Report for Sandia Canyon Grade-Control Structure

LA-UR-13-29285 December 2013 EP2013-0291

Completion Report for Sandia Canyon Grade-Control Structure

Prepared by the Environmental Programs Directorate

Los Alamos National Laboratory, operated by Los Alamos National Security, LLC, for the U.S. Department of Energy under Contract No. DE-AC52-06NA25396, has prepared this document pursuant to the Compliance Order on Consent, signed March 1, 2005. The Compliance Order on Consent contains requirements for the investigation and cleanup, including corrective action, of contamination at Los Alamos National Laboratory. The U.S. government has rights to use, reproduce, and distribute this document. The public may copy and use this document without charge, provided that this notice and any statement of authorship are reproduced on all copies.

Completion Report for Sandia Canyon Grade-Control Structure

December 2013

Responsible project manager:

John McCann	AMCan	Project Manager	Environmental Programs	12-17-2013
Printed Name	Signature	Title	Organization	Date
Responsible LANS repre	esentative:			
Jeff Mousseau	Jeffer Moz	Associate Director	Environmental Programs	12-17-13
Printed Name	Signature	Title	Organization	Date
Responsible DOE repres	sentative:			
Peter Maggiore	Peter Mago	Assistant Manager	DOE-NA-00-LA	12-18-13
Printed Name	Signature	Title	Organization	Date

CONTENTS

 2.0 ENGINEERING 2.1 Design Objectives 2.2 Design Criteria 2.2.1 Base Flow Hydrology 2.2.2 Storm Flow Hydrology 2.2.3 Water Balance 2.2.4 Design Features 2.3 Permitting 2.3.1 General 2.3.2 Reporting 3.0 CONSTRUCTION 3.1 General 3.2 Safety and Health 3.3 Quality Control 	1 2 2 2 2 2 2 2 2
 2.1 Design Objectives	1 2 2 2 2 2 2 2 2
 2.2 Design Criteria	
 2.2.1 Base Flow Hydrology 2.2.2 Storm Flow Hydrology 2.2.3 Water Balance 2.2.4 Design Features 2.3 Permitting 2.3.1 General 2.3.2 Reporting 3.0 CONSTRUCTION 3.1 General 3.2 Safety and Health 3.3 Quality Control	2 2 2 2 2
2.2.2 Storm Flow Hydrology 2.2.3 Water Balance 2.2.4 Design Features 2.3 Permitting 2.3.1 General 2.3.2 Reporting 3.0 CONSTRUCTION 3.1 General 3.2 Safety and Health 3.3 Quality Control	2 2 2 2
2.2.3 Water Balance 2.2.4 Design Features. 2.3 Permitting 2.3.1 General 2.3.2 Reporting. 3.0 CONSTRUCTION 3.1 General 3.2 Safety and Health 3.3 Quality Control.	2 2 3
2.2.4 Design Features 2.3 Permitting 2.3.1 General 2.3.2 Reporting 3.0 CONSTRUCTION 3.1 General 3.2 Safety and Health 3.3 Quality Control	2 3
 2.3 Permitting	
2.3.1 General 2.3.2 Reporting 3.0 CONSTRUCTION 3.1 General 3.2 Safety and Health 3.3 Quality Control	
2.3.2 Reporting 3.0 CONSTRUCTION	3
3.0 CONSTRUCTION. 3.1 General	3
 3.1 General 3.2 Safety and Health 3.3 Quality Control 	3
3.2 Safety and Health3.3 Quality Control	3
3.3 Quality Control	3
	4
3.4 Occurrences	4
3.4.1 Tar-Like Substance	4
3.4.2 Rainfall and Flooding	4
3.5 As-Built Drawings	5
3.6 Photo Documentation	5
3.7 Deviations	5
4.0 REFERENCES	6

Figures

Figure 1	Location of Sandia Canyon grade-control structure7
i iguio i	Ecolution of Currain Carryon grade control cardelare

Tables

Table 1	Permits and Permissions Obtained	.9
Table 2	Analytical Results for Sample CASA-13-34678 Using SW-846 EPA Method 8270	.9

Appendixes

Appendix A	Sandia Canyon Wetland Hydrology
Appendix B	Sandia Canyon Wetland Hydraulics
Appendix C	Sandia Canyon Wetland Grade-Control Structure As-Built Drawings
Appendix D	Photo Documentation
Appendix E	Sandia Canyon Wetland Run-On Control Design

Acronyms and Abbreviations

BMP	best management practice
DOE	Department of Energy (U.S.)
DRO	diesel-range organics
EPA	Environmental Protection Agency (U.S.)
ES&H	environment, safety, and health
ET	evapotranspiration
gpd	gallons per day
HEC-RAS	Hydrologic Engineering Center River Analysis System (U.S. Army Corps of Engineers surface model)
IWD	integrated work document
LANL	Los Alamos National Laboratory
NMED	New Mexico Environment Department
NWP	nationwide permit
PAH	polycyclic aromatic hydrocarbon
RPF	Records Processing Facility
ТРН	total petroleum hydrocarbons
USACE	U.S. Army Corps of Engineers

1.0 INTRODUCTION

Los Alamos National Laboratory (LANL or the Laboratory) has prepared this completion report in response to the New Mexico Environment Department's (NMED's) approval of the "Work Plan and Final Design for Stabilization of the Sandia Canyon Wetland" (LANL 2011, 207053; NMED 2011, 208094) and in response to requirements set forth originally in NMED's "Approval with Modification, Interim Measures Work Plan for Stabilization of the Sandia Canyon Wetland" (NMED 2011, 203806). The "Interim Measures Work Plan for Stabilization of the Sandia Canyon Wetland" (LANL 2011, 203454) was prepared in response to NMED's "Approval with Modification, Phase II Investigation Work Plan for Sandia Canyon" (NMED 2011, 111518). This completion report provides project goals and objectives, design and performance criteria, and as-built drawings of the Sandia Canyon wetland grade-control structure. The grade-control structure consists of three stepped sheet-pile walls that were constructed as a measure to physically stabilize the Sandia Canyon wetland.

The overall project goals and objectives were to arrest the headcut in the lower portion of the wetland and to maintain hydrologic and geochemical conditions to minimize contaminant migration. The project consisted of installing three stepped sheet-pile walls to form a grade-control structure to stabilize the headcut and allow a grade transition from the wetland surface upstream of the grade-control structure to the stream grade near stream gage E123 (Figure 1). Design features should also allow reduction of effluent in the canyon without compromising physical and geochemical function of the wetland. The area behind the grade-control structure was backfilled and wetland vegetation was planted to allow expansion of the wetland area. These measures will physically stabilize the wetland by reducing sediment and associated contaminant transport into the lower sections of the canyon and should also maintain reducing conditions within the wetland sediments, thus contributing to the goal of reducing potential contaminant transport.

The wetland is located in reach S-2 of Sandia Canyon. The largest drainage contributing to the wetland flows through a 72-in. corrugated metal pipe culvert a short distance upstream of the wetland. A single stream channel is present within the upper one-third of the wetland, and wetland vegetation is established on floodplains inset relative to older wetland surfaces. In the lower two-thirds of the wetland, surface water is generally present across much of the width of the wetland. Prior to construction of the grade-control structure, the terminus of the wetland had an active headcut. Willows had been planted in and around the headcut but failed to stabilize it. Downstream of the wetland, the stream system enters a narrow canyon reach and is stable, with bedrock exposed along much of the stream bed. Stream gage E123 is located a short distance below the wetland.

2.0 ENGINEERING

2.1 Design Objectives

The grade-control structure was designed to meet the following objectives:

- Provide an even grade to allow wetland expansion and further stabilization
- Be sufficiently impervious to prevent the draining of alluvial soils
- Facilitate nonchannelized flow
- Minimize erosion during large flow events
- Support wetland function under reduced effluent conditions

2.2 Design Criteria

2.2.1 Base Flow Hydrology

Stream flow from combined effluent sources in Sandia Canyon has averaged approximately 250,000 to 350,000 gallons per day (gpd). These base flows feed the groundwater within the reach, providing adequate hydrology and soil moisture conditions where the wetland vegetation can flourish.

2.2.2 Storm Flow Hydrology

A 25-yr, 2-h storm event with a peak design flow of 500 cubic feet per second was used for the design of the grade-control structure as required by the Laboratory's design guidance. The primary goal was to reduce the stream velocity in the area of the grade-control structure to less than 6 ft per second. Design parameters were determined using Hydrologic Engineering Center River Analysis System (HEC-RAS) modeling. The hydrologic calculations can be found in Appendix A, and hydraulics calculations can be found in Appendix B.

2.2.3 Water Balance

The wetland currently receives approximately 250,000 to 350,000 gpd of inflow from combined effluent sources. To address the potential for reduced effluent volumes into Sandia Canyon, estimations of the evapotranspiration (ET) across the wetland footprint was performed using Penman-Monteith equations. Modeling indicates that the maximum 30-day ET is approximately 11 in. This results in an estimated minimum effluent volume to maintain wetland vegetation in Sandia Canyon of approximately 30,000 gpd.

2.2.4 Design Features

The grade-control structure, as shown in the as-built drawings (Appendix C), transitions the grade approximately 11 vertical feet from the elevation of the current wetland just upgradient of the former headcut location to the natural stream bed just upstream of stream gage E123. To maintain grade and to reduce the overall fill and size of a single structure, a set of three steel-sheet-pile walls was installed with smaller elevation drops. Downstream of the third sheet-pile wall, a cascade pool was constructed of boulders and cobbles to transition to the final grade.

Three sheet-pile walls were installed with the following design elements:

- The sheet piles were installed into 2-ft-deep trenches into bedrock. Trenches were backfilled to the elevation of the bedrock with bentonite.
- Seep holes were cut into the sheet piles at consistent elevations across each sheet pile to encourage smaller, braided channels through the restored sections of wetland to establish vegetation.
- Stone splash pools were installed just downgradient of each sheet pile to prevent scour holes and to slow the water.
- Sheet piles were capped with reinforced concrete curbs to provide a spillway to establish even flows.
- A stone cascade and pool structure was installed downstream of the third sheet-pile wall to complete the final transition into the native channel just upgradient of gage station E123.

The walls are seated in bedrock to prevent groundwater from seeping through the structure as noted above. The transition from the wetland above the grade-control structure to the stream channel below is gradual, smooth, and in a stepped fashion to prevent erosive flows that could scour and destabilize the stream reach below the structure. In addition, the stepped nature of the design reduces the risk of catastrophic failure of the grade-control structure in the event of a localized failure. Engineered fill was placed behind each wall to replace the area of the wetland that had been eroded. These areas were filled to match the elevation of the surrounding wetland area to prevent the formation of pools behind the grade-control walls. A variety of wetland species was planted in 18-in. of native top soil to stabilize the wetland and expand the footprint.

2.3 Permitting

2.3.1 General

The Laboratory's Design Engineering and Environmental Compliance groups performed a review of the design model and the construction documents. Table 1 lists the permits and permissions that were obtained to meet state and federal requirements.

2.3.2 Reporting

All monitoring data collected during the previous year will be submitted to NMED annually for up to 5 yr in a Sandia Canyon performance monitoring report to be submitted by April 30 of each year. The report will summarize alluvial, water level, and storm water monitoring data collected above and below the grade-control structure. A series of repeat cross-section locations will be established in the upper portion of reach S-2 and in the vicinity of the head location to document geomorphic changes. In addition, the Laboratory will submit a yearly vegetation monitoring report to the U.S. Army Corps of Engineers (USACE) for up to 3 yr by December 1 of each year. This is in support of the 401/404 Clean Water Act Permit, which required annual vegetation transects, photographs from certain locations, and delineation of wetland boundaries.

3.0 CONSTRUCTION

3.1 General

The Laboratory placed Portage, Inc., under contract in November 2012 to build the Sandia Canyon grade-control structure. Construction of the Sandia Canyon grade-control structure began on April 22, 2013, and the structure was substantially complete and functional on September 9, 2013. Site stabilization activities were completed November 22, 2013, with demobilization completed November 27, 2013. Appendix D presents photo documentation of the grade-control structures.

3.2 Safety and Health

Under the guidance and approval of the Laboratory, Portage developed and implemented an environment, safety, and health (ES&H) plan to ensure the project met safety and health goals. In addition to the ES&H plan, all site activities were analyzed and addressed within task-specific integrated work documents (IWDs). Site personnel were subsequently trained to these IWDs prior to commencing field activities. As a result of safe construction practices, there were no lost-time accidents or incidents during the entire project.

3.3 Quality Control

Under the guidance and approval of the Laboratory, Portage developed and implemented a quality assurance plan to ensure the project met quality construction goals. In addition to the quality assurance plan, Portage was also contractually obligated to develop and adhere to a project-specific test and inspection plan that captured all project tests, inspections, and hold points. Finally, Portage assigned a quality control inspector to oversee field activities and ensure project requirements were achieved.

3.4 Occurrences

Two major categories of events occurred during construction of the grade-control structure that impacted the construction schedule. These events are the discovery of a tar-like substance during initial excavations and significant flooding.

3.4.1 Tar-Like Substance

On May 16, 2013, the field crew notified Laboratory management that a black tar-like substance was observed oozing out of the initial side cut of the second grade-control wall. Regulatory and technical personnel visited the site, and the event was reported to Dave Cobrain at the NMED – Hazardous Waste Bureau on May 16, 2013. A sample of the material was collected and analyzed for diesel-range organics (DRO), total petroleum hydrocarbon (TPH), and semivolatile organic compounds (SW-846 U.S. Environmental Protection Agency [EPA] Method 8270).

The personnel who received sample CASA-13-34678 at the Laboratory's Sample Management Office described it as wet, ground asphalt. Table 2 lists the analytes detected using SW-846 EPA Method 8270.

The analytes listed in Table 2 are all polycyclic aromatic hydrocarbons (PAHs) that are created from the production of coal tar. Coal tar is a ready source of asphaltenes necessary for the production of asphalt. Based on the description of this sample and the PAHs detected, this sample was almost certainly asphalt. This sample was also analyzed for TPH-DRO. TPH-DRO measures total petroleum hydrocarbons with a carbon range from C-10 through C-38, which includes the PAHs listed above. The TPH-DRO detection of 11,000 mg/kg for sample CASA-13-34678 further verifies that this sample is coal tar–based asphalt.

Because the tar material was limited in extent, nonmobile, and within the boundaries of the grade-control structure, the material was left in place and construction was continued. This event resulted in a 2-day delay to the project schedule.

3.4.2 Rainfall and Flooding

Two significant rainfall events occurred during the construction phase and impacted the project schedule. These events are described as follows:

1. On June 30, 2013, approximately 0.5 in. of rain fell on and around the construction site; water traveled down Sandia Canyon and overcame the diversion pond but was stopped by the earthen fill run-on control above the first sheet-pile wall of the grade-control structure. The site also received heavy run-on from the Los Alamos County landfill diversion channel northeast of the construction site. This run-on flooded all three grade-control structure trenches. No damage to the structures occurred during this flooding, but significant efforts were required to dewater the site and remove sediments received as a result of the run-on from the landfill. It took 1 wk to reestablish the site and resume construction.

 During the week of September 10, 2013, the site was inundated with unprecedented rainfall. Rainfall totals in some areas of the Laboratory exceeded 7 in. in a 1-wk time period, and much of the rain fell during an extremely intense event that occurred between September 12 and 13, 2013. These storm events were accompanied by record run-on, flooding, and erosion at the site.

On the morning of September 17, 2013, damage to the site was summarized as follows:

- The cascade pool lost roughly 25% of its boulders downstream.
- Roughly 75% of recently planted site-restoration plants were lost.
- The diversion pond overflowed, and some plastic lining was lost.
- Cobbles rolled downstream from the rock aprons.
- Roughly 600 cubic yards of material from the Los Alamos County landfill was deposited between the first and second steel-sheet piles.

The second event resulted in significant delays to completing construction. Extensive repairs were required, including the design and construction of best management practice (BMP) run-on control structures (see Appendix E), repair of the sump pond and diversion system, replacement of boulders and repair of the cascade pool liner, removal of deposited sediments and regrading, and replanting of the lost plants. One month of work was required to recover from this event.

3.5 As-Built Drawings

A set of as-built drawings after construction for the grade-control structure can be found in Appendix C.

3.6 Photo Documentation

Photos of the grade-control structure can be found in Appendix D as well as photos of the run-on BMPs.

3.7 Deviations

The following deviation from the work plan occurred. NMED's approval with modification of the interim measures work plan required that "In the final design, the Permittees must propose to remove all post-1942 alluvial sediments that are present within reach S-2 of Sandia Canyon below the grade-control structure, and to place these sediments as fill behind the grade-control structure" (NMED 2011, 203806).

As previously discussed, the Sandia Wetland grade-control structure project was permitted under the USACE Nationwide Permit (NWP) 38 for Cleanup of Hazardous and Toxic Waste (USACE 2013, 251704). The Laboratory pursued permission from the USACE to fulfill the NMED requirement (LANL 2013, 251705), but it was concluded that NWP 38 General Condition 6 would be violated by the placement of sediments that contain toxic pollutants in toxic amounts into jurisdictional waters (USACE 2013, 251706). Thus, the Laboratory did not remove post-1942 alluvial sediments within reach S-2 of Sandia Canyon and use them as fill behind the grade-control structure.

4.0 REFERENCES

The following list includes all documents cited in this report. Parenthetical information following each reference provides the author(s), publication date, and ER ID. This information is also included in text citations. ER IDs are assigned by the Environmental Programs Directorate's Records Processing Facility (RPF) and are used to locate the document at the RPF and, where applicable, in the master reference set.

Copies of the master reference set are maintained at the NMED Hazardous Waste Bureau and the Directorate. The set was developed to ensure that the administrative authority has all material needed to review this document, and it is updated with every document submitted to the administrative authority. Documents previously submitted to the administrative authority are not included.

- LANL (Los Alamos National Laboratory), May 2011. "Interim Measures Work Plan for Stabilization of the Sandia Canyon Wetland," Los Alamos National Laboratory document LA-UR-11-2186, Los Alamos, New Mexico. (LANL 2011, 203454)
- LANL (Los Alamos National Laboratory), September 2011. "Work Plan and Final Design for Stabilization of the Sandia Canyon Wetland," Los Alamos National Laboratory document LA-UR-11-5337, Los Alamos, New Mexico. (LANL 2011, 207053)
- LANL (Los Alamos National Laboratory), September 4, 2013. "Action No. SPA-2012-00050-ABQ Potential Removal and Placement of Sediments at Sandia Canyon Wetland," Los Alamos National Laboratory letter (ENV-DO-13-0073) to W. Oberle (USACE) from A.R. Grieggs (LANL) and G.E. Turner (DOE-NA-00-LA), Los Alamos, New Mexico. (LANL 2013, 251705)
- NMED (New Mexico Environment Department), January 4, 2011. "Approval with Modification, Phase II Investigation Work Plan for Sandia Canyon," New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.P. Bearzi (NMED-HWB), Santa Fe, New Mexico. (NMED 2011, 111518)
- NMED (New Mexico Environment Department), June 9, 2011. "Approval with Modification, Interim Measures Work Plan for Stabilization of the Sandia Canyon Wetland," New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2011, 203806)
- NMED (New Mexico Environment Department), November 15, 2011. "Approval with Modification, Work Plan and Final Design for Stabilization of the Sandia Canyon Wetland," New Mexico Environment Department letter to G.J. Rael (DOE-LASO) and M.J. Graham (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2011, 208094)
- USACE (U.S. Army Corps of Engineers), March 27, 2013. "Action No. SPA-2012-00050-ABQ, McCann, LANL, Sandia Canyon, Wetland, Los Alamos County, NM," USACE letter to J. McCann (LANL) from W. Oberle (USACE), Albuquerque, New Mexico. (USACE 2013, 251704)
- USACE (U.S. Army Corps of Engineers), September 5, 2013. "Potential Violation Action No. SPA-2012-00050-ABQ, McCann, LANL, Sandia Canyon, Wetland, Los Alamos County, NM," USACE letter to G. Turner (DOE-NA-00-LA) and A.R. Grieggs (LANL) from W. Oberle (USACE), Albuquerque, New Mexico. (USACE 2013, 251706)

Figure 1 Location of Sandia Canyon grade-control structure

Permit	Agency
National Environmental Policy Act Assessment	U.S. Department of Energy
Section 7 Biological Assessment Consultation under the Endangered Species Act	U.S. Department of Interior Fish and Wildlife Service
National Pollutant Discharge Elimination System Construction General Permit	EPA
Section 404 NWP 38 for Cleanup of Hazardous and Toxic Waste under the Clean Water Act	USACE
Section 401 Water Quality Certification Permit under the Clean Water Act	NMED Surface Water Quality Bureau

Table 1Permits and Permissions Obtained

Table 2
Analytical Results for Sample CASA-13-34678
Using SW-846 EPA Method 8270

Analyte Name	Result	Units
Anthracene	18,000	µg/kg
Carbazole	3400	µg/kg
Dibenzofuran	21,000	µg/kg
Fluorene	9200	µg/kg
2-Methylnaphthalene	38,000	µg/kg
Naphthalene	8800	µg/kg
Phenanthrene	8300	µg/kg
Pyrene	5500	µg/kg
TPH-DRO	11,000	mg/kg

Appendix A

Sandia Canyon Wetland Hydrology

ERID-240017

APSXICCE-PMOL, R2 Attachment 1

Pages 3 - 9 instructions only

Conduct of Engineering Calculations **Calculation** Cover Sheet B HELLEN Calo No .: CAL - X999901- CALC-000512 Page 2 of 2 12.0 Calo Title: Sandle Canyon Welland Hydrology **Calculation Cover Sheet** 6.1 Preparer: (Name, Z Number, Organization, Signature, Date) James & CALLER, A- G. OThall Z. 280099, Brown & Callerell ster 6.2 Subcontractor Approver: (Name, Z Number (If applicable), Organization, Signature, Date) 000012013 NA C.S. Responsible Manager: (Name, Z Number, Organization, Signature, Date) NEAN Mac GREGOR 112005 ET- ER for 321.13 MAN Mac GREGOR 8.3 Description of Change(s) γ n and the second the state of the second second AP 341-605-FM01. R2 Page 2 of 9 Pages 3 - 9 instructions only Attachment I

TABLE OF CONTENTS

Sec No.	lion Title	Page No
1.0	Purpose	2
2.0	Methodology	2
	an and the second s	
3.0	Acceptance Criteria	3
4.0	Open Items	3
5.0	Assumptions	3
		Manie and Ale
0.0		3 A A A A A A A A A A A A A A A A A A A
7.0	Calculation Inputs	3
8.0	Computer Hardware and Software	3
9.0	Summary and Conclusions	3
10.0	References	3
11.0	Calculation	3
	e subscription at a second second second second second	

1.0 Purpose

To calculate peak discharges and storage volumes associated with the design of the Sandia Canyon Wetland. Peak discharges were determined for the 25-year, 2-hour rainfall event.

2.0 Methodology

Software: The U.S. Army Corps of Engineers HEC-HMS software program was used to determine peak discharges for the Sandia Canyon Wetland. Peak discharges were determined at two design points within the drainage basin: one point located upgradient of the proposed stilling basin and the other located at the existing stream gage E-123. Input into the HEC-HMS model is attached to this form.

Loss Method: The loss method used in the model was the National Resource Conservation Service (NRCS) curve number (CN) method. The majority of the contributing drainage areas are urbanized areas with a high degree of imperviousness. Therefore, a high CN was chosen for the drainage areas.

<u>Time of Concentration</u>: The times of concentration were determined using the TR-55 method for determining sheet flow and shallow concentrated flow. Time of concentration calculations are attached to this form. Supporting equations and tables from TR-55 are also attached to this form.

Precipation Data:

The most widely used public source of rainfall data is published by the National Oceanic and Atmospheric Administration (NOAA). However, LANL has also collected approximately 20 years of rainfall data at various rain gages within the LANL property boundary. LANL rainfall data was used for this analysis rather than NOAA data for the following reasons:

• The U.S. Geological Survey (USGS) recommends a minimum of 10 years of rainfall data for statistical analysis. LANL gage data spans a time period of 1990 to present and includes years of both above and below average precipitation. Therefore, the data set meets the minimum requirements for statistical analysis of rainfall data.

• NOAA data is typically based on regional rainfall values. However, because LANL is located just east of the Jemez mountain range, precipitation values vary greatly within a short distance. In addition, the NOAA precipitation data does not accurately present spatial variations in precipitation data within a large region.

Site-specific, local data is a better indicator of actual site conditions.

Rainfall depths:

Data was analyzed for the two rain gages closest in location to the Sandia Canyon Wetland, rain gage TA-6 and TA-53. Rainfall gage data were analyzed to estimate a 2-hour rainfall depth for the Sandia Canyon Wetland. Gage TA-6 and TA-53 were analyzed separately using the Gumbel Extreme Value Type 1 statistical distribution. The analysis was done using a spreadsheet with no additional software. The greatest rainfall depth between TA-6 and TA-53 was chosen as the design depth

Storm distributions:

The six largest storm events within the twenty year data record were evaluated for both rain gages, giving a total of twelve actual storm events for the 2-hour storm. From those twelve

events, the distribution that produced the greatest peak discharge (the storm event with the greatest intensity) was used as the design distribution.

All relevant back-up materials are attached to this calcualtion form.

3.0 Acceptance Criteria

os Alamos

NATIONAL LABORATORY

Per the LANL Engineering Standards Manual (Chapter 3, Section G20), hydrologic analysis for design of drainage features with in the LANL boundaries should use the rational method to computer peak flows from small drainage areas (<5 acres). However, the rational method was not used in this hydrologic analysis because of two reasons: (1.) the drainage area for the Sandia Canyon Wetland is larger than 5 acres and (2.) the use of real LANL precipitation data to generate the hydrograph was deemed more accurate for the analyses.

4.0 Open Items

There are no open items for hydrology.

5.0 Assumptions

- The drainage areas and flow paths were estimated using LANL topographic contour data.
- Assumed the most conservative (highest runoff producing) storm event from LANL rain gage TA-53 as the storm distribution for the HEC-HMS model.
- Assumed the most conservative (highest runoff producing) storm event from LANL rain gage TA-6 as the precipitation amount for the HEC-HMS model.

6.0 Limitations

Due to the uncertain nature of hydrology, all hydrologic analyses are inherent to a certain amount of error. Therefore, the calculations performed as part of the Sandia Canyon Wetland anlysis leaned towards the conservative (highest runoff producing) side when at all possible.

7.0 Calculation Inputs

HEC-HMS inputs are attached to this form.

8.0 Computer Hardware and Software

U.S. Army Corps of Engineers HEC-HMS software, Version 3.3

9.0 Summary and Conclusions

Preliminary hydrologic output is attached to this form.

10.0 References

HEC website: http://www.hec.usace.army.mil/software/hec-hms/

United States Department of Agriculture, Technical Release 55 - Urban Hydrology for Small Watersheds, June 1998.

- 11.0 Calculation
 - Calculation 1: HEC-HMS model output (spreadsheet format)
 - Appendix Supporting Information
 - o Drainage Area Map

- o HEC-HMS model input (spreadsheet format)
- o Applicable TR-55 Equations
- o LANL Rainfall data
- o Rainfall Distribution

Sandia Canyon Wetlands Hydrologic Data 8/24/2011

HEC-HMS Input

	Soil Type	Descpt.	Soil Group	Cover	CN
DA1	NA	Impervious	NA	asphauit/rock	98
DA2	162	Hackroy-Nyjack	D	grass cover	86
DA2	NA	Impervious	NA	asphault/rock	98

	Area (ft ²)	Area (mi ²)
DA1	6038460	0.2166
DA2	9313880	0.3341

P. Cal		27 North	⁵ She	¹¹ Storm Drain Flow						
11122	⁶ n	⁷ L (ft)	⁸ P2 (in)	⁹ S (ft/ft)	¹⁰ Tt (hr)	Tt (min)	¹² L (ft)	¹³ elev. (ft)	¹⁴ S (ft/ft)	¹⁵ v (ft/s)
DA1	0.011	300	1.39	0.050	0.051	3.07	3133	na	0.0125	2.5
DA2	0.011	300	1.39	0.050	0.051	3.07	3133	na	0.0125	2.5

Assumptions:

- 1.) CN generated based on land use and soil types within the drainage areas.
- 2.) S = (1000/CN) 10
- 3.) la = 0.2 * S
- 4.) Drainage areas are mostly impervious (paved and/or gravel) landscape.
- 5.) Sheet flow travel time determined using TR-55 Sheet flow procedure
- 6.) Manning's n value for impervious area; n = 0.011 per TR-55, Table 3-1
- 7.) L = sheet flow travel length
- 8.) P2 = 2-year, 24-hour rainfall
- 9.) s = slope of hydraulic grade
- 10.) Tt = sheet flow travel time (TR-55 equation 3-3)
- 11.) Estimated Velocity of Storm Water in Storm Drain System
- 12.) L = shallow concentrated flow length
- 13.) elev = elevation drop along flow lenth

Sandia Canyon Wetlands Hydrologic Data 8/24/2011

HEC-HMS Output

Storm	Basin	Peak (cfs)
100-yr, 2-hr	Stilling Basin	436.6
100-yr, 2-hr	Stabilization Structures	609.9
50-yr, 2-hr	Stilling Basin	398.02
50-yr, 2-hr	Stabilization Structures	555.7
25-yr, 2-hr	Stilling Basin	357.3
25-yr, 2-hr	Stabilization Structures	498.4
10-yr, 2-hr	Stilling Basin	303.7
10-yr, 2-hr	Stabilization Structures	422.9

Sandia Canyon Wetlands Hydrologic Data 8/24/2011

LANL Rainfall Depths

TA-6 (2-hour)	
EV1 Precipi	tation Statistics
Recurrence	Precipitation
2.00	0.93
5.00	1.23
10.00	1.42
25.00	1.67
50.00	1.86
100.00	2.04

TA-53	(2-hour)	
-		-

EV1 Precipitation Statistics								
Recurrence	Precipitation							
2.00	0.73							
5.00	1.01							
10.00	1.20							
25.00	1.43							
50.00	1.60							
100.00	1.77							

TA-6 (24-hour)

EV1 Precipitation Statistics									
Recurrence	Precipitation								
2.00	1.39								
5.00	1.84								
10.00	2.13								
25.00	2.50								
50.00	2.78								
100.00	3.05								

TA-53 (24-hour)

EV1 Precipitation Statistics									
Recurrence	Precipitation								
2.00	1.20								
5.00	1.56								
10.00	1.80								
25.00	2.10								
50.00	2.32								
100.00	2.54								

2-hour Distribution

								100-year	100-year Storm		
Month	Day	Year	Hour	Minute	Prop 15 min (in)	Event Time	Distribution	Cum. Prcp (in)	Inc. Prcp (in)		
日本の	C ST SEGM	SCHE W	1000		20.25	0	0	0	0		
9	20	2007	8	45	0.23	15	0.167883212	0.342481752	0.34248175		
9	20	2007	9	0	0.3	30	0.386861314	0.78919708	0.44671533		
9	20	2007	9	15	0.02	45	0.401459854	0.818978102	0.02978102		
9	20	2007	9	30	0.82	60	1	2.04	1.2210219		
9	20	2007	9	45	0	75	1 1	2.04	0		
9	20	2007	10	0	0	90	1	2.04	0		
9	20	2007	10	15	0	105	59.971 B	2.04	0		
9	20	2007	10	30	0	120	1 1 1	2.04	0		

and the main of the state

Technical Release 55 Urban Hydrology for Small Watersheds

Sheet flow

Sheet flow is flow over plane surfaces. It usually occurs in the headwater of streams. With sheet flow, the friction value (Manning's n) is an effective roughness coefficient that includes the effect of raindrop impact; drag over the plane surface; obstacles such as litter, crop ridges, and rocks; and erosion and transportation of sediment. These n values are for very shallow flow depths of about 0.1 foot or so. Table 3-1 gives Manning's n values for sheet flow for various surface conditions.

Table 3-1	Roughness coefficients (Manning's n) for sheet flow						
Surf	n V						
Smooth surf	aces (concrete, asphalt,						

gravel, or bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils:	
Residue cover ≤20%	0.06
Residue cover >20%	0.17
Grass:	
Short grass prairie	0.15
Dense grasses 2/	0.24
Bermudagrass .	0.41
Range (natural)	0.13
Woods: W	
Light underbrush	0.40
Dense underbrush	0.80

¹ The n values are a composite of information compiled by Engman (1986).

² Includes species such as weeping lovegrass, bluegrass, buffalo grass, blue grama grass, and native grass mixtures.

³ When selecting n , consider cover to a height of about 0.1 ft. This is the only part of the plant cover that will obstruct sheet flow.

For sheet flow of less than 300 feet, use Manning's kinematic solution (Overtop and Meadows 1976) to compute T_t :

$$T_{t} = \frac{0.007(nL)^{0.8}}{(P_{2})^{0.5} s^{0.4}}$$
 [eq. 3-3]

where:

$$T_t = travel time (hr)$$

- n = Manning's roughness coefficient (table 3-1)
- L = flow length (ft)
- $P_2 = 2$ -year, 24-hour rainfall (in)
 - s = slope of hydraulic grade line
 (land slope, ft/ft)

This simplified form of the Manning's kinematic solution is based on the following: (1) shallow steady uniform flow, (2) constant intensity of rainfall excess (that part of a rain available for runoff), (3) rainfall duration of 24 hours, and (4) minor effect of infiltration on travel time. Rainfall depth can be obtained from appendix B.

Shallow concentrated flow

After a maximum of 300 feet, sheet flow usually becomes shallow concentrated flow. The average velocity for this flow can be determined from figure 3-1, in which average velocity is a function of watercourse slope and type of channel. For slopes less than 0.005 ft/ft, use equations given in appendix F for figure 3-1. Tillage can affect the direction of shallow concentrated flow. Flow may not always be directly down the watershed slope if tillage runs across the slope.

After determining average velocity in figure 3-1, use equation 3-1 to estimate travel time for the shallow concentrated flow segment.

Open channels

Open channels are assumed to begin where surveyed cross section information has been obtained, where channels are visible on aerial photographs, or where blue lines (indicating streams) appear on United States Geological Survey (USGS) quadrangle sheets. Manning's equation or water surface profile information can be used to estimate average flow velocity. Average flow velocity is usually determined for bankfull elevation. Time of Concentration and Travel Time

Technical Release 55 Urban Hydrology for Small Watersheds

Average velocity (ft/sec)

(210-VI-TR-55, Second Ed., June 1986)

Appendix B

Sandia Canyon Wetland Hydraulics

ERID-240019

BUS DAP 8 20 13 Calo No.: CINLC- CODS/4 JAO JAI 13 Rep 1 of 11 Cale Tribs Caralle Westund W Par Car S.S. Contraction 12 DP/DOP/DOFISON Not-P 1967 ort D Not Stands in Bire 6214.1 ASC 1 2007 200 17.0 \mathcal{X} 1.10 Am C. 21 Bounty Chandletters (Jackson) 2. The west (Warney BUL marrie Commentation (Program find UN Iliam A. Turney 112765; NOED; frilling & Surny 0/25/13 ESIC CONTRACTOR CARL J. MDONALD, BRONN MO CALONELL, 651 VANT ALL BOOM AND GRONCH CS Dan 3 8.2 Contra Authority August St Olanto, Z Number, Org. GAPY BLANDT, 098713 ES-UI 3/14/3 Press of the second s The state of the independent review also includes the scope of calculation checking as described in Section 3.0 of the instructions.

AP341 COS PM01, R2 Star Sandle Wetherd Anachiment 1

Page 1 of 9 Pages 3 - 9 Instructions only

Conduct of Engineering Calculations **Calculation** Cover Sheet Cate No .: CALC-0005K Page 2 of 2 Celo Title: Sandia Wetland Hydraulics Calculation Cover Sheel 8.1 Proparer: (Name, Z Number, Organization, Signature, Date) James A. Sindil II , Japon & Caldwell A-G. Mail I 3/8 Jaoi 2 6.2 Subcontractor Approver. (Name, Z Number (II applicable), Organization, Signature, Date) 2129/13 NA 6.3 Responsible Manager: (Name, Z Number, Organization, Signature, Date) MAN Mar Corebur 112508 ET. 22 Alaly 3.21-13 8.3 Description of Change(s) 69 nation Rov. 10112 mhan aton Rendation - Offe stell 3 5 0'. CTT 10 3213

AP-341-605-FM01, R2 Site: Sandia Wetland Attachment 1 Page 2 of 9 Pages 3 – 9 instructions only

TABLE OF CONTENTS

No.	Title sports and	Page No
	A REAL AND A	
4.Hote	the state of the state of the second s	
1.0	Purpose	2
	A SPEAR STREAM	The state
2.0	Methodology	2
3.0	Acceptance Criteria	2.
1.52		- A.A.
i.0	Open Items	2
i.0	Assumptions	2
a si	Contraction of the second s	
6.0	Limitations	2
		10-19
.0	Calculation Inputs	2
.0	Computer Hardware and Software	3
410		
.0	Summary and Conclusions	3
	And the second based as the component of the second s	
0.0	References	3
	The second second states and the second s	

1.0 Purpose

Calculate hydraulic profile and flow characteristics including velocity and shear for flow in the channel through the wetland area with proposed stilling basin and drop structures.

2.0 Methodology

The hydraulic profile is based on a step-backwater calculation analysis using the HEC-RAS software. The channel configuration and stream channel sections at hydraulic structures are as shown on the Drawings. Calculations include both pre- and post-construction runs to compare water surface elevations, flow velocities and channel shear.

3.0 Acceptance Criteria

The criteria used for evaluating the effectiveness of the design are outlined in Section 2.5 of the Design memorandum, and were developed by the Design Team and LANL staff to meet the goal of reducing sediment transport to the lower portion of Sandia Canyon from the wetland area.

4.0 Open Items

Final design development of the concepts presented in the Design Memorandum still need to be completed, with complete details and final hydraulic analysis to confirm the performance of the system under design flow conditions.

5.0 Assumptions

Tailwater water surface elevation is the primary variable that cannot be measured for design flow conditions, or is not empirically modeled. Tailwater is assumed based on nornal water surface elevation for the existing downstream channel section at design flow.

6.0 Limitations

The hydraulics analysis uses the 25-year design storm. Performance of the drop structures and plunge pool for higher flow rates (longer return periods) is not predicted.

The analysis is a steady state analysis based on the design configuration. The analysis is based on static flow conditions over a period of time, and includes conservative assumptions to minimize under-design. In the field, sediment transport and potentially unstable boundary layer conditions create flow patterns. These conditions may require a much more complex dynamic analysis to increase the accuracy of the model results, but may only result in a minor change in system performance.

7.0 Calculation inputs

HEC-RAS (Hydraulic profile) - Hydraulic analysis inputs are the channel cross-section, channel slope, Manning's n-value, design discharge and starting water surface elevation at the downstream end where the improvements transition back into the existing channel. Flows are based on the results of the hydrologic analysis of the drainage basin. The design storm is the 25-year, 2-hour storm.

Design Note No. 6 (Plunge pool) – Inputs include the characteristics and configuration of the discharge pipe upstream of the plunge pool, flow discharge, information on the riprap and bedding used, and the side and end slopes of the pool. Again, the design storm is the 25-year, 2-hour storm.

8.0 Computer Hardware and Software

U.S. Army Corps of Engineers HEC-HMS software

Natural Resources Conservation Service, Engineering Division "Riprap Lined Plunge Pool for Cantilever Outlet" - Design Note No. 6 (2nd Edition), Jan. 23, 1986 Spreadsheet developed by D. Hurtz, Midwest NTC, 1/90, modified by M. Dreischmeier, Eau Claire TC, Wis., 3/98 and 5/2005

9.0 Summary and Conclusions

The calculations show that the grade control structure and stilling basin will be stable and reduce energy and erosive forces locally.

10.0 References

HEC website: http://www.hec.usace.army.mil/software/hec-ras.

11.0 Calculations

- Calculation 1 Hydraulic profile for study channel reach (HEC-RAS)
- Calculation 2 Plunge pool structure sizing NRCS Design Note No. 6

Contract of	Proposed Conditions Existing							1. 31 4.5							
River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Vei Chul	Shear Chan	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Vel Chni	Shear Chan	Change in	Change in
	199 <u>990</u>	(cfs)	(11)	(11)	(ft/s)	(lb/sq ft)	TOTAL PROPERTY.	N BUN	(cfs)	(11)	(ft)	(ft/s)	(ib/sq ft)	Velocity	Shear
459.85	25-VT	498.4	7210.79	7214.55	6.16	1.77	459.85	25-47	498.4	7210.79	7214.54	6.19	1.79	-0.03	-0.02
459.85	200cfs	200	7210.79	7213.57	5.08	1.34	459.85	200cfs	200	7210.79	7213.56	5.13	1.37	-0.05	-0.03
	A STATE	- 1999 C	1000	Contractory	Star Area	1.85.70	de Norre	Carlor and a second	1	Section 1	12.2.5	Dan	the section is	SA CASI	Contraction and
417.48	25-vr	498.4	7210.37	7213.52	9.19	4.48	417.48	25-VT	498.4	7210.37	7213.55	9.04	4.33	0.15	0.15
417.48	200cfs	200	7210.37	7212.88	6.37	2.37	417.48	200cfs	200	7210.37	7212.92	6.15	2.2	0.22	0.17
			ALC: NOT SHOULD								Contraction of the		1.1.1.1.1.1.1	Contraction of	11-11-2
360.49	25-17	498.4	7210.67	7212.9	4.48	1.15	360.49	25-47	498.4	7210.67	7212.85	4.65	1.25	-0.17	-0.1
360 49	200cfs	200	7210.67	7712.19	3 10	0.78	360.49	200rfs	200	7210.67	7212.13	3.63	0.9	-0.24	-0.12
	abberry		1220.01	Talles .	3.55						1 Sector		Mice Can Lag		
349.06*	25-ar	498.4	7210 82	7212.75	4.57	1.21	-		10000	-	ALMONT AND	1000 mm	-		Contraction of the
349.06*	200efs	200	7210.82	7712.02	3.52	0.85	-	_	-	-	-		The states	Kently and	ALC: MICS 44
010.00			10.000					1.51.51		Sec. 200	1	100000	The second		North Contract
331.97	25-wr	498.4	7710.69	7212.56	4.26	1.05	331.97	25-11	498.4	7210.08	7212.36	5.12	1.54	-0.85	-0.48
321 07	200-6	200	7210.00	7211 05	2 92	0.55	371 07	200-6	200	7210.00	7211 7	3.63	0.9	-0.0	-0.35
331.31	auris	200	7210.00	1411.05	2.03	0.33	331.37	200015	200	1210.00	1411.1	3.03	0.5		
211 64	25.00	409 A	7210 54	7212 21	5.04	1.49	211 64	25.47	409.4	7200 12	7711 66	7 59	3.47	.254	1 00
311.64	200-6	430.4	7210.54	7711 64	3.04	0.9	211.64	200-6	200	7209.12	7211 12	5.57	2.08	-2.74	-1.35
311.04	200015	200	7220.34	1211.04	3/44		311.04	20003	200	1203.12	7411.13	3.36	2.00	-21	.1.00
209 59	75.00	409 A	7210 44	7212 18	165	1 77	208 58	75.00	A 99 A	7704 87	7250 21	61	1 82	-1.45	.055
290.30	2004	300	7210.44	7214 83	2 27	0.72	200.00	200-6	200	7204.07	7200.64	4.42	112	1.21	04
230.30	200015	200	7210,44	141132	3.44	0.72	230.30	200015		1204.01	1200.3	4,43	1.16	-1.41	-0.4
205.00	35.00	400 4	7110 34	7213.04	4.40	1 10	705 00	75.47	409 A	7204 52	7200 77	9.04	4.41		277
205.30	23-91	430.4	7210.34	7211.04	2.00	1.15	203.30	200-6	9,20,4	7204.32	7203.27	7 57	3.57	-4.49	-3.24
285.38	200015	200	1210.34	1211.39	3.09	0.00	203.30	20003	200	1204.32	1201.00	1.31	3.32	-4.40	-2.00
179 63	25.00	400 4	7010 35	7711 01	2.09	0.05	173 67	78.47	409 A	7204 22	7200 67	2.62	0.67	0.75	0.78
273.62	12-97	498.4	7210.25	7211.32	3.30	0.55	172.62	2004	430.4	7204.32	7203.0/	3.05	0.87	0.35	0.26
2/3.02	ZOUCIS	200	1210.25	1211.21	2./3	0.52	2/3.02	20005	200	1204.32	1201.04	3.30	0.81	-0.85	-0.29
350.33	36	400.4	7710 14	7744 76	1.05	0.00	300.33	75.00	100 4	120212	7300 67	2.00	0.01	1.00	0.50
230.33	23-11	436.4	7210.14	7212/0	4.00	0.55	230.33	2004	430.4	7203.13	7203.07	1.30	0.41	0.55	0.36
238.33	ZUUCIS	200	7210.14	///11.14	2.70	0.35	230.35	200015	200	1203.13	1201.00	Likk	0.20	0.30	0.27
Crest Of IL	nat erup sur	ucure	7740.05		FOT	7.44			-	-					1000
2415	25-41	A.869	7210.01	7211.18	3.03	2.14						-			100000000000000000000000000000000000000
241.5	ZUUCIS	200	7210.01	/210.63	4.45	1.04			-		-				
		-	-		10	07									The state
240.5	2547	498.4	7209.01	/211.38	3.02	<u>u/</u>		-		-		-			
240.5	200cts	200	7209.01	7210.45	2.55	0.41			-			-	-		
		-	-	-	1 10	-	-	-	100.4	-	3300 07	1 3 74	0.74	0.07	0.75
238.13	25-41	498.4	7208.99	7211.30	3.01	0.69	238.13	25-47	498.4	7203.39	7209.65	2.14	0.34	0.8/	0.35
238.13	ZOUCTS	200	7208.99	7210.45	1.49	0.39	238.13	200015	200	7203.39	1201.63	2.02	0.23	0.4/	0.16
-	-	1 100.4		1 7740.04	1	105	317.64	70.00	400.4	7707 06	7200 45	4.16	0.0	1 77	1.15
217.54	25-47	498.4	7208.84	7210.94	5.95	1.95	21/.34	23-41	490.4	7203.00	7209.45	4.10	8.0	1.11	1.15
217.54	ZUOCTS	200	7208.84	/210.19	3.94	0.99	21/.54	200015	200	7203.06	1201.11	2.94	0.47		0.32
400.35		-	7900 68	7940.50	6.02	1 105	1 400.00	~ ~	100.4	7707 10	7200 4	0.2	4.74	1.30	1.70
189.35	D-VT	498.4	7208.62	/210.59	0.02	2.05	189.30	D-TT 2000th	438.4	7203.28	7208.1	9.3	4.34	3.48	-2.29
189.36	ZUCCTS	200	7208.62	7209.9	4.01	105	109.30	20003	200	7203.28	1201.2	3.33	1.59	-1.32	-0.34
Crest of s	econd drop	structure	-	-		-				-		1			all
173.05	25-17	498.4	7208.5	7209.75	8.34	4.50			-				-		
173.05	ZUDCIS	200	1208.5	/209.19	0.25	3.12									
172.00	-	-	-	1 3300 00	1.00					100	1	1.000		11/10	-
1/2.05	25-41	458.4	7207.5	7209.82	5.39	1.00	+			-			-	-	1
172.05	ZJOcts	200	7207.5	1208.94	3.84	0.91	+						-		
		-	-	-	1		107.00		1000	7300 61	-	7.04	7.07		1.00
167.31	25-97	498.4	7207.46	7209.79	5.16	1.42	16/.31	25-41	498.4	1202.84	1207.96	1.91	3.07	-2./3	-1.00
167.31	Zuucis	200	1201.46	1208.9	11	0.55	167.31	ZUUCIS	200	1202.84	1200.55	0.79	LIL	-3.09	-1.80
		-	-	-	1	1 23	100.00	-	-	1 779 67	1 1000 000	1			
147.15	25-yr	498.4	/207.31	7209.45	5.56	1.7	147.15	25-yr	498.4	1202.62	1207.29	8.22	3.53	-2.66	-1.83
147.15	ZOOCIS	200	7207.31	7208.64	3.83	0.94	1 147.15	20005	200	1202.62	7205.28	5.45	1.8	-1.62	-0.86

an and a state of	E Alanderic	Pri	oposed Con	ditions	Pilling and	C.S.CARDERI	NERWARDS	(Viding Case)	N. Salara	Existing		april hand been	Gid The state	Stand States	
River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Vei Chni	Shear Chan	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Vel Chnl	Shear Chan	Change in	Change in
40.413	Fred State	(cfs)	(11)	(ft)	(R/s)	(lb/sq ft)	1	$p^{\mu}=\frac{1}{2}\left(p^{\mu}_{\mu}\right)^{\mu}$	(cfs)	(ft)	(ft)	(R/x)	(lb/sq ft)	Velocity	Shear
126.95	75.wr	ASSA	7207 16	7209.09	5.83	1.93	126.95	75.47	498.4	7203.4	7207 35	5.97	175	90.0-	0.17
126.95	200cfs	200	7207 16	7208 35	4	1.07	126.95	200cfs	200	7203.4	7206.15	4.18	1.04	-0.18	0.03
all of drop			10.0	100000	100		Min Levin			Second Second	1	1100	Contraction	The sector of C	
115.38*	25-47	498.4	7207.07	7208.5	7.69	3.72		Del Cara	-	100	1000	-	-	The second second	In same state
115.38*	200cfs	200	7207.07	7207.86	5.69	2.47	第三日の		2-12		388 - 104	100-00			-Batteria Tari
106.63		409.4	1 7206 10	7707 74	7.70		100 63	76.00	400.4	7202 67	7207.24	F 30	4.40	The she was	2.22
106.62	200cfs	200	7206.19	7207.06	5.77	2,46	106.62	200cfs	200	7202.57	7205.94	4.16	1.48	1.61	1.4
1.11111		The second	100000			Barris and		CARGE ST	- And Role of	201 200	現在に行う		THE REAL		Respondence.
86.15	25-yr	498.4	7204.15	7206.78	8.1	3.42	86.15	25-yr	498.4	7202.72	7206.79	6.82	2.29	1.28	1.13
86.15	200cfs	200	7204.15	7205.71	6.43	2.58	86.15	200cfs	200	7202.72	7205.59	4.95	1.4	1.48	1.18
All of pool	25.00	100.4	-		107	2.40			1000 N 1000		RAUSE STR	Carl Charles	-	Seattle Street	LAS LANDER THE
80.3855*	200cfs	498.4	7203.57	7205.64	5.22	1.56	102.2		-	07074 200				100000000	Lange and the second
		81.0 B	11 Garden av	肥いたでの消	Salar S.	100	Decision and	and the second		Constantial State	- BURGER	Ren Station			and the second
76.38	25-yr	498.4	7203.57	7206.47	8.08	3.33	200 - 100 Vice	1461-00	-	1981 - 1983			141 - 1995 -	ALC: NO. 1 ST.	and the second
76.38	200cfs	200	7203.57	7205.26	6.69	2.77	-	-	100 - 000 Viet		-		250-022		
75.88	25-yr	498.4	7202.07	7206.74	5.45	1.35	0.01=104	194		-	-		-	S. Market	
75.88	200cfs	200	7202.07	7205.45	3.52	0.64		8月——18	199-20		115-28	10.2	With South	and the second second	्लाहम् (तन्त्र)
ULE CER		19.31 - 19.5	0.1000		1000	a statistical		1.1.1	1	1. 3605	A STATE		18/10/05/3		
70.2	25-yr	498.4	7199.01	7206.86	3.78	0.61	-	-		(100)(100)(0)(100)	1045-00			CREATER CONTRACTOR	- Strain Store
10.2	200013	200	1133.41	1205.33	2.00		12:70:2019	12 10 16	a Malaba	and the second	R. Martin		学にというなない	Conclusion (1993)	Consideration of the
65.53	25-yr	498.4	7199.01	7206.89	3.61	0.56	65.53	25-91	498.4	7201.68	7206.77	5.65	1.53	-2.04	-0.97
65.53	200cfs	200	7199.01	7205.53	1.98	0.19	65.53	200cfs	200	7201.68	7205.43	4.53	1.14	-2.55	-0.95
50.38	25-W	498.4	7199.01	7206.86	3.64	0.58			-			-			
50.38	200cfs	200	7199.01	7205.52	1.99	0.19	1000	12-19	1. 18 Mar 12		1000-000	232218	500		
	1.246	of the second	15.14	No. MARTIN	2 1 1 5 - 5 K	1.	是实现力的	/ 22 이 공	· 확인은 이번화	a de la composition de la comp					「「営業法理」」
46.38	25-yr	498.4	7201.01	7206.74	4,47	0.95	1400-10	10 - A	10 30	02(-	- 20	Har Street In	California (California)
46.38	200cfs	200	7201.01	7205.4	3.31	0.6	-	-			-	-		ALL CONTRACTOR	
44.91	25-yr	498.4	7201.02	7206.73	4.54	0.99	44.91	25-yr	498.4	7201.02	7206.73	4.54	0.99	0	0
44.91	200cfs	200	7201.02	7205.38	3.44	0.67	44.91	200cfs	200	7201.02	7205.38	3.44	0.67	0	0
24.30	16	400 4	7300 68	7306 67	4.00	1.12	74.70	75.00	400 4	7200 60	7306 87	4.05	112		-
24.20	200cfs	200	7200.68	7205.26	4.65	0.68	24.28	200cfs	200	7200.68	7205.26	3.5	0.68	0	0
	2000-3		No. of the second	1 1 1 1 1 A. 1 A.	e comboli	Inclusion Page	E MARY PACE	9月10日。2	Call Contraction	A MERICAN	HEAR CHOR	WARE A P		教教派的第二 世	and solder
3.66	25-yr	498.4	7200.73	7206.04	7.53	2.69	3.66	25-yr	498.4	7200.73	7206.04	7.53	2.69	0	0
3.66	200cfs	200	7200.73	7204.89	5.34	1.53	3.66	200cfs	200	7200.73	7204.89	5.34	1.53	0	0
-17.99	25-WT	498.4	7200.29	7205.7	7.78	3.01	.17.99	25-vr	498.4	7200.29	7205.7	7.78	3.01	0	0
-17.99	200cfs	200	7200.29	7204.41	6.39	2.34	-17.99	200cfs	200	7200.29	7204.41	6.39	2.34	Ō	0
					a serent					1000	1.1.1.1.1.1.1	S. S. Carlos		a straight st	Constant Provide
-49.07	25-yr	498.4	7200.11	7204.88	9.36	4.27	-49.07	25-yr	498.4	7200.11	7204.88	9.36	4.27	0	0
-49.07	ZOOCTS	200	7200.11	7203.85	6.62	2.34	-49.07	ZOOCIS	200	7200.11	7203.85	6.62	2.34	0	0
-98.93	25-yr	498.4	7199.22	7204.17	7.98	3.01	-98.93	25-yr	498.4	7199.22	7204.17	7.98	3.01	0	0
-98.93	200cfs	200	7199.22	7202.77	7.39	2.91	-98.93	200cfs	200	7199.22	7202.77	7.39	2.91	0	0

JOB: DESIGNER: CHECKER:	Sandia Wetland Plunge Pool Calculation Carl McDonald Jim O'Neill	Date: Date:	*****	15 M 10	
INPUT DATA:				A. Level	
Conduit Diamete		D=	7.00	ft	
Conduit Dischar	je:	Q =	357.30	Cfs	
Conduit Slope at	Outlet:	S =	0.09	ft/ft	
Conduit Outlet In	ivert Elevation:	El, CO =	7246.30	ft	
Tailwater Elevati	on:	EI, TW =	7244.28	ft	
Outlet Channel I	nvert Elevation:	EI, CH =	7241.50	ft	
Water Density:		RHO =	1.00		-
Bed/Riprap Parti	de Density: (Default 2.64)	RHOS =	2.64		
D, 50 Riprap Size	6 :	RS =	1.50	ft	
Riprap Thickness	s: (2.5*D, 50 recommended)	RT =	3.75	ft	
Bedding Thickne	ss: (6 inch min. rec.) (Enter 0 for geotextile)	BT =	1.00	ft	
Side Slope Ratio		Zw =	2.00	ft/ft	
Upstream End S	lope Ratio:	Ziu =	2.00	ft/ft	
Downstream End	I Slope Ratio:	Zid =	2.00	ft/ft	
Combined End S	slope Ratio:	Z1 =	2.00	ft/ft	
OUTPUTPOO	L LOCATION AND DIMENSIONS:	mark 1 - 1			
Vert. Dist. from T	ailwater to Conduit invert:	Zp =	2.02	ft	
Submergence Cl	neck: (If Zp < 0 , Use Zp = 0)	Use Zp =	2.02	ft	
Beaching Check: **Beaching Co	[Q/(gD^5)^0.5 <= (1.0+25*D,50/D)] ntrolled**	1.	О.К.		
Distance from Co	onduit Exit to C/L Pool:	Xm =	10.87	ft	
Pool depth at C/I	Below Conduit Invert:	Zp+0.8Zm =	10.16	ft	
Pool Bottom Elev	r Allen and a state of the stat	EI,PB =	7236.14	ft	
Pool Bottom Len	gth:	2Lr2 =	6.76	ft	
Pool Bottom Wid	th:	2Wr2 =	6.40	ft	
Upstream Pool L	ength at Tailwater Elev.:	Lru =	19.66	ft	
Downstream Poo	I Length at Tailwater Elev.:	Lrd =	19.66	ft	
Pool Width at Tai	iwater Elev.:	2Wr =	38.95	ft	
Check Side Slope **Side Slope R	e Ratio: (Wr>=We) atio Zw O.K.**		0.K.		
Check Min. End **End Slope Ra	Slope Ratio: (Lru & Lrd >= Le) atios O.K.**		0.K.		
Check Upstream **End Slope Ra	Length: (Lru >= Xm) atio Ziu O.K.**		O.K .		
Pool Bottom Elev	. at Bottom of Riprap:	Ei, BR =	7232.39	ft	
Pool Bottom Elev	at Bottom of Bedding:	EI, BB =	7231.39	ft	
OUTPUTVOLU	JMES BELOW WATER SURFACE ELEVATIO	DN:			
aurface of bodd	ing):	V.pbs =	672.3	cu vd	
SULIDE UL DEUU					
Volume of Rock	Riprap:	V.rs =	353.3	cu vd	

RIPRAP LINED PLUNGE POOL FOR CANTILEVER OUTLET (Version 5/2005) (Reference Design Note No. 6 (Second Edition), Jan. 23, 1986

Spreadsheet developed by D. Hurtz, Midwest NTC, 1/90 Spreadsheet modified by M. Dreischmeier, Eau Claire TC, Wis., 3/98 and 5/2005 Design Note No. 6 (Second Edition), Jan. 23, 1986 "Riprap Lined Plunge Pool for Cantilever Outlet" Natural Resources Conservation Service Engineering Division

Appendix C

Sandia Canyon Wetland Grade-Control Structure As-Built Drawings

G-0001 C-0001 C-1000	TITLE SHEET GENERAL NOTES, LEGEND, ABBREVIA OVERALL PLAN VIEW
C-1001	PLANTING AND STABILIZATION PLAN
C-5000	DETAIL GRADE CONTROL STRUCTURE
C-5001	DETAIL GRADE CONTROL STRUCTURE
C-5002 C-5003	DETAIL GRADE CONTROL STRUCTURE
0-3003	DETAIL CASCADE FOOL

		5 🔶	4		3
	LEGEN	D			ABBREVIATIO
		NORTH ORIENTATION SYM	IBOL	Qp CFS NAD NGVD CMP	 PEAK FLOW CUBIC FEET PER NORTH AMERICAN NATIONAL GEODETI CORRUGATED META
10' 5' 1"=10'-0'	0 5' 10'	GRAPHIC SCALE		OZ/SY	- NEW MEXICO DEPA - OUNCE PER SQUA
	1 C-5000	DETAIL TAG			
	A C-5001	SECTION TAG			
	×	SECTION END LINE			
	2	KEYED NOTE			
	A0307	SURVEY CONTROL POINT			
EXISTING TOPOGR	APHY/GRADE		PROPOSED BACKFILL	TO MEET EXISTIN	G GRADE
EXISTING STREAME	BED (AS SURVEYED)		PROPOSED CONCRET	E	
EXISTING WETLANE	DS (AS SURVEYED)				
EXISTING ROCK/R	IPRAP (AS SURVEYEI))			
EXISTING TREES ((AS SURVEYED)				
PROPOSED AGGRE	EGATE				
PROPOSED TOPOG	GRAPHY/GRADE				
PROPOSED WETLA	ND RESTORATION				

PROPOSED STREAM/CHANNEL RESTORATION AREA

1-4.0 12/10

	2		1
NC			
21/12			
SECOND			
TIC VERTICAL DATUM			
TAL PIPE PARTMENT OF TRANSPORTATION	4		
ARE YARD			
		508 FON 00012	
	$\frac{1}{1} = \frac{1}{1} = \frac{1}{1}$		
	NO DATE CLASS ADC	DESCRIPTION	
	REV ADO	DESCRIPTION	
	D	rown - Coldwa	u l
	Ы	rownand Caldwe	
			DRAWN
	SAND	IA CANYON	E MARTIN
	SIRLAM GRADE	CONTROL AS BUIL	DESIGN
			CHECKED J O'NEILL
	GENERAL NOTES,	LEGEND, ABBREVIATIONS	J O'NEILL
	BLDG NA	т	-00 DATE 17-17.2012
	SUBMITTED	APPROVED FOR R	ELEASE
	JAMES O'NEILL	JOHN P. MCCANN	BNTE
	A	/	C-0001
SA. O'NE	al oc Alamor		0-0001
Shull # E Source -	NATIONAL LABORATORY	PO Box 1663 Y Los Alamos, New Mexico 87545	2 OF 8
6/2013 B	CLASSIFICATION Unclassified	REVIEWER William Hard	lesty DATE 12/17/2013
THESS (ONAL ENGINE		DRAWING NO	C 1 REV
VIVAL	102698	C-560	

_		
	2	1
	KEYED NOTES 1 SURVEYED STREAMBED LI	MITS PRIOR TO CONSTRUCTION
	2 SURVEYED WETLAND LIMIT	S PRIOR TO CONSTRUCTION
	3 GIS DELINEATION OF WET (PROVIDED BY LANL)	LAND LIMITS PRIOR TO CONSTRUCTION
	4 STREAM GAGE E-123	
	5 GRADE CONTROL STRUCT	URE GC-1 (STA. 2+41.5)
	6 GRADE CONTROL STRUCT	URE GC-2 (STA. 1+73.1)
	7 GRADE CONTROL STRUCT	URE GC-3 (STA. 1+15.4)

1	ECN	# <u>CA</u>	P-1	026	98-	-ECN-	-000	12					
			CLASS										
	NO	DATE	REV	ADC		DESCR	IPTION		DWN	DES	CHKD	SUB	APP
				Br	'ON		Cal	dwell					
			SA	NDI	A C	ANYO	N		DF	RAWN			
	STREAM GRADE CONTROL AS BUILTS							DE	SIGN	EN	ARTI	N	
											JO	NEIL	L
			0	VERAL	LPL	AN VIEW			CHI	ECKED		NEI	
	BLD	G NA						TA-00	D	ATE	12-1	17-20	13
	SUBM	ITTED					APPROVE	D FOR RELEASE	R. N	-	-		
	JAMES	S O'NEILL					JOHN P.	MCCANN	Me	2			
'NE	1	A.						SHEE	./ (2-1	100	00	
56	•	LOS A		NOS	P0 Los	Box 1663 Alamos, N	ew Mexic	o 87545	3	O	-	8	
	CLASS	SIFICATION Un	classi	fied		REVIEWER	Willia	m Hardesty		DATE	12/17	1201	13
L ENGIT	PROJ		600	0		DRAWING	0	56021				RE	
		TUZ	039	D			U-:	20021				C)

.

NAME	ТҮРЕ	SPACING (O.C.)	ZONE	
HERBA	ACEOUS			
PIKERUSH	PLUG/SEED	2'	1 AND 2	
ANNAGRASS	PLUG/SEED	2'	1 AND 2	
YFLOWER	PLUG/SEED	2'	1 AND 2	
BULRUSH	PLUG/SEED	2'	1 AND 2	
E BULRUSH	PLUG/SEED	2'	1 AND 2	
BULRUSH	PLUG/SEED	2'	1 AND 2	
CATTAIL	PLUG/SEED	2'	1 AND 2	
SEDGE	PLUG/SEED	2'	3	
SEDGE	PLUG/SEED	2'	3	
SEDGE	PLUG/SEED	2'	3	
SEDGE	PLUG/SEED	2'	3	
RUSH	PLUG/SEED	2'	3	
E RUSH	PLUG/SEED	2'	3	
RUSH	PLUG/SEED	2'	3	
E BULRUSH	PLUG/SEED	2'	3	
TREE/	/SHRUB			
	TUBLING	4'	4	
LLOW	TUBLING	4'	4	
VILLOW	LIVE STAKE	4'	4	
WILLOW	LIVE STAKE	4'	4	

PLANTING SCHEDULE

12/18

2 GENERAL NOTES 1. AREA SHALL BE TEMPORARILY SEEDED IMMEDIATELY UPON COMPLETION OF ANY FINAL GRADES TO PREVENT EROSION. 2.EROSION CONTROL MATTING SHALL BE USED IN WET SHALL BE USED IN WETLAND AREA TO CONTROL EROSION UNTIL VEGETATION IS ESTABLISHED. 3.AREAS OUTSIDE OF WETLAND PLANTING AREA NOTED BELOW SHALL BE SEEDED WITH NATIVE GRASSES. KEYED NOTES (1) SURVEYED STREAMBED LIMITS 2 SURVEYED WETLAND LIMITS 3 GIS DELINEATION OF WETLAND LIMITS (PROVIDED BY LANL) 4 WETLAND RESTORATION ZONE 1 (AREA = 4,916 SF). SEE PLANTING SCHEDULE FOR SPACING. 5 WETLAND RESTORATION ZONE 2 (AREA = 3,526 SF). SEE PLANTING SCHEDULE FOR SPACING. 6 WETLAND RESTORATION ZONE 3 (AREA = 2,706 SF). SEE PLANTING SCHEDULE FOR SPACING. 7 WETLAND RESTORATION ZONE 4 (AREA = 4,945 SF). SEE PLANTING SCHEDULE. 8 GRADE CONTROL STRUCTURE GC-1 9 GRADE CONTROL STRUCTURE GC-2 (10) GRADE CONTROL STRUCTURE GC-3 ECN # <u>CAP-102698-ECN-00012</u> CLASS REV ADC DWN DES CHKD SUB APP DATE NO DESCRIPTION **Brown AND Caldwell** DRAWN SANDIA CANYON E MARTIN STREAM GRADE CONTROL AS BUILTS DESIGN J O'NEILL CHECKED PLANTING AND STABILIZATION PLAN I O'NEILI

Mill # /2013	A. O'NE SAN MEXICO 18656 PROFILESSIONAL ENG
	Ontre

	_	J O NEILL	
BLDG NA	TA-00	DATE 12-17-2013	
SUBMITTED	APPROVED FOR RELEASE		
JAMES O'NEILL	JOHN P. MCCANN	ME	
• LOS Alamos NATIONAL LABORATORY PO Box Los Alar	1663 mos, New Mexico 87545	C-1001 4 OF 812/17/2013	L
CLASSIFICATION Unclassified REV	NEWER B BOHN William Hax	Les DATE 2012-07-30	
PROJECT ID DR/	AWING NO	REV	
102698	C-56021	0	

	5	•	4		3
		·			
	4 0"-MIN	20"	4	-8"	
	(TYP. ALL SIDES).	-			
	6				
			_	-12" (DROP ELEV. A	AT ROCK TO
1					(17)
2.0°-MIN MATERIAL			3.5"	6"-MIN. POOL DE	IPTH
					\frown
2" M			\bigwedge		
2 14			Dod	A A	
					1)
				15	14
4'-0"		2'0"	13)	— 4'-0" —	
		A SE	CTION VIEW		
	1 .	C-5001/ NOT	IU SCALE		
23	20"		ONCRETE CAP-4000	PSI 20	
		12"-MIN	1		
MIX OR NATIVE MATERIAL		P V	ARIES PER 22		
		2/7			1
			AD		
(2				
		ENGIN	EERED BACKFILL PE	R	
LOWER INSTALLATI NOT SHO	ON	PREVI	005 SDDR-100019/	RFI 002	
		NON-REINFO	RCED CONCRE	TE CAP	
			TTO SCALE		
		STRUCTUPE			
	GRADE CONTROL STRUCTURE	CREST OF WEIR ELEVATION	DROP ELEVATION	TIE-IN ELEVATION	
	GC-2	7208.5	7207.5	7210.0	1-4.0h
					16,1801

C-56021

	1 ENGINEERED BACKFILL 10.0° MIN. BOTH SIDES OF SHEET PILE. MINIMUM LAYBACK SLOPE 1:1. COMPACT TO 95% OF STANDARD PROCTOR DENSITY PER SPECIFICATIONS.
	2 STEEL SHEET PILE (TYPE PZ-22)
	CREST OF WEIR ELEVATION, CONCRETE CAP - 4,000 PSI (SEE TABLE THIS SHEET). PLACE TOOL JOINTS EVERY 25' ON-CENTER WITH ONE EXPANSION JOINT IN THE CENTER OF EACH WEIR. THE EXPANSION JOINT SHALL BE 1" FILLED WITH 1" FOAM TO ALLOW THE CONCRETE TO EXPAND. FOAM SHALL ADHERE TO ONE SIDE OF THE JOINT AND BE SIMILAR TO FOAMTECH(R) FOAM MADE BY NMW INC. EDGES OF JOINT SHALL HAVE ¾" CHAMFERED EDGED TO REDUCE SPALLING.
	4 SEE SHEET C-5003 FOR DETAIL AT GC-3
	5 #4 LATERAL REBAR ON CORNERS OF CAP (2.0"-MIN. CLEARANCE TO CONCRETE
	6 #4 REBAR DRILLED 18"-0.C. THROUGH PILE AND TIED TO BAR-(6) AND BAR-(8).
	7 #4 REBAR SADDLE TIED TO BAR-(6) AND BAR-(7) @ 18"-0.C.
	8 BOTTOM OF TRENCH
IIN	
	TWO FEET INTO BEDROCK. SHEET PILES SHALL BE PLACED INTO THE TRENCH TO THE ALIGNMENT INDICATED IN THE DRAWINGS, AND THE TRENCH SHALL BE FILLED WITH GRANULAR BENTONITE TO CREATE A WATER TIGHT SEAL WHEN CONSTRUCTION IS COMPLETE. ADEQUATE SHORING SHALL BE USED TO HOLD THE SHEET PILES IN PLACE UNTIL FLOWABLE FILL AND BACKFILL CAN BE PLACED IN MANAGEABLE LIFTS ON OPPOSING SIDES IN ORDER TO LOCK THE SHEETPILES INTO ALIGNMENT.
	10 TOP OF BEDROCK
	11 BEDROCK
	12 TIE-IN CONCRETE CAP (NOT REINFORCED)
	(13) TIE-IN ELEVATION (SEE TABLE THIS SHEET)
	(14) FLOWABLE FILL
	15) NON-REINFORCED CONCRETE
	(16) TOOL JOINTS PER SODR-REI-1 INSTALL EXPANSION JOINT BETWEEN
	REINFORCED CONCRETE AND UNREINFORCED CONCRETE PER SDDR-100019/RFI 002
	(17) END SHEET PILE IS 22" INTO TUFF AND 2" ABOVE BOTTOM OF EXCAVATION
	18 3" MINIMUM ENGINEERED FILL ABOVE SHEET PILE EXTENSIONS COMPACTED TO 95% STD PROCTOR DENSITY
	19 2ND SHEET PILE IS 22" INTO BEDROCK AND 2" ABOVE BOTTOM OF TRENCH
	ECN # <u>CAP-102698-ECN-00012</u>
	NO DATE CLASS ADC DESCRIPTION DWN DES CHKD SUB APP
	Brown AND Caldwell
	SANDIA CANYON DRAWN
	STREAM GRADE CONTROL AS BUILTS DESIGN
	DETAIL GRADE CONTROL STRUCTURE 3
	PLDC NA TA CO DATE (11/7 A. ()
	SUBMITTED APPROVED FOR RELEASE
	JAMES O'NEILL JOHN P. MCCANN SHEET
A. O'NE	C-5002
18656) =	PO Box 1663 NATIONAL LABORATORY PO Box 1663 Los Alamos, New Mexico 87545 7 OF 8
LINE CONTRACT	CLASSIFICATION (nclassifiedREVIEWER William HardestyDATE 12/17/2013PROJECT IDDRAWING NOREV
STONAL EN	102698 C-56021 0

2

KEYED NOTES

4.0' MI

	2 1
	KEYED NOTES
	1 TWO MAN STREAM BOULDERS AT CREST OF CASCADE
	2 12" STREAMBED COBBLES THROUGHOUT CASCADE INTERIOR
	3 PLACE ONE MAN STREAMBED BOULDERS TO FORM CASCADE EDGE
	(4) TWO MAN STREAMBED BOULDERS AT END OF CASCADE
	5 PLACE ONE MAN STREAMBED BOULDERS TO FORM CENTER CHANNEL
	6 PLACE ONE MAN STREAMBED BOULDERS TO LINE EDGE OF POOL
	7 12" STREAMBED COBBLES THROUGHOUT CASCADE POOL (BOTTOM ELEV. = 7199.0 ')
	8 TWO MAN BOULDERS AT CREST OF POOL SILL TO STREAM CHANNEL TIE-IN
	9 GEOSYNTHETIC CLAY LINER (16-0Z/SY NON-WOVEN BOUND)
	10 FILL VOID SPACES WITH SMALL COBBLES AND STREAMBED
	1 EXCAVATED MATERIAL BACKFILLED AS NEEDED AND COMPACTED
	12 EXISTING GRADE
	13 12" STREAMBED COBBLES AND GEOSYNTHETIC CLAY LINER
	14 LARGE EXISTING BOULDER FIELD WORKED INTO EDGE OF
	15 APPROXIMATE AREAS WHERE NMDOT CLASS C RIPRAP WAS
	USED TO REPAIR STORM DAMAGED TZ STREAMBED COBBLES
	FCN # CAP - 102698 - FCN - 00012
	NO DATE CLASS ADC DESCRIPTION DWN DES CHKD SUB APP
	Brown AND Caldwell
	SANDIA CANYON DRAWN
	STREAM GRADE CONTROL AS BUILTS DESIGN
	DETAIL CASCADE POOL CHECKED
	DI DO NU
	BLDG NA TA-00 TA-00 V2-172013 SUBMITTED APPROVED FOR RELEASE
	JAMES O'NEILL JOHN P. MCCANN MAR
SA. O'A	C-5003
18656	ATIONAL LABORATORY PO Box 1663 Los Alamos, New Mexico 87545 8 OF 8
anti-se	PROJECT ID DRAWING NO DATE 12/17/2013
S. JONAL	102698 C-56021 0

Appendix D

Photo Documentation

Sheet-pile wall 1 of the grade-control structure after construction, November 20, 2013

Upstream of sheet-pile wall 1, November 21, 2013

Sheet-pile wall 2 of the grade-control structure, November 21, 2013

Downstream of sheet-pile wall 2, November 21, 2013

Sandia wetland, looking upstream, September 11, 2013

Looking north of the second sheet-pile wall of the grade-control structure after September 13, 2013, rain event. Photo taken September 18, 2013.

Looking south of the second sheet-pile wall of the grade-control structure after September 13, 2013, rain event. Photo taken September 18, 2013.

Sandia wetland run-on control and grade-control structure looking north, November 21, 2013

Sandia wetland run-on control and grade-control structure looking southeast, December 5, 2013

Appendix E

Sandia Canyon Wetland Run-On Control Design

GENERAL NOTES

2

- 1. IF THIS SHEET IS NOT 24" x 36", THEN IT IS A REDUCED SIZE PLOT.
- 2. LANL ENGINEERING MUST BE ON-SITE TO WITNESS INSTALLATION AND PROVIDE TECHNICAL DIRECTION.
- 3. FILL FOR DEFENCELL[™] AND BERMS SHALL BE ALLUVIAL FAN DEBRIS FROM LANDFILL. NO NATIVE MATERIAL FROM WETLANDS STOCKPILE SHALL BE USED.
- 4. CONTRACTOR TO PROVIDE AS-BUILT INFORMATION.
- 5. GENERAL MANUFACTURERS INSTALLATION DIRECTIONS ARE PROVIDED BY FIBERWEB INC. AND ARE SHOWN ON SHEET C-3001.
- 6. APPLICABLE SPECIFICATIONS:
 - 31-0519 SANDIA CANYON WETLAND GRADE CONTROL STRUCTURE GEOSYNTHETICS 32-9219 SANDIA CANYON WETLAND GRADE CONTROL STRUCTURE SEEDING

31-2000 GRADE CONTROL STRUCTURE EARTH MOVING

KEYED NOTES:

- ① PLACE DEFENCELL[™] WALL HORIZONTALLY SUCH THAT EACH CELL IS PLUS OR MINUS 0.05 FT TOLERANCE FROM LEVEL.
- 2 EXTEND BERM LATERALLY TO CATCH EXISTING SLOPE. EXTEND EROSION CONTROL MAT TO COVER BERM. TYPICAL AT EACH END OF DEFENCELL[™] WALLS.
- 3 GRADE EXISTING GROUND FROM AS-CONSTRUCTED ELEVATION OF THE GRADE CONTROL STRUCTURE PROJECT EDGE OF ZONE 4 BOUNDARY AND SLOPE UPWARD AT A 15% MAXIMUM SLOPE UNTIL THE GROUND SURFACE OF THE BERM IS MET. USE CONTOUR 7210 AS THE LIMIT OF DISTURBANCE.
- 4 FILL UPSTREAM OF DEFENCELL[™] WALL USING BERM FILL.
- 5 TRANSITION FROM 3:1 SLOPE TO LESS STEEP GRADE TO WRAP CORNER AND MATCH EXISTING GRADE AS NECESSARY.

LEGEND:

TURF REINFORCED MAT

EROSION CONTROL BLANKET

DEFENCELL

ľ													
1	10/29/13	U.C.	IBR	GENE	ENERAL REVISION						#	Q1	Kny
NO	DATE	CLASS REV	ADC		DESCRIPTION						СНКД	SUB	APP
	ENVIRONMENTAL PROGRAMS												
S	ANDIA CA	ANYO	N WE	TLA	ND GR	ADE (ONTRO	DL	DR	NWAS	E. N	E. MARTIN	
	STRU	JCTU	RE –	RU	NON C	ONTR	OL		DESIGN		R. R	R. RAGER	
:		DEFEN		WAL	LS 1 AI FILE SH	ND 2 EET			CHE	ECKED	Т. К	OSTRU	BALA
BLD	G NA						TA	-00	D	ATE	9/	24/20	013
SUBM	DEBRA		ERGOLI	D		APPROVE	D FOR REOHN P.	MCC	ANN				
1	SHEET									C-	10	00	0
PO Box 1663 Los Alamos, New Mexico 87545									1	OF	-	3	
CLASS	CLASSIFICATION UNC REVIEWER WILLIAM TURNEY								1	DATE	9/24	/201	3
PROJ	ECT ID	00			DRAWING	NO						RE	V
	102698 C-56069											1	

			2							1			ing a fail an							
		GEN	IERAL I	NOTE	<u>S:</u>															
		1. IF	THIS SHE	et is i	NOT 24	⊦" ×	36 ", T	HEN IT	IS A R	EDUC	ED S	SIZE	PLOT	•						
		2. SIT		ONS AR	RE AS	FOL	IND.													
		3. DIN	. DIMENSIONS WITHOUT TOLERANCES ARE NOMINAL.																	
2	$\left(\begin{array}{c} \end{array} \right)$	4. BR REI COI	OADCAST S NFORCED NTROL STR	SEED B MAT PE UCTURE	ENEATH R SPE E EART	I EI CIFI H M	ROSION CATIONS MOVING).	CONTRO (SEEDII	NG, 31	IKET 200	AND 0 GF		- \))						
		$\overline{}$	\sim	\wedge			$\overline{}$	~ ~	~	~										
	-	KEY	ED NOT	<u>'ES:</u>				<u> </u>												
			DEFENCEL PANEL) D	L [™] DT T1 DEF	1 — 24 ENCELI	4" ∖ ∟™	WIDE BY MAY BE	20" TA SUBSTI	all by Tuted	16 F FOR	T LC DC2.)NG	(1							
		2	DEFENCE PANEL) D DEFENCEL LONG (1	L [™] DC C2 DEF L [™] . [PANEL)	2 – 4 FENCEL DEFENC	IS" L™ ELL	WIDE B` MAY BE ™ DC3	r 20" T, 5 SUBST - 65"	ALL BY ITUTED WIDE B	16 FOR Y 20	FT LO DC3 "TAI	DNG LL B'	(1 r 16	FT						
2		3	BERM FILL MAXIMUM THE SAND SPECIFICAT SHALL BE USING 2 I BEHIND EC	TO BE PARTICLI IA WETL TION 31 BETWEE PASSES QUIPMEN	ALLUVI E SIZE ANDS G -2000. EN 11% OF TRA	IAL OF GRAD 3.13 TO ACKE	FAN DEB 3". MC DE CONTF 3.B-C AN 17%. ED OR W	RIS FROM ISTURE (ROL STRU ID F.4&5 COMPACT HEELED	M LAND CONDITIC JCTURE 5. FIELD IN MAX VEHICLE	FILL S DN IN EARTI MOIS KIMUM OR	SCREE ACCO HMOV STURE I OF VIBRA	INED ORDAI ING CON 8"LI TING	TO A NCE N TENT FTS WALK	WITH						
	(4	SCREENIN COMPACT TO BERM	G OF E ANY E FILL.	EXISTIN	G G G G	ROUND	IS NOT MATERIA	REQUII L USING	RED. G ME	PLAC	E AN S ID	ND ENTIC	AL						
	(5	FILL DEFE SCREENEI MAXIMUM DIAMETER	ENCELL ^T D TO A OF 8") HAND	M WITH MAXIM LIFTS TAMP€	IUM USI ER.	LUVIAL PARTIC NG NAR	Fan dee Le size Row dia	BRIS FR OF 3" AMETER	ROM I . CON (LES	LANDI MPAC SS TH	FILL T IN IAN \$	5"							
	(6	LOWER CI	ELLS M	AY CON	NSIS E P	ST OF D	C3 PRO	VIDING	THE	LATE	RAL								
		$\overline{7}$	EXTENSION IS INTO THE BERM. $\overrightarrow{7}$ TOP CELL IN DEFENCELL TM STACK IS 24" TALL SEF C=3001																	
		8	 IOP CELL IN DEPENCELL[™] STACK IS 24[™] IALL. SEE C-3001. ANCHORING OF GEOTEXTILE BELOW BOTTOM GRADE OF DEFENCELL[™] WALL AND BY LATERAL EXTENSION IS NOT REQUIRED FOR STATION SECTIONS 0+00 TO 0+20 FEET AND 0+92 TO 1+12 FEET PROVIDED FINAL UPSTREAM GRADE ABUTTING DEFENCELL[™] WALL IS 2 FT OR 																	
		LEGI	END:																	
				GEC	DTEXTIL	E														
				TUR ERO	RF REIN SION (IFOF CON	RCED M/ TROL BI	AT OR LANKET												
				DEF	ENCELI	∟тм														
		2	11/07/2013	Ţ	BR F	REVIS	ED FIELD D SEEDING	MOISTURE	CONTEN	п.	EM ;	er -	F							
		1	10/29/2013	U.C.	DR G	GENE	RAL REVIS	SION			EM I			N JM						
			ENV	IRO	NN.	ſF	INT.	AL	PR	00		AN		JB APP						
		S	ANDIA CA	NYON	WET	LAN	ND GR	ADE CO	ONTRO		DRAV	WN	E. MA	rtin						
			STRU	JCTUR	E –	RUI	NON C	ONTRO	L		DESI	GN	r. Ra							
		CROSS SECTIONS											TRUBALA							
		BLDO					T		TA-	-00	DATI	E	9/24	/2013						
		DEBRA NEVERGOLD JOHN P. MCCANN																		
		1	6.	I	-					JUFFI	С) — [30(00						
			LOS A	ABORAT	OS ORY	P0 E Los /	lox 1663 Alamos, No	ew Mexico	87545	2	2	OF		3						
		CLASS PROJE	ECT ID	C			REVIEWER DRAWING N	WILLIAM T	URNEY		DA	TE 9	/24/2	2013 REV						
			1	026	98			C-	560)69)			2						

A

.

2

GENERAL NOTES

- 1. THE INFORMATION CONTAINED IN THIS DETAIL IS PROVIDED FOR THE CONVENIENCE OF THE USER AND DOES NOT TAKE PLACE OF CONSTRUCTION PLANS AND/OR SPECIFICATIONS. FIBERWEB INC. CANNOT BE HELD RESPONSIBLE FOR THE USE OF MISUSE OF THIS INFORMATION. WE RECOMMEND YOU CONTACT US FOR FURTHER DESIGN ASSISTANCE.
- 2. THIS DETAIL IS FOR CONCEPT PURPOSES ONLY AND DOES NOT IMPLY ANY ACTUAL DESIGN OR ENGINEERING HAS BEEN COMPLETED. ENGINEERING MODELING WILL NEED TO BE PERFORMED TO DETERMINE PROPER STRUCTURAL REQUIREMENTS AND COMPONENTS INCLUDING SAND AND AGGREGATE.

3. ALL MATERIALS ARE SUBJECT TO APPROVAL BY FIDERWED INC.

										-			
NO	DATE	CLASS REV	ADC		DESC	RIPTION			DWN	DES	снко	SUB	APP
ENVIRONMENTAL PROGRAMS													
SANDIA CANYON WETLAND GRADE CONTROL													
STRUCTURE - RUNON CONTROL DESIGN R. RAGER											R		
			D	ETAIL	s				СНІ	ECKED	B.	POLE N	
BLD	G NA	11	20	0/1.0.	- íal		TA	-00		ATE	09/	24/2	013
SUBM	DEBR	A NEVI	ERGOLD	and C	RU	APPROV	ED FOR RE	MCC	ANN	ØÅ	114		1
1	SHEET C-3001)1
•	HATIONAL	LABOR	ATORY	PO E	Box 1663 Alamos, I	New Mexic	p 87545		3	OF	ala	3	_
CLASS PRO-II	SIFICATION UI	NC			REVIEWER DRAWING	NO	ort	Me	AG I	DATE	14	44	Н
	1	020	698			C-	-560	069	Э			Č	