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As concern over the effects of trace amounts of pollutants has increased. so has the need for statistical 

methods that deal appropriately with data that include values reported as ~less than~ the detection limit. 

It has become increasingly common for water quality data to include censored values that reflect more 

than one deteclion limi• for a single analyte. For such multiply censored data sets. standard statistical 

methods (for example. to compare analyte concentration in two areasl are not valid. In such cases. 

methods from the biostatistical field of survival analysis are applicable. Several common two-sample 

censored data rank tests are explained. and their behaviors are studied \'ia a Monte Carlo simulation in 

which sample sizes and censoring mechanisms are varied under an assumed lognormal distribution. 

These tests are applied to shallow groundwater chemistry data from two sites in the San Joaquin Valley, 

California. The best overall test. in terms of maintained :x level. is the normal scores test based on a 

permulation variance. In c:1ses where the :r level is maintained. howevo:r. the Pete-Prentice statistic based 

on an asymptotic variance performs as well or better. 

lNTRODUCTJOS 

The continuing evolution of analytical chemistry techniques 

has brought about the ability to detect increasingly smaller 

concentrations of chemicals in the environment. Concomi

tantly, there is a growing public concern over the biological 

effects of chemicals in trace amounts. The justification of these 

concerns is reflected in the events at Kesterson National Wild

life Refuge. California in the early part of this decade [Mar

shall, 1985], where the bioaccumulation of Selenium has 

threatened wildlife. Measurements close to the limit of detec

tion of an analytical technique. however, are usually extremely 

variable. It is therefore important to be able to use valid statis

tical techniques when describing trace chemical data. 

The data in Table 1 arc measurements of the concentration 

of copper and zinc (micrograms per liter) in shallow ground

water from two geological zones in the San Joaquin Valley, 

California [Devere/ et al~ 1984; Devere{ and Millard, 1988]. 

These data display a common feature of groundwater quality 

data: multiple detection limits. There are at least three possi

ble causes of multiple detection limits. First. the limit of detec

tion of a particular analyte depends upon the method that is 

used to measure it. There may be more than one method 

available. and each method may be optimal (have the smallest 

percent measurement error) in a certain range of analyte con

centration. For example. the protocol may call for method I 

to be used if the specific conductance is above a certain 

threshold "and method 2 if specific conductance is below c. 

A second cause of multiple detection limits involves the 

process of dilution. Due to time constraints. a lab technician 

may follow a protocol of allowing only a certain maximum 

number of dilutions for any single lab sample. Because the 

detection limit depends on the amount of dilution. multiple 

dell:ction limits may result. If a study is conducted over a 
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period of years. then a third cause of multiple detection limits 

may be decreasing detection limits .over time as the measure

ment technique improves. 

In this paper. data that display many detection limits, such 

as those of Table l, will be denoted multiply eensored. while 

data with only one detection limit will be termed singly cen

sored. Standard parametric statistical methods such as r tests 

and multiple regression cannot be validly applied to singly or 

multiply censored data sets; it is not clear how the censored 

observations should be treated. Statisticians in the fields of 

survival analysis and life testing. however, have developed nu

merous techniques for analyzing multiply censored data sets 

[e.g .. Kalf?/ieisclr and Prentice, 1980]. Sometimes a specific 

parametric (e.g .. exponential) model is assumed, allowing a 

maximum likelihood approach to estimation and testing. 

Water quality data. however, usually appear to follow non

standard distributions and are often characterized by outliers 

and missing values. Thus nonparamctric methods arc com

monly used to analyze water quality data [Hipel, 1988]. 

This paper discusses nonparametric approaches to com

paring the concentration of a pollutant between two geo

graphic areas based on multiply censored data. In statistical 

jargon. this is referred to as the two-sample location problem 

[e.g .. Ho/landt!r and Wolfe, 1973. p. 67]. The term "location" 

refers to the location of central tendency (e.g., median or 

meanl of the probability distribution of the pollutant. not to a 

specific geographic area. The population upon which the 

probability disnibution of the pollutant is based is the set of 

all possible measurements within a geographic area. The key 

question to be answered is, Docs the location of central tend

ency dill'er between two geographic areas (i.e .• is the median 

polluHtnt concentration the same in each areal? 

First. previous work on censored data in the survival analy

sis and en\'ironmental monitorinll literature is brieftv re

' icwcd. Next. standard nonparam~tric two-sample tes;s for 

uncensored or singly censored data are reviewed. The exten

si~m 'or these: tests to multiply censored data is then given. A 
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TABLE 1. Groundwater Concentrations of Copper and Zinc at Two Geologic:al Zones in the San 

Joaquin Valley, California· 

Alluvial Fan Zone Basin· Trough Zone 

Location Cu Zn Loc:ation Cu Zn Loc:ation Cu Zn Loc:ation Cu Zn 

1 <I <10 36 20 10 1 2 20 36 4 30 

2 <1 9 37 MS 20 2 2 10 37 8 2S 

3 3 MS 38 MS 620 3 12 60 38 1 <10 

4 3 5 39 16 40 4 2 20 39 15 10 

5 5 18 40 <5 so 5 1 12 40 3 40 

6 1 <10 41 1 33 6 <10 8 41 3 20 

7 4 12 42 2 10 7 <10 <10 42 1 10 

8 4 10 43 <5 20 8 4 14 43 6 20 

9 2 11 44 3 10 9 <10 <10 44 3 20 

10 2 11 45 2 10 10 <I 17 45 6 30 

11 I 19 46 8 10 11 1 <3 46 3 20 

12 2 8 47 7 30 12 <2 11 47 4 30 

13 <5 <3 48 5 20 13 <2 5 48 5 so 

14 11" <10 49 <5 10 14 I 12 49 14 90 

IS <I <10 so 2 20 IS 2 4 so 4 ~0 

16 2 10 51 <10 20 16 <10 3 

17 2 10 52 <5 20 17 3 6 

18 2 10 53 <5 <10 18 <I 3 

19 2 10 54 2 20 19 I IS 

20 <20 <10 55 10 23 20 I 13 

21 2 10 56 2 17 21 3 4 

22 2 <10 51 4 10 22 <5 20 

23 3 10 58 <5 <10 23 MS 20 

24 3 <10 59 2 10 24 17 70 

25 MS 10 60 3 20 25 23 60 

26 <20 <10 61 9 29 26 9 40 

27 <10 10 62 <5 20 27 9 30 

28 7 10 63 2 <10 28 3 40 

29 5 20 64 2 10 29 3 17 

30 2 20 65 2 <10 30 <15 10 

31 2 <10 66 2 10 31 <5 20 

32 <10 20 67 1 7 32 4 20 

33 7 20 68 1 <10 33 <5 5 

34 12 20 34 <5 10 

35 <1 <10 35 <5 so 

Data from Devere/ et al. [1984]. All concentrations are given in micrograms per liter. MS. missing 

value. 

Monte Carlo simulation of these two-sample tests is discussed. 

and finally these tests are applied to the data of Table 1. 

PR£VIOUS STUDIES 

Because survival analysis and life testing have laid the 

groundwork for censored data techniques., it is important to 

distinguish between the kinds of censoring that arise in these 

fields of study. One important distinction is between censoring 

and truncation. A sample is truncated on the left (right) if only 

values above (below) a known truncation point. say, 10 , are 

reported. The number of otherwise possible .sample values ex

cluded from the truncated sample is unknown [Cohen, 1959]. 

An example of a left-truncated sample is one in which only 

values above the detection limit are reported or used. and 

nondetects are· exc:luded. For example, suppose the detection 

limit for a particular analyte at a particular laboratory is S 

ppb. Further, suppose that nine samples are analyzed with the 

results that six samples fall below the detection limit, and the 

other three samples yield values (in ppb) of 10, 15, and 20. If a 

data analyst then uses only the observations 10. 15, and 20 for 

a statistical analysis, and is unaware of or isnores the six other 

observations, then she/he is using a left-truncated sample. 

A sample of n observations is singly censored on the left 

(right) if "• (n, ~ 1) of these observations arc known only to 

fall below (above) a known censoring level. say, c, while the 

remaining n. (n. • n - n,) uncensored observations falling 

above (below) c are fully reported. A sample of n observations 

is multiply censored with m censoring level if n .. observations 

arc censored at censoring level c,, "•z observations arc cen· 

sored at censoring level c1, • • ·, "•· observations arc censored 

at censoring level c'", and uncensored observations fall in be· 

tween each of the censoring levels. For example, the copper 

data for the alluvial fan zone in Table 1 represent multiply 

left-censored data with four censoring levels (1, S, 10, and 20 

,ugjL). 
A second important distinction is between type I and type 

II censoring. A singly censored sample of n observations arises 

from type I censoring on the left (right) if a specific censoring 

level c 1 is fixed in advance, and values below (above) c 1 are 

simply reported as less (greater) than cl' A sample of n obser

vations arises from type II censoring on the right if only the r 

( 1 :S r < n) smallest observations are fully reported, and the 

remaining n-r observations are known only to fall above the 

rth smallest value. Thus under type II censoring. values that 

appear extreme (larger than the rth-order statistic) relative to 

the rest of the observations are censored. Type II censoring 

can arise in life testing. where, for example. all n electronic 

components are started at the same time, and the experiment 

is stopped after r of the components have failed . 

Environmental data sets involving detection limits almost 

j 
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. ~ always fall into the category of type I left censoring. On the 

other hand, survival analysis studies almost always involve 
right-censored data. An example is the well-known Stanford 
Heart Transplant Study [Crowley and Hu, 1977], in which the 
(possibly right censored) survival times of potential heart 
tr.msplant recipients were reported. Fortunately, statistical 
methods for right-censored data are easily modified to apply 
to left-censored data. A summary of statistical techniques from 
the survival analysis literature for type I censored data can be 
found in such texts as Kalbfleisch and Prentice (1980], Lee 
(1980], and Miller [1981]. 

In the environmental literature. Gilbert and Kinnison 
[1981], Gilliam and Helsel (1986], G/eit (1985]. Helsel and 
Gilliom [1986], Kushner [1976], and Owen and DeRoutrn 
[1980] are all studies concerned with estimating parameters 
based on singly censored data sets. Gilliam et a/. (1984] 
showed the effects of censoring with one detection limit on the 
power of Kendall's seasonal test {or trend that was introduced 
by Hirsch et al. [ 1982]. There has been very little work in the 
field of water quality on techniques to handle multiply cen
sored data sets. 

NONPARAMETRIC TwO-SAMPLE LOCATION TESTS 

The Wilcoxon Rank Sum test [Hollander and Wolfe, 1973, 
p. 67] is the standard nonparamerric two-sample test for a 
difference in location of two distributions. It is equivalent to 
the Mann-Whitney U test [Hollander and Wolfe, 1973, p. 71] 
and hereafter abbreviated as the MWW test. The assumptions 
of the MWW test are that the probability distribution of the 
pollutant is the same in each area. except for a possible shift in 
median concentration. The null hypothesis is stated as there is 
no difference in median concentration between the two areas; 
the alternative hypothesis is there is a difference, or the 
median concentration in area I (area 2) is larger· than the 
median concentration in area 2 (area 1). 

In statistical notation. these hypotheses are written as 

(I) 

versus 

(2) 

for all r, where F1 denotes the cumulative distribution function 
(cdO of population i, i .. I, 2. and ~ denotes the shift in 
median concentration. Note that this kind of location shift is 
not applicable to cdfs that arc bounded below or above by 
some constant. Thus in the case of two populations with log
normal distributions. a location shift hypothesis of the form (I) 

versus (2) is not applicable to the cdfs of the original observa
tions. but is applicable to the cdfs of the log-transformed 
observations. 

The null and one-sided alternative hypotheses can alter
natively be written as 

(3) 

versus 

(4) 

If~ > 0. population 2 has a larger median concentration than 
population I. The other one-sided alternative (~ < 0) and the 
two-sided alternative (~ ;6 0) could be considered as well. 

The assumptions of the MWW test imply that the distri
bution of the pollutant does not differ in variability between 
sites. even if the medians do. The MWW .test. however. usually 

works quite well for testing the more general alternative hy
pothesis 

(5) 

with strict inequality for at least one c. Note that the hypoth
eses (1) versus (5) allow for cdrs that are not bounded below· 

by some constant. 
To apply the MWW test, the following notation is used. 

Assume X 1, ... , X,., are independent and identically distrib
uted (iid) observations from population I with cdf F1, and Y1, 

· · ·• Y.,. are iid observations with cdf F 2• Let N '"" m 1 + m2• 

The X ~nd Y are combined and ranked. The MWW statistic 
W is computed as 

... 
w- L R, (6) 

I• I 

where R 1, • • ·, R.,, denote the ranks of the Yin the combined 
sample. The null hypothesis (I) is rejected in favor of the 
alternative (2) or (5) if W is too large. For small sample sizes, 
the exact distribution of W under H 0 may be found in tables 
(e.g .• Hollander and Wolfe, 1973, pp. 272-282]. For larger 
samples. a normal approximation is used [Hollander and 
Wolfe. 1973, p. 68]. 

ScoRE TESTS AND LoCALLY MosT 

PowERFUL RANK TESTS 

There are several other nonparametric two-sample location 
tests that employ statistics of a form similar to (6). They can 
be written generally as 

(7) 

where a( ) is called the score function because L is a score 
statistic (see. for example. Cox and Hinkley [1974] for an ex
planation of score tests and statistics). Statistics of the form (7) 

are also called linear rank statistics [Prentice, 1985]. The 
MWW test is a linear rank statistic that uses the score func

tion a(R1) - R1• 

Under the null hypothesis (1), the distribution of the linear 
rank statistic L in (7) docs not depend upon the form of the 
underlying distribution F 1• Hence tests based on L are called 
nonparametric or distribution-free. If H0 is not true, however, 
then the distribution of L will depend not only upon the dis
tributions F 1 and F 2, but also upon the form of the score 
function a( ). 

The decision of what scores to use may be based on con
sideration of the power of the test. A rank test of the hypoth
eses ( 1) versus (2) is a locally most powerful rank test 
(LMPRTl of size :x if it maximizes the slope of the power 
function (as a function of~) at ~ = 0, among all possible size 
x rank tests [Hercmansperger, 1984, p. 144]. Figure I illus
trates the idea of a locally most powerful test. Of the three 
tests shown. test A is the locally most powerful one. A 
LMPRT yields the maximum power in the neighborhood of 
~ ""0. i.e .• for small deviations from H 0• Thus if the LMPRT 
can be written in the form of (7), one obvious choice for the 
score function is the one that yields the LMPRT. 

Hcmmcmsperyer (1984, pp. 144-145] shows that the statistic 
associated with the LMPRT of the hypotheses (I) versus (2) is 
the score statistic of (7) with scores 

u(i) - - EU1 '( VuJU~ ( ~u>J (8} 

.; ... 
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~· .. .. .. 
-- Test A (locally Most Powerful) 
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0 0-25 ()_5 0-75 

MEDIAN SHIFT (A) 

125 1.5 

Fig. I. Illustration of a locally most powcrfultcsL 

where / 1 denotes the probability density function (pdO of 

population I, ft'(x) denotes the derivative of / 1 at x, and v;.,, 
---, v;,..., denote the order statistics from a sample of size N 

with pdf / 1 (or cdf F 1 )- One can generate the scores associated 

with LMPRTs by substituting in various pdfs in (8). Table 2 

gives the scores associated with some common LM PRTs. 

Because the test based on the score a(R1) = R 1 is equivalent 

to the one based on the score shown in Table 2 for the logistic 

distribution. the MWW test is the LMPRT when the observa

tions follow this distribution. Similarly, since the ranks based 

on observations from a lognormal distribution are the same as 

those based on the log-transformed observations, the normal 

scores test is the LMPRT when the underlying distribution is 

either normal or lognormal. (In the case of a lognormal distri

bution, the LMPRT refers to a test for the difference between 

the medians of the log-transformed observations.) A large 

sample normal approximation to the distribution of L is given 

by Hertmansperger (1984, P- 148]. 

SINGLY CENSORED DATA 

The extension of the MWW test to singly censored data 

(i.e .. data containing observations censored at one detection 

limit) is straightforward, assuming there are no uncensored 

observations with values below the detection limit. All obser

vations below the detection limit are considered to be tied 

when the ranks are assigned. There are several possible ways 

TABLE 2. Scores of LMPRT's for Various Distributions 

Distribution Score, aiR,) Test Name 

Logistic: (2!(N+ll]R;- I Wilcoxon rank sum 

Normal or 
lognormal <II- 1[R/CN+ [)]* Van der Wacrden 

or normal scores 

Exponential or R; Savage: scores 

extreme value 2: <N-j+ w• 
j•l 

Double exponential sgn(R; - <N+ 1)/2]* Mood's median test 

The function a ( ) is given in (8). The <II denotes the cdf of the 

standard normal distribution. Here sgn(x} • I if x > o_ sgntrl "' 0 if 

x • 0, and sgn(x) • I if x < 0. 
*Denotes an approximation of the .true score. 

to handle tied observations [Pratt and Gibbons. 1981] includ

ing (1) assign the average rank to each tied observation, (2) 

assign the lower ranks to the Y observations in the tied group, 

(3) assign the higher ranks to the Y observations in the tied 

group, and (4) randomly assign distinct ranks to the tied ob

servations- Table 3 demonstrates the ranks and W statistics 

associated with these four methods for a hypothetical data set_ 

For methods 2-4, the usual MWW statistic is compared to 

its critical value that is computed as if there were no ties_ 

Method 2 is conservative (the true IX level is below the nominal 

~ level), method 3 is liberal, and method 4 preserves the ::x level 

under H0 • The most commonly used method. however, is 

method 1. When average ranks are assigned to tied observa

tions. the standard tables of the permutation distribution of W 

are not valid [Lehmann. 1975, p. 18]; thus the permutation 

distribution must be explicitly derived. or a modification of 

the large-sample approximation must be used. For the large

sample normal approximation, the variance of W is modified 

to account for ties, and is smaller than if ties were not present 

[Hollander and Wolfe. 1973, p. 69]. Note that uncensored ob

servations may be tied as well. 

Although methods 1 and 4 both preserve the ::x level. 

method 4 suffers from arbitrariness (two different researchers 

can produce two different answers). Also, method 1 is more 

powerful than method 4 [Putter, 19SS; Buhler, 1967]. In gen

eral, the best way to extend linear rank tests of the form (7} to 

TABLE 3. Four Methods for Computing the MWW W statistic 
in the Presence of Ties 

Method Rank Vector w 

Average ranks (2. 2. 4. 2. 5) 7 

Lower ranks (2. 3. 4. 1. 5) 6 

Higher ranks (1, 2. 4, 3, 5) 8 

Random ranks Randomly 
choose 

(1. 2. 4, 3. 5) 8 
(1. 3. 4. 2. 5) 7 
(2. I, 4, 3, 5) 8 
(2, 3. 4, I, 5) 6 

(3. I, 4. 2. 5) 7 
(3. 2. 4, 1. S) 6 

Data: (X1, X:• X,, Y1, Y~) • (7-, 7-, 8, 7-, 9); 7- denotes an 

observation (left-) censored at 7. 
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TABLE 4. Censored Data Notation Applied to the Copper Data 
ofTable 1 

r, nu nu, nLu d, du du e, eli eu 

1 1 18 9 9 12 s 7 6 4 2 

2 2 45 30 IS 2S 21 4 2 0 2 

3 3 59 36 23 14 6 8 0 0 0 

4 4 67 39 28 8 3 s 0 0 0 

s s 84 50 34 4 3 I 13 8 s 
6 6 86 so 36 2 0 2 0 0 0 

7 7 89 S3 36 3 3 0 0 0 0 

8 8 91 54 37 2 I I 0 0 0 

9 9 94 ss 39 3 I 2 0 0 0 

10 10 102 59 43 I I 0 7 3 4 

II II 103 60 43 I I 0 0 0 0 

12 12 lOS 61 44 2 I I 0 0 0 

13 14 106 61 45 I 0 I 0 0 0 

14 15 108 61 47 I 0 I I 0 I 

IS 16 109 62 47 I I 0 0 0 0 

16 17 110 62 48 I 0 I 0 0 0 

17 20 113 65 48 I" I 0 2 2 0 

18 23 114 65 49 I 0 I 0 0 0 

the case of singly censored and/or tied observations is to com

pute the scores as if there were no ties and then average the 

scores of the tied obser-vations. 

MULTIPLY CENSORED DATA 

The extension of two-sample rank tests for shifts in location 

to multiply censored data has been studied by several authors. 

including Breslow (1970], Cox [1972], Gehan [1965], Manrel 

[1966], Peto and Peto [1972], and Prentice (1978]. All of 

these authors were concerned primarily with right-censored 

data, but their methods are also applicable to left-censored 

data. For the case of uncensored data, it was shown that a 

score test based on the score statistic (7) is "optimal" (it is the 

LMPRT) for testing hypotheses (1) versus (2). Prentice demon

strated that all the tests for multiply censored data proposed 

by the above authors could be written as score tests as well, 

based on a particular definition of the probability distribution 

of the rank vector. In order to explain the reasoning behind 

these tests, it will be helpful to introduce some notation that 

closely follows that of Prentice, Prentice and Marek [1979], 

and Latta [1981]. -. 

As before, let m1 and m2 denote the number of observations 

in samples 1 and 2, respectively, and set N • m1 + m1• Let 

t 1 < t 1 < · · · < It denote the ordered distinct uncenSored ob

servations for the combined samples. (In the context of sur

vival data, t stands for the "time" of death.) For i • 1, · · ·, k, 

let d 11 denote the number of observations from sample 1 that 

are equal to t" and similarly for d1,. Set d1 • d11 + d11 (the 

number of "deaths" at time tJ. If there arc no tied uncensored 

observations, then d1 will always be equal to I. 

For right-censored data, e11 equals the number of censored 

observations from sample 1 with censoring levels that fall into 

the interval [r1, t1+ 1), where tt+ 1 • + oo; similarly, for ezf• Set 

e1 .. eu + ezf• Let n 11 u be the number of observations from 

sample I known to be at least as large as t1; similarly, for n1121• 

Set 11 111 = n1111 + n112,. 

For left-censored data, e11 equals the number of censored 

observations from sample I with censoring levels that fall into 

the interval (1 1_ 1, 11], where 10 • - oo: similarly for e21• Let 

nL 11 be the number of observations from sample I known to 

be less than or equal to t1; similarly, for nLZI· Define e1 and nu 

as for right-censored data. An illustration of this notation for 

the left-censored copper data of Table I is given in Table 4. 

For the two-sample case, Prentice's score statistic v can be 

written in the form 

k 

" = L (dz,c, + elfC,) (9) 
I• I 

where c1 and C1 denote the scores associated with the un

censored and censored observations, respectively. In the case 

of the score statistic (7) for uncensored observations, several 

different candidate score functions a( ) were derived based on 

using (8} and assuming various distributions for F 1 (see Table 

2). In the case of multiply censored data, the equations analo

gous to (8) for computing the proper scores cf and Cf associ

ated with various distributions for F 1 are given in (17) of 

Premice (1978], and approximations to these scores are given 

in (30) or the same paper. 

Table S lists Prentice's scores for some assumed distri

butions. for both the left- and right-censored case. These 

scores are written so that as before, if the observations in the 

second sample tend to be larger than those in the first, the 

statistic will be large. In the case of no censoring, the Peto

Prentice statistic reduces to one that is equivalent to the 

TABLE S. Scores of Some Censored Data Rank Tests 

Left Censored Righf"Censored 
Uncensored 

Distribution C; c, C; C, Test Name Analogue 

Logistic 2Fu- I f:Li- I 2F11,- I f:Ri Peto-Prentice Wilcoxon rank sum 

nu- (k-i+l) -(k-i+ IJ i- nR, Gehan or Breslow Wilcoxon rank sum 

Normal or 
lognormal cp-'<F u> -( 1/F ~.1J¢1..c1) cp- 1(FR;J ( 1/S R;lcb<c1) normal scores Vander Waerden 

or (101 or UO) or normal scores 

Exponential or k t 
log rank Savage scores 

extreme value I - L niJ 
-I - L niJ 

-I 2: nRi- 1
- I L nRi 

-I 

j•i j•i j•l j • I 

Double exponential sgnCF u - 0.51 • sgn!F111 - 0.5) • generalized sign Mood's median test 
test 

An entry under Distribution denotes a score derived via Prentke·s (197H] method of sco~ng; <P denotes the pdf of the standard normal 

distribution. f:u- nj•lk [nLJ- dj + l}l(n, ... + I)]; S,.i .. I - f:,_,. f:Ri- I - SR,; SHI = nj•t' [(nRj- di + 1)/(nll/ + 1)]. 

*For left-censored data, C; • -S,j(l - Su> if Su < 0.5, and C, • -I if Su c:: O.S. For right-censored data. C, .. FRIO- f:Rfl if f:R1 < 

0.!5, and C1 • I iff: Rl c:: 0.5. See text for further explanation. 

~,. 

\" ... 
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TABLE 6. The 12 Censored Data Rank Tests Used in the 
Monte Carlo Study 

Number Name Explimation 

GP Gehan. permutation variance. 

2 LP log rank. permutation variance. 

3 ppp Pete-Prentice. permutation variance. 
4 GH Gehan, hypergeumetric variance. 

s LH log rank. hypergeometric variance. 

6 PPH Pete-Prentice. hypergeometric variance. 

7 PPA Pete-Prentice. asymptotic variance. 

8 MWW1 MWW with all observations less than largest 
censoring level considered to be tied 

9 MWW2 MWW with all censored observations set 
equal to half the censoring level prior to 
ranking 

10 NSIP normal scores. permutation variance. C; 
based on (30! of Prentice [1978] 

II NS:P normal scores. permutation variance. C, 
based pn ( 10). 

1: NS:H normal scores. hypergeometric variance. C, 
based on (10). 

MWW rank sum statistic. Gehan [1965] and Breslow [19i0] 

also developed an extension to the MWW statistic for cen

sored data. hut not in the context of Prentice's [1978] method 

of scoring. Their statistic, however. can still be written in the 

form (9). and the associated scores are also shown in Table 5. 

The quantities F1 and ~~ in Table 5 are estimates of the cdr 

and survival function, respectively. at t 1 for the combined 

groups. If FIX) denotes the cdf of a random variable X. then 

the survival function is given by S(.Y) =- Pr(X > ."C) = I - F(x). 

This notation is the only major deviation from the survival 

analysis literature. where F is often used to denote the survival 

function rather than the cdr. 

If ties occur among the uncensored observations. then. as 

for the case of singly censored data. the scores should be 

calculated as if there were no ties, and then the average scores 

should be assigned to the tied observations [Prentice, 1978: 

Latta. 1981]. 
The Peto-Prentice, Gehan. and logrank statistics are fairly 

common in the survival analysis literature [e.g .. Prentice and 

Marek. 1919]. The normal scores statistic has not been used as 

often. although it would appear to be better suited for water 

quality data, since these data often exhibit positively skewed 

distributions that appear close to being lognormally distrib

uted. The normal scores c1 shown in Table S were derived 

from the approximation (30) of Prentke [1978]. There are two 

distinct methods of deriving the normal scores C1: (I) from 

approximation (30) of Prentice or (1} by using the following 

relation given in Prf!lll ic"e and Marek [ 1979]: 

(10) 

for ; == 1. · · ·. k. where C 0 = 0. and 11 1 denotes nt1 or n11 ,. 

depending on whether the data are left- or right-censored. For 

left-censored data. c I is not defined if nll "" I. nor is ck de

fined for right-censored data if 11114 = I. In each case these 

scores may be set :trbitrarily to 0. since 1.": 1 = 0 or eu = 0. 

respectively. so that neither score will contribute to the com

putation of,. or. as we shall see. the variance of''· 

Under the null hypothesis I I). the expected value of v in (~I 

is 0. In order to test the hypotheses 1 I l versus (5), ,. must be 

computed and divi..Jed by an estimate of its standard devi

ation. This stan..J:trdi£ed = statistic will be ;tpproximately dis-

tributed as a standard normal random variable under the null J 

hypothesis (1) [Prentice, 1978]. lAtta [:981] describes three 

ways to derive an estimate of the variance: of v. If the censor 

ing mechanism is the same for both samples, then the varianc.. 

is derived by assuming each of the <:,) possible divisions of 

observations into two samples of size m1 and m1 is equally 

likely. This permutation variance estimate is given by 

• 
Var,."" {m 1m2 /[N(N- 1)]} L (d1c/ + e1C1

1) {11) 
I• I 

If the censoring mechanism diiTers between the two groups. 

then the permutation variance is not appropriate. and a con

ditional permutation approach must b~ used. In this case. 

Premke Wltl Mt~rek [1979] rewrite,. as 

4 

, .... ~ w1[tl 11 - d~ll:; n1)] 112) 
i•l 

where w1 = c,- C, and n1 and ":1 are determined appropri

ately depending on whether the data arc left- or right

..:ensored. (See Table 5 to compute specific values of w1.) The 

condittonal permutation or hypergeometric variance estimate 

of,. ( 12) is given by 

k 

Yar11 = L d1w1!(u 1;/u 11[1- (11 2,/n1)][(u,- d1)i(n1 - 1)] (13) 
i=-l 

For left-censored data. the first term in the sum is taken to be 

0 if uL. 1 = I. and for right-censor~d data the final term is 0 if 

1111. = I. 
A third variance estimator, derived by Prentice [1978] a· 

based on the log likelihood of the rank vector, is the asym, 

totic variance estimator. Yar.4• Yar" is the same as VarH for 

the logrank and Gehan statistics (assuming no ties in the un

censored observations). but for the: Peto-Prentice statistic, for 

right-censored data, it is given by 

Yar..c"" I {[~111(1- u1)h1 - (a1 - ~111)h;] 
i•l 

· [~~~~b, + 2 I ~~~P1]} ll4t 
J•l+ I 

where a 1 = rr1• 1 
1(n 111 + l)/(n111 + 2) and b1 '"' 2d11 + e21• In the 

case of tied uncensored observations, the expressions ( 12) and· 

(13) do not need to be modified; their form allows for ties. For 

the asymptotic variance estimator Var.4 of (14), however. the 

scores a1 and ~ Rr should be computed as if there were no ties. 

and then the average scores assigned to the tied observations 

[Prentice. 1978: Loera. 1981]. 

TABLE 7. The Nine Conditions of Sample Sizes and Censorin; 
for the Monte Carlo Study 

Sample Size 

Area I = Area 2 Area I > Area : Area I < .~re .. : 

Areal .. 2 . 
area 2 

Area I > 4 5 b 

area 2 
Area I < 7 X 9 

area 2 
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CONDITION NUMBER (SEE TABLE 7) 

Fig. :!. Empirical cz levels of the GP, LP, and PPP tests. 

A MONTE CARLO STUDY 

A study of the empirical ex levels and powers of some two

sample censored data rank tests was carried out for various 

conditions of sample sizes and censoring using an AT

compatible personal computer and the statistical package 

GAUSS. Table 6 lists the 12 tests that were studied. Test 8 is 

the MWW test applied to data in which all observations (cen

sored or uncensored) below the largest detection limit are 

treated as tied. This approach was suggested by Hirsch ec al. 

[1982] and Gilliom et al. [1984] in the context of testing for 

trend. Test 9 is the MWW test applied to data Cor which 

censored observations are set equal to half the value of the 

detection limit before being ranked. This approach has been 

used by Nehls and Akland (1973], Gleit (1985], Devere/ and 

Millard (1988], and Gilliom and Helsel (1986]. 

In order to describe how the censoring mechanism was sim

ulated, it will be helpful to introduce the following notation. 

Following Miller [1981], let T1, • • ·, T.,, denote the true pollu

tant concentrations for the sample from area 1 and assume 

these arc iid random variables with cdf F 1' If there were no 

censoring, we would observe T1, • • ·, T.,,. In the case of left 

censoring, however, what are actually observed are 

X1 =-max {7;, tJ (15) 

0.12 • GH 
... 

a: 
0.1 

I 

a! 
• LH 
• PPH 

a: 
w -

! • 
... 
• 
• 

0 
2 4 

where t 1 is the censoring level associated with observation i, 

i = 1, · · ·, m1, and t 1, • • ·, t.,, arc assumed to be iid random 

variables with cdf G1• Similarly, if U 1, • • ·, U ... denote the true 

pollutant concentrations for the sample from area 2, with cdf 

F 1, what are actually observed are 

(16) 

where 111 is the censoring level associated with observation j, 

j '"' I, · · ·, m1, and Jl 1, • • ·, Jl.,, arc iid random variables with 

cdfG1 • 

As an example of applying the above notation, suppose that 

four samples were taken in area 1 and analyzed, with each 

analysis subject to a detection limit of 5 ppb. Then t 1, t 1, t 3, 

and t 4 areiid random variables from a discrete uniform distri· 

bution with a probability mass of 1 at S ppb and a probability 

mass oro everywhere else. The cdf a. is written as 

G 1(t)-O t<S 

tc:=S 
{17) 

If the analyses yielded {10, <5, <5, 8), then {X1, X1, X3, XJ 

• {7;, t:z, t 3, TJ. 
For the Monte Carlo simulation, it was assumed that F 1 

was the cdf of a lognormal distribution with mean and coef-

• 
CUpper 95% Contldence Umit 

• 
* • 
fLower 95"' Conlldence Umit 

t 

• • • 
6 8 

CONDITION NUMBER (SEE TABL.E 7) 

Fig. 3. Empirical cz levels of the GH, LH, and PPH tests • 
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• 
• MWW1 

• MWW2 • 
a: • PPA 0 0.1 a: a: I 
w 

I (Upp.r 95,. Confidence Umil • 

u.. 
0 • • 
~0.06 • • • 
::1 • iii ' • • 
~ 0.04 

• .. 
0 c Lower 95,. :nfidence Umil 

a: • • 
0. 

0.02 .. 
• • • 

0 
2 4 6 8 

CONDITION NUMBER (SEE TABLE 7) 

Fig. 4. Empiric-.11 :x levels of the MWWl. MWW1. and PPA tests. 

ficient of variation equal to 1. The pollutant concentrations 

from area 2 were also assumed to follow a lognormal distri· 

bution with a cv of 1. but showed various positive shifts in the 

median. 
•· For this study. the distributions of the censoring levels were 

assumed to be discrete uniform (DU) and allowed for 2 or 4 

censoring levels. The censoring levels used were the 20th, 40th. 

60th, and 80th percentiles of F 1 (the distribution for area I). 

Three patterns of censoring were considered: 

( 1) the same censoring mechanism for both areas. 

(2) a larger proportion censored in the first area. 

(3) a larger proportion censored in the second area. 

G1 = DU{q0 _2• q0.4} and G2 "" DU{q0 _6 , q0 _8 } 

where qP denotes the pth percentile of F 1• 

Censoring pattern 2 could arise, for example. in the case 

where areas I and 2 are in fact the same area, but samples 

from "area 2" represent those taken at a later time than the 

first batch of samples taken in area I. If the analytical method 

0.12 

·a: 
0 0.1 
a: 
a: 
w 

~ 0.08 

~ 
:s 
~ 0.06 

::J 
iii 
C!i 0.04 

• 
• ... 

.. 
• .. 

• 

• NS1P 

• NS2P 

• NS2H 

• 

has improved between the two time periods in which samples 

were taken. then the samples from area I would be subject to 

higher detection limits than the samples from area 2. 

In addition to varying the censoring patterns. three combi

nations of sample sizes were considered: (I l equal sample sizes, 

m1 = m~ = 10: (2) sample I larger than sample 2. m1 = 20. 

m~ = 5: and (3) sample I smaller than sample 2. m1 = 5. m2 = 

20. Table 7 summarizes the 9 conditions considered in the 

study. 
For each condition. 500 trials were run. Each trial consisted 

of generating pollutant concentrations in each area, censoring 

the concentrations that fell below the detection limits, com

puting the 12 test statistics. and determining, for each test, 

whether the null hypothesis ( 1) was rejected. 

Figures 2-5 illustrate the empirical IX levels of the 12 tests 

for the nine conditions considered. In each case. the nominal :E 

level was 0.05. (Results for the :x levels O.Ql, 0.025, and 0.10 

showed similar patterns.) The solid horizontal lines in these 

figures represent the 95% confidence limits for the estimated 

:E. assuming the true :x level is 0.05. The upper and lower 

(I - pl IOO'Y.. confidence limits are calculated as 

CL =- 0.05 ± : 1 • 1p 121[(0.05X0.95)/500] 112 (18) 

{Upper 95"'o Conftde:ce Umit 

• 
• .. .. 

~ 
0. 

0.02 
L . .. • • 

l.ower 95~ Confid':nee u; • • • 

0~--~--~----~--~--~~--~-
-~----~--~--~ 

2 4 6 8 

CONDITION NUMBER (SEE TABLE 71 

Fig. S. Empirical2levels of the NSIP. NS2P. and NS2H tesls. 
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TABLE 8. Number of Times the Empirical a Level Fell Outside 

the 95 and 99% Confidence Limits for the 9 Monte Carlo 

Conditions 

No. of Times Outside No. of Times Outside 

Test Name 95%CL 99%CL 

GP 3 3 

LP 5 
3 

ppp 3 
2 

GH s 5 

LH 4 3 

PPH 5 
4 

PPA 4 2 

MWWt 5 5 

MWW:! 4 
4 

NSIP 7 4 

NS2P 2 0 

NS2H 4 0 

where : P denotes the pth percentile of the standard normal 

distribution. 

The best behaved tests. in terms of maintaining the nominal 

:x level over all nine conditions, were the normal scores tests 

with censored observation scores based on ( 10) (tests I I and 

12 of Table 6. denoted NS2P and 'NS2H). Table 8 shows how 

many times each of the tests fell outside the 95 and 99% 

confidence limits. Although the NS2H test fell outside the 

95% confidence limits more than ocher tests. unlike the other 

tests both it and the NS2P test never fell outside of the 99% 

confidence limits. 

The true :x levels of the other tests were greatly affected by 

unequal sample sizes and unequal censoring mechanisms. In 

general. fewer observations in the shifted group combined with 

heavier censoring tended to increase the true IX level, while 

more observations in the shifted group combined with less 

censoring tended to reduce it. The test that performed the 

poorest was the NSI P test (test 10). 

A comparison of the powers of competing tests is not valid 

if the :x le"els of the tests arc not comparable. Figures 6 and 7 

illustrate the powers of the PPA, NS2P, and MWWI tests for 

two conditions (I and 6) in which the true IX level was close to 

the nominal 0.05 :x level for all three tests. In both cases, the 

PPA tests is as powerful of more powerful than the NS2P text. 

l 
a: 
w 

~ a. 

60 

50 

40 

30 

- PPA 

••• NS2P 

....... MWW1 

Not surprisingly, the power of the MWWI test can fall far 

below that of the other two tests. 

EXAMPLE 

Devere{ et al. (1984] and Deverel and Millard [1988] studied 

the distribution of trace elements in the groundwater in part 

of the San Joaquin Valley, California. The study area was 

divided into two geologic zones: the alluvial fan zone, consist

ing of material eroded from the Coast Range (to the west), and 

the basin trough zone. consisting of a mixture of Coast Range 

and Sierra Nevada (to the east) alluvium. As part of their 

analysis. Devere{ und Millard (1988] compared trace element 

concentrations between these two zones using the MWW2 test 

previously described. The copper and zinc data will be reana

lyzed in this paper. 

Figures 8 and 9 show the estimated cctrs of copper and zinc 

concemrations for rhc two geological zones (sec Table 5 for 

the formula for the ::stimated cdrs: this formula was applied 

to the data from c:1ch zone separately). Based on these figures. 

there appears to be no difference in copper concentration be

tween zones. while there may be a higher concentration of zinc 

in the basin. Table 9 shows the values of the 12 statistics of 

Table 6 applied to these data. along with two-sided p values. 

None of the p values is significant for the copper con

centrations. whereas all the p values are significant at the 0.10 

level for zinc. Because these data show fairly equal sample 

sizes and censoring patterns similar to condition 1 of the 

Monte Carlo study. no major discrepancies between test re

sults was expected. 

OtSCUSSION 

Lullu (1981] performed a similar but more extensive Monte 

Carlo power study of two-sample cenwred data rank tests. He 

used lognormal. Weibull, and exponential parent distributions 

(F 1 and F:l• but used a continuous uniform distribution for 

the censoring distributions (G 1 and G:). He only considered 

the behaviors of rests 1-7 in Table 6, however. For a lognor

mal parent distribution, one would expect the normal scores 

tests (tests lD-t::!) to perform best, since these are the 

LMPRTs in the case of uncensored data. In the present study, 

two normal scores tests behaved best in terms of maintaining 

the nominal :x level over several conditions, but they were no' 

,, 
,fi/IJ"' ..... ,, ....... 

,, ... ··· 
,~" ........... · , .. , ..... , .. 

,, ... ·· 
,,' ·········•···· 
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Fig. 6. Power curves for sample size and censoring condition I of the Monte Carlo sludy. 
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Fig. 7. Power curves for sample size and censoring condition 6 of the Mente Carlo study. 
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TABLE 9 • Results of the Two-Sample Censored Data Rank 

.. Tests of Table 6 Applied to the Groundwater Data of Table 1 

Cu Zn 

Test z: p z: p 

GP 0.8 0.42 2.49 0.01 

LP 0.8 0.42 1.15 0.08 
ppp 0.9 0.36 2.42 0.01 

GH 0.7 0.48 2.35 0.02 
LH 0.5 0.62 1.69 0.09 

PPJI 1.0 0.32 2.59 0.01 

PPA 0.9 0.36 2.37 0.02 
MWWI 0.2 0.84 2.36 0.02 
MWW2 1.0 0.32 2.14 0.03 
NS1P 0.9 0.36 2.37 0.02 
NS2P 1.0 0.32 2.39 0.02 
NS2H 0.9 0.36 2.36 O.o2 

Reported p values are two sided. 

always the most powerful tests in cases where other tests also 

maintained the nominal :: level. Indeed, Latta (1981] con

cluded from his study that the PPA test performed the best 

overall. As Kt~lbfteis,·h and Prenrice (1980] and Latta point 

out. however, the efficiency (power) characteristics of censored 

data rank tests are not well-known. 

For left-censored data. rather than using the scores of Table 

S. one could just as well apply the scores appropriate for 

right-censored to left-censored data that is multiplied by -I, 

and then change the sign of the resulting z statistic. Hence 

existing software for analyzing right-censored data can be 

easily applied to left-censored data. 

One strength of Prentice's (1978] approach to censored 

data rank tests is that it was developed in the context of a 

general linear model. Hence his method of scoring can be 

used. for example, to develop tests for trend or to compare k 

samples (k > 2). 
Another possible approach to comparing samples with 

multiply censored data is to combine the data and assign the 

average rank. where the average is taken over all permissible 

permutations of the rank vector. Once these ranks arc ob

tained, they may be used with any of the standard linear rank 

tests described in Table 2. Such an approach was used by 

Hughes and Millard (1988] to extend Kendall's seasonal tau 

[Hirsch et al~ 1982] to the case of multiply censored data. For 

the two-sample case, it turns out that this approach applied to 

the M.WW test yields Gehan's test with the permutation vari

ance estimator (test 1 of Table 6). 

Although this paper has demonstrated several possible tests 

for the two-sample location problem with multiply censored 

data, many further areas of research remain. One is the prob

lem of simulating censoring mechanisms that actually occur in 

practice. Modeling these mechanisms will of course depend on 

the causes of the multiple detections limits. A second problem 

to be considered is the behavior and loss of power of these 

tests in the presence of ties in the uncensored observations. 

Finally, there is the question of how these tests behave in the 

presence of heterogeneous variances: the variability of obser

vations near the detection limit is often much greater than the 

variability of observations well above it. Gilliom et a/. (1984] 

explicitly accounted for the increase in variability near the 

limit of detection in their study of tests for trend. 

CONCLUSIONS 

The best behaved nonparametric test for comparing median 

pollution concentrations between two areas based on multiply 

censored lognormal data is the normal scores test with ccn-

sored observation scores based on (10) and a permutation 

variance estimator. This test maintains the nominal ex level 

across a wide range of differing sample sizes and censoring 

mechanisms. 
Several other competing nonparametric tests for comparing 

median concentrations arc available. These tests and the 

normal scores tests should yield similar results in cases where 

sample sizes and censoring mechanisms do not differ greatly 

between areas. In such cases. the Pete-Prentice test with an 

asymptotic variance estimator may be a more powerful test. 

Several software packages already exist to test for median 

differences based on multiply right-censored data (e.g.. BMDP 

and SAS). These packages can be used to analyze left-censored 

ground water quality data by multiplying the data by - 1 and 

changing the sign or the resulting test statistics. 
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