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arbitrarily singly-censored samples*

By EDMUND A. GEHAN
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1. SUMMARY

A distribution-free two-sample test is proposed that is an extension of the Wilcoxon test
to samples with arbitrary censoring on the right. The test is conditional on the pattern
of observations. The null hypothesis is

H,: Fi(t) = Fy(t) (t < T) against either

H: Fi(t) < Fo(t) (¢ <T)or

Hy F(t) < F(t) or F(t) > Ft) ¢<T),
where Fy, F, are cumulative distributions (discrete or continuous) of the observations and
T is their upper limit. The test is shown to be asymptotically normal and consistent against
one-sided alternatives F(t) < Fy(t) (¢ < T') and against two-sided alternatives where either
F\(t) < Fy(t) or Fy(t) > Fy(¢t) (¢t < T). The asymptotic efficiency of the test relative to the
efficient parametric test when the distributions are exponential is at least 0-75 and increases
with degree of censoring. When H, is true, the test is not seriously affected by real differences
in the percentage censored in the two groups. Some comparisons are made for five cases of
varying degrees of censoring and tying between probabilities from the exact test and those
from the proposed test and these suggest the test is appropriate under certain conditions
when the sample size is five in each group. A worked example is presented and some
discussion is given to further problems.

2. INTRODUCTION

The statistical problem considered in this paper arises in clinical trials comparing two
treatments, where the observation for each patient is often time to failure or censoring
(sometimes referred to as loss). In fact, the results are relevant for distributions other than
failure times and in fields of application outside medicine. However, the discussion is in
terms of failure times since most applications are of this type and it is convenient to use
medical terminology.

A common problem in a clinical trial is to compare two treatments for their ability to
prolong life or maintain a patient in a well state. Patients enter study serially in time and
are randomly allocated to one of two treatments. At a time T after the start of the study,
an observation is recorded of time to failure (death or relapse) or censoring from observation
(patient still alive or in remission at 7'). In general, n; —r; individuals have failed and r, are
censored at time T (¢ = 1, 2), but because patients have entered at different times, the
times to censoring will differ among patients.

A special case has been considered by Halperin (1960) in an industrial life-testing context.

* This investigation was supported by a Public Health Service Research Grant from the National
Cancer Institute.
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In his application, components could be started on test at the same time so that at the end
of the experiment, times to censoring were the same for items not having failed. However.
times to censoring could differ in industrial life-testing experiments where items are startcd
at different times or where a policy of replacing failed items is followed.

If it is known that time to failure is exponentially distributed in both treatment groups.
an F test can be used to test for treatment differences (see §8). Since-the exponential
assumption is often not warranted and no other approach seems generally applicable, we
consider a distribution-free two-sample test. The W test proposed is an extension of the
Wilcoxon test to samples with arbitrary censoring on the right. The test is conditional on
the given pattern of failures and censored observations.

Halperin (1960) and Rao, Savage & Sobel (1960) have considered two-sample tests with
censoring, though all assume that times to censoring are the same in both samples. Recentl v
Alling (1963) has proposed a modified Wilcoxon test to be calculated sequentially so that
an early decision may possibly be reached. His test is valid when censored observations arc
present, the test being based on least upper and greatest lower kcunds for subsequent
values of the ordinary Wilcoxon test statistic. The greatest saving in time of observation
is when the sample sizes are small.

3. THE W STATISTIC AND RELATION TO OTHER STATISTICS

We assume that ny, n,yindividuals are allocated randomly to treatments 4, B, respectives
and we observe: Z,...,a}, 7, censored
) treatment A4,
Zpy11s eo0s Ty, My — 1y failures

’ '
Yir--»Yy,, 7, censored
TN . treatment B,
Yry+1s -2 Ynys Mg — 7, failures

where z,,y; are times to failure and x;,y; are times to censoring (all measured from time of
entry into study). It is emphasized again that the observations need not be failure times.

Such a pattern of observations could arise in a number of ways: in a clinical trial con-
ducted for fixed time 7' where patients enter study serially in the interval 0 to 7'; in an
industrial experiment where all components are started at time zero and an analysis is bein:
done at time 7 later; in the same type of experiment, except that items that fail are replaced
randomly; in a medical or industrial experiment where studies are being conducted at
different centres, each study lasting a different length of time and an analysis is done by
pooling results from all centres. Here 7 is the upper limit of time of observation amons
centres. A further possibility is a study of tolerances to different drugs when for som¢
reason large tolerances cannot be measured accurately.

The test proposed is appropriate for these and possibly other cases with general typcs of
censoring. The essentisl requirement is that the average exposure to the risk of failure b
the same in the two groups. In other applications, the arbitrary censoring should be of t""‘
same type in both groups. In the sequel, the test is discussed in terms of the clinical trin!
though it is clear that the other applications will also be relevant. .

The times to failure are from cumulative distribution functions (c.p.r.’s) Fy(x). £V’
which may be discrete or continuous. When considering the sample outcomes, we altox
the possibility of ties among failure and loss times.

The null hypothesis is

Hy: Fi(t) = Fy(t) (¢ < T) (treatments 4 and B equally effective).
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A generalized Wilcoxon test for singly-censored samples
The alternative hypotheses (H,) are either
Hy: Fi(t) < Fy(t) (¢ < T) (treatment 4 more effective than B)
or the two-sided version H,: F\(t) < F,(t),
or Fe)>FH) (t<T)

Roughly, we are interested in one or two tail tests of the difference between the c.p.F.’s for
wreatments 4 and B.

\Ve define

N

(treatment A or B more effective).

-1 z;<y;, or z,<y;
U;= 0 r;=y; or (z,y;) or <y, or Y, <z, (3-1)

+1 x>y, or x>y
and calculate the statistic W = ¥ U,; where the sum is over all n,n, comparisons. Hence,
iLJ

there will be a contribution to W for all comparisons of the two samples where both patients
have failed (except for ties) and in all comparisons where a patient censored from observa-
tion has survived longer than one who has failed.
The W statistic is related to the Wilcoxon (1945) statistic 7", the Mann~Whitney (1947)
statistic U’ and Kendall’s (1955) statistic § when there are no censored observations or ties.
It is easy to show that W = ny(n, +ny+1) — 27",
where 7" is the sum of the ranks of the second sample in the ordered combined sample. Also,
W =2U" —n,n,,
where U’ counts the number of times an observation in the second sample precedes one in
the first in the combined ranking of the two samples. Further, W = §, a statistic defined

by Kendall for use in rank correlation. The last is also true when ties are Present,

When all censored observations have the value T, Halperin’s (1960) statistic U, is
defined by W =20, +rr,~nn,,
where U7 is related to the Mann-Whitnev statistic by U, = U'(ny —ry ny—ry) +7(ny —1,).
Here Ty — ry.ny—14) is the Mann-Whitney statistic based on the n, + n,— r, —ry failures,

4. THE CONDITIONAL MEAN AND VARIANCE OF W

We have n, n, observations which can be arranged in the fo.llowing general pattern:

my ’% I1

m
2 ‘x [2

i &II

my S Il

m; = number of uncensored observations at rank i in rank ordering of uncensored
observations with distinct values;

(4-1)

es e 3 wee

where

l; = number of right-censored observations with values greater than observations at
rank ¢ but less than observations at rank (t+1).
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The points on the vertical line correspond to a rank ordering of the distinct values of the
failure observations and these occur at s distinet failure points. Any set of failed and censored
observations can be represented according to this diagram. If there are censored observa.
tions prior to the first failure, these could be included by counting them as I, with m, = ¢,
Ordinarily, such observations would be excluded since they provide no information on the
differences between 4 and B. The calculation of mean and variance is nos affected, since the
calculation is conditional on the given pattern of observations. As an example, if a +
represents a censored observation and we have the following sample of survival times
(weeks): 8, 8+, 10, 10, 11+, 14+, the pattern is

1
1
2 2 .

Suppose H, is true and the average exposure to the risk of failing is the same in the two
n; + nz)
ny
possible allocations of the individuals to two samples with n,,n, observations. We consider
the conditional mean and variance of W under H,. These are denoted by E(W|P, H,y)
and var (W|P, H,), where P is the pattern of observations. The expectations are over

the (ny+n,)!/{n;'n,'} equally likely samples leading to the same observed pattern P.

It is easy to see E(W|P,Hy) = 0, (4.2)

groups. If the n; +n, individuals in the pattern are labelled differently, there are (

by symmetry.
The derivation of the variance is given in Appendix A. The formula is

n.n 8 8
W|P, Hy) = 1% { Mo oMoy +1)+ 3 LM+ 1
va’r( I 0) (n1+n2) (n1+n2_1) iglth—l(M.l—l'i— )+‘.§1 lt 1( l+ )
8
+ X my(ny +ng— M~ Ly ) (g +my—3M;_, —m;—L;_, 1)}, (43)
i=1
j
where M =3 m;, M=0,
i=1
i
i=1
When there are no ties or losses, i.e. m=..=mg=10L=..=1=0ands=n+"

the formula becomes var (WP, Hy) = dnyny(n, +ny+1)
which is the form expected from the variance of the Mann-Whitney (1947) statistic. Here.
P is simply the ranking of the n, +n, observations.

If there are no ties and all censored observations occur after the (ny+n,—r, — r)th
failure,ie.m; = ... =m,=1,I,=... = liy=0,l,=r+ry,ands = n, +n,—r, —r, wehave

_ M (i +ny—r —1) e —p )21
var (W|P, H,) = (4 7) (7 T7a =) {(ny+no) (ry+73) + [(ny + g — 7y —1,)2 = 1]},
which is that expected from the relation between W and the U, of Halperin (1960).
Hemelrijk (1952) has given a formula for the variance of the Mann-Whitney statistic. {
allowing for ties. His formula gives the same result as (4:3) when there are tied and failur*
observations only.
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whenmy =m,l; =1, m; =1, = 0(i + 1) (orequivalently m, = m;,m, = m,, I, = 0foralls,
= 0(f > 2)), the observations form a 2 x 2 contingency table with margins fixed and
\stitute an outcome in hypergeometric sampling. If two treatments are being compared
in 1y, Mg patients, the m individuals may be considered as the ‘responders’ having tied
alues on a response scale and the ! individuals as ‘non-responders’, i.e. as being censored
and requiring a greater stimulus to respond. The W statistic reduces to the difference in the
l,roducts of the diagonals in the 2 x 2 table and

m;

col

Imn,n
WiP,H) = ___L_Z__, .
ver (W] o (ny+7ny—1)
which is exactly the same as that obtained by assuming the W statistic to be an outcome
in hypergeometric sampling.

5. THE CALCULATION OF W aND var(W|P, H,) IN LARGE SAMPLES

This section can be conveniently skipped by those not concerned with the calculation of
I in reasonably large samples (say m,,n, both 25 or more); suffice to say that W and
var (W|P, H;) can be calculated quite easily by grouping the failure and censored observa-
tions. The W statistic and its variance are simple to calculate when i, n, are small. How-
ever if ny, n, are large, then both the mean and variance calculation are lengthy.

Of course, it would not be difficult to program both calculations for an electronic
computer. Alternatively, the failure and censored observations could be grouped in
g intervals in a way similar to that of the life table:

Treatment 4

A
FNo. of Cum. no. No. :)f
Interval failures of failures censored
: fia e ou
’ f :4 F 14 013.4
s foa Fo Cos
where f:4 = number of failures in interval ¢,

¢;4 = number of censored observations in interval 7,
i
E‘A = Zlf id
J=

and there is another table with entries f;5, ¢;p and F;p defined in the same way for treat-
ment B.

The intervals should be chosen the same as for ordinary frequency distributions and
need not be of equal length. The failures in the ith interval are considered ‘tied’ at rank i
in the rank ordering of intervals. The censored observations are also considered as ‘tied’ in
the ith interval and are counted as occurring after interval < — 1 but before 7. Thus, informa-
tion is lost concerning the ordering of failed and censored observations within each interval.

The formula for W then becomes

W = é}l{[fu +eF s g—fip+eisl Fioy b (5-1)
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where it is assumed that the same intervals are used in both samples. This statistic js quite
simple to evaluate if each term js calculated successively by interval in the appropriate
table.

The conditional variance of W is found by using the general formula (4-3) with

m; = fz‘A +fig: l; = Cit1,4FCpy p. (5:2)

Both E(W|P, H,) (in absolute value) and var (W|P, H,) will tend to be smaller on the
average for the grouped case than for the ungrouped case. This results from the loss of
a proportion of the n,n, comparisons because of grouping. If this proportion is not large.
the test of W should not be seriously affected. In any doubtful case, the test on the
ungrouped data could be carried out,

6. AsymproTIC NORMALITY oF W

In Appendix B, it is shown that W is asymptotically normal with mean and variance
under the null hypothesis given by (4-2) and (4-3). The result foliows because (nyny)~1T has
the form of a two-sample U statistic, defined by Lehmann (1951), and a convergence
theorem of Cramér (1946) may be applied to prove asymptotic normality. It is assumed
that unconditionally the pattern of observations has arisen in a random way from a
probability distribution of times to entry into study (in a special case. all patients ejitor .o
time zero) and two probability distributions of times to failure.

Consequently, to test H, against either H, or H,, a value of

7 - w
~ Jivar (W[P, H))

is taken as asymptotically normal with zero mean and unit variance.

The normal approximation is somewhat better if a continuity correction is made.
especially if the sample sizes are not large. Inan application where there are no or relatively
few tied and censored observations, a continuity correction of * 1 should be made. Here
the possible W scores will usually be two units apart. Otherwise, the continuity correction
should be + 1. ‘

The adequacy of the normal approximation is investigated in §10. The results indicate
that the W test can be applied when sample sizes are as small as n; = n, = 5, as long as not
more than six of the ten observations are involved in ties or censoring and there are at least
five distinct failure points. In the special case my=ml=1lm = l; = 0(2 + 1) where the
observations form g 2 x 2 contingency table, the W test is equivalent to the test based on
the normal approximation to the hypergeometric distribution. Pearson (1947) has shown
that even for moderate sample sizes the normal approximation gives probabilities in clos
agreement with those from the hypergeometric distribution.

7. THE CONSISTENCY OF THE W TEST

We now consider the behaviour of the W test when the null hypothesis is not true. For
this, we need E(W |P, H,) and a bound for var (W|P, H,). The alternative hypothesis hert
is fixed, that is it does not depend on the sample size in each group. Just as in Appendix B.
we assume that considered unconditionally X, ..., X,, are independent random veet¢'
variables taking values (2,0) or («’, 1) if the sample outcome is a failure, censored observa-
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tion: respectively. There is a similar assumption for 1}, ..., Y,

ny- For the sake of simplicity
|<0 assume 7, = n, = n.

we @ .

Wehave  pw|P, H,) = n¥(Pr(X, > Y|P, H,)= Pr (X, < Y|P, H,)) I

and this is non-zero when i

‘ Pr(X,>Y)-Pr(X;<Y)+0. (71
For the variance, we write

n~4var (W|P, H,) = n—*E(W2|P, H,) —-n~*[E(W|P, H,)]? ¥

= n 4B (SUY+ 3 Uy Us+ T, Uy Uy + 3 Uy Uy, B - i
i ST i ;
it y

—nE{ET,|P, H P

The four terms comprising E(W?2|P, H,) have n%, n?¥n — 1), n¥n — 1) and n%(n — 1)? individual
rerms in the summations, each with expectation at most one. Therefore, the first three terms
in the above expression are at most O(1/n). But

B{ 3 UyUy|P. B} = 3 E(Uy|P, H) E(Uys |P, By) i

J¥i i*5

= n2(n —1)2[E(U,|P, H,)]?
and (E{ZU,;|P, H})? = [EE(U,|P, H,) ;’Ji ‘
= n\[E(U,|P, H,)P L
« that n~¢var (W|P, H,) is at most O(1/n). B
Therefore lim n—¢var(W|P, H,) = 0. H :
n—ro ot

Hence n=2E(W|P, H,) —n—2E(W|P, H,) s

ene ' J{n—tvar (W|P, H,)} ‘“ 1
becomes indefinitely large as n —co and the probability that the W test rejects the null g‘ M

hvpothesis is 1.

Thus. the I test is consistent for alternatives where (7-1) is true. In particular. the one-
aded 1 test is consistent against alternatives Fi(f) < Fy(t) (¢ < T) and the two-sided test
acainst alternatives where either Fi(t) > F,(t) or F(t) < Fy(t) (t < T).

8. THE ASYMPTOTIC RELATIVE EFFICIENCY OF W To F ASSTMING
EXPONENTIAL FAILURE DISTRIBUTIONS

Suppose the probability density function of time to failure for a patient receiving treat-
ment 4 is o

fi(z) = gexp (- ¢z) b
and that for a patient receiving treatment B is i
foly) = Odexp (- 63y).
We wish to test the hypothesis
H F@t)=F6t) t<T,0<60<1),

where under Hy: 6 = 1 and under H,: 0 < 6 < 1. Such a test would be appropriate if we
were interested in whether failure times on treatment B were a constant proportion (6) of
those on treatment A. For example, if § = 0-75, the failure times for the patients on L

14 Biom. 52
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treatment 4 would be 259, longer than those on treatment B. A test of the above hypo-

thesis is equivalent to one for differences in location, F\(t) = Fy(t+0), when logs of failyre

times are analysed.
An efficient parametric test for the hypothesis is to take #,/7, as having an F distribution
with (2(n, —r,), 2(n, — r,)) degrees of freedom, where

r n, Ty L)
;= ( Tri+ 3 xi)/(nx'—rl)~ Iy = (E yi+ ] A yi)/('lz_r2)~
i=1 t=r+1  / t=1 i=rs+1
The F distribution is exact when the time of observation in each group is a random variable
and n,—r;, n,—r, are fixed, and a good approximation (Cox, 1953) when the time of

observation is fixed and the number of patients failing prior to that is random.

We wish to calculate the asymptotic efficiency of the generalized Wilcoxon test relative
to the F test in two situations:

(a) all individuals enter study at time zero, observation stops at T' (the case where all
individuals fail is covered by letting 7'+ 0),

(b) individuals enter study at a constant rate, A, in the interval 0 to 7' and fail according
to fi(z) or fy(y).

For both cases, it is assumed that the number of patients in each group is n. Case (b) is
amodel of a clinical trial, also suggested by Armitage (1959), where it is reasonable to assume
there is a fixed probability, A(At), of a patient entering a study in any small interval of
time (At). Unconditionally both the number of patients entering study and the total time
of exposure to the risk of failing are random variables. Conditional on 2 patients being
entered in 0 to 7, the times of entry will be distributed independently and uniformly over
the interval (0, T').

For case (a), the chance of an individual being censored at time T is e~T%, e~T% for those
receiving treatments A, B, respectively. For case (b), the same chances are (1 —e~79)/(T
and (1 —e~7%)/(T0¢). Further details are given in Appendix C.

In the calculation, it is convenient to transform the F statistic to z = }log F so that z is
asymptotically normal with

var(z) - ( ! + !
=242y —ry) 2(”2—’2)) ’

where 2(n, —r,), 2(ny — r,) are the number of degrees of freedom in F. Also, we arrange that
the variance of each test statistic is of order n~* by considering n—2W rather than W.

To obtain an asymptotic measure of test efficiency, we consider a sequence of alternative
hypotheses in which # approaches the value tested, § = 1, as n increases. In this case, the
asymptotic efficiency of W relative to F is

{eE(n—uV); }2
AR.E. = lim 0o {n var (z| Hy)}

n—x {n var (n_zleo)} X {EE(:) }2 (81)

€0 4

’

and the calculation of the terms required is given in Appendix C. A good exposition of the
concept of asymptotic relative efficiency (s.R.E.) is given by Kendall & Stuart (1961,
pp. 265-76).

Values of A.r.E. for case (a) and (b) are given in Table 1 for various values of T¢.

\
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Now T = total study time
~ average failure time on treatment 4’

so that if an estimate of T'¢ is available, some idea of the o.R.E. can be obtained. Note that
the minimum value of o.R.E. is 075 for both cases (a) and (b) and that A.R.E. increases as
T'¢ decreases. As T'¢—>0, a.R.E. approaches one for case (a) and 8/9 for case (b). Clinical
trials are often conducted with 7'¢ about 2 or 3 and here A.R.E. is close to 0-80.

Table 1. Asymptotic efficiency of W relative to F assuming
exponential failure in two groups
Treatment A: gexp{— ¢z); treatment B: Odexp (—6oy)
Case (a). All individuals enter study at time zero, observation stops at 7.
T¢ - = T¢ =3 T = 2 T =1 T¢$ >0
A.R.E. 0-750 0-785 0-838 0-934 1
Case (b). Individuals enter study according to uniform distribution over (0, T') and
study stops at T'.
T¢ - Té =3 T¢é =2 T¢ =1 Té -0
A.R.E. 0-750 0-781 0-802 0-836 8/9

A rationale for these results is as follows: consider the patterns of observations for &
case (a) situation with a high degree of censoring. The patterns might appear as

The ratio of the means in the F test will differ from one when there is a difference in the
number of failures and times to failure between 4 and B. The value of W depends mainly on
the difference in the number of failures between groups. The A.R.E. result means that as T'¢
becomes small and there is more censoring, the times to failure are not much more important
than the number of failures. The same type of result was found by Armitage (1959) for
paired data, when he compared the a.r.E. of the sign method to parametric maximum
likelihood for exponential distributions.

The increase in A.R.E. is slower for case (b) as T'¢—0. In this situation, it would be
expected that those individuals censored would be among the later entrants to study and
80 would tend to occur near the beginning of the pattern. Knowledge of the times to failure
would then be relatively more important.

These results suggest that the W test would be reasonable to apply when comparing
failure time distributions, especially when some censoring is expected. When the distribu-
tions are not exponential, a two-parameter distribution such as the Weibull might be
needed. If X has a Weibull distribution, it is well known that XV= has an exponential
distribution. But any such power transformation would not affect W since W is rank
invariant. Hence, the calculations of 4.r.E. given would be exactly the same if the distribu-
tions were assumed to be Weibull with known index. It is reasonable to suppose that the
A.R.E. values would be at least as great if the distributions were Weibull with unknown
index, so that the stated values are lower bounds for 4.R.E.

14-2
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9. Loss RATE DIFFERENT IN THE TWO GROUPS

Suppose that in an application there is in fact no difference in the C.D.F.’s of times .o
failure, but that for some reason there is a difference in the percentage censored in the two
groups. In an extreme case, all individuals are observed to failure in one group and study
stops at time 7T in the other group. This could happen in a clinical trial if the drug given
to patients in one group had deteriorated by time T} or it was not possible to administer
treatment after time 7). In such cases, it would only be appropriate to consider failures
and censored observations up to time T, in the affected group: We assume that the éamp]e
size is 7 in each group and all individuals have entered study at time zero, so 7} is the length

of study for all individuals in the affected group.

Table 2. Ratio of J{var (W|H,)} to /{varg ( W|H,)} for various 1 —r/n
1—-r/n

Ratio 1 0-95 0-9 0-8 07 0-6 01
J{var (W}H,)}

1 1-033 1-065 1-115 1152 1-180 1-357

V{varg(W|H,)}

What happens to the mean and variance of W if an analysis is performed without con-
sidering all censored observations restricted to one group? We are concerned with the
average effect of censoring one group at 7, and so we calculate E(W|H,) and var (W|H,),
that is we average over the possible patterns that could occur. When there are n patients
per group and H, is true, the number failing in each prior to 7} is binomially distributed
with expected value n — r and variance

+0-9):
n n
The means and variances for the two cases are as follows (taking terms to O(1/n) for the

variances):
Losses restricted to one group

ER(WIHO) =0,
2 31 2
notvera (W|H) = 5(1-7) 23 () (-5):

Losses not restricted
E(WiH) =0,

, 1 11 /r r 7 r\3
n“var(ﬁ IHO) = m'{""; (7—1) (1 —-7—2) +i§; (l —1—2) .

Thus, if the mean and variance of W are calculated in the usual way, there is no bias
in the estimate of the mean but the estimate of variance will be an over-estimate. To
examine the extent of the over-estimate, Table 2 gives the ratio of the two standard
errors for various values of 1 —r/n.

The ratio of the standard errors is less than 1-2 even when 40 %, of the observations are
censored at T in the affected group. There will be some loss in sensitivity in detect-
ing departures from the null hypothesis when the ordinary W test is applied; however,
this is unlikely to be serious when the proportion of censored observations is under about

209,
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10. SOME EXACT CALCULATIONS

Table 3 presents a comparison of tail probabilities using the generalized Wilcoxon test
(corrected for continuity) and exact calculation for five cases of varying degrees of censoring
and tying. The sample size in each group is n; = n, = 5 and the pattern of observations for
each case is given. The cases were selected arbitrarily to represent various degrees of
censoring and tying. The total number of observations involved in ties or censoring ranges
from four for case IV to nine for case II.

For each case, the first column gives the cumulative frequency of a given score or larger
from the exact distribution. It was necessary to evaluate scores from only $(*) = 126
possible samples, since the distribution of W is symmetric. The second column gives the
exact probability of a given score or larger and the last column gives the estimated prob-
ability using the W test, corrected for continuity by subtracting 4 from each score.

The probabilities from the W test are remarkably close to the exact probabilities con-
sidering the small sample sizes and heavy tying and censoring. This is especially so in the
tail of the distribution where most interest lies. The approximation is poorest when a large
number of samples have the same score, but this happens more often near the centre of the
distribution. If it is decided arbitrarily that the normal approximation is adequate when
the absolute difference between approximate and exact is 0-01 or less up to a cumulative
tail prohability of 0-10, then only cazes IT and 11T fail to satisfv this eriterion. In both of
these cases, the number of different failure points is only four and the total number of
observations involved in ties or censoring is nine and six, respectively.

It is difficult to make a general statement on the sizes of sample necessary before the
symptotic theory holds because of the varying degrees of censoring and tying that are

“possible. Halperin (1960), for his case, has stated that when n, = n, = 8 the asymptotic
normal theory is adequate for all practical purposes up to about 75 %, censoring (no tying)
at both the 5 and 1% significance levels. Lehman (1961) considered the exact and approxi-
mate distributions of the Wilcoxon statistic when n, = n, = 5 for five cases of varying
degrees of tying. Using the arbitrary criterion above at significance levels of 0-01, 0-05, and
0-10, the normal approximation was adequate when the number of observations involved
in ties was six or less. Taking the results here with the others, the normal approximation
with continuity correction seems adequate when n, = n, = 5, as long as the total number
of observations tied or censored is six or less and there are at least five distinct failure points.

Of course, if the application of the W test is doubtful in a particular case, the following
rule seems reasonable: calculate " (corrected for continuity) and if the result is borderline
(say 0-03 to 0-10), calculate the exact test. Otherwise accept the verdict of the W test.

11. A WORKED EXAMPLE
In this section, we apply the W test to an example from a clinical trial. In the trial,
reported by Freireich et al. (1963), 6-mercaptopurine (6-MP) was compared to a placebo in
the maintenance of remissions in acute leukemia. The trial was actually conducted sequenti-
ally, but will be here analysed as a fixed sample size trial. One year after the start of the
study, the following lengths of remission were recorded:

Length of remission (weeks)
6, 6, 6,7, 10, 13, 16, 22, 23
64+,94,10+,114+,17+,19+,20+4,254,32+,32+,34+,35+
Placebo (21) 1,1,2,2,3,4,4,5,5,8,8,8,8, 11,11, 12, 12, 15, 17, 22, 23

6-MP (21) {



Table 3. Observation patterns and probabilities of scores by exact calculation and the generalized Wilcoxon test
(corrected for continuity) for 5 cases of censoring and tying in samples of size n; =5,n,=5

Scoro

23
22
21
20
19
18
17
16
15
14
13

o
O NWER NS TWO S =~

Jvar (WP, H,)

Case |

1

2

Ties 4)* 1

Censored 2(2)* 2
1 1

1
Cum. Prob. Prob.

froq. (oxact) (W,)
2 00079 0-0064
4 01569 ‘0154
5 0198 <0202
7 -0278 -0336
13 0516 0427
27 <1071 -0838
45 1786  -1469
49  -1944 -1736
63 -2500 -2358
77 -3055 2709
83 -3293 <3483
111 -4404 -3898
112 ‘4444 ‘4801
126 <5000 ‘5199
| o ——— —
9-04

Case It Case |l
1 ~1 1 >\1
2 LR g}
6(3) 2 f=<—1» 0 14>
3(2) 2 6(4) 14,
Jum. Prob. Prob. Cum. Prob. Prob.
frog. (oxaet) (W) freq. (exact) (W)
I 00040 0-0055
3 0119 -0110
13 516 -0359 . . .
. . . 3 00119 00239
17 0675  -0606 8 0317 -0336
. . . 16 05956 <0465
26 1032 -0968 19  -0754 -0619
. . . 24 0952 -0824
48 1905 1469 31  -1230 1076
. . . 41 <1627 -1357
52 2063 2090 49 1944 -1712
. . . b8 2301 -2120
88 S92 <2878 66 -2619 -2546
. . . 76 <3016 -3050
100 -3068 -3783 87 -3452 -3657
. . . 101 4008 -4129
1206 -HOY -4761 118 -4682 4721
134 <5317 5279
.. . ~ J . —y J
S-06 06-83
* Num!

Case IV
T~
i
0 1 2
43 1
1 1
1
Cum. Prob. Probh.
freq. (exact) (W,)
1 0-:0040 0-0104
2  -0079 -0146
5 -0198 0202
7 0278 0274
11 -0436 -0375
14 0556 -0495
17 0676 -0643
23 0913  -0823
26 <1032  -1038
34  -1349 - 1314
39 -1548 -1611
52  -2063 -1949
61 2420 -2327
75 -2976  -2743
87 3452  -3228
98  -3889  -3707
113 <4484 4207
121 4801 4721
131 5198  -5279
|

() is number of distinct points.

—
7-56

Case

1

2

21) 1

43) 1

1
Cum. Prob.
freq. (exact)
2 00079
4 ‘0159
9 0357
15 0595
22 ‘0873
40 -1587
54 -2143
56 <2222
79 3135
81 -3214
101 -4008
126 -H000
. -_Y.,
7-78

Prob.

( l"c)

0-0043
0170
0314
0537
0885
-1379
2004
2389
2810
3264
3745
4761

EE—

TIe

NVHAY) 'Y axaxayg



where
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A + sign indicates a censored observation. Because the upper limit of observation time
isabout 35 weeks, T = 35 weeks. In this case, it is clear that 6-MP is the superior treatment,
there being 12 censored observations at long remission times on 6-MP and none on placebo.
The data will be analysed to illustrate the calculations.

To calculate W directly, a 21 x 21 table is formed with the failures and censored observa.-
tions in each group ordered separately along the margins. Entries of + 1, —1or 0 are made
in accordance with the scoring scheme (3-1) for the 441 comparisons. The result is
W = 335—-6+4 = 271. Since n, xn, is rather large, it is natural to consider the result
obtained by grouping observations. Then W is obtained from the formula for grouped data

given by (5-1) and can be calculated conveniently in the format:

Interval
(weeks)

0- 4
5~ 9
10-14
15-19
20-24

25—

Thus

The pattern is

and the format for calculating the variance is

1 m; M, d;

7 7

(S /Ul S

30

where

el

10 17 306
6 23 552
3 26 702
4 30 830

mxd;_,

0
560
1836
1656
2808

6860

= M(M;+1),
=n+n, - ~L,_,,

—
(]
w
-1
Y
—

O = 1O N o~
O kRO

(]

6
W= 3 {a,~b} = 307 —42 = 265,
=1

m;=fiq+fip, L= Civ1,4 T Cisy, B

€;

33
23
13
10

s

ny+ny,—3M,_—~m;-L, -1,

6-MP Placebo
™ r A

Fiq id a; 8 Fig ¢
0 0 0 — 7 7 0 —
4 4 2 42 6 13 0
2 6 2 52 4 17 0 1
1 7 2 51 2 19 0 1
2 9 1 57 2 21 0 1
0 9 5 105 0 21 0

@ = [fiate:dF 15 b =[fig+ep)Fy 4
The var (W|P, H,) for the grouped data is obtained from (4-3) with

fi
34
-20
-37
- 18

ORI O

[
()

e xf mixe; xf;

8330
1840
— 1800
-1110
- 960

6300
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Then,

[N Sk

5 5
var (W|P, H,) = (e )"(1':1 7, —1) {‘El mid;_; + :1 Ld;+ 3 ] mef;
17 a ¥ 7= t= i
9 9
= E-I—l’)z_é;_:_; {6860 +~ 7180 + 6300} = 5065-6,

Vivar (WP, Hy)} = 71-2.

The result obtained from the ungrouped data is Jvar (W|P, H))} = 75-1.

Suppose we wish to test Hy: F,(t) = Fy(t) (¢t < T) against the alternative H,: F(t) < Fyt)
or Fi(t) > Fy(t)(t < T). We are interested in whether 6-MP lengthens or shortens remissions
relative to placebo. We calculate

S - 2% 31
Jivar (W|P, Hy)} — 712

and the probability of such a value of Z or a larger one in absolute value is about 0-0009
from tables of the normal distribution. Consequently there is very strong evidence that,
patients receiving 6-MP have longer remissions than those receiving placebo.

If the test is done with the ungrouped data, we find Z = 3-61 and Pr (Z) ~ 0-:0004. The
result is quite close to that for the grouped data considering the moderate sample sizes in
each group.

12. Discrssiox

Some further problems connected with the generalized Wilcoxon test are: the extension
of the test to the case of double censoring (i.e. in the upper and lower tails of the variable),*
the extension of the test to more than two samples,* the development of a sequential W test

and the use of the W test to find confidence limits.

~ In principle, there is no difficulty in extending the W test to the case of double censoring
The pattern of observations given by (4-1) could be generalized by considering /; individuals
(1 = 1,...,5) to be censored on the left at a point immediately prior to the failure of the m;
individuals at rank ¢ in the ordering of distinct failures. The change in the scoring of 11"
given by (3:1) would be simple using the ordering relationships in the generalized pattern,
the assumption being made that individuals censored on the left or right cannot be ordered
among themselves. The proofs of asymptotic normality and consistency of the test based
on W follow directly from those given here.

The extension of the W test to the k-sample case could be made in a way analogous to
that suggested by Terpstra ( 1952) and Jonckheere (1954) for the extension of the ordinary
Wilcoxon test. The null hypothesis is that all samples come from the same population and
this is to be tested against the ordered alternative hypothesis: Fi(t) < Ft) < ... < F (1)
Suppose the statistic W is calculated for all $k(k — 1) pairs of samples. If we write W,, for
the value obtained from the pth and gth samples (p,¢ = 1,2,...,%; P # g), then we can
consider

W

bg

L1

k
W= S
p=lg=p+1
From the results of Terpstra and Jonckheere, the limiting distribution of W} should be
normal.

* I am indebted to Professor J. Hemelrijk and & referee for helpful comments concerning these
extensions.
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There are at least two ways to consider a sequential W test. First, suppose an experiment
comparing failure times is set up and n,,n, items are placed on test in each group. The
problem is to devise a test to stop the experiment at the earliest time possible (no saving in
number of observations). One solution for this problem has been proposed by Alling (1963)
based on least upper and greatest lower bounds for subsequent values of the ordinary
Wilcoxon test statistic. The W test could be applied sequentially in time but the conditions
necessary for this require investigation. Alternatively, it would often be desirable to con-
duct a sequential experiment that may result in a saving of time and observations. For
example, suppose a clinical trial is being conducted and the hypothesis being tested is of
type Fi(t) = F,(6t) with different values of 6 specified for alternative hypotheses. Indi-
viduals are entered sequentially in each group and some form of W test is carried out
sequentially in time. Under what conditions could such a sequential experiment be
carried out?

Approximate confidence limits for the scale parameter 6 can be found using the W statistic
when the model is Fy(t) = F,(6¢). The idea is to obtain an estimate of the confidence limits
for ¢ assuming an underlying exponential distribution and then use the W test to find the
approximate level of confidence for the limits. Thus the confidence limits are distribution
free; the exponential assumption is introduced merely to get convenient starting values.
If the failure time distributions in the two groups are exponential. then 7, 7, as defined in § 8
i>anestimate of ¢ and contidence limits can be derived from the F distribution. All observa-
tions in the second sample are multiplied by the upper and lower confidence limits for § and
two W tests are carried out using the new values for the second sample. Two normal deviates
vill be obtained, say Z,, Z,, and the approximate level of confidence that @ lies between
chese limits can be calculated from tables of the normal distribution. For example, using
the data of § 11 with those receiving placebo as group 2, we find f,/, = 39:9/8-7 = 4-6 and
85 9, confidence limits for §: 19 < 6 < 10. After two W tests, we estimate that the level
of confidence for these limits is about 929,. Generally, the distribution-free confidence
intervals will be wider than the corresponding intervals when the exponential assumption
is made.

I wish to thank Professor D.R.Cox for very helpful suggestions and encouragement
throughout the course of this work. Also, I want to thank my wife, Brenda, for doing the
calculations in § 10.

REFERENCES

Arrixg D. (1963). Early decision in the Wilcoxon two-sample test. J. Amer. Statist. Ass. 58, 713-20.

ARMITAGE, P. (1959). The comparison of survival curves. J.R. Statist. Soc. A, 122, 279-300.

Cox, D. R. (1853). Some simple approximate tests for Poisson variates. Biometrika, 40, 354-60.

CraMER, H. (1946). Mathematical Methods of Statistics. Princeton University Press.

Frereich, E. J. et al. (1963). The effect of 6-mercaptopurine on the duration of steroid-induced
remissions in acute leukemia. Blood, 21, 699-716.

Havperin, M. (1960). Extension of the Wilcoxon-Mann-Whitney test to samples censored at the
same fixed point. J. Amer. Statist. Ass. 55, 125-38.

HemeLRIIE, J. (1952). Note on Wilcoxon's two-sample test when ties are present. Ann. Math. Statist.
23, 133-5.

Hoerrpixg, W. (1948). A class of statistics with asymptotically normal distribution. dnn. Math.
Statist. 19, 293-325.

JONCKHEERE, A. R. (1954). A distribution-free k-sample test against ordered alternatives. Biometrika,
41, 133-45.

Kexparr, M. G. (1955). Rank Correlation Methods, 2nd edn. London: Charles Griffin and Co.



218 EpyMuxp A. GEHAN

KeNDALL, M. G. & Strart, A. (1961). The Advanced Theory of Statistics, 2. London: Charles Griffin
and Co.

LEHMAN, S. (1961). Exact and approximate distributions for the Wilcoxon statistic with ties. J. Ame
Statist. Ass. 56, 293-8.

Lemvanw, E. (1951). Consistency and unbiasedness of certain non-parametric tests. Ann. Math.
Statise. 22, 165-79.

Many, H.B. & WHiTNEY, D. R. (1947). On 2 test of whether one of two random variables is sto.-
chastically larger than the other. 4nn. Math. Statist. 18, 50-60.

Pearsox, E. 8. (1947). The choice of statistical tests illustrated on the interpretation of data classed
in & 2x 2 table. Biometrika, 34, 139-67.

Rao, V., Savage, I.R. & SoBgL, M. (1960). Contributions to the theory of rank order statistics: the
two-sample censored case. Ann. Math. Statist, 31, 415-26.

TErPsTRA, T. J. (1952). The asymptotic normality and consistency of Kendall’s test against trend,
when ties are present in one ranking. Proc. Kon. Ned. Akad. Wetensch. A, 55, 327-33.

Wricoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80-3.

APPENDIX A
The variance of W under H o and conditional on a given pattern (P) of failed and censored observa.
tions is var(W|P,Hy) = E{T,U,,~E(X U,,)'P, H,.
1i,J .7

The expectation is over the (1 +1n,)!/(n, 1 ny!) equally likely samples from the same pattern (general
form is given by (4-1)). This may be written
var(W|P,H,) = E{(Y, Ui+ 2 U0+ Y U, U+ 2 U,U|P,Hy, a1
1 =i FEJ M it

i,J
FASM
since E (3, U,|P,Hy} = 0, by symmetry.

1,7
We now proceed to evaluate each term in (A1). We have

e om. .

ny—1
n;+n,
. ( Lo )
where the term outside the brackets is the proportion of times a particular pair (¢,7) will occur in opposite
samples. The first term in the brackets is the number of ways of pairing & failed observation at rank ¢

E{3 Uy|P,Hy =
D)

E{'E. Uy Uyl P, Hy} =
%

8 iy M. M.
where K=F (m,) [( I'-X) +(nl+"2 ; L(—l)]
i=p \ 1 2 2

+i L\ (M; _ v (M) (M (ratne—- M~ L, )
AV AT A A ] 1 1

The outside term in (A 3) is the proportion of times a particular pair of observations (s, i') will oceur in
one sample and a particular observation (7) in the other sample. The first term in K gives the number
of ways of finding a meaningful pair (i, i) below and above J whenj is a failure observation. The second
term gives the number of ways of finding a pair of failure observations (1,7’) of lower rank than 7 when
7 s & censored observation. The last term is the number of ways of finding one observation above and
one failure observation below J when j is a failure.

Now, ny+n,— 3)

~ g, (A9

ny—2

il
E{Z UUCH’I:PvHo} =

27 J
J=J ("1+"2)
ny

by symmetry. Finally, E{Y UyUu|P,HY =0
=i
1=J
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because U,; is independent of U, and E(Uy|P,Hy) = E(U,;|P,Hy) = 0. Collecting terms in (A 1)
using (A 2), (A 3) and (A 4) and simplifying, we have var (I¥|P, H,) as given by (4-3).

APPEXDIX B

To show that W is asymptotically normal, we note first that (n, n,)~*W has the form of a two-sample
U statistic. Lehmann (1951) proved that such statistics are asymptotically normal using & general
theorem of Hoeffding (1948). We give a definition of a two-sample U statistic sufficient for our purposes:

Let Xy,..., X, ; ¥y,..., Y, ben, +n,independent, random vectors X, = (X, XP), ¥, = (Y, Y§),
with cumulative distribution functions (c.n.r.) Fy(x), Fy(y) where z, = (20, 2¥) and yz; = (¥, ¥)-
For ny,n, > 1 and a real valued function defined by #(X,, Y ), a statistic

1 a=1,...,n
v > - I H 1
n,nz:l‘gt(}x”}’) (ﬁ: l,...,n,_) (B 1)
is a two-sample U statistic. Lehmann (1951) showed U to be asyvinptotically normal when n, - cc such
that lim n, n, exists and under conditions that E{{(X,, Y )} = 9 and E{{{(X,, Y} = M < .

The difficulty with applying these results directly to the W statistic is that the distribution of B has
been considered conditionally for a given pattern of failed and censored observations and so we do not
have n, +n, independent random variables. However, we can show that, considered uneonditionally,
(nyn,)"1W is a two-sample U statistic and then apply & convergence theorem to prove asymptotic
normality.

Suppose there is a probability distribution of times to entry of the n, + n, patients entering study in
the interval 0 to 7'. This distribution may be of a very general type: a discrete lump of probability with
all patients entering at time 0, a uniform distribution, or various distributions with a bunching of

U=

vatients near timee 0. The only azsumpcion is that the distribazion of patient entrics is such thar the
number of {ailures at time I becomes large as ny, i, become large.
Now define

z, = (P, 22) (a=1,...,n),

where 28’ = x,, ] (time to failure, censoring) is from F,(z{") and z is an indicator taking a value 0, 1 as
z® is a time to failure, censoring. A similar set-up is defined for ¥ Then, X;,..., X,,l; Y. Y,,‘ are
n, +n, independent random vectors.
If we now define -1 if 2 <y® and (2@,yf) is (0,0),
or ¥ <y and (z2,yf") is (0,1),
HX,, Yﬂ) =0 otherwise,
+1 if zP>yP and (22,9 s (0,0),
or P>yl and (22,49 is (1,0)
and U by (B 1), then the statistic (n,7,)"!W is the same as U.

Now E{t(X ,, Y )} is well defined and E{t(X,,, ¥ £)}* < 1 under null and alternative hypotheses. Hence
as n; - o0 with limnjn, fixed and non-zero, the distribution of U is asymptotically normal. We have
ShO“’n w

{var (W{H,)}

w
J{var (W|P, H,)}
n 3var (W|P,H,)
. n;-3var (W|H,)
a8 n; —»cc and limn, /n, exists we obtain (B 2) from a convergence theorem of Cramér (1946, p. 254).

But var (W|H,) = Epvar (W|P, Hy) +var pE(W|P, H,),
where the expectation is over all possible patterns that could arise.

Under the null hypothesis, the number of individuals failing and being censored at the 2s points in
the general pattern can be considered as an outcome in multinomial sampling. The sample size is n, + n,

and the sum of probabilities over the 2s points is one.
Now E(W|P,H,) = 0, so we need to consider

{n2var (W|P,H)}/{n;2Epvar (W|P,H,)} as n,—>w.

The numerator is a polynomial function of (m,, M,I,L,) and, by a proposition quoted by Cramér
(1946, p. 255), converges in probability to the constant obtained by replacing the above variables by

is asymptotically N(0, 1)

and we wish to show is asymptotically N(0,1). (B 2)

Now if p—lim -1 (B3)
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their expectations from the multinomial. The denominator is the average of the numerator over all
possible patterns and approaches the same constant (to O(1.n,)). Hence, we obtain (B 3) and
follows from the convergence theorem of Cramér. The result holds for patterns that arise randon.
the manner described.

ArPENDIX C

The definition of asymptotic efficiency of W relative to F' is given by (8-1) and we now proceed to
evaluate the various terms for case (a) and (b).

Case (a)
For the F test, we have z = }log(,/iy) -
and we wish to find E(z) = E,E(z|s),

var (z|Hy) = E,var (z|Hy, s) + var, E(z| H,, ).
Here the pattern of observations is defined by the total sample size (2rn) and the number of failure
observations (s) prior to 7. We consider expectations and variances in the conditional universe where
8 = 2n—r,~r, is fixed, and then allow variations in s. The calculations will be asymptotic as n,s - oo,
Under H,, s has a binomial distribution with E(s) = 2n(1 —e-T¢),
Because E(f,) = 1/¢ and E(i,) = 1/(¢6), we find
E(z) = E,E(z|s) ~ }log8,

2E(z)| _ }
27 .’0-1_2. (C b
1 1 1
Also, var (ZIHO) >~ E'é (m"l’m

1
= (1l —e-T9¢)"
For the W test, we have W = 3 U,, as defined by (3-1). Now
0J
E(W) = n*Pr(X,> ¥Y,)+Pr(X] > ¥,)
~Pr(X, < ¥;)-Pr(X, < ¥))}, (€ 3)
where X, X are random variables of times to failure, censoring determined by Ji(z) and simil
Y, Y] are determined by f,(y). Here, X;=Y;=T and the probability of being censored at .
e~T¢,e~T%%, respectively. The probabilities are obtained as follows: -

T
PriX;>T)+Pr(X/2>T) = (‘ 8 g=ue=dn iy

oL

|

i (1 —_— e—Té(O-‘rl))

)
g+

and Pr(X;< V)+Pr(X; < Y) =f Pe~Pug-Idudy
0

1
= —— (] — e~T$B+1)y,
0+l“ ¢ )
(6-1)

Hence, E(n—W) = (79?5 (1 — TG+
- 21y !
and M = H1—e-2T9), (CH4)
cf9 {1
Now ver (n~W|Hy) = n~E(S, Uy~ E (3 Uy) | Hop
1%} iJ
=ntE(Y UL+ X U,Up+ 3 U,U,
i,J i J*j !
+ E Ui UppHe},
¥
J*j

since E(Z U,|Hy) = 0. To evaluate the four terms necessary for the variance, note that there are only

i,J
n? terms of the type E( U?%) so that the total contribution of the first term is O(n-?), Then
E(Z UyUey|Hy) = E(‘E, U,;UyslHy),
1% FESM
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~~uy syrmunetry and there are n?(n—1) terms in each summation. Also E(U,,U.;.|H,) = 0 since U}, is
independent of U,.;. and each has expectation zero. Thus
var (n—tW|H,) = 2n1E(U,; U, |H,).
Using the conditions in (3:1), we have
-X; <Y, X;>Y,),(X,>Y, X, < ¥,
(XS Y, X > Y (Xi> ¥, X, <Y)),
U,;Uy = 0 otherwise,
+ X > Y, Y,), (X, <Y, Y,
(X< Y, ¥ (X, < ¥, ¥,),
(Xi> Y, Y, (X; <Y, Y)).
We now wish to calculate the probabilities of the various events on the right-hand side. Let p, be
the probability of failure under H, and p, be the probability of a censored observation. Also, let fy(x),

Ji(z’) be conditional probability density functions of time to failure, censoring, respectively. For case (a),
these are all simple to write down.

Thus, Pg=1—e-T9, (C5)
= e-T¢ (C 6)
¢z

and fm =22 0<z<m),
Pa
’ e—T¢
flzy=—=1 (=1T).
P,

Far case a1, £02") is a discrete probability, but the notation is rerained to be analogous with case (5.
Now under Hy, Pr(X;> 7Y, ¥;)=Pr(X,< ¥, ¥,) =}
PrX;<Y,X;>Y,)=Pr(X;,>Y, X, < Y,)=}.
Thus EU,; U:‘:“IHo) =pii+ 4+ 2p3p, Pr{X, < min (Y, Y;)}
+p2p, Pr{X, > max(¥,, ¥,))
+pips Pr{X; < min (Y}, Y )}
—Pid+1) - 2pip, Pr{X; < Y, X > Y,},
where the time to failure variables follow f,(x) and the time to censoring variables follow f,(z’).
Now Pr{X; > max (Y,, Y,)} = 2Pr{X; < ¥, X, > Y,}. Hence
E(UyUy|Ho) = $p; 4 2p3p, Pr{X; < min (Y, Y)} + 2p2p, Pr{X; < min (Y}, ¥}.)}, (C7)
and the probabilities can be written down immediately:
Pr{X;<min(Y, Y;)} =% Pr{X,<min(Y], Yp)=1.

Thus E(U,UylHg) = H1 —eTo) 4 e~To(1 — e~T%)
and var(n"2W|H,) = n~4(1 —e-T¢)3 4 2¢-TH(1 — e~T9)}. (C 8)
Finally, the a.r.E. of W to F is obtained by substituting (C 1), (C 2), (C 4) and (C 8) into (8-1) to get
(1 _e—!Toﬁ)!
ARE. = —

41 —e Tty 4e-To(l — e T¢)?
Values of A.R.E. for case (a) are given in Table 1 for various T'¢.

Case (b)

In this situation, 2n patients are entered into study according to a uniform distribution in the fixed ,
interval 0 to T and fail according to an exponential distribution. In the group receiving treatment A,
the probability of a patient entering in any interval of time (At) is (At);T" and failure is according to f,(z).
We have T-z ¢

Pr (patient fails at ‘age’ z) = f E,e-d”dx dv
0
T—
=( Tx)¢e"¢’dz Oz, (C9)
1
Pr(patient censored at ‘age’ z’) = ie‘d"'d:c’ (0<2'<T) (C10)

where ‘ age’ is measured from time of entry into study.
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Now T(T—u) 1
= -Pu =] —— —e-T9 T
Pa fo 7o PO = 1 (l-enTo), (€ 'y
T) 1
po= [, petan= pa-em (12

and fy(z), f,(x’) are the probability density parts of (C 9), (C 10) divided by p,, p,, respectively. Similarly,
Jaly) and f,(y') are defined by replacing ¢ by 6¢ in p,, p,, f(x) and f,(z').
For the F test, we transform /2, to z as before and we have
2E(z) _ 1 BE(,)
8 ~  2E@E,) o6 .
1
n—r,

(C13)

Now Elty|n—r,) = {(n—r) B(Y)+r, E(Y")},

where Y, Y’ follow f.(y), f,(y'). respectively. Then, E(Y) and E(Y’) are easily evaluated and when
substituted in (C 13) we find E(%,|n~r,) = 1/(04) and so

GE(z) 1
20 |poy 2 (€19
Under H,, the expected number of individuals failing in the two groups before 7 is 2np,, so that
. 1
var (z|H,) ~ (C 15)

{1 = 1/T¢(1 —e~T2)}
For the W test, E(W) is defined by (C 3) and the probabilities needed are found using (C 9) and (C 10):

Pr(X,>7Y)= ff (T,;u) pedu (T;v) Odeb¢odudy (0<u,v<T)
u>v

6 1
= e o —e-T
- 6+1 T¢(0+1)’{6(0+3) e~ T (0+1)2}
1
—e —Te6-
Y TR aEeT) OO+ e THO+ 1) 4 TR0 (30 4 1), (C1g)
Pr(X/>Y)= J.J. 1 e~9u (T_v)0¢e—0¢¢dudv O<u,v<T)
' uso T T

_ [V} e~ T9 1 eTHO+1) (26+1) rets
- ¢(0+1)—T—¢—[T¢(6+1)]’{ - g tg e TR (C17)

The Pr(X, < 1) and Pr(X, < 1)) are obtained by replacing 4 by 1 & and ¢ by &6 in (C 16, (C 173,
respectively. Substituting these results in (C 3), we have

PE(n-W)| 1 1 1 _
Ta_l é{l—T—¢+W(l—e 2T¢)} (C 18)

The value of var (n—2W|H,) is found in exactly the same way as before, with p, and p,0f (C11)and
(C 12) replacing (C 5) and (C 6) in the equation for E(U,, U,;|H,) given by (C 7). We now need to evaluate
Pr{X, <min(Y,, Y.)} and Pr{X, < min( Y, Y.

Now under H,, u(T _ o
° Pr(Y,<u)=J‘ ue‘¢“dv
o Tpa
1{(1 e~¢v) l(1 1+ ¢ ])}
= — —a—Guy _ — g~ Pu u
Pa T¢
d v 1 ¢
an Pr(Y’<u)=f — e ¢'dy
! 0 Tpl ,
= o (1 —~e-¢¥),
Top, )
T(T —w) 1
Therefore Pr{X; < min(Y,, ¥’ =J- —éu{l__—_. 1 — e—9u
< min(, ¥y = [ (O geon (1o 1 o)

x {1_51 [(1—e-¢“)—§%(l—e‘¢"[l +¢ul)]}du
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and : r ’ _ T(T.._u)
Pr{X;<mln(}i,Y;-)}— 7;95{1 T¢ 7

these integrals are simple, though somewhat laborious, to evaluate. The results are

(1- e“¢”)} du;

l 1
Pr{X; <min(¥, Y)} = { (3 —%e- (=8 +3 e Té —g~27T¢)
1
—T¢ | g—2T¢ _ 87 o-3T¢ .
(T¢)3 i € +e 1 0_5 € )}
and
! |
X, - e~T¢ 4 ¢—2Té _1 -T9 _ g=2T¢ 4 11 o-3T¢\\

Pr{ <mm(Y,,Ir 3B = { T3 +e )+(T¢ 1+de e +4He )’

With these probabilities, we can now evaluate E(U; U,;|H,) and var (n=2W|H,). We have

2 4 4

var (n~:W|H,) @ n-! { Q1 —e-’Té)}. (C 19)

373(Tg)  WTe) TUTHP
Substituting (C 14), (C 15), (C 18) and (C 19) into (8-1) we can calculate the asymptotic efficiency
of W relative to F. This is done for various values of T'¢ in Table 1.



