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l. SUMMARY 

203 

A distribution-free two-sample test is proposed that is an extension of the 'Wilcoxon test 

to samples with arbitrary censoring on the right. The test is conditional on the pattern 

of observations. The null hypothesis is 

H0 : ~(t) = .Fz(t) (t ~ T) against either 

(t ~ T) or 

H2 : F1(t) < F2(t) or F1(t) > F2(t) (t ~ T), 

where F1, F2 are cumulative distributions (discrete or continuous) of the observations and 

Tis their upper limit. The test is shown to be asymptotically normal and consistent against 

one-sided alternatives F1(t) < F2(t) (t ~ T) and against two-sided alternatives where either 

F1(t) < F2(t) or F1(t) > F2(t) (t ~ T). The asymptotic efficiency of the test relative to the 

efficient parametric test when the distributions are exponential is at least 0·75 and increases 

";th degree of censoring. When H0 is true, the test is not seriously affected by real differences 

in the percentage censored in the two groups. Some comparisons are made for five cases of 

varying degrees of censoring and tying between probabilities from the exact test and those 

from the proposed test and these suggest the test is appropriate under certain conditions 

when the sample size is five in each group. A worked example is presented and some 

discussion is given to further problems. 

2. I~TRODL'CTIO~ 

The statistical problem considered in this paper arises in clinical trials comparing two 

treatments, where the observation for each patient is often time to failure or censoring 

(sometimes referred to as loss). In fact, the results are relevant for distributions other than 

failure times and in fields of application outside medicine. However, the discussion is in 

terms of failure times since most applications are of this type and it is convenient to use 

medical terminology. 
A common problem in a clinical trial is to compare two treatments for their ability to 

prolong life or maintain a patient in a. well state. Patients enter study serially in time and 

are randomly allocated-to one of two treatments. At a timeT after the start of the study, 

an observation is recorded of time to failure (death or relapse) or censoring from observation 

(patient still alive or in remission at T). In general, ni -ri individuals have failed and ri are 

eensored at time T (i = 1, 2), but because patients have entered at different times, the 

times to censoring will differ among patients. 
_\special case has been considered by Halperin ( 1960) in an industrial life-testing context. 

• This investigation was supported by a Public Health Service Research Grant from the National 
Cancer Institute. 
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In his application, components could be started on test at the same time so that at the end of the experiment, times to censoring were the same for items not having failed. HoweH>r. times to censoring could differ in industrial life-testing experiments where items are startt'd at different times or where a policy of replacing failed items is followed. 
If it is known that time to failure is exponentially distributed in both treatment group~. an F test can be used to test for treatment differences (see § 8). Since-the exponential assumption is often not warranted and no other approach seems generally applicable. wt· consider a distribution-free two-sample test. The W test proposed is an extension of tht· \Vilcoxon test to samples with arbitrary censoring on the right. The test is conditional on the given pattern of failures and censored observations. 
Halperin (1960) and Rao, Savage & Sobel (1960) have considered two-sample tests with censoring, though all assume that times to censoring are the same in both samples. Recently. Alling (1963) has proposed a modified Wilcoxon test to be calculated sequentially so that an early decision may possibly be reached. His test is valid when censored observations an· present, the test being based on least upper and greatest lower tcunds for subsequent values of the ordinary Wilcoxon test statistic. The greatest saving in time of obserTati(JI: is w·hen the sample sizes are small. 

3. THE Jf STATISTIC AXD RELATIOX TO OTHER STATISTICS 
\Ye assume that n1, n2 indi,-iduals are allocated randomly to treatments A, B, respl'l'li' · : .. 

and we observe: x~, ... ,x;
1

, r1 censored } 
treatment A, 

Xr
1
+l• ••• ,Xn

1
, n1 -r1 failures 

y~ • ... ,y;
1

, r2 censored } 
treatment B, Yr

1
+v · .. , y,,

1
, n 2 - r 2 failures 

where X;. Y; are times to failure and x~, yj are times to censoring (all measured from timr llf entry into study). It is emphasized again that the observations need not be failure tinw~ Such a pattern of observations could arise in a number of ways: in a clinical trial con· ducted for fixed time T where patients enter study serially in the interval 0 to T; in an industrial experiment where all components are started at time zero and an analysis is )J('iu: done at timeT later; in the same type of experiment, except that items that fail are repla<·•·· 1 
randomly; in a medical or industrial experiment where studies are being conducted 111 
different centres, each study lasting a different length of time and an analysis is done h.\ pooling results from all centres. Here T is the upper limit of time of observation arnll••.: centres. A further possibility is a study of tolerances to different drugs when for !'

0111 r reason large tolerances cannot be measured accurately. 
The test proposed is appropriate for these and possibly other cases with general type>' <of censoring. The essentia,J requirement is that the average exposure to the risk of failur~' k the same in the two groups. In other applications, the arbitrary censoring should lw oft lw same type in both groups. In the sequel, the test is discussed in terms of the clinical tnnl though it is clear that the other applications will also be relevant. . , The times to failure are from cumulative distribution functions (c.n.F.'s) F1(x). f;~ 1 ' 1 ' which may be discrete or continuous. When considering the sample outcomes, we 1111"" the possibility of ties among failure and loss times. 
The null hypothesis is 

H0 : F1(t) = F2(t) (t ~ T) (treatments A and B equally effective). 
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A generali::ed Tr ilcoxon test for singly-censored samples 
'J'hc alternative hypotheses (Ha) are either 

H1 : F1(t) < F;(t) (t ~ T) (treatment A more effective than B), 
nr the two-sided version H2 : F1(t) < F2(t), 
ur F1(t) > F2(t) (t ~ T) (treatment A orB more effective). 

20;") 

nuughly, we are interested in one or two tail tests of the difference between the c.D.F.'s for 
treatments A and B. 

\Ve define 
-1 

xi= Yi 

xi> Yi 

or (x~, y;) 

or x~;.:: Yi 

I I } or xi < Yi or y1 < X;, (3·1) 

and calculate the statistic W = .:E U;i where the sum is over all n1 n2 comparisons. Hence, 
i,j 

there \Viii be a contribution to W for all comparisons of the two samples where both patients 
ha,·e failed (except for ties) and in all comparisons where a patient censored from observa
tion has survived longer than one who has failed. 

TheW statistic is related to the Wilcoxon (1945) statistic T 1
, the Mann-Whitney (1947) 

statistic U 1 and Kendall's ( 1955) statisticS when there are no censored observations or ties. 
It is easy to show that W = n

2
(n

1 
+n

2 
+ 1)-2T1

, 

where T 1 is the sum of the ranks of the second sample in the ordered combined sample. Also, 
W = 2U1 -n1n 2, 

where U 1 counts the number of times an observation in the second sample precedes one in 
the first in the combined ranking of the two samples. Further, W = S, a statistic defined 
by Kendall for use in rank correlation. The last is also true when ties are present. 

\Vhen all censored observations have the value T, Halperin's (1960) statistic ffc is 
defined by W 2 rr = vc+rlr2-nln2, 
wh~re [~is related to the Mann-\Vhitney statistic by Uc = U 1(n 1 -r1.n 2 -r2)+r1(n 2 -r2). 
II • 1\· C'( ;z 1 - r1 . n2 - r2 ) is the ~Iann-\Yhitney statistic based on the ;1 1 + 11 2 - r1 - r2 failures. 

4. THE CONDITIONAL MEAN AND VARIANCE OF W 
\Ve have n1, n 2 observations which can be arranged in the follo'\\'ing general pattern: 

(4·1) 

where 

mi = number of uncensored observations at rank i in rank ordering of uncensored 
observations with distinct values; 

l; = number of right-censored observations with values greater than observations at 
rank i but less than observations at rank (i + 1). 
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The points on the vertical line correspond to a rank ordering of the distinct values of the 
failure observations and these occur at 8 distinct failure points. Any set of failed and censored 
observations can be represented according to this diagram. If there are censored obserYa
tions prior to the first failure, these could be included by counting them as 11 \\ith m1 = 0. 
Ordinarily, such observations would be excluded since they provide no information on the 
differences between A and B. The calculation of mean and variance is no\ affected, since the 
calculation is conditional on the given pattern of observations. As an example, if a + 
represents a censored observation and we have the following sample of survival times 
(weeks): 8, 8 +, 10, 10, 11 +, 14 +,the pattern is 

:r::. 
Suppose H0 is true and the average exposure to the risk of failing is the same in the two 

groups. If the n1 + n 2 individuals in the pattern are labelled. differently, there are (n1~ 712
) 

possible allocations of the individuals to two samples with nv n2 observations. \Ve consider 
the conditional mean and variance of W under Ho· These are denoted by E(WjP, H0 ) 
and var (WjP, H0), where P is the pattern of observations. The expectations are o.-er 
the (n1 + n 2) !/{n 1! n2 !} equally likely samples leading: to the same obserYed pattern P. 

It is easy to see 
E(WjP, H0) = 0, (4.:!) 

by symmetry. 
The derivation of the variance is given in Appendix A. The formula is 

n n { s s var(WjP,H0)=( )/ 2 

1) ~miM;_1(Mi_1 +1)+~liMi(M,+1) n1+nz n1+nz- i-1 i-1 

+ ± mi(n1 +n2 -.J.fi -Li_1) (n1 +n2 - 3Mi_1 -mi -Li_1 -1)}, (4·3) i-1 
j 

where ~= ~mi, ~=0, 
i-1 

L 0 = 0. 

When there are no ties or losses, i.e. m1 = ... = m8 = I, 11 = ... = l
6 

= 0, and 8 = n1 +11:
the formula becomes 

which is the form expected from the variance of the Mann-Whitney (I947) statistic. Here. 
Pis simply the ranking of the n1 +n2 observations. 

If there are no ties and all censored observations occur after the (n1 +n2 -r1 -rz)th 
failure, i.e. m1 = ... = m6 = I, 11 = ... = l8 _ 1 = 0, l

8 
= r1 +r2, and8 = n1 +n2 -r1 -r2 we haW 

var (WjP, H0 ) = ~1n2 (n1 ~n2 - r1 - ~2i {(n1 + n2) (r1 +r2) + l[(n1 +n2 -r1 -r2)2 -1]}, n1 + n2 n1 + n2 -

which is that expected from the relation between Wand the Cfc of Halperin (1960). ., 
Hemelrijk (1952) has given a formula for the variance of the Mann-Whitney statistic. [ · 

allowing for ties. His formula gives the same result as ( 4·3) when there are tied and failurf 
observations only. 
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\\'hen m1 = m, 11 = l, m; = l; = 0 (i 9= I) (or equivalently m1 = m1 , m2 = m2 , l; = Oforall i, 
,,, == 0 (i > :!)), the observations form a 2 x 2 contingency table with margins fixed and 
,·onstitute an outcome in hypergeometric sampling. If two treatments are being compared 
in 111 .n2 patients, them individuals may be considered as the 'responders' having tied 
\·a1 11cs on a response scale and the l individuals as 'non-responders', i.e. as being censored 
and requiring a greater stimulus to respond. The lV statistic reduces to the difference in the 
products of the diagonals in the 2 x 2 table and 

I 
lmn1 n2 var ( lV P, H0} = ( 1), 

nl +n2-

which is exactly the same as that obtained by assuming the lV statistic to be an outcome 
in hypergeometric sampling. 

5. THE CALCULATION OF JV AND var(WjP, Iio) IN LARGE SAMPLES 

This section can be conveniently skipped by those not concerned with the calculation of 
If in reasonably large samples (say n 11 n2 both 25 or more); suffice to say that W and 
rar ( WjP, H0 ) can be calculated quite easily by grouping the failure and censored observa
tions. The W statistic and its variance are simple to calculate when ·n1, n 2 are small. How
cwr if n1, n 2 are large, then both the mean and variance calculation are lengthy. 

Of course, it would not be difficult to program both calculations for an electronic 
C"omputer. Alternatively, the failure and censored observations could be grouped in 

8 intervals in a way similar to that of the life table: 

where 

Treatment A 

Xo. of Cum. no. No. of 
Interval failures of failures censored 

1 fu Fu Cu. 

fu F,A ciA 

8 ! . .t F,.t c,.., 

fiA = number of failures in interval i, 

cu = number of censored observations in interval i, 
i 

FiA = :E fu. 
j=l 

and there is a.nother table with entries fiB, ciB and FiB defined in the same way for treat
ment B. 

The intervals should be chosen the same as for ordinary frequency distributions and 
need not be of equal length. The failures in the ith interval are considered 'tied' at rank i 
in the rank ordering of intervals. The censored observations are also considered as 'tied' in 
the ith interval and are counted as occurring after interval i- 1 but before i. Thus, informa
tion is lost concerning the ordering of failed and censored observations within each interval. 

The formula for W then becomes 

II 

W = :E { [f,.A + c,.A] ..lii-1, B - [fiB + c,B] ..lii-1, .A} • 
i-1 

(5·1) 

;J 
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where it is assumed that the same intervals are used in both samples. This statistic is quite simple to evaluate if each term is calculated successively by interval in the appropriate table. 
The conditional variance of W is found by using the general formula (4·3) with 

Both E( WjP, Ha) (in absolute value) and var ( WjP, H0 ) will tend to be smaller on the average for the grouped case than for the ungrouped case. This results from the loss of a proportion of the n1 n2 comparisons because of grouping. If this proportion is not largl'. the test of W should not be seriously affected. In any doubtful case, the test on tlj(' ungrouped data could be carried out. 

6. ASYMPTOTIC XOR:\I.ALITY OF W In Appendix B, it is shown that W is asymptotically normal '\lith mean and nriance under the null hypothesis given by ( 4·2) and ( 4·3). The result foliows because (n1 n 2)-1 Tr ha,; the form of a two-sample U statistic, defined by Lehmann (1951), and a convergence theorem of Cramer (1946) may be applied to prove asymptotic normality. It is assumed that unconditionally the pattern of observations has arisen in a random way from a probability distribution of times to entry into study (in a special ease. all patient' (·;,t· : ·' · time zero) and t"·o probability distributions of times to failure. Consequently, to test H0 against either H1 or H2, a value of 

z - -- -=w=-=-=-:-.; - ,f{var (WjP, H0 )} 

is taken as asymptotically normal with zero mean and unit variance. The normal approximation is somewhat better if a continuity correction is made. especially if the sample sizes are not large. In an application where there are no or relatinly few tied and censored observations, a continuity correction of ± l should be made. Here the possible W scores will usually be two units apart. Otherwise, the continuity correction should be ± t· 
J The adequacy of the normal approximation is investigated in § 10. The results indieat<' that the W test can be applied when sample sizes are as small as n1 = n2 = 5, as long as not more than six of the ten observations are involved in ties or censoring and there are at ka~t five distinct failure points. In the special case m1 = m, l1 = l, mi = li = 0 (i =1= l) where the observations form a 2 x 2 contingency table, the W test is equivalent to the test based on the normal approximation to the hypergeometric distribution. Pearson (1947) has shown that even for moderate sample sizes the normal approximation gives probabilities in clo,.;~· agreement with those from the hypergeometric distribution. 

7. THE CONSISTENCY OF THE W TEST We now consider the behaviour of the W test when the null hypothesis is not true. F0 r this, we need E(WjP, Ha) and a bound for var (WIP, Ha>· The alternative hypothesis }l('rt' is fixed, that is it does not depend on the sample size in each group. Just as in Appendix B. we assume that considered unconditionally X 1, ••• , Xn
1 

are independent random ,·ccl<,r variables taking values (x, 0) or (x', l) if the sample outcome is a failure, censored obscrra· 
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tion. respectively. There is a similar assumption for Y1, ... , Yn,· For the sake of simplicity 

11
.c al,;o assume n 1 = n2 = n. 
We have 

:IIIJ this is non-zero when 
Pr(X; > lj)-Pr(Xi < lj) =I= 0. 

for the variance, we write 

n-'var (lVjP, Ha) = n-4E(W2 jP, Ha)- n-'[E(WjP, Ha)J2 

(i ·l) 

= n-4E {:E[Ti1 + 2: U,1 [1;.1 + 2: [1;1 U;r + 2: [1;1 U;'i'IP, Ha} 
i=+=i' j=Fj' i=t=i' 

Hf 
-n-'[E{:Er:11P, Ha}]2• 

The four terms comprising E(W2 jP, Ha) have n2, n2(n -1), n2(n -1) and n 2(n -1)2 individual 
tenus in the summations, each with expectation at most one. Therefore, the first three terms 

111 the above expression are at most 0(1/n). But 

E { 2: Uii [:·riP, Ha} = 2: E( UuiP, Ha) E( fl;·riP, Ha) 
i+i' i+i' 
i+i' i+i' 

= n 2(n -1)2 [E( P;1 jP, Ha)]2 

.llld [E{:E[l;ijP, Ha}J2 = [:EE(U;ijP, Ha)J2 

= n4 [E(U:1 jP,Ha)]2 

,.,1 that n-'var (WjP, Ha) is at most 0(1/n). 

Therefore li __,. (WjP H)_ 0 m n var , a - • 

Hence 

n-+oo 

n-2E(WjP, Ha) -n-2E(WjP, H0 ) 

,J{n--4var(WjP, Ha)} 
becomes indefinitely large as n~co and the probability that the W test rejects the null 
hypothesis is l. 

Tl:n ~. the lf test is consistent for alternatiYes "·here (7 ·I) is true. In particular. the one
·:·iL·d lr test is consistent against alternatiYes F1(t) < F2 (f) (t ~ T) and the hw-sided test 
against alternatives where either F1(t) > F2(t) or F1(t) < F2(t) (t ::;;; T). 

8. THE ASYMPTOTIC RELATIVE EFFICIE~CY OF W TO F ASSUMING 

EXPONENTIAL FAILl:RE DISTRIBUTIONS 

Suppose the probability density function of time to failure for a patient receiving treat
ment A is 

and that for a patient receiving treatment B is 

j 2(y) = O¢exp( -O¢y). 

We wish to test the hypothesis 

H: F1(t) = F2(8t) (t::;;; T, 0 < e::;;; 1), 

where under H0 : e = 1 and under H1 : 0 < e < 1. Such a test would be appropriate if we 
were interested in whether failure times on treatment B were a constant proportion (8) of 
those on treatment A. For example, if e = 0·75, the failure times for the patients on 
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treatment A would be :::!5 ~ ~ longer than those on treatment 13. A test of the above hypo
thesis is equi\-alent to one for differences in location, F1(t) = F2(t + 8), when logs of faii~JJ;e. 
times are analysed. 

_\n efficient parametric test for the hypothesis is to take ldl2 as having an F distribution 
with (2(n1 - r1 ), 2(n2 - r 2 )) degrees of freedom, where 

The F distribution is exact when the time of observation in each group is a random variable 
and n 1 - r 1, n 2 - r 2 are fixed, and a good approximation (Cox, 1953) when the time of 
observation is fixed and the number of patients failing prior to that is random. 

We wish to calculate the asymptotic efficiency of the generalized Wilcoxon test relative 
to the F test in two situations: 

(a) all individuals enter study at time zero, observation stops at T (the case where all 
individuals fail is covered by letting T -+00 ), 

(b) individuals enter study at a constant rate, A, in the interval 0 toT and fail according 
to j 1(x) or j 2(y). 

For both cases, it is assumed that the number of patients in each group is n. Case (b) is 
a model of a clinical trial, also suggested by Armitage ( 1959), where it is reasonable to assume 
there is a fixed probability, t\(L~t), of a patient entering a study in any small interval of 
time (.M). Cnconditionally both the number of patients entering study and the total time 
of exposure to the risk of failing are random variables. Conditional on 2n patients being 
entered in 0 toT, the times of entry will be distributed independently and uniformly over 
the interval (0, T). 

For case (a), the chance of an individual being censored at timeT is e-T9, e-TO¢ for those 
receiving treatments A,B, respectively. For case (b), the same chances are (1-e-Trf>)j(T 
and (1-e-T0-f>)j(T8cp). Further details are given in Appendix C. 

In the calculation, it is convenient to transform the F statistic to z = t log F so that z is 
asymptotically normal \,·ith 

1 ' 1 1 
var (z) ;;;:: 2 (2(n

1
- r

1
) + 2(n

2
- r) ' 

where 2{n1 - r1), 2(n2 - r2) are the number of degrees offreedom in F. Also, we arrange that 
the variance of each test statistic is of order n-1 by considering n-2W rather than W. 

To obtain an asymptotic measure of test efficiency, we consider a sequence of alternative 
hypotheses in which 8 approaches the value tested, 8 = 1, as n increases. In this case, the 
asymptotic efficiency of W relative to F is 

{
cE(n- 2 lV)j }2 

A.R.E. =lim (:{) le=l x {n"var(z!Ho)} 
n--+x. {nvar(n-2 WIH0 )} {c~(z) }2 

c8 0=1 

(8·1) 

and the calculation of the terms required is given in Appendix C. A good exposition of the 
concept of asymptotic relative efficiency (A.R.E.) is given by Kendall & Stuart (1961, 
pp. 265-76). 

Values of A.R.E. for case (a) and (b) are given in Table 1 for various ...-alues ofT¢. 
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T¢ = total study time 
average failure time on treatment A' 

Now 

so that if an estimate ofT¢ is available, some idea of the A.R.E. can be obtained. Note that 
the minimum value of A.R.E. is 0·75 for both cases (a) and (b) and that A.R.E. increases as 
T¢ decreases. As T¢-+0, A.R.E. approaches one for case (a) and 8/9 for case (b). Clinical 
trials are often conducted with T¢ about 2 or 3 and here A.R.E. is close to 0·80. 

Table l. Asymptotic efficiency of W relative to F assuming 
exponent1~al failure in two groups 

Treatment A: 9 exp (- ¢x); treatment B: 8¢ exp (- 8¢y) 

Case (a). All indi,'iduals enter study at time zero, observation st<lps at T. 

A.R.E. 

T¢-+ ::o 

0·750 

T¢ = 3 
0·785 

T¢ = 2 

0·838 

T¢ = 1 

0·934 

T¢-+ 0 

1 

Case (b). Individuals enter study according t<> uniform distribution over (0, T) and 
study stops at T. 

A.R.E. 

Ttf>-+ co 

0·750 

T¢ = 3 

0·781 

T¢> = 2 

0·802 

T¢ = 1 

0·836 

T¢-+ 0 

8/9 

_-\. rationale for these results is as follows: consider the pattern,-; of obse1Ta tions fol· a 
case (a) situation with a high degree of censoring. The patterns might appear as 

I 
A~ 

The ratio of the means in the F test will differ from one when there is a difference in the 
number of failures and times to failure between A and B. The value of W depends mainly on 
the difference in the number of failures between groups. The A.R.E. result means that as T¢ 
becomes small and there is more censoring, the times to failure are not much more important 
than the number of failures. The same type of result was found by Armitage (1959) for 
paired data, when he compared the A.R.E. of the sign method to parametric maximum 
likelihood for exponential distributions. 

The increase in A.R.E. is slower for case (b) as T¢-+0. In this situation, it would be 
expected that those individuals censored would be among the later entrants to study and 
so would tend to occur near the beginning of the pattern. Knowledge of the times to failure 
would then be relatively more important. 

These results suggest that the W test would be reasonable to apply when comparing 
failure time distributions, especially when some censoring is expected. When the distribu
tions are not exponential, a two-parameter distribution such as the Weibull might be 
needed. If X has a Weibull distribution, it is well known that X 11"' has an exponential 
distribution. But any such power transformation would not affect W since W is rank 
invariant. Hence, the calculations of A.R.E. given would be exactly the same if the distrihu
tions were assumed to be Weibull with known index. It is reasonable to suppose that the 
A.R.E. values would be at least as great if the distributions were 'Veibull with unknoum 
index, so that the stated values are lower bounds for A.R.E. 
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9. Loss R.-\TE DIFFERE~T I::-1" THE TWO GROUPS 
Suppose that in an application there is in fact no difference in the C.D.F.'s of time:, LO failure, but that for some reason there is a difference in the percentage censored in the two groups. In an extreme case, all individuals are observed to failure in one group and study stops at time T1 in the other group. This could happen in a clinical trial if the drug given to patients in one group had deteriorated by time T1 or it was not possible to administer treatment after time T1• In such cases, it would only be appropriate to consider failures and censored observations up to time T1 in the affected group~ We assume that the sample size is n in each group and all individuals have entered study at time zero, so T1 is the length of study for all individuals in the affected group. 

Table 2. Ratio of "'{var(W/H0)} to "'{varR (W/H0 )} for various 1-rfn 
1-r/n 

Ratio 0·95 0·9 0·8 0·7 0·6 0·1 
y'{var(lVJH0 )} 

1 1·035 1·065 1·115 1·152 1·180 1·357 v' { varR ( lVJHo)} 

"''hat happens to the mean and variance of W if an analysis is performed without considering all censored observations restricted to one group? We are concerned with the average effect of censoring one group at T1 and so we calculate E( W/ H0) and var ( W/H0 ), that is we average over the possible patterns that could occur. When there are n patients per group and H0 is true, the number failing in each prior to T1 is binomially distributed with expected value n- rand variance 

n (~) ( 1-~). 
The means and variances for the two cases are as follows (taking terms to 0(1/n) for the variances): 

Los.se.s rt.:Jfrictal to one group 
ER(W/H0 ) = 0, 

2( r)a1 2(r)( r) n-•varR (W/H0) ~- 1-- - +- - 1-- . 3 n n n n n 

Losses not restricted 
E(W/H0 ) = 0, 

n-4
var(WjH0) ~ I~n +1

4
1 (~) (1-~)+I~n(~-~r. 

Thus, if the mean and variance of W are calculated in the usual way, there is no bias in the estimate of the mean but the estimate of variance will be an over-estimate. To examine the extent of the over-estimate, Table 2 gives the ratio of the two standard errors for various values of I - r jn. 
The ratio of the standard errors is less than 1·2 even when 40% of the observations are censored at T1 in the affected group. There will be some loss in sensitivity in detecting departures from the null hypothesis when the ordinary W test is applied; however, this is unlikely to be serious when the proportion of censored observations is under about 20%. 
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10. SoME EXACT CALCULATIONS 

Table 3 presents a comparison of tail probabilities using the generalized Wilcoxon test 
(corrected for continuity) and exact calculation for five cases of varying degrees of censoring 
and tying. The sample size in each group is n1 = n 2 = 5 and the pattern of observations for 
each case is given. The cases were selected arbitrarily to represent various degrees of 
censoring and tying. The total number of obsen-ations invoh-ed in ties or censoring ranges 
from four for case IV to nine for case II. 

For each case, the first column gives the cumulative frequency of a given score or larger 
from the exact distribution. It was necessary to evaluate scores from only te~) = 126 
possible samples, since the distribution of W is symmetric. The second column gives the 
exact probability of a given score or larger and the last column gives the estimat<>.d prob
ability using the W test, corrected for continuity by subtracting ! from each score. 

The probabilities from the W test are remarkably close to the exact probabilities con
sidering the small sample sizes and heavy tying and censoring. This is especially so in the 
tail of the distribution where most interest lies. The approximation is poorest when a large 
number of samples have the same score, but this happens more often near the centre of the 
distribution. If it is decided arbitrarily that the normal approximation is adequate when 
the absolute difference between approximate and exact is 0·01 or less up to a cumulative 
tail prol•abilit.\· of (1-!(J, tht:n only cases II and III L1il to i'ati~fy this c-riterion. In both of 
these cases, the number of different failure points is only four and the total number of 
obserYations involved in ties or censoring is nine and six, respectively. 

It is difficult to make a general statement on the sizes of sample necessary before the 
•symptotic theory holds because of the Yarying degrees of censoring and tying that are 

·possible. Halperin (1960), for his case, has stated that when n1 = n2 = 8 the asymptotic 
normal theory is adequate for all practical purposes up to about 75% censoring (no tying) 
at both the 5 and 1% significance levels. Lehman (1961) considered the exact and approxi
mate distributions of the Wilcoxon statistic when n 1 = n 2 = 5 for five cases of varying 
degrees of tying. Using the arbitrary criterion above at significance levels of 0·01, 0·05, and 
0·10, the normal approximation was adequate when the number of observations involved 
in ties was six or less. Taking the results here with the others, the normal approximation 
with continuity correction seems adequate when n1 = n2 = 5, as long as the total number 
of obserYations tied or censored is six or less and there are at least five distinct failure points. 

Of course, if the application of the W test is doubtful in a particular case, the following 
rule seems reasonable: calculate Jr (corrected for continuity) and if the result is borderline 
(say 0·03 to 0·10), calculate the exact test. Otherwise accept the verdict of the W test. 

11. A WORKED EXAltiPLE 

In this section, we apply the lV test to an example from a clinical trial. In the trial, 
reported by Freireich et al. (1963), 6-mercaptopurine (6-MP) was compared to a placebo in 
the maintenance of remissions in acute leukemia. The trial was actually conducted sequenti
ally, but will be here analysed as a fixed sample size trial. One year after the start of the 
study, the following lengths of remission were recorded: 

6-MP (21) 

Placebo (21) 

Length of remission (weeks) 

{
6, 6, 6, 7, 10, 13, 16, 22, 23 

6 + ' 9 + ' 10 + ' 11 + ' 1 7 + ' 19 + ' 20 + ' 25 + ' 32 + ' 32 + ' 34 + ' 35 + 
1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22,23 

• 



Table 3. Observation po.lterns and 71robabilities of scores by exact calculation and the generalized JV ilcoxon te~:;t 
I~ (corrected for continuity) for 5 cases of censoring and tying in samples of size n1 = 5, n2 = 5 ....... 
>1-

Case I C."c II Case Ill Case IV Case V 

~~ ~~, ~~, 
1 1 

'F' 2 

6(3) ~ -2 

1 2 1 2 1 
Ties 4(2) • 1 

1 0 1 2 0 1 2 2(1) 1 
Censored 2(2) • 2 3(2) 2 6(4) 1 ---1 4(3) 1 4(3) : -.:::: 2 

1 1 ! -. I 

1 

Cum. Proh. Pro b. Cum. ''"""· Pro b. Cum. P1·ob. Pro b. Cum. Prob. Pro h. Cum. l'rob. Pro h. 
t:-lcoro froq. (oxact.) (W.) fruq. (c•\;o...t.) (W.) froq. (exuet.) (We) fwq. (exact.) (We) fmq. (oxad) (II' c) 

2a 2 0·0079 0·0064 
22 

trj 21 1 0·1111-10 0·0055 
tj 20 4 ·01G9 ·(1154 
::::: 11.1 5 ·OHI!:! ·0202 3 ·Ill Ill ·OllO 2 0·0079 0·0043 Ci 
\1. 18 1 0·0040 0·0104 tj 17 7 ·0278 ·0336 2 ·0079 ·0146 4 ·015!1 ·(H70 
~ 16 13 ·(1/)16 ·0427 5 ·0198 ·0202 

15 13 ·11.'-.!6 ·0359 7 ·0278 ·0274 9 ·0:157 ·0314 Q 14 3 0·0119 0·0231) 11 ·0436 ·0375 t'l 
1:1 27 ·1071 ·0838 17 ·(Hi75 ·0606 8 ·0317 ·033(; 14 ·0556 ·0495 15 ·05\15 ·U!i37 ~ 12 15 ·0595 ·046fi 17 ·0675 ·064:1 ~ 
11 26 ·111:12 ·0968 19 ·0754 ·0619 23 ·0913 ·0823 22 ·0!:!73 ·0885 10 45 ·1786 ·1469 24 ·0952 ·0824 2fi ·1032 ·10:l8 
9 49 ·1944 ·1736 48 ·l!l115 ·1469 31 ·1230 ·1076 34 ·1:149 ·1314 • 40 ·1587 ·1379 
8 41 ·1627 ·1357 39 ·1548 ·1611 
7 63 ·2500 ·2358 52 ·:!llli3 ·2090 49 ·1944 ·1712 52 ·2063 ·1949 54 ·2143 ·:!004 
6 77 ·3055 ·2709 58 ·2301 ·2120 1\1 ·2420 ·2327 5(i ·2222 ·238\) 
5 88 -::1!12 ·2!!78 116 ·2611) ·2546 75 ·2976 ·2743 79 ·3135 ·2810 
4 83 ·3293 ·348:1 76 ·301fi ·3050 87 ·3452 ·3228 81 -:1214 ·32fi4 
3 Ill ·4404 ·3898 100 <I!Hi8 ·3783 87 ·3452 ·3657 !J8 ·3889 ·371_)7 101 ·4008 ·3745 2 101 ·400!:! ·4129 113 ·4484 ·4207 
I 112 ··i444 ·4801 12U .;,ooo ·4761 ll8 ·4682 ·4721 121 ·4!:!01 ·4721 126 ·!iiJOO ·471il 
0 121i ·fiOOO ·fil9!l 134 ·5317 ·fi2711 131 ·fiHJ!:l ·5279 

'-----·-- . ---- ... -------- _.-J \... ·----- -., ___ _J '-----v----' '----,----.-J -y·-.Jvm· (Jf'IJ' ,l/0 ) IHI4 K·Oii G·H:I 7·56 7·7!:! 

* Numl ( ) is number of distinct points. 
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A + sign indicates a censored observation. Because the upper limit of observation time 
is about 33 weeks, T = 35 weeks. In this case, it is clear that 6-:.\IP is the superior treatment, 
there being 12 censored obsen-ations at long remission times on 6-11P and none on placebo. 
The data will be analysed to illustrate the calculations. 

To calculate W directly, a 21 x 21 table is formed with the failures and censored observa
tions in each group ordered separately along the margins. Entries of+ 1, -1 or 0 are made• 
in accordance ";th the scoring scheme (3·1) for the 441 comparisons. The result is 
W = 335- 64 = 2i l. Since n1 x n 2 is rather large, it is natural to consider the result 
obtained by grouping observations. Then W is obtained from the formula for grouped data 
giwn by ( 5·1) and can be calculated conveniently in the format: 

6-l\IP Placebo 
Interval 
(weeks) /;.& F;.A. C;,A. a; /;n F;B C;B b; 

0-4 0 0 0 7 i 0 
5-9 4 4 2 42 6 13 0 0 

10-14 2 6 2 52 4 17 0 16 
15-19 i 2 51 2 19 0 12 
20-24 2 9 1 5i 2 21 0 14 
25- 0 9 5 105 0 21 0 0 

p 1::! 31_17 21 (I 4~ 

6 
Thus W= L {a,-b,} = 307-42 = 265, 

i=l 

where a;= Ui.&+ci.&J~-l,B• b; = [fiB+ciB]J;-_1,.&:-

The var (WjP, H0) for the grouped data is obtained from (4·3) with 

The pattern is 

and the format for calculating the variance is 

m; jlf; d; m 1 xd1_ 1 l; £1-1 [ 1 X d 1 e; fi e1 xj1 m 1 x e1 xf1 

1 7 7 56 0 2 0 112 3.5 34 1190 8330 
2 10 17 306 560 2 2 612 23 8 184 1840 
3 6 23 552 1836 2 4 1104 15 -20 -300 -1800 
4 3 26 702 }(jij(i 6 702 10 -3i -370 -lllO 
5 4 30 930 2808 5 7 4650 5 -48 -240 -960 

30 6860 12 7180 6300 

where d; = ]f;(M;+ 1), d0 = 0, 

e; = n1 + n 2 - ;]fi ~ Li-l• 

fi = ni + 1l2- 31lfi-l- mi- Li-I- l. 
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Then, 
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= (~I) fH) {6860 +; 180 + 6300} = 50n5·6, 
(4~)(41) 

,'{var (JVjP, H0 )} = 71·2. 
The result obtained from the ungrouped data is ~{var ( WjP, H0 )} = 75·1. 

Suppose we wish to test H0 : F1(t) = F2(t) (t ::::;; T) against the.alternative H2 : F1(t) < F2(t) or F1(t) > F2(t) (t::::;; T). We are interested in whether 6-:M:P lengthens or shortens remissions relative to placebo. We calcula.te 
w 265 z = =- = 3·72 "'{var(WjP, H0 )} 71·2 

and the probability of such a value of Z or a larger one in absolute value is about 0·0002 from tables of the normal distribution. Consequently there is very strong e\·idence that patients receiving 6-}IP have longer remissions than those receiving placebo. 
If the test is done with the ungrouped data, we find Z = 3·61 and Pr (Z) ~ 0·0004. The result is quite close to that for the grouped data considering the moderate sample sizes in each group. 

12. DISCL'"SSION 

Some further problems connected with the generalized Wilcoxon test are: the extension of the test to the case of double censoring (i.e. in the upper and lower tails of the variable),* the extension of the test to more than two samples,* the development of a sequential W test and the use of the W test to find confidence limits. 
In principle, there is no difficulty in extending the W test to the case of double censorin~ The pattern of observations given by ( 4·1) could be generalized by considering li individuals (i = 1, ... ,s) to be censored on the left at a point immediately prior to the failure of the mi indi>iduals at rank i in the ordering of distinc-t failures. The change in the ~coring of W giH·n by ( 3·1) \\·oulcl be sim pie using the ordering relationships in the generalized pattern, the assumption being made that individuals censored on the left or right cannot be ordered among themselves. The proofs of asymptotic normality and consistency of the test based on W follow directly from those given here. 
The extension of the W test to the k-sample case could be made in a way analogous to that suggested by Terpstra (1952) and Jonckheere (1954) for the extension of the ordinary Wilcoxon test. The null hypothesis is that all samples come from the same population and this is to be tested against the ordered alternative hypothesis: F1(t) < F2(t) < ... < Fk(t). Suppose the statistic W is calculated for all !k(k -1) pairs of samples. If we write n;,q for the value obtained from the pth and qth samples (p,q = 1,2, ... ,k; p =1= q), then we can consider 

k k 

n~ = ~ ~ n;,q. 
p=lq=p+l 

From the results of Terpstra and Jonckheere, the limiting distribution of n;, should be normal. 

• I am indebt€d to Professor J. Hemelrijk and a referee for helpful comments concerning these extensions. 
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There are at least two ways to consider a sequential W test. First, suppose an experiment 
comparing failure times is set up and n 1 , n 2 items are placed on test in each group. The 
problem is to devise a test to stop the experiment at the earliest time possible (no saYing in 
number of obsen·ations). One solution for this problem has been proposed by Alling (1963) 
based on least upper and greatest lower bounds for subsequent values of the ordinary 
\Vilcoxon test statistic. The W test could be applied sequentially in time but the conditions 
necessary for this require inYestigation. Alternatively, it would often be desirable to con
duct a sequential experiment that may result in a saving of time and observations. For 
example, suppose a clinical trial is being conducted and the hypothesis being tested is of 
type F1(t) = F2(0t) with different values of 0 specified for alternatiYe hypotheses. Indi· 
viduals are entered sequentially in each group and some form of W test is carried out 
sequentially in time. Under what conditions could such a sequential experiment be 
carried out? 

Approximate confidence limits for the scale parameter 0 can be found using the lV statistic 
when the model is F1(t) = F2(0t). The idea is to obtain an estimate of the confiden . .::e limits 
for e assuming an underlying exponential distribution and then use the W test to find the 
approximate level of confidence for the limits. Thus the confidence limits are distribution 
free; the exponential assumption is introduced merely to get convenient starting Yalues. 
Tfthe failure time distributions in the h,-o groups are exponentiaL then t1 't2 as defined in§ S 
j, an e,.;timate of{) and c-onhdenc-e limits c-an be deriYed from the F distribution. _\II obsen·a· 
tions in the second sample are multiplied by the upper and lower confidence limits fore and 
two W tests are carried out using the new values for the second sample. Two normal deviates 
vill be obtained, say Z 1 , Z 2 , and the approximate level of confidence that e lies between 
these limits can be calculated from tables of the normal distribution. For example, using 
the data of§ ll with those receiYing placebo as group 2, we find l1 jl2 = 39·9/8·7 = 4·6 and 
95% confidence limits for 0: 1·9 < fJ < 10. Mter two W tests, we estimate that the level 
of confidence for these limits is about 92 %- Generally, the distribution-free confidence 
intervals will be wider than the corresponding intervals when the exponential assumption 
is made. 

I wish to thank Professor D. R. Cox for very helpful suggestions and encouragement 
throughout the course of this work. Also, I want to thank my wife, Brenda, for doing the 
calculations in§ 10. 
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APPENDIX A 
The variance of Wunder H 0 and conditional on a given pattern (P) of failed and censored observa-tions is var(WjP,H0 ) = E{L U,1 -E(L U 11 )!P,H0)2. 

i,j i.j 
The expectation is over the (n1 +n2)!((n1 ! n 1 !) equally likely samples from the same pattern (general form is given by (4·1)). This may be \nitten 

var(lVjP,Ho) = E {L u;;+ L U;;U;•;+ L Ui!Uw+ L uil U;·r/P,Ho}' (A 1) i,j i~i" j=t=j' i=+=i' 
since E {L U 11 /P,H0} = 0, by symmetry. 

i,j 
We now proceed to evaluate each term in (A 1). We have 

j"'j' 

E{~ q;JP,Ho} = 
2(n

1

~~;
2

){_± [(m;)(•lfi-l)+(l;)(•lf;)]}• 
,, 1 (n1~n2) •=l 1 1 1 1 

(A 2) 

where the term outside the brackets is the proportion of times a particular pair ( i,j) will occur in opposite samples. The first term in the brackets is the number of ways of pairing a failed observation at rank i with one of lower rank and the second term is the number of ways of pairing an observation censored just after rank i with one having failed earlier . 
. -\!so. 

(A 3) 

where 

The outside t€rm in (A 3) is the proportion of times a particular pair of observations (i, i') will occur in one sample and a particular observation (j) in the other sample. The first term in K gives the number of ways of finding a meaningful pair (i, i') below and abov·ej whenj is a failure observation. The second term gives the number of ways of finding a pair of failure obser\·ations ('i, i') of lower rank thanj when j is a censored observation. The last term is the number of ways of finding one observation above and one failure observation below j when j is a failure. 
;'I; ow, 

by symmetry. Finally, E { L C;; C;·rJP,H0} = 0 
i""'i' 
l=i' 

(A 4) 
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because U;; is independent of L"i'r and E(U;1IP,H0 ) = E(U1·riP,H0 ) = 0. Collecting tenns in (A 1) 
using (A 2), (A 3) and (A 4) and simplifying, we have Yar(lriP,H0 ) as given by (4·3). 

APPEXDIX B 

To show that W is asymptotically normal, we note first that. (n1 n 2)-1 W has the form of a two.sample 
U statistic. Lehmann (1951) proved that such statistics are asymptotically normal using a general 
theorem ofHoeffding (1948). We gi\·e a definition of a two-sample U statistic sufficient for our purposes: • 

Let X 1 , ... , X ,,
1

; Y 1 , ... , Y" be n 1 + n 2 independent, random vectors X"' = (X~ 1 , X~21), Y p = ( Y)f, Y~21 ), 
·with cwnulati\·e distributioh functions (C.D.F.) F 1(x),F2(y) where x"' = (:t·~~.x~2;) and Yp = (y~l,yjl). 
For n 1 , n 2 ~ land a real valued function defined by t(Xa:, Yp), a statistic 

C=-1-~t(X,Yp) ('cr.= 1
, ... ,n1\ (Bl} 

n 1 n 2 :r..fl " fJ = 1, ... , nJ 
is a two-sample U statistic. Lehmann (1951) showed U to be asymptotically normal when n1 ~co such 
that lim 11 1 n 2 exists and under conditions that E{t(X", r p)} = 1J and E{t(X", Yp)} 2 = M < oo. 

The difficulty with applying these results directly to the TV statistic is that the distribution of W has 
been considered conditionally for a given pattern of failed and censored observations and so we do not 
have n 1 + n 2 independent random variables. However, we can show that, considered unconditionally, 
(n1 n 2 )-ITr is a two-sample U statistic and then apply a convergence theorem to prove asympt<>tic 
normality. 

Suppose there is a probability distribution of times to entry of the n 1 + n1 patients entering study in 
the interval 0 toT. This distribution may be of a very general type: a discrete lump of probability with 
all patients entering at time 0, a uniform distribution, or \·arious distribution.~ with a bunching of 
>·,r;•:·nt." nr>:~r tim··''· Tlw on!~- a-~,_u::;·t:..•n i" that th·• d••tril:o•nion of patient L'I:c:·i·:-; i; such tlnH t 1i·· 

nwniJ.:r of ft~ilur.:~ at time T become~ lare:e as 11 1 , ,, 2 bc·cOine large. 
Now define x = (xm x<2l) ( 1 ) 

.x "' " cr.= , ... ,nl' 

where x~ 1 = X;, X: (time to failure, censoring) is from F1(x~1 ) and x:;1 is an indicator taking a value 0, 1 as 
z:t' is a time to failure, censoring. A similar set-up is defined for YA· Then, X 1, ••• ,X,. ; Y1, ... , Y" are 

. " 1 • n 1 + n 2 mdependent random vect.ors. 

Ifwenowdefine -1 if x~l)<y~> and (x~>,y~2l) is (0,0), 

or x~l) ~ yg> 

otherwise, 

and is 

t(X"', Yp) = 0 

+1 if x~ll > y~1' and ( x:;1, y~21 ) is 

or x~l) ~ y~11 and (x~1 , ?/j'J is 

and U by (B 1), then the statistic (n 1 n 2)-1 TV is the same as U. 

(0, 1), 

(0,0), 

(1,0) 

Now E{t(Xa, Y p)} is well defined and E{t(Xa:, Y p)}' ~ 1 under null and alternative hypotheses. Hence 
as n 1 -> oo with lim n 1jn2 fixed and non-zero, the distribution of U is asymptotically normal. 'Ve have 
sho'\l\"11 w 

...,-=::-:-::-::--: is asymptotically N(O, 1) 
,'{\·ar ( TVIH0)} 

w 
and we wish to show is asymptotically N(O, 1). 

,i{var ( WIP, H 0 )} 

Now if 1
. nj 1 var(TVIP,H0 ) 

p-1m ~1 
nj 1 var(WIH0 ) 

(B 2) 

(B 3) 

as n 1 ~ oo and lim ntfn1 exists we obtain (B 2) from a convergence theorem of Cramer (1946, p. 254). 

But var(WIH0 ) = Epvar(WIP,H0 )+var pE(WIP,Ho), 

where the expectation is over all possible patterns that could arise. 
Under the null hypothesis, the number of individuals failing and being censored at the 28 points in 

the general pattern can be considered as an out.come in multinomial sampling. The sample size is n 1 + n 2 

and the sum of probabilities over the 28 points is one. 
Now E(WIP,H0 ) = 0, so we need to consider 

{n; 3 var(WIP,H0 l}!{nj 1Epvar(WIP,H0 )} as n1 ~oo. 
The numerator is a polynomial function of (m;,.M;,l;,L;) and, by a proposition quoted by Cramer 
(1946, p. 255), converges in probability to the constant obtained by replacing the above ,-ariables by 
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their expectations from the multinomial. The denominator is the a\'PragC' of the numer>ttor on'r 111l possible patterns and approo.ches the same constant (to 0( I. ntJ). Hence, we obtain (B 3) and follows from the convergence theorem of Cramer. The result holds for patterns that arise randon. _, the manner described. 

APPENDIX c 
The definition of asymptotic efficiency of fV relative to F is given by (8·1) and we now proceed to evaluate the various terms for case (a) and (b). 

Case (a) 

For the F test, we have 
and we wish to find 

z = !log (ttftz) 
E(z) = E,E(zjs), 

var(zjH0) = E,var(zjH0,8) +var,E(z!H0,s). 
Here the pattern of observations is defined by the total sample size (2n) and the number of failure observations (s) prior to T. \Ve consider expectations and variances in the conditional universe where s = 2n- r1 - r 2 is fixed, and then allow variations ins. The calculations will be asymptotic as n, 8-+ a:J. Under H 0 , 8 has a binomial distribution with E(s) = 2n( 1-e-T9). 

Because E(t1) = 1/rp and E(l2 ) = 1!(¢>8), we find 
E(z) = E,E(zjs)::;;; tlog8, 

ae.(z) jl = 1 
cO ~8-t 2 

Also, 1 ( 1 1 ) var(zjH0 ) ~ E,2 2(!
8

) + 2(!
8

) 

1 
- ,..-,.,...-----=--;--= 2n(l- e-N)· 

For the W test, we have W = ~ Uu as defined by (3·1). Now 
i,j 

E(W) = n 2{Pr(X; > Y,)+Pr{)(;;;?:; Y;) 
-Pr(X1 < Y;)-Pr(X, ~ Y;)}, 

(C 1) 

(C 2) 

(C 3) 
where X,, x; are random variables of times to failure, censoring determined by j 1(x) and simil Y,, Y; are detBrmined by f 2(y). Here, x; = Y; = T and the probability of being censored at ~ e-Tt/l,e-Tt/JIJ, respBctively. The probabilities are obtained as follows: · 

I} = __ ( 1 _ e-T¢<1J+ll) 
8+1 

and Pr(X; < Y;)+Pr(X1 ~ Y~) =IT rpe-9"e-8¢udu 
1 0 

1 = __ (1 _ e-T¢<8+ll). 
8+1 

(8-1) Hence, E(n-ZW) = --- ( 1- e-T¢<1J+ll) 
(8+ 1) 

oE(n-2 W) 1 
and , j = !(l-e-2T¢). (C 4) cO .IJ-l 
~ow var(n-2 WjH0) = n-4E{~ Uli-E (~ Uli)jH0 }2 

i,j i,j 

= n-4E{ ~ r.::;+ ~ U,, U,., + ~ U 11 Uw 
i,j i=t= i' i*i' 

+ ~ U;;U;·rJH0}, 
i=t= i' 
H'i' 

since E(~ UuJH0 ) = 0. To evaluatB the four terms necessary for the variance, note that there are only i,j 
n 2 terms of the type E( U'i) so that the total contribution of the first term is 0( n -2). Then 

E(~ UuU;·tlH0 ) =E(~ UiiUwJH0), ;.,.;· Hf 
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"Y sylllinetr~· and there are n 2(n-l) terms in each summation. Also E(U11 U,.1.jH0 ) = 0 since U11 is 
independent of U;·r and each has expectation zero. Thus 

nr (n- 2 WjH0 ) ~ 2n-1E( U;; UwiHol· 
rsing the conditions in (3·1), we have 

- I(X1 < Y1, X 1 > 1';-), (X1 > Y 1, X 1 < Yr), 

(X1 .;;; r;, X 1 > Yr), (X1 > Y 1, X,.;;; Y;.), 
F,1 [' 1;- = 0 otherwise, 

+ l(X, > 1'1, Yr), (X, < Y 1, Y 1.), 

(X,< Y 1, r;.). (X, < r;, Y;-), 

(X;> Y 1, Yrl. (X,< r;, r;.). 
We now wish to calculate the probabilities of the \'arious ewnts on the right-hand side. Let p 4 be 

the probability of failure under H 0 and p, be the probability of a censored observation. Also,letj4(x), 
j,(x') be conditional probability density functions of time to failure, censoring, respectively. For case (a), 
these are all simple to write down. 

Thus, p 4 = 1- e-T<I>, (C 5) 

and 

p, = e-Tt/> 

rj>e-¢z 
!4(x) = -- (0 .;;; x < T), 

Pa 
e-T¢ 

j,(x') = - = 1 (x' = T). 
p, 

(C 6) 

Fnr C;l. ... n rr) • .f_J.r'} i~ a di~c:reU: probnbilit:·. bt~: tlh::. I10ti.1tion is rctain·~~cl to b·~ aru.tlogl)aS ",\·ith case· u~). 
)." o\1· unJer H 0 , 

Thus 

Pr(X, > 1'1, l'rJ = Pr(X; < Y 1, l';-) = t 
Pr (X1 < Y 1, X, > Yr) = Pr (X1 > Y 1, X, < Yr) = t· 

E(U,1 Uw!Ho) = P:<i+tJ+2p:p,Pr{X, < min(Y1, Y;.)} 

+p~p,Pr{X; > max(Y1, Yr)} 

+p;paPr{X, < min(Y;, r;.)} 
-p~(i+i)-2p~p,Pr{X1 < Y;, X,> Yr}, 

where the time w failure variables follow fa(x) and the time to censoring variables follow j,(x'). 
Now Pr {X; > max ( Y 1, Y 1.)} = 2 Pr {X1 < Y;, X 1 > Yr}· Hence 

E(Ui!UwjH0 ) = tP~+2p~p,Pr{X1 < min(Y1, Y;.)}+2p!pdPr{X1 < min(Y;, Y;.)}, 
and the probabilities can be written down immediately: 

Pr{X, < min(Y1, Y;.)} = t• Pr{X1 < min(Y;, Y;.)} = 1. 
Thus E(C:11 UwiH0 ) = t(I-e-Tt/>)a+e-T<I>(I-e-Tif>) 

(C 7) 

and var(n-2 JVjH0 ) = n-l{f(I-e-Tt/>)3 +2e-Tt/>(I-e-Tt/>)}. (C 8) 

Finally, the A.R.E. of W w F is obtained by substituting (C 1), (C 2), (C 4) and (C 8) into (8·1) w get 

A.R.E. = _.. . !(I- e-T<I>)' + 4 e-Tt/>( I- e-T.,.)Z 

Values of A.R.E. for case (a) are given in Table 1 for various T¢. 

Case (b) 

In this situation, 2n patients are entered into study according w a uniform distri-bution in the fixed 
interYal 0 to T and fail according w an exponential distribution. In the group receiving treatment A, 
the probability of a patient entering in any inten·al of time (tl.t) is (D.t)jT and failure is according toj1(x). 
\\'e have 

J
T-x if> 

Pr (patient fails at' age' x) = - e-t/>z dx dv 
o T 

(T-x) 
= --if>e-1/>"'dx 

T 
(0.;;; X.;;; T), 

Pr (patient censored at' age' x') = ~ e-t/>:r' dx' (0 .;;; x' .;;; T) 

where' age' is measured from time of entry into study. 

(C9) 

(CIO) 
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X ow 

IT (T-u) 1 
Pd = -- ¢e-¢•du = 1-- (1-e-T¢), o T T¢ (C ''I 

IT 1 1 
p,= -e-¢•du=-(1-e-T¢) 

o T T9 (C 1~) 

andfkr),j,(x') are the probability density parts of (C 9), (C 10) divided by pd,p, respectively. Similarly, Uy) andj,(y') are defined by replacing 9 by 8¢ in Pd• p, fd(x) andj,(x'). 
For the F test, we transform t1;'l2 to z as before and we have 

cE(z) cE(t2 ) 

a1J = - 2E(t
1

) 88. (C 13) 

X ow E(i2Jn-r2) = - 1
-{(n-r2)E(Y)+r1 E(Y')}, n-r1 

where Y, Y' follow fiy),j,(y'), respectively. Then, E(Y) and E(Y') are easily evaluated and when substituted in (C 13) we find E(l1 Jn-r2) = 1/(8¢) and so 

oE(z)l __ ~-
(C 14) 08 8-1 2 

Under H 0 , the expected number of individuals failing in the two groups before T is 2npd, so that 

0 - 1 var(zJHo) = 2n{1-1/T¢11-e-T¢)}" (C 15) 

For the W test, E(W) is defined by (C 3) and the probabilities needed are found using (C 9) and (C 10): 

Pr(X; > Y
1

) = ff (T-u) tjJe-¢" (T-v) 8¢e-fJ¢•dudv (0 ~ u,v < T) 
u>t> T T 

8 1 
= 8 + 1- Tf/>(8 + 1)' {8(8 + 3)- e-T¢(8 + 1)'} 

1 
+ [Tf/>(

8
+ 

1
)]28(

8
+ 

1
) {82(8+3)-e-T¢(8+ 1)3+e-T¢<8~1>(38+ 1)}, (C 16) 

Pr(X; > Y 1 ) = ff ~ e-¢u (TT-v) 8¢>e-fJ¢•dudv (0 ~ u, v ~ T) 
u>t>T 

= 8 - e-T¢- 1 {8 - e-T¢(8+ 1)2 (28+ 1) -T¢<&+1>} 
T¢(8+1) T¢ [T¢(8+ 1)]' (} + 8 e · (C 17) 

The Pr(X, < r 1) and Pr(Si < 1·:) are obtain•'cl hy re-placing tJ by 10 and 9 by i:J¢ in (C 1GJ, (l" l7j, respectively. Substituting these results in (C 3), we have 

=- 1--+--(1-e-2T¢) . 
oE(n-•W) 

1

, 1 { 1 1 } 
a8 8-1 2 T¢ 2(Tf/>)2 (C 18) 

The value of var(n-2 WJH0 ) is found in exactly the same way as before, with Pd andp, of (C 11) and (C 12) replacing (C 5) and (C 6) in the equation for E(U;; UwJH0 ) given by (C 7). We now need to e\·aluate Pr{X; < min(Y1, Y;.)} and Pr{X; < min(Y;, Y;.)}. 
XowunderH0, JU(T-v)¢ 

Pr(Y; < u) = e-¢•dv 
o Tpd 

= _!_{(1-e-¢")--
1 

(l-e-¢"[1+</Ju])} 
Pd Tif> 

and Pr ( Y' < u) = f" -1
- e-¢• dv ' o Tp, 

1 = --(1-e-¢•). 
T¢p, 

Therefore Pr{X; < min(Y1, Y;.)} = (T (T-u) ¢e-¢"{1--1-(1-e-¢")} Jo Tpd T¢p, 

x { 1-;d [ (1- e-4>")- ;¢ (1- e-¢•[1 + ¢u])]} du 
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Pr{X, < min(Y;, Y;.)} = JT(T-u) ¢{1-+(1-e-¢")}
2 

du; 
o Tpd T'l'p, 

and 

these integrals are simple, though somewhat laborious, to evaluate. The results are 

' 1 { 1 1 Pr{X, < min(Y1, Y .. )} =- - (!-te-T¢)+-- ( -t+Je-T9-e-2T9) 
' p~p, T¢ (Tr/>) 2 

+-1- (..L-.3.e-Tt/J+e-2Tt/J_J.J.,e-3T9)} 
(Tr/J)3 27 ~ 1oo 

and 

Pr{X. <min (Y~ }"~.)} = -
1
- {-

1
- (l.- e-T¢>+ e-•T¢) +-1- ( _1 + l.e-T¢>_e-%T¢+.L!·e-3T¢)\. 

I ,, J PdP: (T¢) 2 ~ (T¢) 3 • ~ 18 J 

\'.'ith these probabilities, we can now evaluat~ E(U;; L'w!H0 ) and var(n-2 WIH0). \\"e ha\·e 

var(n-•W!H0 ) ~ n-1 - ---+------(l-e-sT¢) . {
2 2 4 4 } 

- 3 3(T¢) 9(T¢) 2 27(TrPJS 
(C 19) 

Substituting (C 1'4), (C 15), (C 18) and (C 19) into (8·1) we can calculate the asymptotic efficiency 
of n· relative to F'. This is done for various values ofT¢ in Table 1. 


