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18 Comparing Populations 

An objective of many pollution monitoring and research studies is to make comparisons between pollution levels at different times or places or collected by different measurement techniques. This chapter provides simple nonparametric tests for making such comparisons. These tests do not require that data follow the normal distribution or any other specific distribution. Moreover, many of these tests can accommodate a few missing data or concentrations at the trace or ND (not detected) levels. 
We begin with procedures for comparing two populations. The procedures are of two types: those for paired data, and those for independent data sets. Examples of paired data are (i) measurements of two pollutants on each of n field samples, (ii) measurements of a pollutant on air filters collected at two adjacent locations for n time periods, and (iii) measurements of a pollutant on both leaves and roots of the same n plants. The paired test we consider is the sign test. Friedman's test, an extension of the sign test to more than two populations, is also given. 
Independent data sets are those for which there is no natural way to pair the data. For example, if n soil samples are collected at each of two hazardous waste sites, there may be no rational way to pair a pollution measurement from one site with a pollution measurement from the other site. For this type of data we illustrate Wilcoxon's rank sum test (also known as the Mann-Whitney test) for the comparison of two populations and the Kruskal-Wallis test for the comparison of more than two populations. The tests discussed in this chapter can be computed by using a statistical software computer package such as Biomedical Computer Programs P Series, (1983) and Statistical Package for the Social Sciences (1985). Additional information on the tests in this chapter and on related testing, parameter estimation, and confidence interval procedures are given in Lehmann (1975), Conover (1980) and/or Hollander and Wolfe (1973). 

18.1 TESTS USING PAIRED DATA 
Suppose n paired measurements have been made. Denote these pairs by (x1" X21), (x12 , x 22), ••• , (x 1n, x 2n), where xli is the ith observation from population 1 and x 2; is the paired ith observation from population 2. When data are paired, we could compare the two populations by looking at the sign or the magnitudes 
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242 Comparing Populations 

of the set of n differences D; = x 2; - x 1;, i = I, 2, ... , n. The sign test 
uses the signs and the Wilcoxon signed rank test uses the magnitudes. These 
two tests are alternatives to the commonly used paired t test described in many 
statistical methods books, e.g., Snedecor and Cochran (I980, p. 85). The latter 
test should be used if the differences are a random sample from a normal 
distribution. 

18.1.1 Sign Test 
The sign test is simple to compute and can be used no matter what the underlying 
distribution may be. It can also accommodate a few ND (not detected) 
concentrations. It is more versatile than the Wilcoxon signed rank test since the 
latter test requires that the underlying distribution be symmetric (though not 
necessarily normal) and that no NDs be present. However, the Wilcoxon test 
will usually have more power than the sign test to detect differences between 
the two populations. The sign test may be the better choice if ease of computation 
is an important consideration. 

The sign test statistic, B, is the number of pairs (x1;, x 2;) for which x 1; < 
x 2;, that is, the number of positive differences D;. The magnitudes of the D; 
are not considered; only their signs are. If any D; is zero so that a + or -
sign cannot be assigned, this data pair is dropped from the data set and n is 
reduced by I. The statistic B is used to test the null hypothesis: 

H0 : The median of the population of all possible 
differences is zero, that is, x1; is as likely 
to be larger than x 2; as x 2; is likely to be 
larger than x1; 18.1 

Clearly, if the number of + and 
to reject H0 . 

signs are about equal, there is little reason 

Two-Sided Test 

If the number of paired data, n, is 75 or less, we may use Table A14 to test 
H0 versus the alternative hypothesis 

HA: The median difference does not equal zero, that is, 

. 
xli is more likely to exceed x 2; than x 2; is likely 
to exceed x1;, or vice versa 

Then reject H0 and accept HA at the ex significance level if 

B :s l - 1 or B =::: u 

18.2 

where l and u are integers taken from Table A14 for the appropriate n and 
chosen ex. 

For example, suppose there are n = 34 differences, and we choose to test 
at the ex = 0.05 level. Then we see from Table A14 that we reject H0 and 
accept HA if B :s 10 or if B =::: 24. 

EXAMPLE 18.1 

Grivet ( 1980) reports average and maximum oxidant pollution con­
centrations at several air monitoring stations in California. The daily 
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Tests Using Paired Data 243 
maximum (of hourly average) oxidant concentrations (parts per hundred million) at 2 stations for the first 20 days in July 1972 are given in Table 18.1. The data at the 2 stations are paired and perhaps correlated because they were taken on the same day. This type of correlation is permitted, but correlation between the pairs, that is, between observations taken on different days, should not be present for the test to be completely valid. If this latter type of positive correlation is present, the test would indicate more than the allowed lOOa% of the time a significant difference between the 2 stations when none actually exists. This problem is discussed by Gastwirth and Rubin (1971) and by Albers (l978a). • We test the null hypothesis that the median difference in maximum concentrations between the two stations is zero, that is, there is no tendency for the oxidant concentrations at one station to be larger than at the other station. Since concentrations are tied on 3 days, n equals 17 rather than 20. The number of + signs is B = 9, the number of days that the maximum concentration at station 41541 exceeds that at station 28783. Suppose we use a = 0.05. Then from Table A14 for n = 17 we find l = 6 and u = 15. Since B is not less than or equal to l - 1 = 5 nor greater than or equal to 15, we cannot reject H0 . 

Table A14 gives values of land u for n :S 75. When n > 20, we may use the following approximate test procedure: 

1. Compute 

B- n/2 z - -==-8 - .,J;J4 
2B- n 

.Jn 18.3 

2. Reject H0 and accept HA. (Eq. 18.2) if Z8 :S -21 _""2 or if Z8 ~ z._a,2 , where Z1 _a12 is obtained from Table Al. 

EXAMPLE 18.2 
Using the data in Example 18.1, we test H0 versus HA., using Z8 . We have Z8 = (18 - 17)/..Jl? = 0.243. For a = 0.05, Table Al gives Zo.975 = 1.96. Since Z8 is not less than or equal to -1.96 

Table 18.1 Maximum Oxidant Concentrationsa at Two Stations in July 1972 
Station Station Sign of Station Station Sign of Day 28783 41541 Difference Day 28783 41541 Difference 

I 8 10 + II II 13 + 2 5 7 + 12 12 14 + 3 6 7 + 13 13 20 + 4 7 7 14 14 28 + 5 4 6 + 15 12 6 6 4 6 + 16 12 7 7 3 3 17 13 7 8 5 4 18 14 6 9 5 5 19 12 4 10 6 4 20 15 5 
"Dala are parts per hundred million. 
"Tied concentrations. 
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244 Comparing Populations 

nor greater than or equal to 1.96, we cannot reject H0 • This 
conclusion is the same as that obtained by using Table A14 in 
Example 18. 1. 

One-Sided Test 

Thus far we have considered only a two-sided alternative hypothesis (Eq. 18.2). 
One-sided tests may also be used. There are two such tests: 

1. Test H0 versus the alternative hypothesis, HA, that the x 2 measurements tend 
to exceed the x 1 measurements more often than the reverse. In this case 
reject H0 and accept HA if B ~ u, where u is obtained from Table A14. 
Alternatively, if n > 20, reject H0 and accept HA if Z8 ~ Z1 _ ,., where ZB 
is computed by Eq. 18.3 and Z1 -a is from Table Al. 

2. Test H0 versus the alternative hypothesis that the x1 measurements tend to 
exceed the x 2 measurements more often than the reverse. If n ::5 75, use 
Table A14 and reject H0 and accept HA if B ::5 l - 1. Alternatively, if n 
> 20, reject H0 and accept HA if Z8 ::5 -Z1 -a• where Z8 is computed by 
Eq. 18.3. 

When one-sided tests are conducted with Table A14, the a levels indicated 
in the table are divided by 2. Hence, Table A14 may only be used to make 
one-sided tests at the 0.025 and 0.005 significance levels. 

Trace Concentrations 

The sign test can be conducted even though some data are missing or are ND 
concentrations. See Table 18.2 for a summary of the types of data that can 
occur, whether or not the sign can be determined, and the effect on n. The 
effect of decreasing n is to lower the power of the test to indicate differences 
between the two populations. 

18.1.2 Wilcoxon Signed Rank Test 
The Wilcoxon signed rank test can be used instead of the sign test if the 
underlying distribution is symmetric, though it need not be a normal distribution. 
This Wilcoxon test (not to be confused with the Wilcoxon rank sum test 
discussed in Section 18.2.1) is more complicated to compute than the sign test 

Table 18.2 Determination of the Sign Test 

Type of Data 

One or both members of a pair 
are absent 

X2i = xli 
One member of a pair is ND 
Both members of a pair are ND 

Can Sign Be 
Computed? 

No 

No 
Yes" 
No 

Decreases n? 

Yes 

Yes 
No 
Yes 

• If the numerical value is greater than the detection limit of the 
ND value. 
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Tests Using Paired Data 245 
because it requires computing and ranking the D;. In most situations it should have greater power to find differences in two populations than does the sign test. The null and alternative hypotheses are the same as for the sign test. The test is described by Hollander and Wolfe (1973). 

18.1.3 Friedman's Test 
Friedman's test is an extension of the sign test from two paired populations to k related populations. The underlying distribution need not be normal or even symmetric. Also, a moderate number of ND values can be accommodated without seriously affecting the test conclusions. However, no. missing values are allowed. The null hypothesis is 

H0 : There is no tendency for one population to 
have larger or smaller values than any other 
of the k populations 

The usual alternative hypothesis is 

HA: At least one population tends to have larger 
values than one or more of the other populations 

Examples of "populations" appropriate for Friedman's test are (i) measure­ments of k = 3 or more pollutants on each of n field samples, (ii) measurements of a single pollutant on air filters collected at k = 3 or more air monitoring stations for n time periods, or (iii) measurements obtained by k = 3 or more analytical laboratories on a set of n identical spiked samples. The data are laid out as follows: 

Block 

2 3 n 

Population 1 XII x,2 Xn 
Population 2 X21 X22 X2J 

Population k Xtl Xt2 Xu 

The steps in the testing procedure are as follows: 
I. For each block, assign the rank I to the smallest measurement, the rank 2 to the next largest measurement, . . . , and the rank k to the largest measurement. If two or more measurements in the block are tied, then assign to each the midrank for that tied group (illustrated Example I8.3). 2. Compute Ri, the sum of the ranks for the jth population. 3. If no tied values occur within any block, compute the Friedman test statistic as follows: 

[ 
I2 k J Fr = 2: RJ - 3n(k + I) nk(k + 1) j= I 18.4 

4. If tied values are present within one or more blocks, compute the Friedman statistic as follows: 
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k r - n(k + 1)]2 

12 j~l L Rj 2 
F, = -------------------------------

1 n [( g; ) ] nk(k + 1) - k _ 
1 
;~1 1~1 ti.J - k 

18.5 

where g; is the number of tied groups in block i and t;,1 is the number of tied data in the jth tied group in block i. Each untied value within block i 
is considered to be a "group" of ties of size 1. The quantity in braces { } 
in the denominator of Eq. 18.5 is zero for any block that contains no ties. 
This method of handling ties is illustrated in Example 18.3. Equation 18.5 
reduces to Eq. 18.4 when there are no ties in any block. 

5. For an a level test, reject H0 and accept HA if F, ~ x~ -O<,k- ,, where 
x~ -O<,k-I is the 1 - a quantile of the chi-square distribution with k - 1 df, as obtained from Table A19, where k is the number of populations. The 
chi-square distribution is appropriate only if n is reasonably large. Hollander 
and Wolfe provide exact critical values (their Table A.15) for testing F, for 
the following combinations of k and n: k = 3, n = 2, 3, ... , 13; k = 
4, n = 2, 3, ... , 8; k = 5, n = 3, 4, 5. Odeh et al. (1977) extend 
these tables to k = 5, n = 6, 7, 8; k = 6, n = 2, 3, 4, 5, 6. These tables 
will give only an approximate test if ties are present. The use of F, computed 
by Eq. 18.5 and evaluated using the chi-square tables may be preferred in 
this situation. The foregoing tests are completely valid only if the observations 
in different blocks are not correlated. 

In step 1, if there is one ND value within a block, assign it the rank 1. If 
there are two or more ND values within a block, treat them as tied values and assign them the midrank. For example, if three NDs are present within a block, 
each is assigned the rank of 2, the average of 1, 2, and 3. This method of 
handling NDs assumes all measurements in the block are greater than the 
detection limit of all the ND values in the block. 

EXAMPLE 18.3 
The data in Table 18.3 are daily maximum oxidant air concentrations 
(parts per hundred million) at k = 5 monitoring stations in California 
for the first n = 6 days in July 1973 (from Grivet, 1980). We shall 
use Friedman's procedure to test at the a = 0.025 significance level 
the null hypothesis, H0 , that there is no tendency for any station to 

Table 18.3 Daily Maximum Air Concentrations8 in California During July 1973 

Day (Block) 
Station 

Sum of Number 2 3 4 5 6 Ranks (R1) 

28783 7 (2)" 5 (4) 7 (3.5) 12 (2) 4 (3) 4 (4) 18.5 41541 5 (I) 3 ( 1.5) 3 (I) 8 (I) 3 ( 1.5) 2 (I) 7 43382 II (4) 4 (3) 7 (3.5) 17 (4) 5 (4.5) 4 (4) 23 60335 13 (5) 6 (5) 12 (5) 21 (5) 5 (4.5) 4 (4) 28.5 60336 8 (3) 3 (1.5) 4 (2) 13 (3) 3 ( 1.5) 3 (2) 13 
"Data are parts per hundred millions. 
• Rank of the measurement. 
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Table 18.4 Computing the Correction for Ties in Eq. 18.5 for Friedman's Test 

Blocks 

2 
3 
5 
6 

g, 

4 lz. 1 = 2, 12,2 
4 13.1 = 2, 13,2 
3 Is, I = ls.2 = 
3 16. I = 3, 16,2 

t,,j 

= lz.J = 
= 13.3 = 
2, Is. 3 = 
= /6,3 = 

12.4 = 
13.4 = 
I 
I 

,, 
L; t;',J - k 

;=I 

II - 5 = 6 
II - 5 = 6 
17 - 5 = 12 
29 - 5 = 24 
Sum = 48 

have oxidant levels greater or smaller than any other station. Also shown in Table 18.3 are the ranks of the measurements· obtained as in step I and the sum of the ranks for each station (step 2). Since there are ties in blocks 2, 3, 5, and 6, we must use Eq. 18.5 to compute F,. First compute the quantity in braces { } in the denominator of Eq. 18.5 for all blocks that contain ties. This computation is done in Table 18.4. 
Note that the values of all the t;./s in each block must sum to k, the number of populations (stations). Since k = 5, n = 6, and Sum = 48, Eq. 18.5 is 

12[(18.5 - 18)2 + (7 - 18)2 + · · · + (13 - I8f] F =~~----~~~~--~--------~----~ r 6(5)(6) - 48/4 

= 20.1 

For a = 0.025 we find from Table Al9 that x~.975 • 4 = 11.14. Since F, > 11.14, we reject H0 and accept the HA that at least I station tends to have daily maximum oxidant concentrations at a different level than the other stations. From Table 18.3 it appears that stations 41541 and 60336 have consistently lower concentrations than the other stations. 

18.2 INDEPENDENT OAT A SETS 
We discuss· two nonparametric tests for independent data sets: the Wilcoxon rank sum test (not to be confused with the Wilcoxon signed rank test discussed in Section 18.1.2) and the Kruskal-Wallis rank test, which generalizes the Wilcoxon rank sum test to more than two populations. 

18.2.1 Wilcoxon Rank Sum Test 
The Wilcoxon rank sum test may be used to test for a shift in location between two independent populations, that is, the measurements from one population tend to be consistently larger (or smaller) than those from the other population. This test is an easily computed alternative to the usual independent-sample t test discussed in most statistics methods books (see, e.g., Snedecor and Cochran, 1980, p. 83). (Do not confuse the independent-sample t test with the paired t test for paired data. The latter is discussed by Snedecor and Cochran, 1980, p. 85.) 
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The rank sum test has two main advantages over the independent-sample t 
test: (i) The two data sets need not be drawn from normal distributions, and 
(ii) the rank sum test can handle a moderate number of NO values by treating 
them as ties (illustrated in Example 18.4). However, both tests assume that the 
distributions of the two populations are identical in shape (variance), but the 
distributions need not be symmetric. Modifications to the t test to account for 
unequal variances can be made as described in Snedecor and Cochran (1980, 
p. 96). Evidently, no such modification exists for the rank sum test. Reckhow 
and Chapra (1983) illustrate the use of the rank sum test on chlorophyll data 
in two lakes. 

Suppose there are n 1 and n2 data in data sets 1 and 2, respectively (n 1 need 
not equal n2 ). We test 

H0 : The populations from which the two data sets have 
been drawn have the same mean 18.6 

versus the alternative hypothesis 

HA: The populations have different means 
The Wilcoxon rank sum test procedure is as follows: 

18.7 

1. Consider all m = n 1 + n2 data as one data set. Rank the m data from 1 to 
m, that is, -assign the rank 1 to the smallest datum, the rank 2 to the next 
largest datum, . . . , and the rank m to the largest datum. If several data 
have the same value, assign them the midrank, that is, the average of the 
ranks that would otherwise be assigned to those data. 

2. Sum the ranks assigned to the n 1 measurements from population 1 Denote 
this sum by W rs. 

3. If n 1 :s 10 and n2 :s 10, the test of H0 may be made by referring Wrs to 
the appropriate critical value in Table A.5 in Hollander and Wolfe (1973) 
(see their pages 67-74 for the test method). 

4. If n 1 > 10 and n2 > 10 and no ties are present, compute the large sample 
statistic 

Z = Wrs - n1(m + 1)/2 
rs [nln2(m + 1)/12] 112 18.8 

5. If n 1 > 10 and n2 > 10 and ties are present, do not compute Eq. 18.8. 
Instead, compute 

m(m - 1) 

18.9 m + 1-
g } 1/2 L:: f.(t~ - 1) 

·=I J J 

where g is the number of tied groups and ti is the number of tied data in 
the jth group. Equation 18.9 reduces to Eq. 18.8 when there are no ties. 

6. For an a level two-tailed test, reject H0 (Eq. 18.6) and accept HA (Eq. 18.7) 
if Z"' :s -Z1 _ 0" 2 or if Zrs ~ Z1 -a12 • 

7. For a one-tailed a level test of H0 versus the HA that the measurements 
from population 1 tend to exceed those from population 2, reject H0 and 
accept HA if zrs ~ zl -a· 

8. For a 
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8. For a one-tailed a level test of H0 versus the HA that the measurements from population 2 tend to exceed those from population l, reject H0 and accept HA if Zrs :S -Z1 -a· 

EXAMPLE 18.4 
In Table 18.5 are 241Am concentrations (pCi/g) in soil crust material collected within 2 plots, one near ("onsite") and one far ("otfsite") from a nuclear reprocessing facility (Price, Gilbert, and Gano, 1981). Twenty measurements were obtained in each plot. We use the Wilcoxon rank sum test to test the null hypothesis that average concentrations at the 2 plots are equal versus the altemati\1'e hypothesis that the onsite plot (population 1) has larger concentrations than in the otfsite plot (population 2). That is, we perform the test in step 7. We shall use a = 0.05. The ranks of the combined data are shown in Table 18.5 and Wrs is computed to be 500. 

There are g = 6 groups of ties. Four groups have length 2, that is, t = 2, and 2 groups have t = 3. Equation 18.9 gives 
z = 500 - 20(41)/2 = 2 44 "' {[20(20)/12] [41 - [(4)(2)(3) + (2)(3)(8)]/40(39)]} 112 

• 

Performing the test in step 7, since Z.,. > I. 645, we reject H0 and accept HA that the onsite population has larger 241 Am concen­trations than the otfsite plot. 

We note that the correction for ties, that is, using Eq. 18.9 instead of Eq. 18.8, will usually have a negligible effect on the value of Z.,.. The correction becomes more important if the t1 are large. Also, if NDs are present but occur in only one of the populations, it is still possible to rank all the data and perform the test. For instance in Example 18.4 if the negative concentrations had been reported by the analytical laboratory as ND values, they would still have been assigned the ranks I, 2, and 3 if NDs were treated as being less in value than the smallest numerical value (0.0056). In addition, if the three ND values had been considered to be tied, all three would have been assigned the 

Table 18.5 241Am Concentrations in (pCi/g) Soil Crust Material 
Population 1 (onsite) Population 2 (ojfsite) 

0.0059 (5)" 0.036 (28) -O.OIIb (I) 0.019 (16) 0.0074 (7) 0.040 (29) -0.0088b (2) 0.020 (18.5) 0.015 (9.5) 0.042 (30) -0.0055b (3) 0.020 (18.5) 0.018 (13.5) 0.045 (31) 0.0056 (4) 0.022 (20) 0.019 (16) 0.046 (32) 0.0063 (6) 0.025 (22) 0.019 (16) 0.053 (34) 0.013 (8) 0.030 (23) 0.024 (21) 0.062 (36) 0.015 (9.5) 0.031 (25) 0.031 (25) 0.066 (37) 0.016 (11.5) 0.050 (33) O.D31 (25) 0.069 (38) 0.016 (11.5) 0.057 (35) 0.034 (27) 0.081 (40) 0.018 (13.5) 0.073 (39) 
W n = 5 + 7 + 9.5 + ... + 38 + 40 = 500. 
• Rank of the datum. 
bNegative measurements reported by the analytical laboratory. 
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average rank of 2, which would not have changed the value of W,... If NDs 
occur in both populations, they can be treated as tied values all less than the 
smallest numerical value in the combined data set. Hence, they would each 
receive the average rank value for that group of NDs, and the Wilcoxon test 
could still be conducted. (See Exercise 18.4.) 

18.2.2 Kruskai-Wallis Test 
The Kruskal-Wallis test is an extension of the Wilcoxon rank sum test from 
two to k independent data sets. These data sets need not be drawn from 
underlying distributions that are normal or even symmetric, but the k distributions 
are assumed to be identical in shape. A moderate number of tied and ND values 
can be accommodated. The null hypothesis is 

H0 : The populations from which the k data sets have 
been drawn have the same mean 

The alternative hypothesis is 

HA: At least one population has a mean larger or 
smaller than at least one other population 

The data take the form 

Population 

1 2 3 k 

XII X21 XJI xk, 
x,2 Xn x32 ... xk2 

X1n1 X2n1 X3"' Xkm 

18.10 

18.11 

The total number of data is m = n 1 + n2 + · · · + nb where the n; need 
not be equal. The steps in the testing procedure are as follows: 

1. Rank the m data from smallest to largest, that is, assign the rank 1 to the 
smallest datum, the rank 2 to the next largest, and so on. If ties occur, 
assign the midrank (illustrated in Example 18.5). If NDs occur, treat these 
as a group of tied values that are less than the smallest numerical value in 
the data set (assuming the detection limit of the ND values is less than the 
smallest numerical value). 

2. Compute the sum of the ranks for each data set. Denote this sum for the 
jth data set by Rj. 

3. If there are no tied or ND values, compute the Kruskal-Wallis statistic as 
follows: 

[ 
12 k RJ] 

Kw = 2:: - - 3(m + 1) 
m(m+l)j=lnj 

18.12 

4. If there are ties or NDs treated as ties, compute a modified Kruskal-Wallis 
statistic by dividing K., (Eq. 18.12) by a correction for ties, that is, compute 
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Kw K:v = --------cl;---~/i;------
1-

2 L:r(t 2 -1) m(m -l)j=l 11 

18.13 

where g is the number of tied groups and tj is the number of tied data in the jth group. Equation 18.13 reduces to Eq. 18.12 when there are no ties. 5. For an a level test, reject H0 and accept HA if K~ ;;::: x ~ _ Ol,k _ 1, where x~ -Ot.k _ 1 is the l - a quantile of the chi-square distribution with k - I df, as obtained from Table AI9, where k is the number of data sets. Iman, Quade, and Alexander (1975) provide exact significance levels for the following cases: 
k = 3 

k = 4 

k = 5 

n; :s 6 

n 1 = n2 = n3 = 7 

n1 = n2 = n3 = 8 

Less extensive exact tables are given in Conover (1980) and Hollander and Wolfe (1973) for k = 3 data sets. 

EXAMPLE 18.5 
An aliquot-size variability study is conducted in which multiple soil aliquots of sizes I g, 10 g, 25 g, 50 g, and 100 g are analyzed for 241 Am. A portion of the data for aliquot sizes I g, 25 g, and 100 g is used in this example. (Two ND values are added for illustration.) The full data set is discussed by Gilbert and Doctor (1985). We test the null hypothesis that the concentrations from all 3 aliquot sizes have the same mean. The alternative hypothesis is that the concen­trations for at least I aliquot size tend to be larger or smaller than those for at least I other aliquot size. We test at the a = 0.05 level. The data, ranks, and rank sums are given in Table 18.6. 

Table 18.6 Aliquot-Size Variability Study 
241Am Concentrations (nCilg) 

I g 25 g 100 g 

1.45 (7)" 1.52 (8.5) 1.74 (13) 
1.27 (6) 2.46 (22) 2.00 (17.5) 
1.17 (4) 1.23 (5) 1.79 (14) 
1.01 (3) 2.20 (20) 1.81 (15) 
2.30 (21) 2.68 (23) 1.91 (16) 
1.54 (10) 1.52 (8.5) 2.11 (19) 
1.71 (11.5) ND (1.5) 2.00 (17.5) 
1.71 (I 1.5) 
ND ( 1.5) 
R, = 75.5 R2 = 88.5 R3 = 112 
n, = 9 n2 = 7 n3 = 7 

"Rank of the datum. 
ND = not detected . 



252 Comparing Populations 

There are g = 4 groups of ties and t = 2 for each group. The modified Kruskal-Wallis statistic (Eq. 18.13) is 

K' = [12/23(24)](75.52/9 + 88.52/7 + 1122/7) - 3(24) = 
5.

06 w I - 4(2)(3)/23(528) 

From Table Al9 we find x~.95 ,2 = 5.99. Since K~ < 5.99, we cannot reject H0 at the a = 0.05 level. 
Note that the correction for ties made a negligible difference in the test statistic. However, a bigger correction is obtained if t is large for one or more groups of ties. This could happen if there are many NDs, where t is the number of NDs. 

18.3 SUMMARY 
This chapter discussed simple nonparametric tests to determine whether observed differences in two or more populations are statistically significant, that is, of a greater magnitude than would be expected to occur by chance. We emphasize the correction for ties that these nonparametric tests provide, since a moderate number of trace or ND measurements can be accommodated by assuming they are a group of tied values. Hollander and Wolfe (1973) and Conover (1980) provide other uses for these tests and discuss related estimation and confidence interval procedures. 

EXERCISES 
18.1 Use the first 10 days of oxidant data in Example 18.1 to conduct a one­tailed sign test at the a = 0.025 level. Use the alternative hypothesis HA: Maximum oxidant concentrations at station 41541 tend to exceed those at station 28781 more than the reverse. 
18.2 Suppose the following paired measurements have been obtained (ND not detected; M = missing data): 

Pair 

1 2 3 4 5 6 7 8 9 10 11 

x, ND 7 ND M 3 M 3 7 12 10 15 x2 ND " 6 6 M 2 II 8 3 

Conduct a one-tailed sign test of H0 versus the HA that x 1 measurements tend to exceed x2 measurements more often than the reverse. Use a 0.025. 

18.3 Compute Friedman's test, using the data in Example 18.3 and a = 0.025. Ignore the correction for ties. 
18.4 Suppose all 241 Am concentrations less than 0.02 pCi/g in the 2 populations in Example 18.4 were reported by the analytical laboratory as ND. Use the Wilcoxon rank sum test to test H0 : means of both populations are equal versus HA: the offsite population has a smaller mean than the onsite 

population. 
have on Z,. 

18.5 Suppose th. 
18.5 were r 
on the resui 
18.5.) 

ANSWERS 

18.1 Denote stat 
B = 5. Fr• 
the a = 0 

18.2 Delete pair 
Since B = 

18.3 Equation 1 
11.14, the 

18.4 w,. = 48~ 
Since Z,.. : 
2./ ·n :E 

18.5 R1 = 74, 
Since K~ 



rhe 

6 

we 

~ in 
1 is 
are 

·observed 
tt is, of a 
!mphasize 
moderate 

;ning they 
er (1980) 
:onfidence 

uct ~ one­
l)\ ~sis 
to "·~::.Aceed 

od (ND = 

10 II 

10 15 
8 3 

1surements 
Use a 

and a == 

,pulations 
ND. Use 

ations are 
the onsite 

Answers 253 
population. Use a = 0.025. What effect do the large number of NDs have on Zrs? Is it more difficult to reject H0 if NDs are present? 

18.5 Suppose that all 241 Am measurements less than 1.5 nCi/g in Example 18.5 were reported by the laboratory as ND. Use the Kruskal-Wallis test on the resulting data set. Use a = 0.05. (Retain the 2 NDs in Example 18.5.) 

ANSWERS 
18.1 Denote station 28781 data as x 1 data, and station 4154l data as x2 data. 

18.2 

18.3 

18.4 

18.5 

B = 5. From Table Al4, u = 7. Since B < 7, we cannot reject H0 at the a = 0.025 level. 

Delete pairs l, 4, and 6. n = 8, B = 1. From Table Al4, l - 1 = 0. Since B = l, we cannot reject H0 • 

Equation 18.4 gives F, = 18.77. Reject H0 and accept HA, since 18.77 > 11.14, the same result as when the correction for ties was made. 
Wrs = 487. g = 3 with t = 17, 2, and 3. Zrs = 77/35.5163 = 2.168. Since Zrs > 1.645, reject H0 and accept HA. The NDs reduced Zrs from 2.436 in Example 18.4 to 2.168. Yes! 
R, = 74, R2 = 90, R3 = 112, m = 23, K~ = 5.339/0.97085 = 5.50. Since K~ < 5.99, we cannot reject H0 at the a = 0.05 level. 


