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SUMMARY 

The Wasnington State Department of Ecology {WSDE) recently issued a 
report {WSDE 1992) that provides guidance on statistical issues regarding 
investigation and cleanup of soil and groundwater contamination under the 
Model Toxics Control Act Cleanup Regulation. Included in the report are 
procedures for determining a background-based cleanup standard and for 
conducting a 3-step statistical test procedure (denoted here as the State 
test) to decide if a site is contaminated greater than the background standard 
{WSDE 1992, Figure 12). The guidance specifies that the State test should 
only be used if the background and site data are lognormally distributed. The 
guidance in WSDE {1992) allows for using alternative 'tests on a site-specific 
basis if prior approval is obtained from WSDE. 

This report presents the results of a Monte Carlo computer simulation 
study conducted to evaluate the performance of the State test and several ·· 
alternative tests for various contamination sce~rios {background and site 
data distributions). The primary test performance criteria are {1) the 
probability the test will indicate that a contaminated site is indeed 
contaminated, and {2) the probability that the test will indicate an 
uncontaminated site is contaminated. 

The simulation study was conducted assuming the background 
concentrations were from lognormal or Weibull distributions. The site data 
were drawn from distributions selected to represent various contamination 
scenarios. The statistical tests studied are the State test, t test, 
Satterthwaite's t test, five distribution-free tests, and several tandem tests 
{wherein t.wo or more tests are conducted using the same data set) • 

The main conclusions of the Monte Carlo study are {see Section 5.0 for 
related discussion): 

No single test performs well for all contamination scenarios and numbers . 
of samples. 
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When the background and site data distributions are highly asymmetric 
with a long tail of high concentrations, the State test has an extremely 
high pro~ability (equal to 1 in some cases) of indicating an 
uncontaminated site is contaminated. · For this reason, the State test is 
not recommended for general testing purposes. 

This report recommends that the Wilcoxon Rank Sum test, in combination 
with the Quantile test, be routinely used in place of the State test, 
and that graphical procedures also be used to visually display and 
compare the background and site samples. 

The Wilcoxon Rank Sum test is the best over-all performing test. -It 
perfcrmance advantage is particularly high when the site is uniformly 
contaminated greater than the background region. 

The Quantile test performs better than the Wilcoxon Rank Sum test when a . . 
small portion of the site is highly contaminated. 

In general, all tests have little ability to identify sites that have 
.only a small fraction of. their area contaminated only slightly greater 
than background. The situation improves as the concentration levels 
become large and a large number of samples are collected. 
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1. INTRODUCTION 

In August 1992, the Washington State Department of Ecology (WSDE) issued 
a report (WSDE 1992) that provides guidance on statistical issues regarding 
investigation and cleanup of soil and groundwater contamination under the 
Model Toxics Control Act (MTCA) Cleanup Regulation. The WSDE (1992) guidance 
document describes and illustrates statist i ca 1 procedures that are recommended 
by WSDE for routine use at most sites. The guidance also allows for 
alternative testing procedures on a site-specific basis if prior approval is 
obtained from WSDE. 

The purpose of this document is to report the results of a Monte Carlo 
computer simulation study conducted to evaluate the performance of several 
statistical tests, including a state test described in WSDE (1992) for . 
deciding wh~ther a site is contaminated above background levels. The.goal of 
this report. is to. provide information about which tests have the· best · 
performance.fo~ general application, and which tes~s work best for selected 
contamination scenarios. This report will illustrate the limitations as well 
as the strengths of formal statistical tests. This study was conducted by 
staff of the Statistical Modeling and Display Group and the Statistical· Design 
and Analysis Group in the Analytic Sciences Department, Applied Physics 
Center, Pacific Northwest laboratory (PNL)•, Richland, Washington. 

1.1 Scope 

This document evaluates the performance of several statistical tests 
regarding their ability to correctly indicate whether a site is contaminated, 
i.e., has ~oncentrations significantly great~r than those in the background 
area. The•e tests are discussed in Section Z. This performance assessment is 
conducted assuming that measurements from the defined background area have 
either a lognormal or a Weibull distribution, which are defined mathematically 
in the Appendix. A mixture model is used to generate site measurements that 

aOperated for the U.S. Department of Energy by Battelle Memorial Institute under 
Contract DE-AC06-76RLO 1830. 
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reflect the extent and magnitude of contamination at the site. This model and 
the Monte Carlo simulation procedure used are discussed in Section 3. 

The ability (power) of the tests to detect contamination on the basis of 
10 or more background and site measurements is determined. The probability 
that each test will incorrectly indicate that an uncontaminated site is 
contaminated is also determined. The simulation results apply to the 
particular assumptions and site contamination scenarios described in Section 
3, including the assumptions that samples are co.llected using simple random 
sampling and measurements are independent and hence uncorrelated. 

The tests evaluated here include several distribution-free procedures. 
These tests do nQt require that measurements be normally distributed. 
Distribution-free tests may perform better or worse than tests based on a 

. distribution assumption, depending in part on t~e number of samples, the. .: 
e~tent and magnitude of contamination at the site:relative to the backgrOUnd 
area, and the underlying distribution •. The perfo~ance of all the tests is, . . 
discussed and summarized graphically in Section.4.0. 

Section 5.0 provides a sumary discussion of the results of this paper, 
including caveats and limitations. That section also outlines a recommended 
strategy for comparing a site with background. This process includes using 
visual aids, formal statistical tests, and professional judgment. 

No attempt is made here to consider the performance of tests when data 
sets are ·censored, i.e., when background or site data sets include 
measurement~ that are less than the detection limit. The WSDE has recently 
issued a report (WSDE 1993) as a_supplement to WSDE (1992) that provides 
guidance ~the analysis of censored background or site data sets. The 
performance of statistical testing methods applicable to censored data sets _;s 
not considered in this report. 
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1.2 Hypotheses 

All st~tistical tests evaluat~d in this report test the null hypothesis 

H · site is not contaminated m~re than the o" 

background area 

versus the alternative hypothesis 

site is contaminated more than the 
background area 

These hypotheses can be restated in terms of the distribution of 
measurements for the background and site areas: 

. H
0

: . Th.e background and site distributions 
arJ! i d~nt i ca 1 

H.: At least part of the site distribution 
is located to the right of the background 
distribution 

(1) 

This latter formulation emphasizes that what we really want ·to know is 
how the site and background distributions compare in location and shap·e. Each 
test in this study uses the available site and background data in a different 
way to evaluate whether H

0 
should be rejected. If a test ind_icates H

0 
should 

be··: rejected, t~en H. is accepted. 

1.3 Decision Errors . ~.;. 

·.;-... 
There are two types of decision errors that can be made when a 

statistical test is performed: . 

Type I Error (False Positive Decision): 
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when a test rejects H
0 

(see Equation 1) when H
0 

is actually true, 
i.e., when a test incorrectly indicates an uncontaminated site is 

· contaminated 

Type II Error (False Negative Decision): 

when a test fails -to reject H
0 

when Ha is really true, i.e., when 
a test incorrectly indicates the site is not contaminated 

these definitions indicate that. a Type I error may lead to performing 
unneeded remedial '-::t ion, whereas a. Type II error may 1 ead to not performing 
needed remedi~l ·'-··· ;on.· Now, the probability of making a Type II error is 
related to the •power• of a test as follows: 

Power .. 1 - probabi 1 i ty of a Type I I error . 

. 
• probability of rejecting H

0 
when H

0 
j~ fal~e and 

H
4 

is really true 

. 
Stated in the context of this report, the power of a test is the probability 
that the test correctly identifies when a site distribution lays to the ri~ht 
of th·e background distribution. ·The purpose of the Monte Carlo study was to 
estimate for eac:- ~est the power and the probability of making a Type I error 
for a variety of background and site contamination scenarios. 

Before a statistical test can be.· conducted, it is neces_sary to specify 
an acceptable probability of making a Type I error. For the Monte Carlo study 
of this raport·, this probability was specified to be 0.05 (5 percent chance). 
One purpos.lof the Monte Carlo study was to determine which tests, if any, had 
Type I error probabilities that differed significantly from the specified 
(target) 0.05 rate. The actual Type I error rate of a test can deviate from 
the specified rate because assumptions underlying the test are not fulfilled 
or because the test does not have a sound theoretical basis. 
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For example, the t test and Satterthwaite's t test (Section 2) require 
.. - . 

that measurements be normally distributed. As the Monte Carlo study 
considered lognormal and Weibull background distributions, this assumption is 
not true for the contamination scenarios considered here. Hence, for these 
two test procedures, the deviation of the actual Type I error rate from the 
nominal (specified) 0.05 rate is due in part to the fact that the normality 
assumption is false. Similarly, the Type I error rate of the State test 
(which assumes a lognormal distribution) may vary from the nominal 0.05 rate 
whenever the Weibull distribution is used. Actually, as will be seen in 
Section 4, the Type I error rate of the State test seriously deviates from the 
nominal 0.05 rate even for some lognormal distributions. As a final example, 
it is not possible to conduct the Quantile test at a 0.05 Type I error rate 
for some sample sizes. Due to the discrete nature of the Quantile test, its 
specified Type I error rate is closer to 0.01 than to 0.05 for some sample 
sizes. 

The power of a test depends on the number of samples collected in the 
background and site areas, on the position and shape of the distribution of 
site measure~ents as compared with the distribution of background 
measurements.,: and the particular way that the test uses the site and 
background data to make comparisons. This Monte·carlo study estimates the 
p~wer of various tests for various combinations of site and background sample 
sizes when the background and site distributions take on different shapes and 
relative locations • 

... 
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2. STATISTICAL TESTS 

The statistical tests evaluated in this report are: 
State test 
Wilcoxon Rank Sum test 
Quantile test 
Slippage test 
Median test 
Savage test 
Student's t test 
Satterthwaites's t test 

When background and site data can be assumed to be lognormally 
distributed, WSDE (1~92) indicates that the default 3-step State test 
described in Section 2.1 is used. )his test, as illustrated in Figure 12 of .. : 
WS.DE (1992), consists of computing an· upper confidence 1 im;t o~ the site mean·~ 
and comparing it to a fixed background value (standard), followed by a 
frequency of exceedance test and a magnitude of exceedance test. However, 
regardless of the distribution of the data, the WSOE background testing . . 
approach (WSDE 1992, Figure 12) allows for the use of alternative tests. if. • 
adequate supporting materials are first ·provided to WSDE for their review.a~~ 
approval. The other tests evaluated in this report are potential alternative 
tests. 

The Wilcoxon test, Savage test, Median test, Quantile test and Slippage 
test are distribution-free tests. These tests can be conducted regardless of 
the distribution of the background or site data. The default 3-step State 
test, the t test, and Satterthwaite's t test are not distribution-free. As 

";:.f.,.. 

mentioned abO.~~ the State test assumes the background and site data are 
--~ 

lognormally distributed. The two t tests assume the data to be normally 
distributed. If distribution assumptions are not met in practice, the Type I 
error rates of the tests may ~eviate from specified target values. 

The performance of the State test was evaluated by the WSDE prior to its 
inclusion in WSDE (1992). Those evaluations form the basis for the test as 
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discussed in WSDE (1992) and Section 2.1 in this report. However, WSDE (1992, 
page 94) indicates that when background data sets are highly skewed to the 
right (to high concentrations), it may not be possible to simultaneously 
achieve desirable false positive error rates and statistical power to detect 
contamination when the State test is used and the number of samples is small. 
For that case, WSDE (1992) suggests that the Wilcoxon test and the Quantile 
tests may be more appropriate. The study reported here provides additional 
information on the performance of the State test relative to that of the other 
tests. 

The power of the Wilcoxon test is known to be only slightly less than 
that of the t test when data are normally distributed (Lehmann 1975). Gilbert 
and Simpson {1992) compared the performance of the Wilcoxon test and the 
Quantile test when background measurements are normally distributed and the 
si~e distribution is a mixture of the background distribution and a " 
contamination distribution. This mixture model is the same model that is use4 
in this report (described by Equation {2) in Section 3). They found that the· 
Wilcoxon test had more power than the Quantile test when the site distribution 

.. has the same shape as t~e background distribution but is shifted to higher 
concentrations. The Quantile test had more power than the Wilcoxon test when .. 
only a relatively small part ~f the site was· highly contaminated. · Gilbert and 
Simpson (1992) suggest using both the Wilcoxon test and the Quantile test when 
the contamination pattern is not known in advance. In that case, the null 
hypothesis is rejected if either test indicates the null hypothesis shoulij be 
rejected. This procedure is. one of the tandem tests studied in this report. 

Gilbert and Simpson (1990) compared the power of the Quantile test and 
the Slippage t~~t for normal background distributions and the mixture model. 
They found that·the Quantile test had more power than the Slippage test except 
when the site distribution is bimodal and one mode is at a higher 
concentration than most of the backgroun~ distribution. The Savage test is 
known to have good power properties when the background and site measurements 
have Weibull distributions (Hsieh 1988). 
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2.1 State Test 

WSOE (1g9z) proposes that the default 3-step State test outlined in 
Sections 2.1.2 through 2.1.4 be used when the background and site data are 
lognormally distributed. The performance of this State test and all the othe~ 
tests was evaluated for lognormal and Weibull distributions and for various 
mixtures of distributions, as described in Section 3. 

2.1.1 Background Cleanup Standard 

The default WSDE background cleanup standard (WSDE }gg2) is the 
estimated goth percentile of the distribution of background measurement~, 
unless. that estimate is greater than four times the estimated median of the 
background distribution. In the latter case, the cleanup standard is four 
times the median of the background distribution. For this simulation study," 
this rule implies that the cleanup standard is the estimated goth percentile 
whenever the coefficient of variation·(standard deviation divided by the 
mean), CV, of the background distribution is less than 1.5. Hence, for this . . 
study, if the background CV is greater than or equal to 1.5, then the cleanup 
standard is 4 times the estimated median. It will he seen in Section 3.1 that 
dis-tributions in this report that have a CV greater than 1.5 are highly skewed 
to the right. 

WSDE (1g92) specifies ·that once the background standard is determined on 
the basis of background measurements, it is considered to be a fixed constant. 
Hence, the uncertainty in estimating the standard on the basis of a finite 
number of background samples is not considered in the te.st. For this Monte 
Carlo study, the background standard was determined from the specified 

·~ -¢· 

background d1~tribution and did not change from iteration to iteration, even 
though the background data set changed with each iteration. That is, the 
background standard was not estimated for each of the 10,000 iterations. 
Hence, the performance results for the State test do not include variability 
in estimating the background standard from background data. 
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It should be noted that the alternative tests evaluated in this report 
do not use the 9Qth percentile or any other fixed (constant) parameter of the 
background dhtribution as the standard. Each alternative test evaluates the 
background and site data in a somewhat different way, taking into account the 
variability of the background and site data, to determine if the site 
distribution is positioned to the right of the background distribution. 

2.1.2 Upper Confidence Limit of Lognormal Mean 

The first stage of the State test procedure is to compute the upper one
sided 95% confidence limit of the mean of the lognormal site distribution. 
This is done by first computing the mean and variance (s2

) of the logarithms 
(base e) of the n site data. The upper confidence limit is then calculated as 

UCL • exp[mean + O.Ss2 + sH0•9J(n-1)} 
:-·,:-

1. 
-~ 

.} 
-~· 

where H0•95 is a value, based on n and s2
, that is taken from the tables in Land 

(1975). 

If UCL 1s ·greater than the background cleanup standard as detena1 ned using 
the procedure in Section 2.1.1, then t~e site is considered to be con~aminated. 
If the calculated value is not greater than the cleanup standard, then th~ second 
stage of the State test is conducted, as described in Section.2~1.3. 

2.1.3 Percentage Exceedance Test 

If the nUIIber of samples from the site is less than or equal to 30 and the 
go•• percent;i!tha background distribution is the cleanup standard, then no 
more than 2 ~- . ·'the site sample measurements may exceed the cleanup standard. 
If more than 201 exceed the standard, then the site is considered to be 
contaminated. If the number of site measurements is greater than 30 or the 
cleanup standard is 4 times the median. of the background distribution, then the 
analyst is instructed to contact WSDE for guidance in determining the allowable 
percentage of s.amp 1 e site observations that may exceed the c 1 eanup standard. If 
this second step does not indicate the site is contaminated, then the third step 
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of the procedure, the "magnitude of exceedance test," described in Section 2.1.4 
is used. 

2.1.4 Magnitude of Exceedance Test 

If the CV of the site measurements is less than 0.5, the number of site 
measurements is s 30, and the goth percentile of the background distribution 
is the cleanup standard, then no measurement from the site may exceed twice 
the cleanup standard. If any site measurement exceeds twice the cleanup 
standard, then the site is considered to be contaminated. The procedure 
described in Attachment 2 (page 43) of the state guidance (WSDE 1992) is used 
when the cleanup standard is defined to be 4 times the median and the sample 
size exceeds 30. This procedure alters the allowable magnitude of exceedance 
value. When applicable, this alternative ~rocedure was used in the Monte 
Carlo study reported here. 

2.2 Wilcoxon Rank SUI Test 

The distribution-free Wilcoxon Rank Sum:test is performed by first 
listing the combined site and background measurements from smallest to . : . 
largest. Then the measurements are replaced· by their ranks, where the ranks 
are the integer values from 1 through N, where N is the total number of. 
combined measurements. The rank 1 is assi~ned to the smallest value, 2 to the 
second smallest observation, etc. Next, the sum of the ranks of the site 
measurements is computed. This sum is used to compute the Wilcoxon test 
statistic which is compared to a critical value to determine whether to reject· 
H0 and accept H. (Equation 1.). The Wilcoxon test procedure is explained in 
many statistical books and papers including Conov~r (1980), Lehmann (1975), 
Gilbert and Stmpson (1992), and Gilbert (1987). 

2.3 .Quantile Test 

The Quantile test (Johnson et al. 1987; Gilbert and Simpson 1990, 1992) 
is a distribution-free test that is performed by. first listing the combined 
background and site measurements from smallest to largest. Then one examines 
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only the largest r measurements {r is typically less than 10). If k or more 
of the r measur~ments are from the site, then the site is considered to be 
contaminated. The values of k and r may be determined from Tables A.2 through 
A.B in Gilbert and Simpson (1992). 

2.4 Slippage Test 

The distribution-free slippage test can be used to rapidly identify when 
the site distribution is shift~d to the right of the background distribution. 
The test consists of counting the number of site measurements that exceed the 
maximum background measurement. If this number of site measurements is too 
large, as determined by reference to the tables in Rosenbaum (1954), it is 
concluded that the site is contaminated.· 

2.S Median Test 

The distribution-free median test (Conover 1980, pp. 171-176) is 
designed to test if the site and background dfstributions have the same 
median. The. test is conducted by first computing the grand median, which is 
the median of the combined set of b~ckground and site measurements. Then a 
2x2 contingency table is constructed for.which the first column shows the 
number of background measurements that are above and below the grand·median. 
The second column shows the same information for the site measurements. A 
chi-square test is then applied to the 4 frequencies in the contingency table 
to decide whether the median of the.site distribution is larger than the 
median of the background distribution. If so, the site is considered to be 
contaminated· • · 

2.6 Savage 

The Savage Test [Savage 1956, Hsieh 1988 (pp. 267-270)] is a 
distribution-free procedure that uses the ranks of the combined data sets, 
which are obtained in the same way as for the Wilcoxon test (Section 2.2). 
The Savage test statistic combines the ranks in a manner such that 
theoretically the test has good power when the underlying distribution is 
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Weibull. Hsieh (1988, p. 268) provides an example of how to compute the test 
statistic and conduct the test. If the test statistic is too large, the site 
is considered to be contaminated. 

2.7 Student's t test 

The t-test is a well known test for comparing the means of two 
populations. This test assumes the background and site measurements are 
normally distributed and that both distributions have the same variance. All 
measurements are assumed to be independent and hence uncorrelated, an 
assumption shared with all tests disc~ssed in this report. Critical values 
for conducting the test are taken from a table of the t-distribution, which is 
found in most statistics books. Iman and Conover (1983, pp. 272-276) provide 
an excellent description of this test. 

2.8 Satterthwaite's t test 

Satterthwaite's t test is a modified form of the standard t test that is 
appropriate when the background and site distributions have unequal variances. 
The performance of this test was evaluated and compared with that of the 
standard t test because unequal variances are expected _in practice. This test 
assumes the site and background data are normally distributed. Iman and 
Conover (1983, pp. 276~278) discuss and illustrate the test. 

2.9 Tand• Testing . 

Tandem testing is a term that refers to conducting two or more tests on 
the same set of data and rejecting the null hypothesis, H

0
, if one or more of 

the tests r~ject H
0

• Note that the State test (Section 2.1) is a tandem test 
because H

0 
is rejected if any one of the 3 tests in the 3-step State test 

rejects H
0

• 
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The Monte Carlo study reported here determined the Type I error rate and 
power of tandem-testing for the case where two tests were conducted on the 
same background and site data sets. This was done for all combinations of the 

""' tests in Sections 2.2 through 2.8. The results of these assessments are 
discussed in Section 4. 

We note that the performance of a •modified Slippage test• (denoted by 
Slippage*) was also evaluated. The standard Slippage test (Section 2.4) 
consists of determining if K or more site measurements exceed the maximum 
background measurement, where K is determined from Rosenbaum (1954) on the 
basis of the number of site and background measurements and the target Type I 
error rate (0.05). The modified test consists of using either K or K-1 
depending on which value provides a Type I error rate closer to the target 
value. This modified test was evaluated because for some sample sizes the .• 

'it. Type I error rate for the Slippage test when K is used is much smaller than ~ 

t 0.05. When K-1 instead of K is used the· Type I error rate will be closer 
(although somewhat larger) to 0.05 and the power of the test will increase 
slightly~ The performance results for the modified test are on microfiche 
(available from the first author), whi.ch show results for all tests. 
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3. DATA MODELS AND THE SIMULATION PROCEDURE 

This sect1on begins with a description of the models that were used to 
generate multiple background and site data sets to assess the performance of 
the statistical tests. This is followed by a discussion of the Monte Carlo 
simulation procedure and the various conditions for which the performance 
assessment was conducted. 

3.1 Bac~ground Distributions 

The performance of statistical tests was determined when measurements 
taken on samples collected in the background area were assumed to have either 
a logno·rmal or Weibull distribution. These distributions were selected 
primarily because measurements of natural analytes in background Hanford soil 
have been shown to be well fit by either distribution (DOE, 1993). Also, 
these distributions cover a range of shapes from nearly symmetrical to highly 
s~ewed to the right. Hence, by selecting lognormal and Weibull distributions 
with a range of parameters for this study, the-performance of statistical 
tests was evaluated for a wide range of distribution shapes. 

The Wei"bull and lognormal distributions that were used as models for 
background concentrations are displayed in Figures 3.1 and 3.2. As seen in 
these figures, five shapes of both distribution types were used. Each shape 
was determined by specifying a mean and a coefficient of variation (CV) 
(standard deviation divided by the mean). For a constant mean value, the 
shape of the distribution changes with the CV. Five values of the CV were 
used (CV • 0.1, 0.5, 1.0, 1.5, and 2.0) and the mean was set at 100. Note 
fro"! Figures ~~1 and 3.2 that the lognormal and Weibull distributions are 
almost symmet~~cal when cv • 0.1 and become more skewed to the right as the cv 
increases. Appendix A shows how the specified mean and CV were used to 
determine the shape of the background distributions. 
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Figure 3.1: The five lognormal background diatributiona used in the simu-
lation. · 
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Figure 3.2: The five WeibuU background distributiona used in the simula
tion. 
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3.2 Site Distribution (F
5

) 

The distribution (F
5

) of site measurements was obtained using a mixture 
model wherein the site distribution is a mixture of the background 
distribution and the "contamination" distribution, Fe (also referred to as the 
"shifted" distribution) that represents contamination above background. This 
approach permitted a wide variety of site distributions to be generated and 
used for the simulation study. The mixture model is (Johnson et al., 1987; 
Gilbert and Simpson, 1990): 

Fs 
where 

• 

-
• 

-
• 

site distributiDn 
background distribution 
contamination (shifted) distribution 
proportion of the site that is contaminated with 
concentrations ·from Fe. 

(2) 

The site distributio·n (F
5

) was obtained by specifying Fbk, Fe, and E in 
Equation (2). As indicated in Section·3.1, Fbk was specified in this study to 
be lognormal or Weibull. The contamination distribution (Fe) is a shifted 
background distribution. That is, Fe is identical in shape to the background 
distribution (Fbk), but it is shifted an amount A to the right of Fbk" Fe can 
be thought of as the distribution of measurements drawn from portions of the 
study site that had a constant contamination added to background. 

The par~ter E can be th~ught of as the fraction of the total number of 
. ~~;::,,. 

site samples· .•.. are collected from the contaminated portion of the s;te. 
Consequently,·~~- is the fraction collected from Fbk, i.e., from the portion 
of the site that is not contaminated greater than the background area. When 
E • 0, the site and background distributions are identical. When E • 1, then 
Equation (2) indicates that Fe • F

5
• Hence, when E • 1, the site and 

background distributions have the same shape, but the site distribution is . 
shifted to the right of the background distribution by the amount A. 
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If e = 0.5, then SO percent of the n site observations are from the 
contamination (shifted) distribution, Fe, and SO percent are from the 
background distribution, Fbk" The Monte Carlo study of this report was 
repeated forE equal to 0, 0.1, 0.3, O.S, 0.7, and 1.0 for various values of 
A. The Appendix discusses the mathematical methods used to determine the 
parameters of the background and shifted distributions. 

3.3 Shift Parameter (Pr) 

The contamination distribution, Fe, was defined in Secti~n 3.2 to be the 
background distribution shifted to the right an amount A. The amount of shift 
can be characterized either according to the distance A or by the probability 
Pr, where 

• probability that a random value drawn from the contamination 
(shifted) distribut_ion, Fe, is greater than a random value 
drawn from the background distribution, Fbk 

All of the performance results. presented in this report (see the figures 
in Section 4.0) are in terms of P,:-_rath~r. than A. This approach was taken 
because different values of A are qbtained for the same specified value of P . . . r 
as the shape of the background distribution changes. Hence, comparing the 
performance of tests on the basis of A can be difficult. 

The value of A that corresponds to a specified value of Pr can be 
obtained analytically for some distributions, e.g., the normal distribution 
(see Equation 6.10 in Gilbert and Simpson 1992). However, analytical 
solutions are not available for lognormal and Weibull distributions. 

·' 
Therefore, th& value of A that corresponds to a specified value of P was . . r 
obtained via a recursive search method. The parameter Pr is discussed in some 
detail by Lehmann (1975) (he uses the notation P1 instead of Pr). 

When e • 0 ~o that the site and background distributions are identicalr 
then Pr • 0.5. When E > 0, as Pr is specified to be closer and closer 
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to 1, the contamination distribution is shifted more and more to the right of 
the background distribution. 

3.4 Monte Carlo Simulation Procedure 

The Monte Carlo simulation study was conducted for all combinations of 
the parameter values in Table 3.1. 

3.1: 

Table 3.1 Parameter Values Used in the Monte Carlo Simulation Study 

PARAMETER 

Background Distributions 
Mean 
CV of Background Distribution 
pr 

E 
Number of Background Samples (nb) 
Number of Site Samples (n.) 
Number of iterations 

VALUES 

lognormal, Weibull 
100 
0.1, 0.5, 1.0, 1.5, 2.0 ~ 
0.50, 0.55, 0.60, 0.65, 0.70,1 
0.75, 0.80, 0.85, 0.90, 0.95,1 
0.99, 0.999 . 2 
0; 0.1, 0.3, 0.5, 0.9, 1.0 
10, 30, so, 70 
10, 30, 60, 90, 120 
10,000 

The simulation proceeded as follows using parameter values from Table 

1. Specify the shape and location of .the background distribution by 
specifying a lognormal (or Weibull) distribution that has a mean 
of 100 and a specified value of the CV. 

2.· ~ine the shape and location of the site distribution by 
~-~·fying a value for Pr and for E and using Equation (2): 

3. Specify the number of background samples and site samples. 

4. . Generate on the computer the specified number of background and 
site samples. 
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5. Conduct all statistical tests using the generated background and 
site data sets. 

6. Repeat Steps 4 and 5 a total of 10,000 times, each time using a 
new set of generated samples. 

7. Store in a computer file for each statistical test the proportion 
of the 10,000 iterations for which the test rejected the null 
hypothesis. 

The above procedure was carried out for all combinations of sample 
sizes, CV, Pr, and e for the lognormal distribution. Then the entire process 

·was repeated for the Weibull distribution. The performance of each test 
procedure for each combination of the parameters in Table 3.1 was measured by 
the results stored in Step 7, i.e., by the fraction of the 10,000 data sets 
for which the test procedure indicated the null hypothesis [Equation (1)] 
should be rejected. When Pr • 0.5, which means that the background and site . 
distribution are identical, this fracti~n is the estimated probability of a 
Type I decision error (probability that··tbe·test will incorrectly indicate the 
site is contaminated). When Pr > 0.5, ~h~ fraction from Step 7 is an estimate 
of the power of the test to correctly indicate when the site is contaminated 
greater than background. As Pr takes on larger and larger values (approaching 
1.0) the power of any valid test procedure should increase to one, the maximum 
possible value. The performance of t~e test procedures was compared 
graphically by plotting the estimated power versus the value of Pr for a 
specified background distribution, e and number of samples. These results are 
the subject of Section 4. 

Figures_:._3.3 through 3.7 and 3.8 through 3.12 show for lognormal and 
Weibull distributions, respectively, the site distributions when e • 0.1, 0.3, 
0.5, 0.7, 0.9 and 1 for CV • 0.1, 0.5, 1, 1.5, and _2 when Pr • 0.85. These 
figures also show the lognormal or Weibull background distribution for each CV 
value. These figures illustrate the wide variety of unimodal and bimodal 
(two-humped) site distributions for which the performance of tests was 
assessed when Pr • 0.85. Of course, as discussed above, test performance was 
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also assessed for a much wider suite of site distributions corresponding to 
values of Pr listed in Table 3.1. 
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0.9. The background distribution is lognormal with CV=O.l 
and the shifted distribution is characterized by Pr = 0.85, i.e., 
the probability is 0.85 that a. random measurement from the 

. shifted distribution is greater than a random measurement from 
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4. RESULTS 

This sect1on discusses and illustrates the results of the Monte Carlo 
simulation study. Our focus is on comparing the power and Type I error rates 
of the tests outlined in Section 2 for the various background distributions 
and site contamination scenarios in Table 3.1. The basic tool used to make 
the comparisons is a set of graphs of the power. As there are 1200 such 
graphs, only a small percentage of them can be shown here. However, the 
graphs shown capture the essential information. A copy of the complete set of 
graphs on microfiche can be obtained from the first author of this report. 
The graphs show results for the State test and the Wilcoxon Rank Sum test, 
Quantile test, Savage test and t test. Graphs for the median test, Slippage 
test and Satterthwaite's t test are not shown because, in most cases, their 
power is less than that of the Wilcoxon, Quantile, and t tests, respectively. 
In following discussions, the Wilcoxon Rank Sum test is frequently denoted 
simply as the Wilcoxon test. 

In Section 4.1, test performance is considered for the case of e • 1, 
i.e., for when 100 percent of the site is contaminated. In other words, the 
specified background and site distributions are identical in shape, but the 
site distribution is simply shifted to the right of the background 
distri~ution. For this case, each site data set was constructed by randomly 
drawing all site measurements from the shifted distribution, Fe. Section 4.2 
gives results for when only 10 percent of the site is contaminated above 
background. That is, each site data set was constructed by randomly drawing 
10 percent of the site measurements from the shifted distribution and 90 
percent from the background distribution. Section 4.3 summarizes the Type I 
error rate.s o{~e tests for the various contamination scenarios. In Section 
4.4, the contfttnation scenarios for which the state test performs better than 
other tests studied here are summarized • 

. Some remarks on how to read and interpre~ the p~wer curves may be 
helpful. They axis of each graph is the probability that a test indicates 
the site is contaminated, i.e., the probability that the test rejects H and . 0 

accepts Ha [Equation (1)]. The x axis gives values of Pr ranging from 0.5 (no 

4.1 



contamination above background) to 0.999 {contaminati~n such that the s~te and 
background disttiputions overlap only a negligible amount). The power curve 
for each test is labeled to correspond to the number assigned to each test at 
the bottom of the figure. The Type I error r~tes for each test are plotted on 
the graph at the value Pr • 0.5 and are also listed at the bottom of the 
figure. The contamination scenario parameters {type of background 
distribution, e, CV, and number of background and site measurements) for which 
the results were obtained are also given at the bottom of each figure. 

When looking at the power curves, a test is performing well if the curve 
starts at a y-axis value of 0.05 when Pr • 0.50 {which indicates the test has 
achieved the target Type I error rate of 0.05) and then increases rapidly as 
Pr increases. The preferred test is the one which has an achieved Type I 
error rate of 0.05 and which reaches a power of 1 soonest as Pr increases. 
Fo~ any specified value of Pr, one can quickly determine from the graph which\ 
test has the most power. The odd numbered figures (Figure 4.1, 4.3, etc) arei 
for a lognormal distributions. The even numbered figures are for Weibull 
distributions. 

4.1· ··Pervasive Contuination (• • 1) • 

.. Recall that for t~e case of pervasive contamination (for which e • 1) 
the site and background distributions have the same shape, but the site 
distribution is shifted to the right of the background distribu~ion. 
Subsection 4.1.1 presents results obtained when the background and site 
distributions are only slightly skewed (CV • 0.1), such that they appear to be 
almost synmetr_~cal. Subsection 4.1.2 considers the case of highly skewed 
distributions~tcv • 1 and 2). 

·j::' !, 

4.1.1 Slightly Skewed Distributions· (CY • 0.1)" 

For the case of pervasive contamination, Figure's 4.1 and 4.2 giv• 
'results for slightly skewed (CV • 0.1) lognormal and Weibull background 
distributions, respectively, for when only 10 background and 10 site 
measurements are available. Note first that the Type I error level for the 
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State test is 0.11 ·rather than the target value of 0.05. In other words, the 
probability is 0.11 (11 chances out of 100) that the State test would 
incorrectly indlcate that the site is contaminated. The other tests do not 
have this problem since their Type I error levels cluster very closely around 
the target value of 0.05. 

With regard to power, the State test has the most power to detect that 
the site distribution is shifted to the right of the background distribution. 
But this power advantage is "purchased" at the expense of an elevated Type I 
error level. The Wilcoxon and t tests have equal power that is somewhat less 
than that of the State test. The Savage test is slightly less powerful than 
the Wilcoxon and t tests when the background distribution is l~gnormal, and 
slightly more power than those tests when the background distribution. is 
Weibull. The Quantile test has the least power for both background 
distributions. Comparing Figure 4.2 with Figure 4.1 indicates that the power 
of the State, Savage, and Quantile tests is larger for the Weibull 
distribution than for the lognormal distrib~tion. The Wilcoxon and t tests 
have about the same power for either distribution. 

Summary for Small Samole Case 

I· . 

If the background and site distributions are onlj slightly skewed, the 
site distribution is simply a shifted version of the background 
distribution, and only ~ few background and site samples can be 
collected, then the State test is the preferred test unless the elevated 
Type I error rate of the State test is not acceptable (Figures 4.1 and 
4.2). 

··~""lc . 
lSi"• .• 

If thlf:~t~vated Type I rate of the State test is unacceptable, then 
~:~-

among t~e tests studied in this report, the Wilcoxon, t, or Savage tests 
are preferred. 

Figures 4.3 and 4.4 are for the same contamination scenario as Figures 
4.1 and 4.2, except that 60 background and 50 site samples are collected 
(rather than 10 of each). For this situation the Type I error rate of the 
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State test is 0.06, which is much closer to the target 0.05. Hence, taking 
more samples ha~reduced the size of the elevated Type I error rate of the 
State test. Also, as expected, increasing the sample sizes increases the 
power of all tests. However, now the Wilcoxon, t and Savage tests have more 
power than the State test. 

Summary for large Sample Case 

For slightly skewed lognormal background and site distributions of the 
same shape, if a relatively large number of samples can be collected, 
either the Wilcoxon or t test should be used (Figure 4.3). 

For Weibull distributions and large sample sizes, the State, Wilcoxon, t 
and Savage tests have almost identical power so that any one of them 
could be used (Figure 4.4) 

Since in practice it is difficult to determine whether the distributions 
are lognormal or Weibull, the Wilcoxon test is preferred when the number 
of samples is relatively large, since it performs best or very nearly 
so, for either distribution. 

4.1.2 Highly Skewed Distributions (CY ~ 1 and 2) 

Figures 4.5-4.8 consider the same pervasive contamination scenarios as 
Figures 4.1-4.4 except that the background and s~te distributions are more 
highly skewed, i.e., CV • 1 rather than CV • 0.1. Figures 4.9-4.12 are for an 
even more hig~JY skewed case in which CV • 2. As the conclusions from Figures 
4.5.-4.8 are qQ11tatively the same as those for Figures 4.9-4.12, we shall 
discuss mainl_lthe latter group of figures. 

Figures 4.9 and 4.10 indicate that the State test has an extremely high 
probability of incorrectly indicating the site is contaminated when the 
lognormal and Weibull distributions are highly skewed (CV • 2), E • 1, and 
only 10 background and 10 site measurements are. av·an able. Specifically, for 
the lognormal distribution the Type I error rate of the State test was 0.82 
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rather than the target 0.05 (Figure 4.9}. That is, the probability is 0.82 
(82 times out of 100} that the State test will incorrectly indicate the site 
is contaminate~.- This effect was even more extreme for the Weibull 
distribution, the rate being 0.99 (Figure 4.10}. This value implies virtual 
certainty that the State test will indicate contamination greater than 
background is present when that is not the case. The degree that the Type I 
error rate increases as distributions become more skewed {CV increases} when 
10 background and 10 site measurements are used can be seen by comparing 
Figures 4.5 and 4.6 {for which CV = 1} to Figures 4.9 and 4.10 {for which CV = 
2}. The Type I error rates for the State test are 0.51 and 0.82 when CV = 1 
and 2, respectively, for the lognormal distribution. The rates are 0.81 and 
0.99 for CV = I and 2, respectively, for the Weibull distribution. 

Figures 4.9 and 4.10 indicate the superior power of the State test when 
CV = 2. ·However, this must be balanced against the extremely elevated Type I 
etror levels of the test. Also, when CV • 1 {Figures 4.5 and 4.6), the State 
test does not continue to have superio~ power for all values of Pr. Rather, 
the Wilcoxon test has equal or more powe~ than the State test when Pr > 0.7. 
It should also be noted from Figures 4.5, 4.6, 4.9 and 4.10 that the t test 
has considerably less power than the Wilcoxon test when distributions are 
highly skewed. This difference in power increases as the skewness increases. 
Overall, the power results suggest that the Wilcoxon test is the preferred 
test~ assuming the State test is not used because of its elevated Type I error 
rates. 

Summary for Small Samole Case 

If the background and site distributions are highly skewed, the site 
Aistribution is simply a shifted version of the background distribution, 
and only a few background and site samples can be collected, then the 
State test will almost always indicate the site is contaminated greater 
than background when in fact there are no differences. Clearly, this 
perfQrmance is unacceptable. 
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Assuming the State test is not used because of its highly elevated Type 
I error rate, the Wilcoxon test is preferred. 

The t test should not be used in place of the Wilcoxon test when 
distributions are highly skewed. These skewed distributions are a 
severe violation of the normality assumption underlying that test, which 
results in lower power for the t test than for the Wilcoxon test. 

For the large sam~le case (60 background and 50 site samples) when 
CV = 1, the Type I error rate for the State test almost achieves the target 
value (0.06 instead of 0.05) when the data are lognormally distributed (Figure 
4.7). For Weibull distributions the Type I error rate is 0.34 (Figure 4.8). 
When CV • 2 the Type I error rate for the State test is 0.36 for the 
lognormal distribution (Figure 4.11) and 1.0 for the Weibull distribution 
(Figure 4.12). 

For lognormal and Weibull distributions with CV • 1, the power of the 
State test for the large samp.le-size case 1s much less than that of the 
Wilcoxon, Savage and t tests (Figures 4.7 and 4.8). A similar result is 
obtained for the lognormal distribution with CV • Z (Figure 4.11). However, 
the power of the State test for the"Weibull case with CV • Z (Figure 4.12) is 
still superior or equal to thai of the Wilcoxon test, but at the expense of 
the virtual certainty of the State test making a Type I error. 

Summary for large Sample Case 

For tha-pervasive contamination case and highly skewed lognormal 
backgroqrid and site distributions of the same shape, if a relatively 

~~ . 
large nUmber of samples can be collected, the Wilcoxon test is preferred 
because it has the best power among all tests that achieve the target 
Type I error of 0.05. For the Weibull case the Wilcoxon test is also 
preferred, assuming the State test is considered to be unacceptable 
because it virtually always indicates the site is contaminated when that 
is not true. 
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4.1.3 Tandem Testing 

Figures 4~13-4.24 give test performance information for three tandem 
tests for the same contamination scenarios as Figures 4.1-4.12. The three 
tandem tests are Wilcoxon-Quantile, Quantile-Savage and Wilcoxon-Savage. The 
performance-of the State test, which is also a tandem test, is also given in 
the figures for comparison purposes. The power curves for the State test in 
Figures 4.13-4.24 are repeated from Figures 4.1-4.12. 

A comparison of Figures 4.13-4.24 with Figures 4.1-4.12 indicates: 

For slightly skewed lognormal or Weibull distributions CCV= 0.1): 

Tandem tests other than the State test have Type I error rates of 
about 0.06 to 0.08 rather than the target value of 0.05 for both 
small and large samples sizes. 

Tandem tests give a modest increase in power over individual tests 
when 10·background and 10 site measurements are used, but no 
increase in power when 60 background and 50 site samples are used. . . 

The Quantile-Savage tandem test usually has less power than the 
Wilcoxon-Savage or Wilcoxon-Quantile tandem te~ts. 

For highly skewed distributions CCV • 1 or 2): 

Tandem tests other than the State test have Type I error rates of 
about 0.07 to 0.09 rather than the target value of 0.05 for both 
small and large sample sizes. 

The Wilcoxon-Quantile and Wilcoxon-Savage tandem tests have 
essentially the same power as the Wilcoxon test by itself .for 
either small or large sample sizes. However, these tandem tests 
have much greater power than the individual Quantile or Savage 
tests. 
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In Summary: 

The Quantile-Savage tandem test always has considerably less power 
than-the Wilcoxon-Savage or Wilcoxon-Quantile tests. 

The State test has less power than any of the other tandem tests 
for the large sample-size case when CV • 1. 

For the pervasive contamination case with slightly or highly skewed 
lognormal background and site distributions of the same shape, and for 
small or large numbers of samples, the Wilcoxon-Quantile or Wilcoxon
Savage tandem tests: 

provide a modest increase in power over using the Wilcoxon test 
alone and a ·large increase in power over using the Quantile or 
Savage tests alone. 

have Type I error rates of 0.06 to 0.09 compared to.the target 
value of 0.05 

. . 
'It ~hould be noted that Gilbert and Simpson (1992) recommend using the 

Wilcoxon test and the Quantile test in tandem. Their recommendation is based 
on computer simulations they conducted to evaluate the performance of each 
test. They found that the Wilcoxon test had more power than the Quantile test 
to detect pervasive site contamination. They also found that the Quantile 
test had more power than the Wilcoxon test when only a small portion of the 
site was highJy contaminated above background. As the two tests have good 
power for dif~erent contamination scenarios, they recommend conducting both 
tests (i.e., ·nsing the Wilco~on-Quantile tandem test) unless it is known which 
contamination scenario is most likely. The complementary power of the 
Wilcoxon and Quantile tests reported by Gilbert and Simpson (1992) is 
confirmed by the results in the present report. 
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4.2 Ten Percent Contamination at the Site (E = 0.1) 

Sections 4~1.1 through 4.1.3 presented results for the case of pervasive 
contamination. Now, we consider cases for which only 10 percent of the site 
is contaminated.~ Note that for this situation the shape of the site 
distribution is not identical to that of the background distribution because 
the site is no longer uniformly contaminated a specified amount greater than 
background. Subsection 4.2.1 presents results for the case of a slightly 
skewed background distribution (CV = 0.1). Subsection 4.2.2 gives results for 
a highly skewed case (CV = 2). The shape of site distributions for various 
degrees of skewness and percent contamination are shown in Figures 3.3-3.12 
for a magnitude of contamination Pr = 0.85. 

4.2.1 Slightly Skewed Distribution (CV = 0.1) 

For the case of 10 percent contamination, Figures 4.25 and 4~26 give 
results for slightly skewed (CV = 0.1) lognormal and Weibull background 
distributions, respectively, for when only 10 background and 10 site 
measurements are available. First, the State test has an elevated Type I 
error rate, 0.11 instead of 0.05, and the other tests do not. These same 
results were obtained for the pervasive contamination case (Figure 4.1). As 
regards power, the State test has the best power, but even its power remains 
very low until the magnitude of contamination in the contaminated areas of the 
site becomes large. The power is slightly better for the Weibull distribution 
than for the lognormal. Th~ other tests have essentially no power to detect 
the 10 percent co~tamination greater than background for either distribution. 

When 6Q·background and 50 sit~ measurements are available (Figures 4.27 
and 4.28) the:_Type I error rate of the State test (0.06) is much closer to the 
target value of 0.05, the same conclusion obtained for the pervasive 
contamination scenario (Figure 4.3). Also; the larger number of samples 
improves the power. The State test has the most power, and the power of other 

. tests improves som~~hat, but all tests have low power except when Pr is close 
to 1. The power of the State test and the Quantile test is larger for the 
Weibull than the lognormal distributions. Also, when Pr approaches one, the 
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power of the Quantile test becomes larger than that of all other tests except 
the State test. - ~n particular, the Wilcoxon test has the least power of any 
test when P is greater than about 0.85. This result is in contrast to that r 

for the pervasive contamination case (Figures 4.3 and 4.4). For that case, 
the Wilcoxon test had the most (or nearly so) power of any test. These 
results confirm the conclusions of Gilbert and Simpson (1992) that the 
Wilcoxon test has more power than the Quantile test to detect pervasive 
contamination, but that the Quantile test has more power to detect "hot spots" 
or partial contamination. 

Summary 

When the background distribution is only slightly skewed and only 10 
percent of the site is contaminated greater than background, the State 
test has the best power. However, the State test has a somewhat 
elevated Type I error rate when only 10 background and 10 site samples 
are collected. 

The power of all tests is low. 

. 
For larger sample sizes, the Wilcoxon test has the least power of all 
tests studied for this 10 percent contamination scenario, and. the 
Quantile test has much greater power than the Wilcoxon test when the 
magnitude of contamination (value of Pr) is large. 

4.2.2 Highly Skewed Distributions (CV a 1 and 2) 

Figures 4.29-4.32 consider the case of 10 percent contamin!tion when the 
background distribution is more highly skewed (CV • 1). Figures 4.33-4.36 are 
for even more highly skewed distributions (CV • 2). 

For the small sample-size case (Figures 4.29, 4.30, 4.33 and 4.34, the 
State test has an extremely elevated Type I error level, whereas other tests 
have Type I errors that cluster closely around the target value of 0.05. 
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However, the power of the State test is far superior to the very low power of 
all other tests. 

For the large sample-size case (Figures 4.31, 4.32, 4.35, 4.36) and 
CV = 1, the Type __ ! error of the State test for the lognormal background 
distribution is no longer elevated above the target value (Figure 4.31), but 
it remains elevated for the Weibull distribution (Figure 4.32). The increased 
sample sizes improve the power of all tests somewhat, but power remains low in 
general unless Pr is very near 1. When CV = 2, the Type I error rate of the 
State test is virtually 1 for the Weibull distribution and remains high (0.36) 
for the lognormal distribution. The power of all tests remains low. 

Summary 

When the background distribution is highly skewed and only 10 percent of 
the site is contaminated, the State t~st has the best power, but its 
_Type I error level is highly elevated, particularly for the extremely 
skewed Weibull background distributions. The pow~r of all other tests 
is low even for large numbers of samples. 

For highly skewed background Weibull distributions and a site with 10 
percent contamination, the State test has a probability of 1 of 
declaring the site is contaminated, regardless of whether the site is 
identical to background, very slightly contaminated, or he~vily 
contamin~ted. In other words, for this contamination scenario, the 
State test will always indicate the site is contaminated, even when it 
is not. 

4.2.3 Tande. Testing 

Power curves are not shown here for tandem tests applied when only 10 
percent of the site is contaminated. However, these curves (available on 
microf\che) indicate: 

.. ~ 
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For slightly skewed lognormal or Weibull dist~ibutions (CV = 0.1) 

Tandem tests other than the State test have Type I error rates of 
about 0.06 to 0.08 rather than the target value of 0.05 for both 
small and large sample sizes. 

The power of all tandem tests is very low when only 10 background 
and 10 site samples are used. The State test has better power 
than the other tandem tests, but its power is low except when P 

. r 
is near I, and it has an elevated Type I error rate (0 .• 11 versus 
the target value of 0.05). 

The Wilcoxon-Quantile tandem test is significantly more powerful 
than the Wilcoxon test applied alone when 60 background and SO 
site measurements are used. This extra power. comes from using the 
Quantile test in addition to the Wilcoxon test. However, very 
little increase in power occurs by using the Quantile test when 10 
background and 10 site samples are used. 

The Quantile-Savage tandem test has about the same power as t~e 
Wilcoxon-Quantile test, and more power than the Wilcoxon-Savage 
test. 

For the 10 percent contamination case, any tandem test that 
includes the Quantile test has more power than a tandem test that 
does not. 

For highly skewed lognormal or Weibull distributions (CV • 1 or 2) 

Tandem tests other than the State test. have Type I error rates of 
between 0.06 and 0.10 rather than the target value of 0.05. 
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In Summary: 

The power of all tandem tests is very low when only 10 background 
and 10 site samples are used. The power of the State test is very 
high, but it almost always incorrectly indicates that 
uncontaminated sites are contaminated. 

The power of tandem tests to detect 10 percent contamination is 
lower for highly skewed distributions (high CV) than for slightly 
skewed distributions (low CV). 

For the 10 percent contamination case: 

The tandem tests have Type I error rates that range between 0.06 
and 0.10. 

The State test has better power than other tandem tests considered 
here, but its Type I error rate is highly elevated, particularly 
for highly skewed distributions. 

All tandem tests have low power unless Pr is near 1.0, 
particularly when distributions are highly skewed. 

4.3 Summary of Type I Error Rates 

This section summarizes the Type I error rates for the State test 
(Section 4.3.1) and for all tests (Section 4.3.2). 

4.3.1 Stati Test 

The Type I error rates for the State test are summarized in Table 4.1. 
The State test ha·s very large Type I error rates when CV :a: 0.5, particularly 
when the number of site samples is less than about 30. The Type I error rate 
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is generally larger for the Weibull than for the lognormal distribution. The 
rate is less than 0.10 for either distribution when CV < 0.5 and the site 

-
sample size is 30 or larger. 

These results indicate that if the CV is large enough, the State test 
will always indicate that a site is contaminated, even when the site has no or 
very little contamination. If the State test is used when CV is large, and if 
the decision to take remedial action is based solely on the results of the 
test, then unnecessary remedial actions will occur. 

Table 4.1 Estimated Type I Error Rates for the State Test 
for Lognormal,and Weibull B~ckground 
Di stri but ions a) 

Lognormal Wei bull 

Number of Site Samples Number of Site Sample·s 
cv 10 30 50 70 ·10 30 50 70 

0.1 0.11 0.07 0.06 0.055 . 0.12 0.07 0.06 0.05 
0.5 0.24 0.07 0.06 0.055 .0.43 0.09 0.06 0.05 
1.0 0.50 0.09 0.06 0.055 0.81 0.53 0.33 0.22 
1.5 0.65 0.20 0.08 0.060 0.97 0.97 0.97 0.97 
2.0 0.81 0.55 0.36 0.230 0.99 1.oo· 1.00 ·1.00 

(a)The State test does not explicitly take into account 
the number of background samples. Hence, the results 
in this table are the same for all background sample 
sizes in the Monte Carlo study. 

Figures 4.37-4.40 show power curves and Type I error rates for the State 
test as well as for each of the three component parts of the test (upper 
confidence limit, frequency of exceedance and magnitude of exceedance). The 
Type I error rates for the two exceedance tests are conditional rates. That 
is, the Type I error rate for the percent exceedance test is the probabHity 
that test rejects H

0 
~ that the first step of the State test (comp~ring 

the upper 95 percent confidence limit on the site mean to the background 
standard) does not reject H

0
• Similarly, the Type I error rate for the 

magnitude of exceedance test is the probability that the test rejects H
0 

given 
that neither the first and second steps of the State test (upper limit test 
and the frequency of exceedance test) rejected H

0
• The Type I error for the 
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complete 3-step State test was computed as the sum of the Type I error for the 
confidence limit test and the two conditional Type I errors for the-two 
exceedance tests. 

Figure 4.37 indicates that for a slightly skewed distribution {CV = 0.1) 
when 10 background and 10 site samples are collected, each component part 
contributes about the same amount to the overall Type I error rate. However, 
Figure 4.38 indicates that when the number of samples is increased to 60 
background and 50 site samples for the slightly skewed case, the overall 
Type I error rate comes entirely from the two exceedance tests. It is also 
interesting that the power of the overall test comes entirely from the 
exceedance test components when the magnitude of contamination, Pr, is 
relatively small. It isn't until Pr exceeds 0.70 that the upper 95 percent 
confidence limit test component contributes any power to the State test. 

Figures 4.39 and 4.40 indicate that when only 10 background and 10 sites 
samples are collected from more highly skewed distributions {CV • 0.5 and 1), . -

essentially all the Type I error for the overall test is contributed by the 
upper confidence limit test. 

4.3.2 Other Tests 

Elevated Type I error rates are not a serious problem for any other test 
studied in this report except perhaps Satterthwaite's t test. This conclusion 
is based on Table 4.2, which shows the range of estimated Type I error rates 
obtained from the~Monte Carlo study for all tests. For Satterthwaite's test, 
the rather wide spread in rate levels {from 0.01 to 0.18) is believed to·have 
occurred because .the test was designed for use when data are normally 
distributed, which is not true for this study. Also the test is approximate 
in the sense that the achieved Type I error level may not be achieved even if 
the normality ass,u!Jiption is true. For the t test, the spread from 0.01 to 
0.08 is also believed to have occurred because the assumptions of normality 
and equal variances for the background and site distributions are not true for 
this study. 
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The low value of 0.04 for the Wilcoxon test is believed to be due 
primarily to sampling error from using a finite (although large; 10,000} 
number of iterations of the computer code. Of course, sampling error 
contributes to the uncertainty of the estimated Type I error rates for all the 
tests. However, as the number of iterations was large, if a test really has a 
Type I error rate of 0.05, it is very unlikely that the Type l error rates 
obtained from the simulations would fall outside the range from 0.04 to 0.06. 

The estimated Type I error rates for the Savage, Slippage, Quantile and 
Median tests were also below the target value of 0.05 for some contamination 
scenarios. The low rate of 0.03 for the Savage test may be an indication that 
the Type I error rate of the test is slightly sensitive to the degree of 
skewness of the distributions. 

However, the rates of 0.01 or 0.03 for the Slippage, Quantile and Median 
tests do not necessa~ily mean the tests are performing poorly. ·Indeed, the 
target values for these tes~s were actually specified to· be less than 0.05, 
the exact value depending oh the sample size. This was done because the 
discrete nature of these tests makes it impossible for them to achieve a 
target value of· exactly 0.05. To avoid the possibility of elevated Type I 
error rates, the authors decided to conduct these three tests su~h that the 
achieved Type I error rates would tend to fall below 0.05 rather than above 
it. 

Table 4.2 Range of Estimated Type I Error Rates 
for All Tests 

Test 

State 
Wilcoxon 
Student's t 
Satterthwaite's t 
Savage 
Slippage 
Quantile 
Median 

4.56 

Range of Estimated 
Type I Error Rates 

0.05 to 1.00 
0.04 to 0.06 
0.01 to 0.08 
0.01 to 0.18 
0.03 to 0.06 
0.01 to 0.05 
0.03 to 0.06 
0.01 to 0.06 



4.4 Cases Where State Test Performs Well 

~ This report indicates that the 3-step State test has extremely elevated 

, 

Type I error rates when the CV is large and the number of site samples is 
small. However, the State test performs better in other situations. Table 
4.3 summarizes the scenarios studied here for whi~h the State test did not 
have seriously elevated Type I error levels (i.e., the levels are less than 
~bout 0.10) and also had the best po~er (over most values of E and P) of any 

. r 

test considered. The results in Table 4.3 indicate that the State test meets 
these performance criteria when CV s 0.5 and the number of site samples is at 
least 30, although the number of background samples can be as low as 10. 

Table 4.3 Contamination Scenarios for which the State Test 
has Type I Error Levels Less than Approximately 
0.10 and Generally Better Power than Other Tests<a> 

Backg~ound Number of Number of 
DistriBution cv Background Samples Site Samples 

Lognormal 0.1 10 30 30 50 70 
0.5 10. 30 50 70 

Wei bull 0.1 10 30 60 90 30 50 70 
0.1 30 120 
0.5 10 50 70 

(a) Considers results for whole range of values of E and P r· 
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5. DISCUSSION 

The res~lts of this study clearly show that no single test or 
combination of tests can be relied upon to never make a mistake. Moreover, no 
single test will perform well for all contamination scenarios and sample 
sizes. For example, the Wil<oxon Rank Sum test is one of the best performers 
when the site is contaminated throughout its extent, whereas the Quantile test . . 
performs better than the Wilcoxon test at detecting sites that have small 
areas of very high contamination when a large number of samples are taken in 
both the background and site areas. The easy-to-use slippage test does well 
at detecting such hot spots if 50 or more background and site samples are 
taken. In some situations the State test has equal or more power than other 
tests studied here, but when the background and site measurement distributions 
are highly skewed and only a few samples are collected, the State test has 
extremely. high probabilities of declaring that an uncontaminated site is 

· confaminate.d. The t test and Satterthwaite's t test appear to-have no 
perfo~ance advantages over the Wilcoxon test. The performance of the Savage .. 
test is sometimes better than that of the t test, but it did not perform as · 
well as the Wilcoxon test. The median test has no performance advantages over 
the Wilcoxon test. 

An important caveat on the performance assessments is that the tests 
evaluated here do not make use of information in the data related to the 
spatial pattern o~ contamination or the correlation among measurements. 
Therefore, it is important that no test should be conducted without also 
displaying the background and site data graphically to compare visually how 
those data sets compare and the extent that they overlap. This graphical 
analysis should include plotting each measurement on a map at its sampling 
location so that patterns can be visually detected. Also, histograms, box 
plots, and simple one-dimensional scatter (line) plots (Chambers et al. 1983) 
of both the site and background data should be constructed and·displayed side 
by side to compare their means, medians, percentiles, extreme values and 
patterns of variability. These, and other visual aids, are easily constructed 
using readily available statistical software and graphics packages. 

5.1 



Among the tests considered here, the 3-step State test is perhaps the 
most complicated test to conduct. Furthermore, its performance behavior is 
erratic in the sense that it is impossible to know whether the results of the 
test are valid unless one collects many samples and knows a great deal about 
the shape of the background and site distributions prior to conducting the 
test. Specificly, we have seen that this test has great potential for 
declaring an uncontaminated site as being contaminated when the background and 
site data distributions are highly skewed and only a few samples are taken. 
The test should not be used blindly, i.e., without taking sufficient samples 
to conclude with confidence that the test's Type I error is not excessively 
large. To obtain such confidence, perhaps 40 or more samples are required in 
both the background and ~ite areas. Clearly, the use of visual aids as 
discussed above is particularly important if the State test is used. The 
option of taking additional samples to confirm the results of the State test · 
should always be available. 

To continue our discussion of the State test, suppos~, for a moment, 
that the stakeholders reach consensus that a target Type .I error rate larger 
than 0.05 is acceptable. For example, if ~ site is very small and the cost of 
remediating the site is low, it may be acceptable to have a probability of 
approximately say, Q.30 of declaring an uncontaminated site to be 
contaminated. In that case, suppose the number of samples collected and the 
skewness of the distributions are such that the State test is believed to have 
a Type J error rate of, say 0.30 instead of the nominal 0.05. Hence, one 
could decide to use the usual State test. However, one could ~lso consider 
using the Wilcoxon test at a Type I error rate of 0.30 rather than 0.05. The 
choice of whether the State or Wilcoxon test should be used in this situation 
depends on the power curves of the two tests when the Type I error rate is 
specified ta be 0.30. This question cannot be addressed rigorously here 
because this report has only evaluated the power of the Wilcoxon test for a 
Type I error rate of 0.05. Nevertheless, the results here indicate that when 
the power curve of the State test is U shaped {see e.g., Figures 4.8 and 
4.11), the Wilcoxon test i~ the preferred test because its power curve is 
known from theory to be monotonicly non-decreasing as the contamination 
magnitude parameter Pr increases. Hence, the power curve of the State test 
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will necessarily be below that of the Wilcoxon test because both curves would 
start at 0.30 and the State test curve initially declines while the Wilcoxon 
curve does not decline. This example indicates that if a Type I error level 
greater than 0.05 is acceptable to the stakeholders, that does not necessarily 
mean that the State test should be used, i.e., it may be better to use the 
Wilcoxon test at the higher, specified Type I error rate. 

It should .also be noted that the State test does not explicitly consider 
the number of background samples that are used to estimate the background 
standard, say the 90th percentile of background. Hence, the State test 
ignores information about the estimation variance of the standard. That 
variance will decrease if more background measurements are collected. All 
tests considered here except the State test explicitly take into account the 
number of background measurements collected. 

In addition to using statistical tests and graphical aids, the process 
of comparing the site to the background area includes determining the 
geographical boundaries of the background area itself. The sampling and data 
analysis procedures to define the background area are not discussed in this 
report. The broader site evaluation process also includes developing site
specific sampling and measurement protocols, sample collection and laboratory 
analysis procedures, and the field and laboratory quality assurance plan. 

It is important that the planning and design aspects be conducted by 
teams whose members work together and use each others expertise to refine the. 
sampling, analysis, and testing process. Geochemists, geologists, and other 
professionals must be involved to assure the validity of the background and 
site data for te~ting whether background standards have been exceeded. All 
stakeholders should be involved in planning and implementing the entire 
process. 

Considering the above remarks, the authors believe that a reasonable 
strategy (process) for comparing a site t~ the background area is to: 
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Specify that field and laboratory sampling methods and designs and 
procedures should be reviewed by geochemists, geologists, statisticians 
and other professionals to assure that the measurements used in the 
statistical tests are valid for the purpose and meet all quality 
requirements. 

Determine the Type I error rate that is acceptable to all stakeholders. 
Higher Type I error rates than were used in this simulation study may be 
acceptable if the monetary, ecological, and human costs of cleaning up 
an uncontaminated site are not large. 

Always use graphical aids to visually display the data and to help 
interpret the statistical test results 

Routinely use the Wilcoxon Rank Sum Test in preference to the State test 

Use both t~e Wilcoxon and Quantile tests in preference to the State test 
if an overall Type I error rate (for both tests combined) of about 0.08 
or 0.09 is acceptable when both tests are conducted at the 0.05 Type I 
error rate. If either test is significant, this is evidence that the 
site may be contaminated. 

Use the State test only if sufficient data have been collected and prior 
analysis has been done to assure with the required level of confidence 
(specified by the stakeholders) that: 

the distributions of the background and site measurements have CVs 
.·less than about 0.50 

the background and site data can be modeled sufficiently well by 
lognormal distrib~tions 

enough samples are collected in both the background and site areas 
so that the Type I error rate of the State test does not exceed 
the established acceptable level 
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the power of the State test is greater than the Wilcoxon test for 
the same Type I error rate. 

Although the present study has provided useful information on test 
performance, there is much that remains to be learned. One area where 
additional evaluations could help is in developing tests or data analysis 
procedures that work well for censored data sets, i.e., for data sets that 
contain one or more values less than the detection limit or the limit of 
quantitation. WSDE (1993) makes recommendations for this situation and some 
Monte Carlo studies have been conducted (e.g., Millard and Deverel 1988 and 
Helsel 1990). However, to the authors' knowledge, the performance of these 
available tools in practice has not been thoroughly evaluated. Additional 
evaluations might als~ be done for a wider range of distribution shapes than 
are considered in this report. 

It should also be noted that the performance assessments in this report 
are for the case of simple random sampling from both the backgrounij·and site 
areas. This sampling plan is used because the assumption is made that there 
is no information available about any contamination patterns that exist (or 
might exist) at the site. The performance of tests reported in this document 
can be considered as a worst case that applies when there is no prior 
information about where contamination may exist at the site. 

In practice, one may use statistical analysis methods. such as 
geostatistics (Cressie 1991) on data collected previously at the site to 
searc~ for possible spatial patterns of contamination. If information is 
available on possible patterns, that information can be used to design a field 
sampling plan that improves the probability of detecting or mapping 
contaminat~pn. For example, using a systematic grid of samples of different 
densities in different areas within the site may work better than simple 
random sampling.~ Adaptive sampling designs (Thompson 1992) should also ~e 
considered, wherein the procedure for selecting sample locations depends on 
measurements made on previously collected samples. 
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APPENDIX 

SIMULATION METHODS 

A.l Determining Distribution Parameters 

The computer simulation code generated background and site measurement 
values from lognormal and Weibull distributions. The shape and location of 
these distributions is determined by the distribution parameters, which are 
defined below. These parameters were determined algebraically using specified 
values of the mean and coefficient of variation, CV, of the distribution. The 
mean was arbitrarily set equal to 100 in all cases because it was determined 
empirically that the performance assessment results do not depend on the value 
of the mean. Specifically, simulations were conducted using mean values of 
10, 1000 and 10,000. The perform?nce assessment results were the same as when 

. the mean was 100. 

A.l.l. Lognormal Distrib\Jtio~ 

The lognormal distribution may be written as 

where X~ e. For the background distribution, e was set.equal to zero, i.e. 
the two-parameter lognormal distribution was .used. Using formulas found in 
Johnson and Kotz (1970, pp. 112-117) the other two parameters, v and 6, can be 
determined once the mean and CV have been specified. The formulas for the mean 
and CV of the lognormal distribution are 

... 
mean ~t. • 

cv • [ exp(6-2) -11 112 

A.l 



The values of 6 and v were determined using specified values of the CV and a 
mean value of 100 using the equations 

v = -ologe(100)+1/(2o) 

A.l.2 Weibull Distribution 

The Weibull distribution can be written as 

where x > ~ 0 • For this simulation study, the value of ~ 0 for the background 
.distribution was set to zero. 

. To determine values for parameters a. and c, we first specified a value 
for the CV and a mean of 100, then solved numerically the fol~owing two 
equations (from Johnson and Kotz 1970, pp. 250-255): 

mean • a.r(.l+l/c) 
CV = [a.r(l+2/c) - :r2 (1+1/c) ]112/[a.r(l+1/c)] 

where r is the Gamma function (Press et al. 1988, page 167). 

A.2 Simulating Random Normal Values 

Random normal values were obtained using the Box-Muller method (Kalos 
and Whitlock 1986, page 48). This method uses two random values from a 
Uniform (0,1) distribution to generate two independent standard normal values. 
Random uniform values between zero and one were obtained using a· subtractive 
method proposed by Knuth (1981) and described by Press at al. (1988). 
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The procedure for generating normal values is not defined for just any 
pair of random uniform values. If we consider the two uniform values as 
defining a point in the x-y plane, then that point must lie within a circle 
centered at (0,0) with a radius of 1. The transformation between the two 
uniform values, x1 and x2, given by 

is used to generate two random normal values, y1 and y2, for each pair of 
random uniform values, x1 and x2 • 

In summary, the procedure is to obtain a pair of uniform values, check 
that the point defined by the pair is in the unit circle, generate a 
replacement pair if necessary, and apply the above transformation to obta\ft 
the pair of standard normal values. 

A.3 Simulating Random lognormal Values 

To obtain random lognormal values, we made use of the cumulative 
distribution function (cdf) of the lognormal distribution: 

F(x) • a + Plog.(z-y) 

where z is a random normal value. This cdf was used to obtain the quantile 
function~ which is the inverse of the cdf. The quantile function for the 
lognormal ~stribution is 

:~.-:-
i' X - exp[ (z-a)/P] + y (A.l) 

. ~. Hence, a lognormal value x was obtained by first generating a random normal 
value z using the method described in Section A.2 and then using Equation 
(A. I). 
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A.4 Simulating Random Weibull Values 

The probability integral transform method (Mood et al. 1974, page 202) 
was used to obtain random Weibull values. The cumulative Weibull distribution 
function is 

F(x) = 1.0 - exp{-[(x-a)/p] 11T) 

The quantile function for the Weibull distribution is 

(A. 2) 

which was used to obtain Weibull values. In summary, a random Weibull value, 
x, was determined by first generating a random uniform value, u, and then 

·using Equation (A.2). 
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