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Nonparametric estimates of standard error: The jackknife, 
the bootstrap and other methods 

BY BRADLEY EFRON 

Department of Statistics, Stanford University 

SUMMARY 

We discuss several nonparametric methods for attaching a standard error to a point 
estimate: the jackknife, the bootstrap, half-sampling, subsampling, balanced repeated 
replications, the infinitesimal jackknife, influence function techniques and the delta 
method. The last three methods are shown to be identical. All the methods derive from the 
same basic idea, which is also the idea underlying the common parametric methods. 
Extended numerical comparisons are made for the special case of the correlation 
coefficient. 

Some key words: Balanced repeated replications; Bootstrap; Delta method; Half-sampling; Jackknife; 
Infinitesimal jackknife; Influence function. 

1. OUTLINE 

We wish to attach a standard error to some point estimate p. The standard error itself 
must be estimated from the data, and this is usually done by parametric modelling 
methods. Here we discuss several non parametric methods for estimating standard errors; 
the jackknife, the bootstrap, half-sampling, subsampling, balanced repeated replications, 
the infinitesimal jackknife, influence function techniques and the delta method. The 
discussion is built around a single numerical example, the correlation coefficient from a 
bivariate normal model. 

The purpose of the discussion is fourfold: 
(i) to describe concisely the various methods; 
(ii) to show how all these methods derive from the same basic idea, which is also the idea 

underlying common parametric methods; 
(iii) to draw more specific connexions between certain of the techniques. For example, 

§ 6 shows that the ordinary delta method is exactly the same as the infinitesimal jackknife; 
(iv) to show how differently the various methods perform in the numerical example, 

even though they are asymptotically equivalent. The bootstrap performs notably best. 
The various methods are defined and described in § § 3-8, but in a brief manner which 

omits much of their practical and theoretical motivation. The reader is referred to Miller 
(1974) for a neat review of the jackknife and infinitesimal jackknife, Hartigan (1969) and 
Maritz (1979) on subsampling theory, McCarthy (1969) and Kish and Frankel (1974) for 
half-sampling and balanced repeated replications, Hampel (1974) and Huber (1972) for 
influence function methods, and Efron (1979a, 1981) for the bootstrap. Hinkley (1978) 
specifically discusses the jackknife for the correlation coefficient. 

Section 9 briefly discusses why standard errors are of interest. More ambitious 
nonparametric accuracy statements, such as confidence intervals, are mentioned, though 
no satisfactory general theory yet exists. 
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2. A MONTE CARLO EXPERIMENT 

Table 1 shows the results of a Monte Carlo experiment. There were 200 trials, each of 

which involved 14 independently drawn bivariate normal points X 1 = (U1, V1) with 

E(U1) = E(V1) = 0, var(U1) = var(V1) = 1, cov(U1, V1) = !. (2·1) 

The statistic of interest, for which an estimated standard error is desired, is the Pearson 

correlation coefficient p, 

p(X 1' ... 'X n) = [ {l: U~ - (l: Ji)2 in }{l: ~t ~ (l: Vl)2 /n }]i (2·2) 

We also consider ~=tanh- 1 p=!log{(1+P}/(1-P}}, Fisher's variance-stabilizing 

transformation. 
From data x1 = x1, ... ,Xn = Xn (n = 14}, fifteen different methods were used to 

construct estimated standard errors for p and ~. Table 1 shows summary statistics over 

the 200 trials. For example a normal theory estimate of a(p }, the true standard error of p, is 

aN(P) = (1-p2 )jlli; see §4. Line 15 of the table shows that the normal theory estimates 

for the 200 trials averaged 0·217, with sample standard deviation 0·056, and coefficient of 

variation 0·26 = 0·056/0·217. The true value a(p) is 0·218 in situation (2·1) (Johnson and 

Kotz, 1970, p. 225). The root mean squared error, from 0·218, was MsEi = 0·056. 

Table 1. N onparametric estimates of standard error for p and~ = tanh- 1 p; 200 trials of 14 

independent, bivariate normal pairs with true correlation 0·5 

p ~=tanh- 1 p 
Method Mean SD cv MSEt Mean SD tlV MSEt 

1. Bootstrap (BST), 

N = 128 0·206 0·066 0·32 0·067 0·301 ()-065 ()-22 0-()65 

2. Bootstrap, N = 512 0·206 0·063 0·31 0-()64 0·301 0·062 0·21 0-()62 

3. Normal smoothed 0·200 0·060 0·30 0-()63 0·296 ()-041 ()-14 o-041 
BST, N = 128 

4. Uniform smoothed 0·205 0·061 0·30 0-{)62 0·298 0-{)58 ()-19 0-{)58 

BST, N = 128 
5. Uniform smoothed 0·205 0·059 0·29 0·060 0·296 0-{)52 ()-18 Oo052 

BST, N = 152 

6. Jackknife 0·223 0·085 0·38 0-{)85 0·314 0·090 0·29 0-{)91 

7. Infinitesimal 0·175** 0·058 0·33 ()-072 0·244* 0·052 ()-21 ()-076 

jackknife 

8. Half-samples, all 128 0·244* 0·083 0·34 0-{)87 0·364** 0·099 0·27 0·118 

9. Random HS, N = 128 0·248* 0·079 0·32 0{)85 0·368** ()-084 G-23 0·109 

10. Balanced HS, 8 0·244* 0·095 0·39 0·098 0·366** G-Ill 0·30 0·129 

11. Complementary HS, 0·223 0·079 0·35 0-{)79 0·336* 0{)99 ()-30 0·105 

alll28 
12. Complementary bal. 0·222 0·081 0·36 0{)81 0·335* 0·100 ()-30 ()-106 

HS, 16 

13. Random subsampling, 0·267** 0{)80 0·30 0·094 0·423*** 0·089 0·21 ()-153 

N = 128 
14. Random subsampling, 0·242 0·092 0·38 O-o95 0·354* 0-{)77 0·27 0·111 

Range est. sn 

15. Normal theory 0·217 0·056 0·26 0·056 0·302 0 0 0·003 

Theoretical value 0·218 0·299 

The true standard errors are u(p) = 0·221, u(~) = 0·299. Large biases are indicated by asterisks: *Relative 

bias ~ 0·10, **Relative Bias ~ 0·20, ***Relative Bias ~ 0·40. HS, half-samples. 
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The true standard error for ~ is a(~)= 0·299 in situation (2·1). A normal theory 
estimate is 1/(n-3)t = 0·302 (Johnson and Kotz, 1970, p. 229). In this case the normal 
,theory estimate of standard. deviation has zero sample-to-sample variation, which is the 
underlying reason for the tanh -l transformation. 

Root mean squared error is a convenient criterion for comparing how closely the 
various estimates of standard error cluster about the true values. Large biases are 
unpleasant though, even if root mean squared error is low, and these are indicated by 
asterisks in the table. 

In what follows, the various methods will be described in terms of estimating a(p), the 
corresponding details for a(~) or for the standard error of any other statistic then being 
obvious. Mnemonic subscripts aN(p), uB(p), etc., identify the different estimates. 

3. THE BOOTSTRAP 

All the methods in this paper assume independent identical sampling from an unknown 
distribution F on an arbitrary sample space PI. In the correlation example PI= R2 , the 
plane. The bootstrap estimate of standard error for p, denoted by uB(P) (Efron 1979a), is 
easy to describe: 

(i) let F be the empirical probability distribution 

F having mass 1/n at each observed xi (i = 1, ... ,n); (3·1) 

(ii) let xr, ... , x: be a random sample from P, i.e. n independent draws each with 
distribution F, and let p* = p(Xt, ... , x:); 

(iii) the bootstrap estimate is aB(p) = {var.(p*)}t, · wh~re var.(p*) indicates the 
variance of p* under the probability mechanism (ii), with F fixed at its observed value 
(3·1). 

In other words, the bootstrap estimate aB(p) is simply the standard deviation of the 
quantity of interest, P{X1, .•. ,Xn), if the unknown distribution F is taken equal to the 
observed distribution F. Theoretical calculation of aB(P) is impossible, but Monte Carlo 
simulation yields a quick approximation: step (ii) is repeated independently N times, 
yielding N independent realizations of p*, say p*(1), ... ,p(N). Then as(P} is approxi­
mated by the sample standard deviation [:E { (p*(j)-p*(. )}2 /(N -1 )]i, where 
p*(.) = :Ep*(j)/N. Note that in what follows the dot always indicates averaging over the 
collection of recalculated values p*(j). 

Line 1 of Table 1 used N = 128, a convenient number for comparison with other 
te'chniques; line 2 used N = 512, which performed only slightly better. A components of 
variance analysis of all the data going into lines 1 and 2 of the table showed that further 
increases of N would be pointless. The MSEi for N = oo is no more than 0·001 smaller 
than that for N = 512, for either uB(p) oruB((/J). In a real situation, where there is only one 
set of observations, choosing N is more problematical, but routine error analyses give a 
rough idea of when to stop the bootstrap sampling. Usually the choice of N seems not to be 
crucial, past N = 50 or 100. 

4. NORMAL THEORY AND THE SMOOTHED BOOTSTRAP 

The standard normal theory estimate aN(p) can itself be thought of as a bootstrap 
estimate, carried out in a parametric framework. The maximum likelihood estimate for 
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the unknown sampling distribution F, assuming bivariate normality, is 

i'N "'.¥2(x,fi), (4·1) 

x = :E xifn, fi = :E (xi- f) (xi- x)' /n. Replacement ofF with F N in the bootstrap algorithm, 

otherwise proceeding exactly as described in steps (ii)-(iii), gives, apart from degrees of 

freedom, the estimate aN(p). In other words, aN(P) is the standard deviation of p(X1, ... , Xn) 

if the unknown distribution F is taken equal to FN. 
Theoretical calculation of aN(P) as described above is impossible, but Taylor series 

methods give the approximation (1-p2 )/.Jn. Higher order calculations show that 
(l-p2 )/(n-3)t is a better approximation to aN(p). More details are given in §6; see also 
Johnson and Kotz (1970, p. 229). 

A smoothed bootstrap is produced by compromising between F N• the normal theory 

maximum likelihood estimate ofF, and F, the nonparametric maximum likelihood 

estimate. Define F0 .5 = F * (0·5FN), where 0·5FN represents the distribution 
.¥ 2(0·5x, 0·250), and "•" indicates convolution. The distribution P 0 .5 has the same 
correlation as both F ·and F N• namely the observed value p, but is- intermediate in 
smoothness between the two. To use more familiar terminology, it is a smoothed window 

estimate of the unknown F. 
The normal smoothed bootstrap, line 3 of Table 1, generated the xr from Fo·S• at step 

(ii) of the bootstrap algorithm. It performed somewhat better than the unsmoothed 

bootstrap for estimating a(p), and much better for estimating a(~). However, normal 
smoothing is suspiciously selfserving here, since the true distribution of the X 1 is itself 
normal. Lines 4 and 5 of the table used uniform smoothing. The xr are drawn from 

F * (0·5F u ), where F u is the uniform distribution over a rhombus selected such that F u has 
the same covariance matrix as F. 

5. THE JACKKNIFE 

Tukey's jackknife estimate of standard error (Miller, 1974) is defined in terms of the 

quantities P<i) = p(x1 , ••• ,xi-l•xi+l• ... ,xn): 

aJ(p) = [n-1 ~ {P(i)-P(.)}2]!, h)= ~ P<nfn. (5·1) 
n i=l 1=1 

In our Monte Carlo experiment the jackknife results, line 6, have considerably larger 

MSEt than does the bootstrap, for both a1(p) and a1(~). 
There is a simple connexion between the jackknife and the bootstrap. This is easiest to 

see for statistics like the correlation coefficient which are functionals. For example, 

p = p(F), where p(F) is the function which assigns any bivariate distribution F, with finite 

second moments, the value of its Pearson correlation coefficient. 
The jackknife and the bootstrap both work by evaluating p(F) for other values ofF 

besides P. Let P = (Pl> ... ,Pn) be a probability vector, having nonnegative coordinates 

summing to one, and define the reweighted empirical probability distribution 

F(P): mass P 1 on xi (i = 1, ... , n). (5·2) 

Corresponding to each 'resampling vector' P is a resampled value of the statistic of 

interest, 
p(P) = p{F(P)}. (5·3) 

For instance, P0 = (1, ... , 1)/n corresponds to the observed value p = p(F), while 
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Pli> = (1, 1, ... ,0, ... , 1)/(n-1), 0 in the ith place, corresponds to the jackknife quantity 
P<i>· Definitions (5·2}-(5·3) emphasize the crucial feature of all the methods considered 
here: the data xi> ... , xn are held fixed, the weightsP1, ..• , Pn are varied, and u(p) estimated 
from the variation in p(P). The methods differ in their choice of resampling vectors. For 
example, another way to describe the bootstrap estimate us(Pl is to say that the 
resampling vectors are drawn multinomially, 

(5·4) 

n draws on n categories, probability 1/n for each category on each draw. Here P 1 equals 
card {Xj = x1}/n at step (ii) of the bootstrap procedure. Then us(P) = [var.{p(P)}]i, 
where var * denotes variance under distribution (5·4). 

There is a unique linear function of P, say PL(P), which has values pdP1) =PH> 
(i = 1, ... ,n); h(P) is a convenient linear approximation to p(P). A simple calculation 
shows that uJ(p) = {n/(n-1)}t [var * {pL(P)}]t with var* still indicating variance under 
(5·4). In other words, except for the factor {n/(n-1)}!, the jackknife estimate is itself a 
bootstrap estimate, but applied to PL(P) rather than p(P). The jackknife formula involves 
less computation because the variance of a linear function can be calculated, without 
Monte Carlo, from the known covariance matrix of the multinomial (5·4). 

For statistics which are averages, say p = :E Y(Xi)/n, where Y(X) is real-valued, the 
factor n/(n-1) makes the jackknife variance estimate {n/(n-1)} var* {fJL(P)} unbiased 
for the true variance of p. In this case, pdP) = p(P). Multiplying the bootstrap variance 
estimate var* {p(P)} bynf(n -1) also makes it unbiased for the variance of an average, but 
does not seem to improve estimation in general. 

The bootstrap vectors tend to be much further away from the central value P0 than are 
the jackknife resampling vectors: II P-P0 II= Op(1/.Jn) from (5·4), compared to 
II P<i) -P0 II= 0(1/n). The jackknife estimate uJ(p) involves extrapolating from the local 
behaviour of p(P) near P0

, and this can cause trouble for 'unsmooth' statistics p such as 
the sample median (Miller, 1974). 

6. INFINITESIMAL JACKKNIFE, INFLUENCE FUNCI'ION AND THE DELTA METHOD 

Rather than approximating p(P) by the linear function pdP), it seems more natural to 
approximate it by h(P), the first-order Taylor series for the function p(P) expanded 
about the central point P = P 0

• The obvious estimate of standard error is then 
uJJ(p) = [var* {p(P)}]t, with var* indicating variance under distribution (5·4). This is 
exactly Jaeckel's infinitesimal jackknife (Miller, 1974; Efron, 1979a, §5). 

The infinitesimal jackknife replaces the finite differences P(i)-P(.) used in the ordinary 
jackknife by derivatives 

d1 = lim[P{P0 +e(S1-P0 )}-p(P0 )]/e, 
e-+0 

where Si is the ith coordinate vector. Jaeckel's estimate can be written as 
uJJ(p) = (:E ~ fn2 )t. Three facts should be noted: 

(i) The d1 are values of what C. L. Mallows, in an unpublished paper, calls the 'empirical 
influence function'; Jaeckel's formula is the obvious finite sample estimate based on the 
asymptotic expression for n times the variance 

f IF
2(x) dF(x), 

where IF(x) is the influence function (Hampel, 1974; Huber, 1972). 
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(ii) For a linear statistic, i.e. an average, "'':.J}; fn2 must be multiplied by n/(n -1) 

to give an unbiased estimate of variance. Multiplying the estimates u11 by 

{n/(n-1)}t = (14/13)t = 1·038 helps correct the severe downwards bias evident in line 7 

of the table, but not by much. 
(iii) Closed-form expressions for d1 can be computed for many statistics, including the 

correlation coefficient (Devlin, Gnanadesikan and Kettenring, 1975), but it is usually 

easier just to substitute a small value .of e into 

di ::!:!= [p{P0 +e(81- P 0
)}- p(P0 )]/e. 

The value e = 0·001 was used for line 7 of Table 1. 

For the delta method we express the correlation coefficient (2·2) as 

p(X 1• ... , Xn) = t(Q1, ... , QR), (6·1) 

where tis a known function and each Q, is an observed average, 

- 1 n 
Q, =- L Q,(Xi)· 

ni=1 
(6·2) 

For the correlation coefficient R = 5 and, in terms of X= (U, V), Q1 = U, Q2 = V, 
2 2 . - - - { ll -2 i ll ll2 t} 

Q3 = U , Q4 = UV, Q5 = V , with t = (Q4 -Q1 Q2)/ (~3 -Qt) (~s -~2) . 

Suppose that the vector Q = {Q1(X), Q2(X), ... , QR(X)}, corresponding to one 

observation of X"' F, has mean vector Ot.F and covariance matrix pF, and let VF be the 

gradient vector with rth component [otfoQ,]a=«r A first-order Taylor series expansion of 

(6·1) gives the approximation 

u(p) =:::: (V F fJF VF/n )i. (6·3) 

In the specific case of the correlation coefficient (6·3) gives 

c> ___ [P2 
s1'40 +1'04 + 21'22 + 41'22 41'31 

up - ~l'io 1'~2 1'20 l'o2 1'~1 P.-111'20 
41'13 }]i 

1Llli'02 ' 
(6·4) 

where p.911 = EF[(U -EF(U)}9 {V -EF(V)}"]; see Cramer (1946, p. 359). For F bivariate 

normal, (6·4) reduces to (1-p2)/.Jn, as in §3. 
To use the delta method in a practical problem it is necessary to estimate F in (6·3). 

Substitution of P for F gives the nonparametric delta method estimate of standard error, 

u0 (p) = (V p{Jp V'p/n)i. (6·5) 

In the case of the correlation coefficient, for example, (6·5) is (6·4) with p replacing p and 

the sample moments ,1911 replacing the p.911• 

THEOREM. For any statistic p of form (6·1), the nonparametric delta method and the 

infinitesimal jackknife give identical estimates of standard error. 

Proof. The derivatives 

d1 = lim[p{P0+e(81-P0)}-p(P0)]/e, 
e-o 

for p = t(Q) as in (6·1), are d1 = V p{Q(x1)-Q}', since 

P{P0 +e(81-P0 )} = t[Q+e{Q(x1)-Q}] ::!:!= t(Q)+eVp{Q(xi)-Q}'. 
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Therefore the infinitesimal jackknife estimate of standard error is , 
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(".r,dfjn2 )t = [ Vp :E {Q(x;)-Q~ {Q(x;)-Q} V'pjn ]t = (Vp{Jp V'p/n)t, (6·6) 

agreeing with the delta method estimate (6·5). Here we have used the fact that 
:E {Q(x1) -Q}' {Q(x1) -Q}/n = covF=I'(Q) the covariance matrix of the random vector Q 
under the distribution F, and so must equal {Jp, and likewise 

[( ... ' otjoQr, ... )]Q = Q = [( ... , otjoQr, ... >la=cxJ = vI'· 
Deriving expressions like (6·4) involves considerable theoretical labour, especially for 

more complicated statistics. According to the theorem, this can be avoided by using 
Jaeckel's formula, with numerical evaluation of the d1, as in remark (iii) above. 

Line 7 of Table I shows that the delta method can be badly biased. Better estimates 
than simply substituting F for F might help, but no general theory exists. The ordinary 
jackknife has superior bias properties (Efron and Stein, 1981 ). 

An intriguing question is 'why not perturb the x1 and keep the weights 1/n constant, 
instead of vice versa as with the infinitesimal jackknife?' The theorem shows that the 
results will be the same for statistics of form (6·1). In this sense there is only one delta 
theory. 

The delta method and infinitesimal estimates of bias are also identical. These estimates 
are t tr ({Jp Vj) and :E ej(2n2

) respectively, where Vi is the matrix with (rs)th element 
[o2 tfoQr aQ.la=«F' and i;; = [o2 p{P0 +E(8;-P0 )}/BE2

]2=0· See Gray, Schucany and 
Watkins (1975), who also provide results closely related to the theorem above. 

7. HALF-SAMPLING: BALANCED REPEATED REPLICATIONS 

Half-sampling methods come from the literature of sampling theory (Kish & Frankel, 
1974), where it is natural to consider stratified situations. We suppose that the sample 
space is 

H 
tr = utr,., 

11=1 

where the tr,. are disjoint strata; that there is an unknown probability distribution F,. 
defined on each !!£ 11 ; that the data consist of independent random samples 

X,.;"' F,. (i = 1, ... ,n,.; h = 1, ... ,H); (7·1) 

that the statistic of interest is of the form p = p(F1 , .. _,F8 ), where f',. is the distribution 
putting mass 1/n11 at each observed x111; and finally that we wish to attach a standard error 
to fo. 

The obvious bootstrap algorithm is 
(i) construct the i',.; 
(ii) draw X 111 independently from i',. (i = 1, ... ,n,.; h = 1, ... ,H) and let p* = 

p(Ff, ... ,F'Ji), where i': is the empirical distribution of x:;, ... ,x:,.; 
t • . (iii) estimate u(p) by uHs(fo> = {var* (p*)} , var* indicating variance under probability 

mechanism (ii). 
If p is a linear statistic, say 

H 

'P = :L w,. :Y,., 
11=1 
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where the wh are fixed weights and Y h = ~ Y(Xhi)/nh, for some attribute of interest Y(. ), 

then the bootstrap estimate of variance is biased downward; ifvarF.{Y(Xh)} = 13;, then 

E { a~s(P)} = ~ { (nh -1 )/nh} w; fJVnh 

compared to the true variance ~ w; fJVnh. 

Half-sampling corrects this bias by reducing each bootstrap sample from size nh to size 

nh-1, at step (ii) of the algorithm. This makes E{a~8(p)} = ~ w; fJVnh, the correct answer. 

In the most commonly considered case, where all the nh = 2, each reduced bootstrap 

sample is indeed a half-sample, consisting of one of the two observed values xhl or xh2 for 

each stratum h. 
Line 8 of Table 1 shows half-sampling applied to p, the correlation coefficient. The 

strata were defined artificially, (x1 , x2 ) represented stratum 1, (x3 , x4 ) stratum 2, ... , 

(x13 , x14) stratum 7. For each of the 200 trialsamples x1, ... , x14, all27 = 128 half-samples 

were constructed, yielding half-sample correlations p*(1), ... , p*(128), and standard error 

estimate 

aHs(P) = [
1±8 

{p*(j)-p*(. )}2/128Jt. 
}=1 

Notice that this is actually aH8(p), and not a Monte Carlo approximation, since we have 

considered all128 possible reduced bootstrap samples. Usually p*(.) is replaced by pin the 

formula for aHs(P ), but this has almost no effect on the numbers reported here. 

The numerical results shown in line 8 are discouraging. Both bias and root mean 

squared error are high, for both aH8(p) and aHs(~). Of course this is not a naturally 

stratified situation, so there is no particular reason to do half-sampling, butJ. W. Tukey, 

in unpublished notes and lectures, has advocated half-sampling for this tyj>e of problem, 

particularly for statistics like the median where the jackknife fares poorly. In line 9 of the 

table, the standard error estimates for each of the 200 trials were constructed using 128 

randomly selected half-samples, out of all14 !/(7! )2 possible ones. This method removes the 

component of variance in aH8(p) due to the artificial creation of strata, but the numerical 

results are still poor. 
McCarthy ( 1969) suggested an interesting shortcut method for reducing the number of 

half-sample calculations, balanced repeated replication. Rather than look at all V" 
possible half-samples, he pointed out that a 'balanced' subcollection of the half-samples 

gives exactly the same estimate of standard error when p is a linear statistic. Balanced 

here has a technical definition related to orthogonality. Line 10 of Table 1 is based on the 

eight balanced half-samples defined by the first seven rows of the matrix of McCarthy 

(1969, p. 243). For each of the 200 samples, 

aBHs(P) = [ i {p*(j) -p*( · )} 2/8]!, 
j= 1 

Line 10 shows results similar to lines 8 and 9, with somewhat worse root mean squared 

error. 
Corresponding to each half-sample is the complementary half-sample consisting of 

those elements which do not appear in the former. If p*(j) is the half-sample value of the 

statistic, let p*(j) be its value for the complementary half-sample. Line 11 of the table is 

based on the complementary half-sample estimate of standard error, 

acHs(P) = ( ~ [{p*(j)-p*(j)}/2]2/64)!. 
j= 1 
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Here the indexing is such that none of the first 64 half-samples is complementary to 
another. It is easy to show that the formula is always numerically smaller than the 
noncomplementary version used in line 8. This reduces the bias in our particular case, 
though not necessarily in general. 

Complementation and balancing are combined in line 12. Here 

acBHs(P) = L~1 {[p*(j)-p*(j)]/2}2/8 ]*, 
where the p*(j) refer to the 8 balanced half-samples discussed previously. This method 
involved 16 p recomputations for each trial, rather than 128, and gave almost the same 
results as those ofline 11. The author has shown that the results would be exactly the same 
for' quadratic functionals', defined by Efron and Stein ( 1981 ), which are the next step past 
linear statistics. 

8. RANDOM SUBSAMPLING (TYPICAL VALUES) 

Hartigan (1969, 1971) and Hartigan and Forsythe (1970) discuss another interesting 
resampling plan which may be described as random subsampling: from the collection of 
2"-1 nonempty subsets of {x1, ••. , xn}, draw subsetsS(1), ... , S(N) randomly and without 
replacement, N ~ 2"-1. Each subsetS determines an empirical distribution F5 , putting 
mass 1/ns on each element of S, where n5 is the number of such elements. These in tum 
determine the resampled values of the statistic of interest, p*(j) = p(F8Ul) forj = 1, ... , N. 

Consider the case where fi is the real line, F is a distribution known to be symmetric 
about an unknown central point p, and p is an M -estiJI?.ate; i.e. the solution to 
"':.!/J(x1-p)=O, where 1/J(t) is strictly monotonic and 1/J(-t)=-1/J(t). Hartigan (1969) 
demonstrated the following result, called the typical value theorem: the ordered values of 
the p*(j), say p*[1] < p*[2] < ... < p*[N], dividefl"intoN + 1 intervals, each of which has 
probability 1/(N + 1) of containing the true value p. See also Maritz (1979). The interval 
(p*[Nd,p*[N2 ]), where N 1 = [o:(N+1)], N 2 = [(1-o:)(N+1)], is then a 1-2o: central 
confidence interval for p. 

Given such a neat result, there is a temptation to use random subsampling to obtain 
accuracy estimates in more general problems. Hartigan ·(1969) considers setting 
confidence intervals for sample variances and eigenvalues. Line 13 of the table shows its 
application to standard error estimation for the correlation coefficient; N = 128 and 
aRs<fi) ='I:. {p*(j) -p*(. )}2

. The results are badly biased upwards, especially for$. In order 
to avoid even worse biases, only subsets S with n5 ~ 4 were allowed. Somewhat better 
results are obtained by using a more robust estimate of standard error, !(p*[N 2]-p*[N J]), 
where N 1 = [0·16(N+1)], N 2 = [0·84(N+1)], as shown on line 14 of the table. This 
version of aRS(P) is one half the length of the putative 68% central confidence interval for 
p; see Efron (1979b). 

The random subsample method belongs to a large class of resampling techniques, 
including the bootstrap and half-sampling, which have equivalent asymptotic properties, 
at least to a first order of approximation. Consider an arbitrary resampling plan in which 
we assume only that the vector P is selected randomly, according to a distribution 
invariant under permutations of its coordinates. Then P has mean vector and covariance 
matrix 

(
e n ( e' e) ) P- ;•n-1 I--;: var.(PJl, (8·1) 
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where e = (1, ... , 1), and var* (P 1 ) is the variance of P 1 under the resampling distribution. 

This follows from symmetry and the equality 

0 = var*(~Pi) = nvar.(P1)+n(n-1)cov*(P1,P2 ). 

Relation (8·1) implies that a resampled average Y* =~pi Y(x1) = ~PiYi has mean and 

variance 

Y*"" (Y•n~ 1 ~(yi-y)2 var*(P1 )) 
under the resampling distribution. We consider three cases. 

(8·2) 

Case 1, bootstrap. Here var* (Pt) = (n-1)/n3
, by (5·4), so that (8·2) gives 

var*(Y*) = ~(y1 -y)2fn2 • 
Case 2, random half:sampling. Randomly chosen subsamples of size !n. as in line 9ofT able 

1, give var.(Pt) = 1/n2 and var.(Y) = ~(y1 -y)2/{n(n-1)}, the usual estimate of 

variance for an average. 
Case 3, random subsampling. Here var*(P 1 ) = (n+2)n - 3 {1 +.o(1/n)}, so that 

var.(Y*) = n+2~(yi-y)2 {1+J!)}. 
n n(n-1) \n 

The point here is that any resampling plan having P exchangeable and 

var * (P 1 ) = n- 2 {1 + 0( 1/n)} gives asymptotically the same value of var * ( Y*). Following 

Efron (1979a, § 8, remark G), result (8·1) shows that this asymptotic equivalence extends 

beyond linear statistics Y to a wide class of smoothly defined random quantities. 

However, as we have seen in the case ofthe correlation coefficient, the asymptotics cannot 

be completely trusted; the different methods can lead to quite different results in small 

samples. 

9. FINAL COMMENTS 

We conclude with four miscellaneous comments. 

What is the purpose of estimating a standard error? At the most basic level, the concept 

of root mean squared error conveys its own meaning about the accuracy of a point 

estimate p, useful for comparing error distributions which are roughly normal. 

Asymptotic normal theory leads to approximate confidence intervals of the form p ± z« u, 
where u is the estimated standard error and z« is taken from the normal table. Student's t 

theory gives confidence intervals of the form p±ta~,nu. Most of the jackknife literature is 

phrased in terms of these last, but in fact no general theory has been verified beyond the 

normal level; see Miller (1974). 
It would be nice to have a more satisfactory theory of small-sample nonparametric 

confidence intervals. The main problem is to capture correctly the asymmetry about p 
exhibited by parametric confidence intervals, which is usually of greater magnitude than 

the t effect mentioned above, 0(1/nt) compared to 0(1/n). The author discusses one 

approach, a bootstrap method similar to Hartigan's typical value theorem, in§§ 5 and 6 of 

Efron (1981), but the problem is still largely untouched. 

It is not surprising that the bootstrap performs best among the genuinely 

non parametric methods in Table 1, since the bootstrap estimate is the non parametric 

maximum likelihood estimate of the standard error. If we want to .do better, we have to 

use some form of estimation which is not truly non parametric. The smoothed bootstraps, 
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lines 3-5, bias the estimation process towards smooth underlying models. This produces 
substantial gains in the present case, especially for~' but again no general theoretical 
guidelines exist. 

The biases reported in Table I look quite different when reported in terms of estimating 
variances rather than estimating standard errors. For example, in line 1, the bootstrap 
estimates ui(p) averaged 0·0468 compared to the true value var(p) = 0·0488. The 
jackknife variance estimates uAp)2 averaged 0·0569. In terms of the first comment, it 
seems more meaningful to discuss the results in terms of standard errors rather than 
variances. 
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