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Figure 3-19. Histogram of error values resulting from estimation using inverse
squared distance.

but the distribution for the kriged estimates is more tightly centered around zero;
that is, it has a preferable smaller variance,

3,7 MISCLASSIFICATION ERRORS —’

Precision, accuracy, and unbiasedness are not the only criteria by which we may
wish to select an esdmator. In many cases, the statistice of the two distributions
will be closer to one another than the two presented here, Equivalent performance
makes the selection of an optimal estimator more difficult. In this situation and in
situations in which only one threshold concentration is of concern, another proce-
dure may be utilized.

Often, maintaining small errors acd unbiasedness will be superseded by
classification issues. For example, if an unsampled area has a concentration of
1000 ppm, an estimator will seldom estimete the velue of the area to be 1000 ppm
exactly. An estimate of 980 ppm might be considered & “good” estimete or a
“good” epproximation based on the accuracy, Similarly, an estimate of 1010 ppm
might also be considered accurate, Note that, in each case (930 ppm and 1010
ppm), the percent error is 2% or less, For spatial estimation, this level of accuracy
is considered very good.

For remedial activities, critical threshold concentrations ere established for
each contaminant of concern, Areas estimated to have concentrations above this

. <) adlilipe
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threshold will receive treatment, but areas estimated to be below the threshold will
not. Glven a strict threshold level, “small” estimation efrors or inaceuracies may
be quite significant. In the following discussion, the difference betweer a quanti-
tative error (real minus estimated) will be contrasted with a qualitative error
(misclassification).

3.7.] Type Il Error: False Fositives

Consider another situstion in which the true soil PCB concentration of a block
area is 22 ppm and the established threshold for remediation is equal to 25 ppm.
Any soils estimated to be 25 ppm or above will be excavated and treated. If the
block Js estimated to have a PCB concentration greater than or equal to 25 ppm
(29 pethaps), two errors have been made. The first is the error of estimation (29
ppm minus 22 ppm or 7 ppm). The second is the misclassification error, so namad
because the block has been incorrectly classified above the 25 ppm threshold,

Despite a relatively “small” error of estimation, the misclassification esror in
this cese (as well as generzlly) will have a greater impact on the remedial
¢*™ yuences then will the estimation error. The reason for this is that a treatment
*he.0D 18 being made based on the clessification of the estimate. An area whose

stimated concentration is above 25 ppm that truly has 2 concentration less than
T25 ppm will be remediated, This remediation is inappropriate and increases the
remedial expense to those who are funding the cleanup, This form of misclassifi-
cation is called Type 1 Emor (Rendu 1980). Tt is elso referred (o as overestimation
or, a8 discussed in Chapter 1, 8 false positive.

If the estimarted concentration bad been 15 ppm, the esror of estimation would
have been of exactly the same magnitude as before (7 ppm vs. 7 ppm). Although
the magnitude of the error is equal in both cases, an estimate of 15 ppm places the
block in a different material classification, Mare important, this time it is & correct
classification. Despite the 7 ppm error of estimation, this block will not incur
ineppropriste remedial costs,

3.7.2 Type 1l Error; False Negatives

Type T Exror is the counterpart of Type I Etror in terms of misciassificetion. If the
estimated concentration of the block described above does not exceed the thresh-
old (21 ppm, for example), the block goes untreated based on the 25 ppm action
threshold, If the true concentration of the block is really above 25 ppm, 2 decision
Will be made to forgo treatment, This incorrect decision is known as Type 1l Error,
. 390 known as underestimation or false negatives. In this case, potential future
bhealth risk Babilides (of unknown magnitude) arise as opposed to the direct,
immediate cost of vnnecessary remedistion. Even though the long-term lisbility
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may indeed prove to have a cest, it is very difficult to estimate znd {s beyond the
scope of this book.

If the estimation had been 62 ppm, the error of estimation would have been
much greater than that for the estimate of 21 ppm. However, an estimate of 62
ppm will cause a correct classification decision to be made despite a large estima.
tion error. Estimation errors for areas with concentrations zbove the threshold
limit are often very large. For example, it is not wncommon for soils PCB
concentrations to reach 25,000 ppm or more although the threshold limit may be
closer to 25 ppm. Also, in the case of PCBs, the contaminent distribution is often
highly emratic, with concentrations exhibiting steep gradients over short distances,
Therefore, an area could be estimated to have a PCB concentration of 1000 to
5000 ppm when its actual eoncentration may be closer to 300 ppm. Nevertheless,
the correct classificaticn wiil be made,

Figure 3-20 shows a generalized visual representation of the correct and
incorrect classifications descrived above, This graph is known es a misclassifica
sion ellipse. To develop the ellipse, the estimated concentrations are plotied on the
X axis, and the true concentrations are plotted on the Y axis.'If an estimation
method were perfect, the estimated concentration would always equal the wue
concentration. Plotting true vs. estimated in this situation would result in & graph
with a 45° line emanating from the origin of the graph,

Unfortunately, perfect estimetion is seldom achieved and the estimated con-
centrations fall off the 45° line, As repealed estimation experiments ere performed

Estimelad Valwe

Figure 3.20, The misclassification ellipse. (From Optimizasion of Sampling Policies: A
Geosiatistical Approach, by I-M. Rendu, MMIJ-AIME, 1980, with permission.)
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and the true vs. estimated values plotted, a scatter of points forms. This scatter plot
often takes on a roughly elliptical shape; hence the name misclassification ellipse,

To ascentain the quantities and types of misclessifications present, the thresh-
old concentation is also plotted on the graph (Fig. 3-20). perpendicular to axes
for both the true and estimated values. By means of this process, four distinct
quadrants of classification emerge. These correspond to the error and correct
classification types, with each representing a different decision category.

The lower left quadrant of Figure 3-20 (labeled BB) contains concentration
values for which both the estimated and the true values are below the threshold.
In this case, correct classification has been made, so that the area will appropri-
ately avold treatment, Similarly, in the upper right quadrant (labeled AA), both the
estimated and true vzlues fall above the threshold, Again, correct ¢lassification
decisions result, this time with the material being scheduled for appropriate
reatment.

The remelning quadrants, labeled I and IX, present sitvations of problematic
classification, These correspond to Type 1 and Type II Errors. The lower right
quadrant, labeled I, shows the estimated concentrations above the threshold limit,
alipsgh the true concentrations are below the threshold, This is Type I Error. In
th, eer left quadrant, labeled I, the estimated values are below the threshold

}m’é actual values fall above the threshold. This situation is Type II Error.
~  Teble 3-2 presents the kriging and ISD data in a misclassification format.
Instead of listing the 2ctua] error, the type of classification is presented. Por this
approach, the megnitude of the error takes a back seat to the decision made on the
classification. Differences in classification between the two methods are high-
lighted with an asterisk,

As with the statistical comparison, the kriging estimates again emerge the
winners since kriging produces fewer misclassification errors. Kriging produced
three Type 1 Errors and one Type 11 Error, whereas [SD produced six Type 1 Errors
and two Type 11 Errors.

Scatter plots for the kriged and 1SD data can be seen in Figure 3-21. The
kriged values cluster around the 45° line much more tightly than the ISD estimates
do. This “slimmer" ellipse is generally an indication of better estimation and more
accurate clessification,

The term Typecasting of Error bas been applied to the technigue of analyzing
misclassification error (Myers 1991). This approach is bighly useful in conjunction
with the method of cross valldation. This approach can be used to determine optirnal
variogrem end optimal kriging parameters employing performance-besed goals.

The Typecasting of Error gpproach may rot always point to kriging as the best
imerpolation method for & particular data set. For different data, a spline or other

Interpolation method may be more appropriate. This can assist greatly in problems
discussed in Chapter 2, Typecasting techniques will be discussed in dewail in lzter
chapiers,

L300 W B LANTT A1 4= am et e
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Table 2-2. Comparison of number of misclessification errors produced by two
estimation techniques (Kriging vs, Inverse Squared Diswnce),

Value Clexs

Sampls

Number Real Kriged ISD Kriged ISD

| 1671 1536.0 1304.1 AA AA

2 993 11462 1219.0 1 1

3 1630 1647.8 1546.8 AA AA

4 1439 1509.3 1559.0 AA AA

] 7d6 7188 766.1 BB BB

'3 667 7514 7870 BB BB

7 1254 1284.1 14472 AA AA

8 1318 12679 1368.3 AA AA

9 1154 1143.6 991.9 AA i

10 1012 1012.6 1172.3 AA AA

11 827 1017.3 1206.0 i 1

12 1726 1736.9 1807.6 AA AA

13 105 933.7 913.8 ] n

14 1238 1209.3 12189 AA AA

15 921 9192 808.0 BB BB

16 644 689.8 674.4 BB BB

%] 1482 1410.8 15127 AA AA

1B 1220 1176.1 1169.6 AA AA

19 1934 1803.0 1713,0 AA AA
20 1389 1588.3 1850.6 AA AA

21 576 996.7 11311 BB
22 1330 1208.6 1087.8 AA tenad”
23 : B3 893.5 10538 BB : ]

24 2034 1820.4 1813.2 AA AA
25 1587 1717.1 1838.1 AA AA
26 556 9369 9387 BB BB

ry 1131 11080 1080,7 AA AA I
28 1338 12275 13302 AA AA W
2% 2267 1973.8 1868.8 AA AA
0 1541 1364.3 1450.9 AA AA

31 792 1071.6 1132.0 I 1

32 974 . 5628 5943 BB EB. I
33 1273 12444 12549 ©AA AA &
34 1593 1302.8 1262:6 AA AA B
35 1076 " 14831 18133 AA , AA B
36 588 738.0 908.0 BB A
37 964 984.1 11481 - BB r 3
38 1208 1349.] 1459.3 AA AA B

“Estimetes where 18D produces 8 misclassification while Kriging produces the comrsct classification.
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-21, Scatier plot of estimatcd vs. true values: (a) Kriged estimates are used;
¥ e squared distence estimates are vsed,

CONCLUSION

Prediction is a risky game as one tries to genersalize from specific sample data 1o
the surrounding area. Estimedon i an unfortunate necessity as time and resource
constralnts limit other options, Risk and uncertainty are a priosi entities as they
describe potentis] problems. Error is 2 posteriori in that one csn measure or define
8 specific result. A number of techniques for estimeting spatial data have been
presented, with varying levels of complexity. Although nat comprehensive, this
sample of techniques is sufficient to demonstrate that any estimation technique
has & degree of associated error. It is imponant to realize that the difference
between a deterministic algorithm and a statistical mode] 18 that the statistical
algorithm provides 2n eror of estimation. Within the realm of error, different
types exist that must be menaged in different ways, depending en the DQO and
other needs of a project. Chapter 3 has defined some general conditions end
considerations; subsequent GEM chapters will set out specific techriques for
addressing, solving, and managing the esrors and uncertainty surrounding esti-
mates and maps through statistics, STF, end GA.

WL AT AL I A8 ) ll.lﬁﬂ-h
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ica) Aspects of Kriping

In Figure 14-23a, there is little deviation of the conditional expectation curve
ihe 45° lire over any range of concentrations. No conditional bias is present
is case, and (he estimates are also globally unbiased.

i.4 Assessing Performance: Typecasting Error

mary statistics of estimates and errors, along with distribution analysis of
nates and exrars derived from the cross validation process, provide a general
i for decision making, However, as Figure 14-20 demonstrates, the results of
rent statistical criteria used 10 measure performance may be in conflict, once
n relegsting decisions regarding preferred estimators and appropriste
sgram parameters to the subjective realm, Modified approaches have been
osed (Clark 1986, Devid 1988), but the conclusions again indicated that
ectivity could not be eliminated from the cross velidation process.
The simplified decision rules epplicable to environmental remediation offer
pportunity to remove the subjectivity from cross validation studies. Once an
o level has been selected for remediadon, all soil estimeted to contzin con-
rations equal to or greater than this value will be subject to remediation, For
Liel purposes, it does not matter whether the concentration of lead (Pb) in soil
11 or 50,000 ppm; both will be trested when the action level is 500 ppm. If a
k concentration is incorrectly estimated, the magnitude of the error is far less
ortant than the classification of clean ot dirty. One possible exception is PCBs,
»hich incineration may be required at levels above 500 ppm in soil,
In Chepter 3, the misclassification ellipse was introduced, slong with the
ies$ of typecasting error. Figure 14-24 shows a diagram of the misclassifice-

4
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ire 14-24. Misclassification ellipse.
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Table 14-1. Typecasting of error cross-validation results for g
PCB project,

Threshold concentration, ppm: 25
Total nurmber of estimates; 665

Number
Occurrences of Type I crror: 86
Ocourrences of Type IT error: 63
Occurrences below threthold: 318
Occurrences sbove thresheld: 198
Towal misclassifications: 149
Total comect decisions:

tion ellipse. Two general categories are illustrated by the ellipse: (1) comed ;
classification in the lower left and upper right quadrants (BB and AA), and (2) SRS
incorrect clessification (Types I and I1) in the lower right and upper left qmdranu.

respectively.

By plotting the action threshold imit on a scatter plot of true concentrations S
vs. concentrations estimated by cross validation, the misclessificadon ellipse is SR
formed. ‘Then, either by counting points on a scatter plot of by computer-gentraled s
summary, the number of correct classifications and the number of errors for esch &g

category rmay be tabulated, This comparison of correct vs. erroneous decisions
called typecasting of error (Myers 1991).
Using this process, 2 cross validation estimate falls into only one of four RS

possible classes. The results of the classification are then totsled and summarized SR
An example resuli of a typecasting cross validation for a PCB project is ptesented o

in Table 14-1,

The objective of the typecasting approach is to minimize the misclasslﬁcstbn
errors associated with a given estimator or given set of estimarion parameters. This JEg

will help minimize decision errors during remedistion, Goals can be set during the
DQO process accerding to the needs of the stakeholders, PRPs will benefit by &

reducing the occurrences of Type I erors, and thus minimizing false posiilve SN

results and costly overremediation, Regulatory egencies will benefit by minim 2
ing Type Il errors, thereby helping to assure health and safety. 5

14.5.5 Typecasting Error as a Decision Tool

14.5.5.1 Selecting An Estimator

Many computerized interpelation methods are available for gridding data & :
creating block madels. Among the commonly availzble routines are laverse powe
distance, trizngulation, radjal basis functions, Shepard’s method, minimum

1 LINE LONG




Practical Aspects of Kriging 403

i

ture, polynamial regression, splines, trend sutface analysis, and, of course kriging.
Kriging &lso comes in many “flavors™: ordinary, simple, disjunctive, multi- gauss-
{an, universal, indicator, probability, and so on.

1t Is unlikely that a single estimstor will be optima! for all situstions, There-
fore, we may wish to test various interpolation methods in order 10 determine
which method performs best for a particular data set or a particular COC. The
typecasting error approach allows us to compate estimators based on environmen-
wlly relevant objectives.

14.5.5.2 Seleciing Sampfe Locations

The results from a typecasting cross validation lend themselves o informa-
tlve visual display. Figure 14-25 shows one level of the ReSelve site, a multilevel

."ﬁlﬂre 14.28, Typecasting of error Incation mep for one level of the ReSolve PCB
ste. (From A geosiatistical analysis of PCB concentrations in scils at the ReSolve site,

,‘b J'c' Myc"v 1992.)
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site contaminated with PCBs. As a greup, the classification results show roughly ' $8
the same classification percentages as those listed in Table 14-1.

The spatial configoration of the results is also of interest. BB (below/below) '
results (from Jocations where both the true and estimated concentrations are below
the threshold, or Below/Below) tend to be at the margins of the site, a5 might be
expected. Similarly, AA {above/above) results tend toward the interior portions of
the site. Type I errors occur in both interior and exterior locations, They alsp
clusier in the southwest portion of the map, indicating a consistent difficulty in
appropriate estimation. Type II ervors are few and widely dispersed, showing no
consistent pattern.

Once the original sample data are retumed to the data set, we would expeet -
local estimation to ipreve, eliminating some of the misclassifications. The next
step, hawever, is to estimate block concentrations instead of sample locations, It
is reasenable to assume that the sreas that were correctly clussified without the
benefit of the remeved sample will continue to be cormrectly classified. Whether
the estimates given to the transition avezs between the Type I and I errors and AA
and BB classifications will result in correet classifications is still in doubt.

Transition areas provide good targets for additional samples. This may be
possible if the site is in the early stages of investigation or if additional sampling
programs are already plenned. PRPs wishing to seduce the cost of remediating
clean soil classified as dirty may wish to invest some money in ettempts to reduce
the remedial cost associated with Type I error. If no additional characterization
sampling is planned, transition Type I1 areas provide good targets for postremedial
excavation sampling, These areas are known to be difficult to classify and have
the highest probability of false negative classifications.

14.5.6 Optimizing Interpolation Parameters

Cross validation and typecasting error techniques may be used for more than
simply distinguishing between different estimation techniques. They may also be

used to optimize the parameters used for a particular estimator, some of whichare . f:}; '
extremely sensitive. Fot simplicity, only kriging perameters will be discussed in . S8

this section; the same or similar methods may be used for other interpolators.

14.5.6.1 Number of Neighbors

Experience has shown that the parameter most sensitive to typecnsﬂnl m"' »

. for kriging i8 the number of neighboring samples used in the cross validation o

process (Myers 1991). One reason for this is that environmental data often spall -§

several crders of magnitude. An extreme concentration can dramatically m.ﬂucnce
the estimated concentration, even at great distances.

Figure 14-26 shows a plot of the misclassification eqror as & function of 4’
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B 1] ® "
Number of Neighbors used durioy Xriging
ure 14-26,  Plot of the total misclassification error vs. the number of neighbors used
~pecasting of ersor cross validation (sample congentrations) for the ReSolve PCB
From A geostalistical analysis of PCB concentrations in sofls at the ReSolve site,
3.C. Myers, 1992,)

mber of neighbors for a soil PCB site using three different sets of spherical
rlogram parameters. The graph depicts & steady and rapid increase in total
Isclassifications from one sample to approximuiely 10, with a slower rate of
cline beyond, Based on this curve, the optimum number of neighbors for cross
didation 1s one. This implies that, for the actual kriging, two samples will be
ed because the origingl sample will be repiaced in the data set.

; Note that all three variogram models performed in a surprisingly simijar
shion, This does pot Imply that they ere not important, It does, however, suggest
ressonadble spproach to optimizing the kriging parameters. A preliminary
riogram snalysis should be run and & reasonable mode] fit to the experimental
1. This preliminary model may then be used to determine the optimal number
veighbors, Once that number has been determined, it can be held constant while
: senisitivity of other kriging parameters is Investigated.

The results presented in Figure 14-26 suggest an almost polygonal approach
eximation. Such results are not necessarily typical. Figure 14-27 shows anothet’
iph of the same type as Figure 14-26, this time for the indicator velues of the
e data, Instead of 8 continuous rise with increasing neighbors, the graph shows
onsistent drop in error until & minimum is reached for 15 neighbars. Beyond
s mindmum, errors begin a slow but fluctuating rise.

Figure 14-28 shows snother example of misclassification error behavior.
"or values fal) sharply at first, reaching & minimum at four. Error then begins a
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Figure 14-27. Plot of the total misclassification error vs, the number of neighbors used
in rypecesting of error cross validation (indicator values) for the ReSolve PCH site.
(From A geosiatistical anslysis of PCB concentrations in soils ot the ReSolve site, by

J.C. Myers, 1992.)

30 4
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T T L AR 1 >
0 & W 8 10 25
Nurber of Neightars
Figure 14-28, Plol of the tota} misclassification error vs. the number of neighbors
used in typecasting of ervar crose validation of semple concentrations for a VOC in
groundwater. (From A geostatistical analysis of PCB concentrations in solls at the

o ReSoive site, by J.C, Myers, 1992.)

slow but mostly consistent rise beyond the minimum. As & reminder, five samp
should be used during kriging as it is appropriate to include the original samp

and all four optimal neighbors.

14.5.6.2 Search Radius
As discussed esrlier in this chapter, the final estimate s influenced b!

search parametess used. Cross validation results are also influenced by the %

parameters and are somewhat related to the number of neighbors, -
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In order to obtain s large number of neighbors, 8 reasonably large search oo
ydivs will be needed in many instances. One must remember that, whereas 15 s
¢ighbors may be specified as a meximum, an insufficient redius may never o
spture this meny sample points, This must be belanced by the fact that samples
t extreme distances may not be appropriate for local estimation,

r:4.5.6.3 Variogram Range

* The kriping exemple in Chapter 13 demonstrated that the range of the
variogram model has an effect on the kriging weights and, consequently, the final
sstmate, While typecasting error results are not &s sensitive to the range as to the
wmber of neighbors, different variogram ranges and anisotropies (both ratios and
orieatations) should be investigated. The model that provides the best fit 1o the
experimental variogram may not, in fact, be the most reliable estimator.

14.5.6.4 Nugget Effect

Typecasting esror results are quite sensitive to the influence of a nugget effect. 1 ‘

s the nugget effect increases, sample weights becorne more alike and estimates
aw closer 1o & simple average, In general, the addition of & nugget effect has a
“detrimeantal effect on the typecasting error results. The effect of various nugget- BERSV -
10-34l} ratios should be investigated during & cross validation study. h

14.5.6.5 Variogram Sill

As discussed in Chapter 13, the height of the sill does not affect the kriging
weights nor the block or point estimate. Therefore, it is not nacessary to investi-
_jate different sills during cross validadon,

. 14.5.7 Cavears Jfor Cross Validation

14522 Problems in Two Dc'meﬁ.riam

Figure 14-29a shows & regular unit grid of samples at distance d (d = 1), with
“ unsampled point F to be estimated. In this case, for any unsampled peint,

Maximum distence = 7‘% (14.5)
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(®)

Figure 14-29, Problems in cross validaticn: the two-dimenslonsl case. (From
Handbook of Applied Advanced Geostalistical Ore Reserve Estimation, by M. David,
Elscvier, 1788, Courtesy of Michel David.)

Figure 14-30. Problems in cross validadon: the three-dimensional casw, (From
Handbook of Applied Advenced Geosiatistical Ore Reserve Estimarion, by M. David,
Elsevivr, 1988, Courtesy of Miche?! David.)
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‘The geometry changes when a point is removed for cross validation, Figure
14-25b shows that the closest distance from peint P to 2 sample is now d or 3.
With all samples at 2 greater distance, jt will be more difficult for any estimator
I produce an accurate estimate or classification of the unsamgled point.

¢

14.5.7.2 Problems in Thnc Dimensions

" Figure 14-30 shows the reverse problem from two dimensicns. A vertical bor-
ing is shown with & cenitral interval removed in anticipation of estimation by cross
validation. Now, the nearest neighbors sre directly above and below the point to be
estimated, Regardless of the estimator of variogram model selected, the point esti-
mate will be very close to the average of the twe samples surrounding the interval,

Withowt addidonal sampling, the problem in two dimensions is not casily
‘xlved. In three dimensions, however, we may remove samples within a certain
distance of the point to be estimated. This should be done with caution 50 as to
svold recreating the two-dimensional problem.

.<ONCLUSION

Sncoessful implementation of kriging depends not only on a computer program

"that respects the equations developed in Chapter 13 but also on a practical
. wndersiending of the interactions between the varous kriging parameters and

block model constreints, These include topographic constraints, correct search

 procedures, and appropriate cross validation where typecasting error may be
, valoable, Computer kriging 2nd contouring can often be-accomplished with the

.

}

push of a button, but the practitioner is responsible for determining whether the
“rsultant map should be classified as “gospel” or “garbage.”
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