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Fig. 34. Mine manager and p)anuln~,t department. 

our planning department b\lilt? If the situation it the one of Fig. 34A, then' 
chances are that the planning will be good. It it looks like the one in Fia. 
a4B. action has to be taken immediately! Now the problem i11 that one qu1 

often doesn't know in which case one ia! It will be one of the main tar 
of geostatistical computation5 to answer that question. 

We will concentrate on the problem of obtaining an ore inventory file and 
this will at the same time generate all the concepts which will be au:fficlent 
and necessary to solve almost any other estimation problem in a mine-life 
time and appraise any estimat10n method. 

3.2 WHAT IS AN ORE RESERVE ESTIMATION? 

What we intend ~o do here is to briefly review t.he actual practices in this 
.field in order to isolate the underlyinl concepts and tht questions which 
arise. 

We can Etate the general problem a.s !ollow•: one knows the actual grade 
of 5ome localized samples and one wants to know the grade of a larger block 
of ground or even of the whole mine, The natunl solution is thull knowins 
a few values (t1, t~, , . , , tn ), to manipulate these vB.lues .in order to come out 
with a combination of the!e grades which will be considered as the real grade 
of the block undt!I .study. Doing these manipulations. whatever they are, 
implies two basic concepti: 

- the concept of edension, 
-the concept of error of eetlmation. 

3.2.1 The concept of e:dtnston 

We can group the ore reserve estimation methoda under two headinp: 
Geometrical and Distance-weightini methods. They are all, however, based 
on the same principle. 
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Fl1. 815. Ctometliea1 methoda of ore re&erve estimation. A. Re:ular b1ock5, B. lrreg\Ilar 
bloekl. C. Polygonal. D. Angular bissection. E. Triang1.11ar. F. Sect.iolll. From Pattenon 
(l9~i). 

3.2.1.1 Geometrical method• 
These wert the most employed until the advent of computers and e.re still 

.._... :favoured In many companies. They include polygonal, triangular and cross· 
llectional methods and have been summarized in Fig. S5. They were also the 
first to be cornpu~rized (Hewlett and Faick, 1961 ). In any case. what one 
does is alway& to assign to a block the grade of a portion of a diamond drill 
hole. We extend to the block the grade of a portion of a diamond drill hole, 
We extend to the block the srade of something else. We will call this an 
extension. This i1 the basic principle. 

3.2.1.2 Di•tance-w~tghttnz method• 
The same extension prevail• in theee methoda which became popular 

only t.ft.er computera were e.va.ilable. due to tht very 1arge number of 
repetitive calculations required. These method• assigri to · a block, or to a 
point, a linear combination of the grade• of surrounding samples~ Whatever 
the coefficients of that combination, in other words whatever the weighting 
mlithod ueed, thil i1 again an extension o! the grade of some &amplea to & 

larger volume! Fig, 86 give• an example of that method. 

3.2.2 The concept of error of e&ttmation 

3.2.2.1 The error 
Dl.le to the simple fact that sampl .. and bloeka are no't strictly equivalent 

there 11 an error involved in any estimation procedure, The validity of an 
estimation method will be as~essed by the magnitude of the errors involved. 
Note that it is not possible to forecast an error, since if an error is known, 

,.. .. -
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Fl&. Se. Hypothetical block calculat.ion from neithbourin; 'Amplec uslni: an inn··~ 
ICj\lared eistt.nce method. After O'Brien and Weisl (1968). 
Lete:cd: G "".assay composite value, d = di1tanct, ;s == bloek u~ay. -· 

there is no error l.eftl Now what we want to do i1 to select, before the actual 
mining of the blocks, the bert estimation method. What doe• 11best" roean? 
Everybody will agree that the best method la the one which yields the 
smlille5t errors in general, conddering all the blocks in the deposit. We know 
that an estimation procedure will not yield a constant error, sometimes in . ,. 
a porphyry copper deposit for imta.nces, it will be ± 0.1% Cu, sometime,, · •· 
hopefully lesa often, it will be 0.4% Cu. We &tart to set the concept of '" 
probability of occurrence of' an error. When there i1 a cut-ott involved -we 
also want the classification to be correct, ore and waste tonnage should be 
correctly evaluated. 

.. 
' 

8.2.2.2 The d!$tribution of the e~timation error 
Suppose that in one deposit we have a number, n, of identical blocks 

which we want fo estimate :from a similar settini of sample&. Let the true 
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• 0.2 • 0.1•1• Cw 0.1 •rrol' ·0.2 ·0.1'1• Cw 0.1 error 

Fi1. 8?, Dlattibuticna of enora fo-r two methoda of estimation of block gretla in • 
porphyry copper depoalt. 

real grade of blocks be Z 1, Z2o •.. , Z". Let t.~e estimated grades- using one 
particular method- be zr I z~ I ••• 'z~. The resulting ~rrors are thus e, = 
Z 1 - ZJ i fz = Za- Zf ... ; €" = Z" - z:. We will be satidied if the average 
of the estimate• is the liame as the a.verage of the real values; in other words: 
we want no ·liystematic error. Th!s i11 the non-bias condition. Then wt; will be 
happy if most of the errors have a low absolute value, knowing that some of 
them might be lar1er and hoping that a very small number of them will be 
large. 

In statistical worda we say: ''We want the ·distribution of the errors to 
have a low dispersion: a low variance". 

This is illustrated in Fir. 37. Suppose again that we are dealing with a 
porphyry copper averaging 6ay 0.8% Cu. Then for blocks of 50' x 50' x 50', 
a dietlibutlon of erroJS like the one of Fig. 37 A la acceptable while a distri· 
bution like the one or Fig,37B is unacceptable. 

8.2 .2.8 The varianc~ ()/ th,t error on " st"cle value 
In some instance we will esthnate only one value, for instance the average 

~ad• of a depo&it. Thi1 value . is not error-!ree. Al&o it il obvious that we 
cannot know the tmor incurred, otherwise; thete would be no error. We have · 
already discussed this in Chapter 2 under the headir}g ''Standard enor of 
the mean.,, Let us Ita it :fJ:om a more intuitive point of view. 

Let X be the value which wt have obtained; There is only one value for 
the error and we cannot draw a distribution like in Fig. · 87. We can feel, 
however, that this error h8! a given probability to be between such and such 
values, and ·a small probability to be above another large number. 

Suppo1e we are dealina with a 1.6?0 Cu vein. We will feel, for instance, 
, that there is a. 50% chance that the error will be leas than 0.1% and maybe 

lt'd 
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80% chance to be smaller than 0.2%.· These :feelini• are nothini more tl'l· 
the probability distribution of the error, end thus we can JlGain at;socia~ _., 
our estimate a variance, which gives the spread of the distribution of tne 
error. We could sum up by saying that we have an estimated mean value X 
and we want to know the 6tands.rd error of the mean value. 

The exact type of the distribution of that error i1 and will remain 
unknown. However, for ul!ual. situations, the distribution of that error is 
irrele\'ant a.nd whAtever the model we select, either normal or lognormal, 1or 
instance, we will obtain the same .result. in terms of confidence intervall. 

At this point we should make the difference between academic 5tatistlcat 
problems and actual engineering problems. Concerning the previous ztate
ment about the exact distribution of the error beina irrelevant we can jpve 
the followlni example. 

Examplt. Suppose th~tt we have an estimated value of 0.65% Cu with ., 
standard deviation of 0.10% Cu. If we choose a normal model tor the. di.!.tri
bution of the error. the \'alue which has 84% cha..."'lce of bein1 surpa8Sed is 
0.65- 0.1 a 0.55% Cu. If we choose a lognormal model then thta value is 
0.65 exp (- 0.1{0.65) = 0.557, which for practical purpo11es i& equivalent to 
the first one. Now if we have an estimated value of 0.65% with a standard 
deviation of O.SO% Cu, then the two models respectively yield 0.35% Cu and 
0.41% Cu, which are different. But in the second case, whatever the true 
unknown an5wer (ectdemic), the only tnfQrmation to remember (engineer
ini) is that we have no idea of what might be in the blocki it is irrelevant 
to differentiate between something very bad and aomething worse! · 

3.2.2.4 Exerclst: assessing thf qz.u:zlity of an ore r~serv. 
estimation procedure ·._; 

The purpose of thil exercise i! to find a way to !elect 2.n eo5tima:tion pro· 
cedure. We have a series of block vaJues (real values) and two series cif 
estimated values for these same blocks, using two different method• (see 
Table 3.1}. The first method is by "inverse squared distance" {I.S.D.) and 
the second is by krigin1. 

The blocks are from a very regular porphycy copper deposit where the 
mean grade is 1.19% Cu and the variance of point samples is 0.20 (90)2• . 

The block& are 50' X 50' X 50' and the estimates have been made from 
sample& on a 200' grid. · 

A common way to assess the quality of the e8t!mation il to examine the . 
frequency distribution of the erro11. The two ccmispondinlj diatributlonli 
are iiven in Fig. 88. 

We see that the kriging procedure is in this cue much better; the spread, 
or variance of the di$tribution is much smaller. We · llhould add that thlJ 
criterion is noi the only one to select a method of estimation. In many cas~ 
the two d:i!tributiona will be closer to one s.nother than here. Then othe~ 
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'I'ADLE 3.1 

Block .alu•, utimat.ed and :realror E~erci11e 3.2.2.4 

Real Kriged J.S.D. 

0 .9t 1,07 1.21 
1 .67 1.48 1.29 
1.ea 1.411 1.81 
1.43 1.24 1.2~ 
0.98 0.98 1.17 
0.88 1,04 l .liO 
1.67 1.68 1.27 
1.81 1.56 1.26 
l .US 1.16 1.21 
1.01 0.96 1.17 
0.81 O.S9 1.20 
1 . 7~ 1.5S 1.26 
1.10 1.26 1.:~e 
1.23 1.26 1.23 
1.01 1.06 1.19 
0.90 0.92 1.17 
1.58 l.Sli 1.21 
l .2l 1.28 1.26 
1.615 1.50 1.38 
1.38 1.20 1.29 
0.97 0.92 1,16 
1.33 uu 1.21 
1.20 UIS 1.27 
l.94 1.7& . 1.86 
l.:S8 1.40 l.SS 
0.89 1.01 1.31 
1.18 1.10 1.22 
1 .32 1.30 1.80 
2.01 1.99 1.39 
1.54 1.66 1 .8~ 
0.97 1.02 1.1.8 
o.n 1.12 1.21 
1.27 1.80 1.29 
.1.&& 1.80 1.86 
U11 1.So4 Ul3 
0.98 0.96 1.18 
0.96 1.07 1.18 
l.Z? 1.23 1.21 

R-K 

-0.08 
O.lg 
0.15 
0.19 

-0.01 
-0.16 

0.04 
-o.os 

0.01 
0.015 

-0.18 
0.19 

-0.16 
-0.03 

0.00 
-0.02 

0.16 
-0.02 

0.06 
o.u 
0.05 
0.09 

-o.os 
0.19 
0.13 

-0.02 
0 .03 
0.02 
0.07 

-0.12 
-0.05 
-0.1!5 
-0.08 
-0.25 
-o.as 

o.oa 
-0.11 

0.06 
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R-l.S.D. 

~0 .22 

0.38 
0 .82 
0.18 

-0.19 
-0.82 

0.40 
0.05 

-0.06 
-0.16 
-0.39 

0.46 
-0.16 

0.00 
-0.13 
-0.27 

0.87 
-0.05 

0.82 
0.10 

-0.19 
0.12 

-0.07 
0.58 
0.25 

-0.38 
-0.09 

0.02 
C.&7 
() ,111 

-0.19 
-0.24 
-0.02 

0.19 
-0.02 

0.14 
-0.22 

0.06 

qualities of the eathllation method will have to be investigated as the next 
pua.graph will show. 

For lm'gin1: The average elTor le 0.0005% Cu, or 0.0 as it thauld be and 
the variance of the error iJ o~ ::::;; 0.0115, i.e., the standard deviation il 

-2%Cu. .. ,. .. , .. 
t' .:' ... - ~. 

~· . . 

oJ . , .. ~, tt~t .. r • , ,. r i s .., 
·~ · ~ '-'• CCc:;9 
·' 0 .. ,~ J ':'· . ' w.f.D 

1-~·~g 86, BE d~ 
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Fig. Sa . Distribution or errora for two method• or eitimation (Ul.D. r.nd kri£in') ot block 
Stadt~, Da~ o! T11ble 3.1. 

For l,S.D.: The average error is 0.037, so that the estimates are system· 
atically biMed, s.n.d the Val'ie.nce of the error is 0,069 giving a standard 
deviation of 0 .26%Cu. 

The conclusion is. left to the reader . . . the drawing of Fig. 38 also! 

3.2.3 The correct assi~:nment of blocks to ore and waste 

Maintzi."ling a small estimation error is not. the only criterion to asseu th 
validity of an ore estimation technique. Tonnage ia also a very import.an ,, 
(perhaps the most important) factor. When in a ~ven overall envelope the... j 
exists ore and waste one wants the small blocks to be correctly classified. . . ' ,_ 

• lj 

cut- off 

z; 

bloc« r 
I •111 orod1 ' ; 
ullmott~ 'il· zT 

tiiHk j 

tfut ~rCdt :r 1 
U!lmottcl ; . : T 

Fig. 89. Conelation bdw"n ptedi~ted and aetutl gtades or bloelcJ. Shaded areas sh~ 
gro Upl of block1 wrongly allocated. 



Chapter 4 

WHAT IS A VARIOGRAM? 

SYNOPSIS -In thfs chapter we will try to show that the idea of a uartogram 
introduce• iteelf naturally when one starte to- thinlr about estimatton and 
uariabilit)l problems. We will first definl what the variogr-atn function ts, 
then show that it incorporQtes ltveral geological feature• which are impor· 
tant in mineral deposit valuation, 1uch as the continuity, 11ize ahd shape of 12 

.zone of influence. Th1n " littlfl arithmetic will show 1.11 that the variogram 
function lnteruer..es In all e6timotjon varumce1 and bloclt varia~tCeB comp'U• 
tatiom. Thl' will be tllustroted by two exerckes in order to show what kind 
of real results one can expect from the varfogra.m, and finally before going 
throuth. the theoretical development we will 8how how one can tompute c 
ario,.,.Om In a simple ca~. and tntroduce a most frequently 1.1sed 11ariable tn 

• re&erue computation, the accl.lmulation. 

-·· 4..1 SPATIAL CORRELATION 

All the geological features which we have mentioned in the previou1 
chapter could in fact be summarized unde: one name. They represent the 
dmilarlty or rather the dissimilarity whi.ch exists between the grade at one 
point and the grade some distance away. The error of estimation is thus a. 
function of the ~;imilarity which can be expected between samples and a 
block. This expected variation can be called Spatial Similarity or rather 
Spatial Correlation. We now aee that what we have to do is to find a way to 
characterize that similarity of ~des within a deposit or, rather, within a 

. hom oieneoua area of the deposit where we can suspect that the geological 
relationahipl are the same and where consequently the precision of an 
estimation procedure for a given geo.rnetrlcal pattern dependa only on the 
pattern and not on the particular location in the homogeneoua area. 

4,2 DEP'INlTION OF THE V ARJOORAM 

The most natural way to compwe two values. say two grades Z(") and 
Z(~ +h) at two point•, x and X + h, h feet away from~, is to consider their 
difference. Since we are not really interested in the sign of the difference 
but rather in the absolute value, we mould consider the value lZ(x)
Z(.x + h) 1. Thill value expressini the dissimilarity between two particular 
pointl Ia of vezy little interest. We rather want the averase difference be· 

een two points h feet apart. Thus we should consider the value {Average 
) - Z(:r + h) I} for all possible pclinta " and :r + h. Since absolute values 

t2'd 
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are difficult in calculu11, we will rather consider the squared difference• and 
thus select as our dissimilarity function: , _ _., 

... -+ 
2'Y(h) ~ AVE [Z(.x)- Z(.r + h)]i (4.1) 

which 21hould be properly expreued as: 

27(h) = ;J!:' [Z(~)-Z(.r+h)Fdx (4.2) 

where Vis the volume of thejeposit E 
This is the variogram, 2'Y{h). It is a function of a vector, in other word1, a 

distance and the orientation of that distance, and it expresses how grade1 
differ in average according to the distance in that direction, 

This definition involveE an integral, in fact, a triple integral calculated over 
the whole deposit. In practice we will have to estimate that intesral through 
the available da~ Suppo!!e we have a total of N(h) pairs of umple1 sepa
rated by a vector 11, then we will estimate the v8l'iogra.m by: 

.... 
1 N(h) 

2'Y(h) = -~ E [Z(%,)- Z(.rj + h)] 2 (4.3) 
N(h) t•l 

As a simple case, take E.a.mples regululy distributed along a line as in 
Fig. 52; we have n samples at an intezval of d feet, thu1 we will have (n -1) 
pairs to compute -y (d), (n- 2) to compute -y(2d) and so on. 

. . ._, 

Fi;. 52 . Schfmattc computation ot a Yariogram, uainl pair6 or umpl• a ~riven di&h.nee 
a;>an. 

tO' ICl' 30' 40' . 10' 

Fig. 58. Ty~ical vario~ram from a lelid-%inc depo1it ahow:!nr a aood co:ntlnuit;y. Tbe 
minerali:!.ation il d~s~min:ated. 
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4.8 THE VAlUOGRAM AS A GEOLOGICAL FEATURES DESCRIPTOR 

All the geological characteristics which we have mentioned so far htve to 
appear quantitatively in l~e variogram. This should help to make precise the 
;'feelinif" of a geologist, specially at the beginning of an operation. 

4.3.1 The contlnt4it)' 

Tht continuity is reflected by the rate of growth of 'Y(h) for sm~l values 
of h. In a sedimentary deposit, changes usually occur very slowly. We obtain 
variogr&Un~Uke the one of Fii. 58 (a lead-zinc deposit), with a gentle, regular 
grcwth from zero. In other cases the mineralization may occur as nuggets, 
or blobs, otten concentrated in vei1.1lets, th~n rapid change& may happen over 
a \'fill}' Ehort distance. This will be called later a Nugget Effect, We see such a 
va.tfogram (from a moly depodt) in Fig. 54. The continuity may also be 
completely non-existent. Then we have a variogram like those of Fig. 55: 
whatever the di.ttance between two samples, they are simply independent of 
es.ch other. This is common in iold deposits and this is wh~ that type is 

d the Pure Nug,et Effect type. 

to• 40' 10' 110' ,oo· 
Fir. 54. Va.r!oerem from a molybdtnum dtposit showinc contln\lity curtailed by a high 
Jow·•eala varle~lllty (C0 ), The .mineralization occun i.e thin (a few mm) veinlats. 

Ylhl 

0' lOCI' 400' IOCl' 

Fill. 55. V•rlciJ'am• !tom another molybdenum deposit show!n1 no continuity. Mir,eral· 
! "' oecura in thick (1" ) veina. 



1e 
4.8.2 Tht ~one of Influence 

The zone of influence is the zone beyond which th~ influence of a EM'lple .._ .. 
disappears. It is nonnal to chca.cteriu that zone of i.'11'luence in Iii given 
dhection by the distance at which t.~e va.riogram eventually reache• a plateau. 
Typical ~ones of influence can be seen in Figa. 56 and 53. In Fig. 56 we 
have a 200' ~one of influBnce in an iron deposit. In :F'ii. 53 the range of in· 
fluence (we will say in mort, range) was only 35'. In Fis. 55 one can say 
that it is 1~s& than one iSmp!ing interval, i.e. virtually zero. 

Also note that in some ini tances the fu1ther apart the 58.."l1ples, the more 
different they are. ThiJ happens frequently in hydrothermal deposita: the 
varlcgram shown in Fig, 57 is froxn a Cu-Ni deposit. When a range exiatl, 
the variogram. is said to be of a tramition type. 

,c• tOO' 150' tOO' UiO' 300' 

Fig. 56, A very ''good" variogram from a.n iron ore deposit &howJnll 200' (vortical) 
ol int1uence. 

200· •oo· coo· aoo· CIIS'TANC£ tlogl 

Fia. 57. Varic~m of nlckirl grade In • illlfidt veia. 

4.3.8 Th~ anlsotroplea 

The anfsotropies are easUy depicted by computing the varioaram in dif· 
ferent directions. On Fig. 58 for instance one Eeet four variograms from four 
directions in a porphyry molybdenum. They can be considered as identical, 
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l'Ch) 

200 ' c:ciO ,. •oo• CIISTANCl 

Fl(. 58 . Four vniogramt corretpondln' to fo\lr different d!reetioru in a porphycy molyb
denum depodt. (l "" E-W, !I :a N-8, 3 • vart.ie•l, 4"" cube di•~onal) iho"'ini no chance 
ot behaviour with dl:eetion. 

HORIZON'TA\. IIANM 

DIITAN<:€ 

Fir. GV, Hor!~ontal and vertical Yariocnma in an iron mine, showin~ difference of be· 
haviour with direc:Uon. 

the continuity of the ore is thus the same in all directions. This is the sim· 
plest cue but, unfortunately, the least frequent! A more common situation 
ie seen on Fie. 59. The vutJcal ancl horizontal range of influence in an iron 
depoait differ widely. This can be interpreted by saying that a given vertical 
dlstanoe is eqltivalent to the same horizontal diltanoe multiplied by an 
anil!lotropy factor 1c (ereater than one ill this case). For instance if the ani· 
aotropy factor i.e S, then ten vettical feet are equivalent to thirty homontal 
feet u far as grade ·variationa are concerned, 

Other typel of anisotropie1 are encountered. For instance, when a layerlns 
of the mineralization ex.ista, ~en the global variation in any direction can be 
thought of as the sum of two independent sources of variation. one isotropic 
component plua a tonal component, which dependa only on the number of 
ayera crossed, The difference between the grade• of two points depends 
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Fig. 60. Difference or continuity in three directior.a for the thicknell of a coal aum, •• 
1hown by the thre~• varic£)'arra in then directiona. 

50111 

Fig. 61 . Differtnce of continuity in the horizontal and vertlce.l dirtctloD a~ th• Exotica 
Mine, 11 •hewn by the variograma. 

thus not only on their relative distance, but also on their difference of 
Elevation in the layered system. Note that the layerinr rnay not be visible. 
Such variograms are more complex to interpret. Two ditterent types can be 
seen in Fig. 60 and 61. 

4.3.4 Conclluton 

We see that the variogram takes Into account all the geoloiical featurtl 
which we mentioned earlier. Thu1 we can e:xpect that an estimation pro· 
cedure bued on it can be geolo~cally reliable. We will now 1how how tht 
estimation variance ia a function of the variogram. 



4.4 THE VARIOOnAM AS THE FUNDAMENTAL FUNCTION lN ER.ROR 
COMPUTATIONS 

Althou,tl we have not yet given the theoretical probabilistic models 
deieribina the grade of a deposit as a random function, we can write a few 
line• of atatistica in order to appreciate what is exactly required in error 
eatimation, 

4.4.1 The variance of the e"or of esttmatton 

Let ue tey to appreciate the variance of the error of estimation fi which 
we mentioned be1ore. The Z( V1) ar1 true unknown grades of the blocka 
V, the z•(Vi) an· the linear combinations z• (l't) = 'Ej= 1a1Z(X1) of the 
known sample eradea at locations XJU = 1, . , • , n), Then: 

VAR(t1) • VAR[Z(V1)-Z"'(V;)) 

VAl\(1!1) • VAR[Z(V1)] -2COV[Z(V1),Z*(V1)] + VAR[Z"'(Vi)J 

(cri) • VAR [Z(V4)1 - 2 l: "i COV [(Z(Vt), Z(X1)] 

.,.. 

J 

+ r I: a, a~; COV [Z(Xi ), Z(X11 )] 
J II 

(4.4) 

If we eon aider each of these V AR, and COV separately, we will see that 
they should be computable from the va.rioil'Slll. 

4.4.2 The variance of the grad• of blockl: VA.R {Z(V; )} 

The variability of the grade of blocks should depend on the average dif· 
f&reqoe in grade which exists between any two points inside the block. If 
this avoraga difference i• low, then the variance of the block should be low. 
If it it hiih, the variance will be high. Since the difference between the 
gradea at two points il! expres~ed by the variogram, we can say that we 
should b; able to compute the variance of the blocks from the variogram. 
This wlU be &trictly checked and pro,•ed later. 

4.4 .S The covariance of the grade of a b1ock and the grQde of a tample: 
COV {Z(V,), Z(Xi)J 

Thia value . expresses the correlation which ex.ista between the grade of a 
blotk ancS the grade of a pven sample, rt should again obviou&ly be equal 
to the avera"t correlation between any point in the block and a point in 
the 1ample, Thil correlation beinl el:pressed by the variogram, we thus 
can state that once we know the vuiogra.m we will be able to know the 

... 

J-:J•.J 
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4.4.4 The covariance of the grodes of two 1ampler: COV[Z(XJ)• Z(X11 )} .._., 
After what we h~ve just ,;aid we see that thi! is just a particular case of 

COV[Z('Vf), Z(X1)1. Thil time we know that the correlation or rather, the 
lack of correlation bQtween two s2.mples is directly expressed by the vario
gram !unction. Thus COV[Z(X1), Z(X,.)] should be some constant minua 
")'(h;'Jt) if hi" lll the diEtance between sampleS XJ and X,.. 

4.5 CONCLUSION 

We' have no_. completed our intuitive e:umination of the problem of ore 
reservefi estimation. We have reached the stage where we know theoretically, 
how to compute the magnitude of the error involved in one procedure or the 
other. Thus we ihould be able to select the best method, the one which will 
give the minimum varia.')ce. What iB left now is to firmly establish the theory 
which ia called the Theory of Regionalized Variable• and, &econdly, to 
examine which practical computational step1 and interpretations are in
volved in practical caues. The actual optimization procedure- kriginl
will be seen later in Chapter 9. Before we proceed, we will show in two exer
cises how the variogram helps to compute all what we need and how to com· 
pute it in a simple case. Those who are not concerned witb the theoretical 
basis or practical aspects of variograrns and variance computations can 
directly proceed to Chapter 9. 

4.6 EXERCISES 

4.6.1 Variances and the varlozram 

This exercise ia the follow•u:p of Exerciu 3.2.5. In that previoua u:erci!e';-' 
we had shown which physical realitjes our concepts wert covering, namely 
what block variances and estlmation vauiance11 are. At that time, in order to 
compute these values, we have had to use block g:rade1 which aie normally 
only available after the material has been mined out, i.e. too late. In fact we 
never know the real grade of blocks, so that in daily mininiJ practice it 1• 
not possible to compute the varianceJ whlch we have just obtained, in the 
way we did. 

Gecstatistks hu shown that this ie, however, pos5ible, From one drilllnc 
campaign one can estimate the variogram ot the depoait and then fit a model 
to it. 

This defines a few parameters like the zone of influence in all direction• 
(which we call the range, a), the samplinc: error (which we call the nugget 
effect, C 0 ) and the variance of the samples (which we call the sill, C + Co)· 
U~ing thsse parameters and charts we can obtain .the variances which we had 
be!ore. How these charta have been computed is irrelevant so far. All wha& 
we need to know is that they can be deduced from samples only. 
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TIMIZATION OF THE GRADE ESTIMATION: KRIGING 

NOPSIS- Thil chapter glvea th1 theoretical answer tp the problem of 
r optimum estimatton of block trGdets. This is kriginf. Aft•r a thtoretlctzl 
roduction and a complete example, aom' time will bt 1pent to review 
r,r., oriltnCJl worll and th~ correction factors presently in ust in th1 
rrutr)l. Capital properties untqu1 to kriging ar.d essential for plann£nc will 
pointed out and a stmple krillnt program, •ufficient for 2-D problems will 
propo51Ul. A last section will deal wtth mtvereal hrlg'inf and non·station· 
, phenom1nc, and the proctical ways to cope with theN. 

Foreword. This ~hapter eould have been placed just a!tet Chapter 4 and it 
Llld be reduced to one paragraph. Thill is probably the feeling a statistician 
U have after rudini it, This would, however, mean not recognizing all the 
rt " problem1 which arise due to the fact tha.t we are only concerr.ecl 

ina problema and that we need economic solutions for a.ny situ· 
. •• Krf~na II in iaet a word which has been coined to cover both "best ear unbiased e•tirnator'' (B.L.U.E.) of a polnt and tht best linear weighted 

)vinJ anraie of a block. The particulu nature of estimation problems in 
n t pla.nning J1 aucb that it molt probably deserves the use o1 a special 
me. Thil name appeared around 1960 to dedgnate a. technique Cl'eated in 
anpe by Matheron, after the name of D.G. Krige who was probably the 
at to make use of spatial conelation &.nd B.L. U.E. in the field of mineral 
source~ evaluation (1951). 
In Chapter 4, the pzoblem of the accuracy ot the estimation of the grade 
.a block of ore, trom a seriea of samples JC1(t = 1, ..• , n) has been for· . 

. 11ated. .M it hu been possible to expresa the precision of a. lineu com· 
lation as a function of the variogram and the weights chosen. it should be 
~~sible to f'md a set . of weiibt5 which minimizea the e1timation V6.!iance. 
will be ahown how thil ean be done, then how it wu originally done by 
ip and how thil can be linked to va\l'lou• correction factors traditionally 
ed in tbe industry. Finally the problem of dealiJ:'li with trends by means 
.universal krlgine \\111 be d!acuaaed. Doi:ns it this,., •• )' rathe: than followine 
e hhtorleal development will make ducusliions euier, and pl'obably tht 
lk between all earliu attempts wUl become obviou1 once the terminoloS)' 
' krlglnJ 11 underatood. 

l THE OINIJUL PJ\OBLI!:M AND lTS SOLUTION 

Conaiderirtl a block V havina a true unknown grade Z(V), and a series of 
s '' of known ifa.de Z(x1)(i = 1, ...• n) v;e want to find that !&t of 
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weights a1(1 == 1,, .. , n) whkh will make the wei~ ted a-venge 

" z• • r CZ;Z(~I) 
. ..._, 

i•l 

the best estimator of Z( V). 
Best can be qualified in many wa.ya. In Chapter 4, It was found that a 

natural way to measure the quality of an estimation procedure ill to compute _ 
tho variance of the error it involves. The estimation variance of Z(V) by z• 
wu expressed u: 

(9.1) 

where: 
a~ stands !or VAR [Z( V)), the variance of the ~ade of blockl like the 

block V studied. 
al-x, standa for COV[Z(V), Z(X1)1, the covariance of the iiade of block V 

and the grade of sample xi. 
C1xixj standJ for COV[Z(X1), Z(X; )] , the covariance of the grades of sample 

X1 and sample Xj. 
Now aa all these a coefficients can be computed !rom the -variogram it 1J 

po&Sible to minimize oi with respect to the at'S in order to obtain that 
weighted average which will have the smallest eEtima.tlon variance. Thie it 
just a matter ot calculu1. 

So we wlll take as a definition of best, the mininm:rn variance linear eati
·mator. Th!• fa not sufficient. It is also required that on average, the value 
which 11 computed, !hould be eql.lal to the rea.1 value, rather than aystemati· 
cally hi~er or lower, This is the unbias condition. 

Unbiased means that one should ha\fe: 

E(z•) = m which requires that E [ ~ a.zcx, )] • m 

'I: a1E[Z(X1)] = m and u E[Z(X1)] = m then l: tit • 1 
I I 

Altogether what il desi:red ia the best linear u:nbiued e&titnator; the B.L. U.E. 
ot statisticians. 

The problem. To find those weishtl a- which minimize the estimation 
vt..riance c: •Jnder the condition t.hat ~1a1 I.E 1. 

The solution. To minimize a function Q or a,'a one knowa that the derlv· 
ativea of the function with respect to the a1's mould be made equal to zero. 
Now when there fa a constraint (C • 0) the Leifan~te principle tell1 UJ that 
F = Q + 2p.C should be minilnized, where J.1. iJ a new unknown, the LlliZ'ange 
.multiplier. In our ca&e, we should thu1 take the derivative of: 
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u; + 2p ( ~ a, - 1) 
.. 'trith respect to all unknown~ (e~1 '• and JJ.) and make them eql'lal to ~ero. 
! Wrhlni the detail of comput&tJona yielda: 

· · F • a~ - 2 I: a;avx1 + L '5' Q;a1a x,x1 + 2,u (r a, - 1) 
I · I ,. t 

. and the derivatives are: 

I
~ a - 2avx1 + 2 I: aioX;X.J + 2J.t 
8a, I 

aF s t a, - 1 -= 0 
a" , 

= 0 (i • 1, I •• , n) 

ThiJ il a Uneu system of n + 1 equations with " ~ 1 unlmowna, tht> a1's and 
ll· It can be written in the uaual form: 

E a, • 1 
I 

or in matrlx form: 

[];) [A) c [D] 

(9.2) 

where I:, A end Dare, respectively (usinr oii a1 a short for o~1xi ): 
r au ou ul,. l as avx, 

ou a,2 • 1 • a211 1 a2 uvx, 

[:t] - [A] - . [D} a 

l:·J 
a,.l o,2 . a"" 1 Ovx,. 

1 1 . . • . 1 0 l 

Note that [:t) ia a symetrio matrix which depend1 only on the ·kriown 
samplea while [D) depend& on both the unknown block nnd samplet. 

The solution ia thus [A] • (l:r1 (D]. The problem is solved aa aU a'a are 
derived nom the variogram. Let us see quickly how th)s is done in simplt 
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