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VISCOSITIES OF MAGMATIC SILICATE LIQUIDS:
AN EMPIRICAL METHOD OF PREDICTION*

H. R. SHAW
U.S. Geological Survey, Washington, D.C. 20242

ABSTRACT. BRBased on the compilations and calculations of Bottinga and Wejl
(1972), it has been discovered that viscosities of Plll][iLOP]pOﬂCn[ 'mhvdrous silicay
liquids can be estimated more rapidly and with equal precision using culy four partia
molar cocflicients of SiO;. The addition of a fifth cocficient extends the method
hydrous compositions with =omu\ha[ less precizsien. Comiparisons with experiments,
data zare Muxrutcd for viscosities ranging ‘rom the order of one poise to 10" poise
and compmnmns r:momg from “lunar basalt” o torrvesurial rhyelites and “hydrou
granites of ternary minimum composition”. The mexhod does not explicitly conside
halngens, or other “velatile” or minor consiituents, hut semiguantitaive effects car,
probably be estimated; the empirical coefficients can easily be expanded in number ¢
refined in value if need is indicated by experimental or other evidence.

INTRQDUCTION

The recent paper by Bottinga and Weill (1972) should be read a¢
an introduction to the present discussion, with one additional comment,
The question of "mixing laws” for the physical properties of silicate
liquids has been an intermittent subject of study in this laboratory for
some vears. However, various attempts at viscosity prediction had been
only crudely successful, until the systematic studies by Bottinga and
Weill (1970, 1972) revealed important simplicities in multicompoenent
silicate mixtures of rock forming compositions. The present paper uses
their work to show that even greater <implicities exist for magmatic
liquids. The starting point of the discussion is given by the mixing
relationship used by Bottinga and Weill.

ADDITIVITY RULES FOR VISCOSITIES OF LIQUID MIXTURES

It has been known for a long time that the viscosities of some simple
liquid mixtures can be estimated fairly well by what is sometimes called
the Arrhenius mixture rule (Bondi, 1967, p. 76)

In n= X.l In 4 (]\

1

YR

where 7 is the viscosity of the mixture, and n; 18 some characteristic
viscosity contribution of component i of mole fraction X,.

The results tabulated by Bottinga and Weill essentially show that
this approximation adequately describes the behavior of silicate liquids
within certain ranges of composition, if the constituents are suitably
chosen. More importantly, however, they also show that the contribu-
tions of these constituents can be determined by averaging the behavior
shown by synthetic systems of relatively few constituents compaxed with

magmatic systems.
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On closer inspection, the additivity of viscosity values (In 5}, can
also be expressed in terms of the addiuvity of parameters describing
the temperature dependence of viscosity. For silicate liquids the vis-
cosity is known to be approximated fairly well by the Arrhenius rela-
tion

n=n, exp (E*,RT) @)

where n_and E* are constants usually called the “pre-exponential con-
stant” and “activation energy” respectively, and R is the gas constant.
These constants are given by the intercept and slope of a line on a plot
of In y versus 1/T (K), so that »_can be viewed as a hypothetical vis-
cosity lhmit at infinite temperature. Equation (2) re-expressed in the form

Iny=1Inq + (E*/R)(J/T) (24)

shows that the Arrhenius mixture rule might be expanded in terms of
additivity rules for In 5, and E*.

Additivity relations for In 5, and E* were under investigation by
the author when the present results of Bottinga and Weill were an-
nounced. The initial approach had been to attempt fitting the viscosity
data for rock compositions using methods of multiple regression analysis.
Bottinga and Weill, however, found that it is easier to build up the
relations from synthetic systems than it js to reduce analytically the mag-
matic systems, Jargely because of the relative abundances of data. This
conclusion was used to test a relationship that had been noted in the
author’s experimental studies of the temperature and composition de-
Pendence of silicate viscosities (Shaw, 1963, 1969, unpub. data).

STRATEGY OF PREDICTION

. The success of correlation schemes for physical and chemical proper-
ues of matter rests on some form of normalization that is found to reveal
similarities in the behavior of one system in a given class of systems
(that is, systems consisting of a gas, a liquid, a coexisting gas and liquid,
et cetera) relative to that of other systems in the class. This is the strategy
of the “reference substance principle” developed by Othmer and co-
workers (sce Othmer and Chen, 1968) and of the principle of corres-
Ponding states; in the latter case there is also the aim of finding a set
of universal constants to describe the class. Although these techniques
have been used with some success for viscosity correlations {sce Bondi,
1967, Othmer and Chen, 1968, p- 119), they often rely on data of types
Mot available for silicate systems. For example, viscosities of silicate
]{quids might be generalized, if the temperature could be expressed rela-
Uve 10 the glass transition and critical temperatures (compare Bondi,
1967), but data on these characteristic temperatures for silicates are
Meager,

However, inspection of graphs of In 5 versus 1/T for silicate liquids
Suggests a simple pattern. Particularly conspicuous is the convergence
,Clween viscosity curves for silicate mixtures and the viscosity curve for
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liquid SiO, at high temperatures and the tendency for regular variation
of slope with composition (compare Shaw, 1963, 1963; Bottinga an
Weill, 1972; Hofmaier and Urbain, 1968); there are also conspicuoy,
contradictions (see Euler and Winkler, 1957). Tentatively ignoring the
exceptions, it was decided to test these two observations against the dag;
of Bottinga and Weill, compared with data for SiO, as reference syh
stance. As a first try, only binary systems were considered, and viscositieg
were calculated from the coefficients of Bottinga and Weill (1972, 1abje
3). Surprisingly, nothing more was required to predict nearly all megs.
ured viscosities of magmatic liquids within a {actor of 1wo in most cases,

Graphs of n yversus 1. T for binary silicate liquids.—Figure 1 show,
scveral graphs for calculated binary viscosities as examples of conver.
gence at high temperatures. Although there is much scauer, behavig
resembles the pattern of convergence shown by the system Li,0-Si0,. j,
least some of the scatter relates to uncertainty of slopes based on narroy
temperature ranges of measurement. Few measurements are at tempera.
tures above 104/T = 5, and many individual sets of measurements cover

Inw {uuse)

2..’ 1
0T (K)

Fig. 1. Arrhenius plots of pseudobinary viscosity data for liquid mixtures of SiO,
ptus the indicated oxides calculated from coeflicients of Bottinga and Weill (1972,
table 3). Numbers are the spproximate mole fractions of $i0, taken at the midpoint
of ranges indicated by Bottinga and Weill.
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than unit change in 10¢/T, and one or two decades change in vis-
ity (that is, a few units of In 5; see fig. 8).

It is emphasized that the lines in figure 1 do not represent best fits
the binary data. They are derived from the coefficients of Bottinga and
21}l that are based on averaging the effects of the different oxides in
ithetic systems of 2 1o 6 constituents (see Bottinga and Weill, 1972,
ole 1); the lines are calculated from binary pairs of the tabulated co-
icients, That is, it is assumed that if multicomponent systems demon-
ate some systematic average behavior, then the calculated values for
¢ binary pairs may indicate the form of this behavior, even though
perimental data for the binary systems considered individually may
viate significandy from the average model. In this sense the dia-
ams can be thought of as "pseudobinary” or as being derived by pro-
cting best fits of all data for the synthetic systems to the binary joins.

The first of two principal assumptions used to define an empirical

odel of average behavior is that viscosity curves for multicomponent
licate liquids tend to intersect the reference curve for §i0, liquid at a
aracteristic temperature and a characiteristic viscosity suggested by
1e averages of the binary intersections. Mathematically, the consequence
f this assumption is that values of In y_ in equation (2A) are fixed by
2e value of slope. Physically, of course, this also implies a svstematic
elationship between In g and E* (a theoretical meaning for such a
elatjonship is discussed later). By this assumption viscosities are given
¥ an equation of the form

Inn==s(10°,T) — ¢35 + ¢y (3)

vhere s is a characteristic slope for a given multicomponent mixture,
nd ¢; and ¢y are coordinates of the point of intersection. This assumed
elationship is shown graphically in figure 2. From equation (3) it is
vident that E* and In 5 are given by

E* = 10*sR = 19.87 5 (kcal mole—?)
In p, = ey — ¢s (natural log viscosity, poise)

(he coordinates ¢y and ¢r were chosen by taking the arithmetic means
{ the apparent intersections in figure 1. However, this value also de-
ends on the data used for S$iO, liquid. The means are o == —6.6,
r == 1.3 for the data of Hofinaier and Urbain (1968), and ¢y = —4.9,

r == 1.9 for the data of Bockris, MacKenzie, and Kiwchener (1933).
ater comparison with muliicomponent data led to adoption of the
eighted means

m = —6.40

Cr 1.50

il

Variation of E* with composition—The gencral form of composition
ependence of E* is also indicated by the Arrhenius plots of figure 1.
lopes derived from some of the calculated binary viscosities are illus-
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trated in figure 3A, Here inconsistencies are also apparent, but agai
there is a hint of pattern. For compositions ranging from about 0.4
0.8 mole fraction of 5iQ,, the variation of slope with composition tend:
to be linear; above mole fractions of 0.8, of course, the slopes increase
rapidly to intersect the value for SiO; liquid. Extrapolation of the esti
mated trends to unit mole fraction of added oxide gives an intercept a
a small value relative to the intercept for pure Si0O,.

In a plot of mean molar quantities versus mole fractions in binary
systems, the ordinate intercepts of tangents to the mean molar curve are the
partial molar quantities of the components. Figure 3.A essentially portrays

in u {poise)

L Y

Fig. 2. Generalized graph of Arrhenius slopes, d In 3/d(104/T), for multicomponent
silicate liquids relative 10 @ postulated average inversion point at In ¢ = —6.40, (104/T)
= 1.50. The dashed line gives the range of ‘measurements for $i0, liquids at high
temperatures by Hofmaier and Usbain (1968). This graph represents a rveference
grid for viscosity cstimates only in the range of temperatures discussed in the text.
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Fig. 2. Composition dependente of Arthenius slopes for silicate liguid mixtures.

A values calculated from binary dzia of figure 1: Na,O--open circle; Li,O-sguzre;
MgO-triangle; CaO-inveried triangle; CaAl0,~cross. Points are not ploucd for ¥YeO
"'or NaAlO, because theré is too much scatier to sec 2 trend, but the averzge values
a1, respectively, near (hat for MgO and somcwhat below that for CaAlO,. Values
for “pure” $iQ, arc based on data of Bockris, MacKenzie, and Kitchener (1935)-
circled X, and Hofmaicer and Urbain (1068)-X; sce footnote 2, table 1.

B. Postulated composition dependence based on data in (A). Intercept values are
l.iSlt‘d in table 1. Mcan molar values are illustrated for an obsidian composition vary-
ing only in 1.0 content, where the numbers on the curves at constant Xgjo, 1€ mole
fractions of the other oxides : nnhydxous-{ircled X; 6.2 percent H,0 by weighbb(-ld
dot (sce table 2ji 12 pereent H,0 by weighi-square. These points are the arithmetic
means of the values shown by the small solid circles proportioned according to the
indicated mole fractions. values {or other granitic compositions fall ncar the light
dashed line. Note that the rend of this line js almost dircctly away from a value
near that for pure $i0, (the “AJO,"” intercept), showing how alumina pu\ls the activa-
tion energics toward those of framework compositions at high silica contents.
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mean molar values of E* (that is, of s = E*/10:R), and therefore 1he
intercepts can be considered “partial molar activation encrgies” of the
binary components, The right hand mtcxcepts near zero <1mp1v imply
that the mecan malar activation energy is mainly conwrolled by the partial
molar activation energies of Si0, in the mtexmcd iate range of com.
positions (0.4 = X = 0.8). At very low concentrations of SiOy, pre.
sumably near the orthosilicate ratio (X = 0.33), the mean molar curves
may show entirely different trends.

Accordingly, the second major assumption of the model s that at
intermediate compositions the mean activation energy of multicom.
ponent mixtures is giver. by the average of characteristic partial molar
activation cnergies of 8i0, in the pseudobinary systems, without con.
sidering any contribution of partal molar activation cenergies of the
added oxides. This assuription is represented by figure 3B, where the
intercepts at X = 1 are :he characteristic binary values designated s,
Other simplifications were introduced by assuming that FeO-MgO ang
the alkali oxides are each represented by a single intercept value and
by moting that the uncertain values of intercepts for NaAlQ,~ Si0,
and CaAl0,-5i0, mixtures could be approximated just as well bv
averaging 5,° values for cither Na,O or CaO with an intercept in an
imaginary system “AlO,"-510, which has the same value as the molar
activation energy of SiO, (however, see footnote 2, table 1). The aluming
constituent is indicated by the shorthand "AlO,” partly to emphasize a
role closer to that of $i0, (and lack of charge balance) but mainly 10
emphasize the formula basis for computino mole fractions (the conven.
tion is equivalent to using gram atomic proportions of the metals except
for the alkalies, H., et cetera) The postulated pnrual molar activation
energies of Si0, characteristic of given oxidesilica pairs are listed in
table 1 (the basis for the pair H,O-Si0, is discussed later).

Although the arbitrary convention for alumina has no strict basis
in terms of models of silicate structure, the viscosity data suggest an
inherent “preference” for computing the mole fractions on the basis
of twice the number of moles of ALLO,. Possible implications are briefv
discussed in the concluding section. ’

PROCEDURE FOR CALCULATING VISCOSITIES

The operations required to test and apply the empirical model are
simply: (A) convert the chemical analysis to a value for the mean slope
s, and (B) derive viscosity versus temperature either by interpolation {from
figure 2 or by using equation 3. The first operation involves the follow-
ing steps: (1) convert the chemical analysis to moles of the appropriate
oxides in table 1 and calculate the corresponding mole fractions, (2)
multiply the values of 5,° in table 1 by the mole fraction of SiO,, (3)
multiply these values by the total mcle fraction of each s;° categorv,
(1) sum the products and divide by (1 — Xy;0,), giving the mean value
of the slope.
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A numerical example of the calculation is given in table 2. It can

be seen that this procedure simply finds an average value for the contri-
butions of the various slopes in figure 3B at a characteristic mole {raction
of $i0,. This form of normalization is equivalent to expressing the
composition as a linear mixture of hypothetical binary pairs, each having
the same ratio of SiO, to the added oxide.

Table 3 lists calculated values of slope for a number of rock com-
positions. For convenience, intercepts at 104/T = 0 and 101, T = 10
are indicated so that viscosity curves for these compositions can be drawn
directly. In calculating the slopes, Fe,O; was converted to"FeO”, as
was done by Bottinga and Weill (1972). No systematic error could be
‘detected in this procedure, even though the oxidation state must have
varicd widely in the various viscosity measurements. The amounts of
minor constituents like MnO, $rO, BaO, Cr.O,, P,0,, S, F, and Cl are
too small in these analyses to affect the mean slope significantly, if they
have values of 5,° at all similar to the intercepts in figure 8. This con-
dusion is supported by later comparisons with viscosity data for the
compositions of table 3, where minor clements were ignored. However,
some magmatic compositions may be exceptionally rich in one or more
of the “minor” elements, and independent tests of more specific effects
are needed. The role of H.O sheds some light on the magnitudes 1o be
expected for exceptionally eflective network modifiers. The role of F
may be similar, since on a molar bhasis fluoride jons could modifv an
equal number of Si-O bonds. In both cases the large effect is amplified
by the low formula weight as well as the low value of s,°.

TaoLe 1 .
First approximation of partial molar activation energies of

Si0, in binary systems based on values shown in figure 3

' Slope intercept Equivalent partial molar
Metal oxide-silica pairs*® R The activation energy, kcal mole—!
H.O- 2.0 40
X0, N%,0-, Li,O- 2.8 56
MgO-, FcO- 34 68
Ca0-, TiO,- 45 89
“Alo.”. 6.7 134%%

* The hyphen after the oxide refers to binary mixtures of 1he given component
¥ith mole fractions of S$iO. between about 04 and 0.8, The H,0-Si0O, value was
obtained by inference from the other values and data of Shaw (1968).

** The original choice for this value was based on the data of Bockris, Mackenzie,
and Kiwchener (1933) for $i0O, liquids. More recent mcasurements by Hofmaier and
Urbain (1968) indicate that a beuer value is 123 & 2 kcal mole=, Interestingly, how-
ever, adjusting the slope intercept of “Al0,”-8i0, to fit this value worsens the agree-
ment of calculated and observed viscosities of magmatic compositions. Thercfore,
the empirical slope intercept is retained as stated. Comparison of viscosity data for
Sio, liquids and glasses shows order of magnitude differences between measurements
by different laboratories or between different samples by the same laboratory. This
appears to veflect differences in the techniques for preparing and stabilizing “pure™
Si0, glasses more than it indicates instrumental errors; see data comparisons of
I:Iohnaier and Urbain (1968, figs. 2 and 3) and data of Hetherington, Jack, and
Kennedy (1964).
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COMPARISON OF CALCULATED AND MEASURED VISCOSITIES

Exhaustive comparisons with published measurements on magmat;
compositions are not attempted because Bottinga and Weill (1972)
view much of the data, and the present calculations can be tested b
comparison with their results. Thevefore, discussion is limited to selecte
data for magmatic systems and to a few examples {rom simpler system:
Some of the examples were chosen to show where the method can be use
with confidence, and others were chosen 1o indicate its limitations an
the ways experimental measurements might test deviations and thei
structural implications.

Anhydrous magmatic compositions; viscosities below 10¢ poises—
Figure 4 illustrates the calculated and measured viscosities from a fey
of the key sources considered by Bottinga and Weill. The sets of measure
ments by Carron (1969), Shaw (1969), and Murase and McBirney (1970
are scen to be remarkably consistent with the calculated curves. Thi
agreement partly reflects the fact that these dara sets were used to adjus:
the mean for the reference coordinates in figure 2 and cquation 3. How
ever, numerical comparisons given in table 4 suggest that the presem
method gives as good a fit to the data as does the method of Bottinga
and Weill. It appears that both methods tend to deviate more often
toward higher values than the measured viscosities, although the mean
difference for all comparisons is nearly zero by the present method. The
precision is about the same if the calculated values are all adjusted by
the amounts of the mean diflerences.

Tase 2
Example of conversion of a chemical analysis to the calculated
slope of a viscosity curve on the Arrhenius plot illustrated
in figure 2. The chemical data are from Shaw (1963).
Numbers are given to slide rule accuracy.

Constituent W G* Moles X s S Nsie Xa(sy" Xsow)
Si0, 719 1.195 0.627
Al,0, 12.1 0.238*= 0.125 6.7 4.20 053
Fe,04 057 0.007*#* 0.004
FcO 052 0.007 0.004 34 2.1% 0.02
\MgO 0.04 0.001 0.001
CaO 0.27 0.005 0.003 4.5 2.82 0.01
TiO, 0.n9 0.001 0.001 }
N2, 0 3.94 0.064 0.033) 2.8 1.75 0.10
K.O 4.32 0.046 0.024 §
H.0 6.20 0.344 0.180 2.0 1.25 0.23
Sum 99.95 1.508 0.89

Mean slope:

s = INL(5:" Xs1a,) + (1-.‘(5;02) = 2.39

* Analysis DC-2 in table 1 of Shaw (1963) recalculated to 100 percent on the
basis of 6.2 percent H:O.

** These values are twice the number of gram formula weights of the stated
oxides. They are the number of gram atoms of the respective clements Al and Fe
or the number of moles of the hypotheiical constituents “AlO,” and “FeQ™ (see text).
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The agreement with data of Euler and Winkler (1957), shown in
figure 4B, is not as good as the agrecment in figure 44, but as illustrated
by Bottinga and Weill (1472, fig. 9), there are some features of their
data that suggest the possibility of experimental error. This remains
an open question that should be rechecked experimentally. However,
the mean difference between calculated and measured viscosities repre-
sented by figure 4B and other data of Euler and Winkler (1957} is small
{but negative rather than positive as in table 4). The deviations of cal-
culated values by Bottinga and Weill are apparently similar.

Anhydrous magmatic liquids and glasses; viscosities above 10¢ poises.
—Reproducible measurements are difficult at high viscosities because
increasingly important “memory” effects are related to decreasing rates

TanLe 8 ‘
Values of mean slope calculated from the chemical analysis
(see table 2)

Identification® Slope(s) JOT = 0t 10¢,T =10
BW22; Shaw (1969) 2.23 — 973 12.57
BW23; Carron (1969) 3.76 —12.04 25.56
BW24; Murase and McBirney (1970) 1.91 - 9.26 9.84
BW25; Murase and McBirney (1970) 240 —10.00 14.00
BW26; Murase and McBirney (1970) $.02 —10.93 19.27
BW13; Euler and Winkler (1957) 3.00 -10.90 19.10
BW14; Euler and Winkler (1957) 2.95 —10.83 18.67
BW15; Fuler and Winkler (1957) 2.70 —10.45 16.55
BW16; Euler and Winkler (1957) 2.25 - 9.77 C 1273
BWI7; Euler and Winkler (1957) 2.82 — 988 18.52
BW19; Euler and Winkler (1937) 2.04 - 946 10.94
BW20; Euler and Winkler (1957) 1.95 - 4.52 10.18
“Lipari”; Carron (1969) 3.95 —12.33 27.17
“Arkansas”; Carvon (1969) 3.88 —12.22 26.58
“Islande”; Carron (1969) 3.85 —~12.18 26.32
Rhyolite, anhydrous; Friedman, Long,

and Smith (1963)** 4.11 —-12.56 28.54
Rhyolite + 0.5% H,0; Friedman, Long,

and Smith (1968) 3.8¢ ~12.16 26.24
Obsidian, anhydrous; Shaw (1963) 4.04 —12.46 27.94
Obsidian + 6.2¢; H,0; Shaw (1968) 2.89 —-10.00 14.00
“Spruce Pine” -+ 8.8¢, H,0; Burnham (1967) 2.01 — 942 10.68

* The analvses prefixed by BW are in table 6 of Bottinga and Weill (1972),
from the original sources indicated. Other compositions are identified by characteristic
Names for which the analysis is easily found in the references cited, except for the
vhyolite of Friedman, Long, and Smith (1968).

** A composition for this rhyolite was supplied by Robert L. Smith (writicn
temmun., 1971); following are the major oxides in weight percent: $i0.-74.16, ALO,~
1202, Fe,0,-0.9%, FeO-0.38, MgO-0.08, Ca0-0.35, Na,0-3.73, K.0-4.77, Ti0-0.07,
P-.O.-.—O.OQ, MnO-0.05, sum-—-96.56. The remainder is mainly H.O which was not in-
cluded in calculating the slope on the anhydrous basis. F and Cl were also indicated
at roughly the 0.2 percent level, but they were not taken inte account in calculating
the indicated valucs of slopes.

+ This column gives the intercept values of In 5, showing the value of the pre-
eXponential constant computed from equation 3. The next column gives the correspond-
Ing values at 10*/T = 10, so that viscosities are graphed either by drawing a straight
line through these coordinates or more simply by drawing a line between the refcrence
point of figure 2 and the value of In 5 a1 104/T = 10
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of adjustment to diffierent conditions of internal equilibrium. This is 5
complicated problem that requives consideration of changes during trans.
formation between the liquid and the glassy state where thermodynamic
preperties such as heat capacity and thermal expansion coefficients re.
semble those in crystals. Although this transition on cooling is usually
associated with a viscosity of about 10'* poises (see discussion by Bottinga
and Weill, 1972), ambiguous states at somewhat lower viscosities can give
different results'at the same temperature depending on the previous
sample history (see Tool, 1946; Macedo and Weiler, 1969). For example,
Hetherington, Jack, and Kennedy (1964) show that at viscosities as low ag
about 10° poises measured values for “vitreous silica” can differ by ap
order of magnitude or more depending on previous annealing tempera.
tures, In these cases, the temperature dependence of viscosity for in-
dividual specimens deviates strongly from the Arrhenius relation.

"For the above reasons it would not be expected that the simple
correlations used in this paper would be valid, because they assume a
unique temperature-viscosity function depending only on composition,
However, the prediction might relate more closely to some limiting

s

Fig. 4. Comparison of calculated and measured viscosities for anhydrous mag-
matic liquids. Calculated values are from data in table 3.

A. Data sets from three different laboratories chosen on the basis of good mutual
agreement. Solid lines are calculated values and the data peints are measurements
as listed by Bottinga and Weill (1972, table 3) where the number prefixed BW is
the analysis in their table 6: (1) “lunar basalt” of Murase and McBimey (1970), BW
24-cross; (2) Hawaiian tholeiite of Shaw (1969), BW 22-inverted triangle; (3) Columbia
River basalt of Murase and McBirney (1970), BW 25-—<ircle; (4) Mount Hood andesite
ot Murase and McBirney (1370), BW 26-square; (5) “Vulcano™ obsidian of Carron
(1969, BW 23-triangle.

B. Data of Euler and Winkler (1957) as listed by Bottinga and Weill (1972, 1able
5) with rock names as given by Euler and Winkler: (1) “olivine basalt,” BW 19-
inverted triangle; (2) “basalt”, BW 17—ross; (3) “tephrite”, BW 16-square; (4) "ker-
santite”, BW l5-triangle; (5) “andesite”, BW 13—<ircle. Some additional data were
not plotted because of overlap. The numbering of lines 2 and 3 is reversed to empha-
size the reversed sequence of calculated versus measured values and poor agreement
with the data for “tephrite™.



‘T'ABLE 4 :
Comparison of sclected experimental data with calculated viscosities
by the methods of Bottinga and Weill and of this paper*

: Composition

T 104/T Mecasured » Calc n-Shaw#* Calc n-RW Slope (A Inyn/ (analysis:
(°Cy K™Y (in ) (In 7) (in ) D 0/T) table 6, BW) Reference
1298 6.365 1170 1192 (+0.22) 12.22 (+0.52) 3,76 23 Carvon  (1969)
1400 5.977 10.31 1049 (40.1R) 10.70 (--0.39) =
1491 5.669 0.16 9.32 (+0.16) 949 (+0.33) =
1587 5.376 R.04 RE5 (+0.21) R34 (+0.30) =
1700 5.068 7.00 7.09 (+0.09) 7.13 (+0.1%) e
1200 6.789 084 056 (—0.28) 9.33 (—0.51) 3.02 26 Murase and 2
1260 6.5G6 890 BRT (—0.0%) 871 (—0.19) McRirney (1970) ;
1300 6.357 817 R.25 (+0.08) 8,13 (—0.09) 3
1250 6.161 743 7.6 (4-0.22) 750 (40.16) >
1400 5.977 685 7.0 (+0.25) 708 (-+0.23) =
1450 5.804 6.39 655 (+0.16) 6.60 (+0.21) 2
1250 6.566 6.01 5.80 (—0.21) 614 (40.13) 240 25 Murase and =
1300 6457 5.46 529 (=0.17) 555 (+0.00) McRirney (1970) a
1856 6.161 484 4.82 (—0.02) 5.00 (+0.16) =
1400 5.977 1.26 4.98 (+0.12) 449 (F0.29) Y
1450 5804 . 380 194 (40.14) 400 (-H0.20) o
1200 6.789 577 5.42 (—0.35) 6.12 (-10.35) : 2.23 22 Shaw (1960) ;;
1210 6.743 5.48 5481 (—0.17) 509 (-FO51) 3
1220 6.608 5.42 522 (—0.20) 586 (+0.44) o
1295 6.631 5,40 5O (—0.20) 5.68 (+0.58) )
1300 6.357 4.55 448 (—0.07) 4492 (+0.57) Q
1395 5.995 1.96 221 (+0.25) 1.88 (—~0.08) 1.0 24 Mirase and
1450 5.804 1.61 182 (+0.21) 1M (~0.27) McBiruey (1970)

Algebraic sum of differences +0.59 -+4.04

Mean of differences -+0.026 -0.176

*These examples are chosen as vepresentative of mutually consistent data on different rock compaositions obtained by three
different laboratories, Additiomal comparisons are not shown to avoid duplication of table 5 in Bottinga and Weill (1972),

** The valucs in paventheses are In 7 (calc) — In 7 (measured). The calculated values in this column were read from expanded
graphs of the calculated curves; the second decimal place is interpolated.
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viscosity curve representing both siable and metastable (“supercooled™y
liquids under conditions of internal equilibrium. This possibi]ity i's
compared in figure 5 with some measurements by Carron (1969) oy
obsidian compositions. Predicied values are generally lower than the
measured values, although there is remarkably close agreement wigy
Carron’s data for compositions ‘designated “Vulcano” and “Lipari”, The
calculated curves for compositions designated “Islande™ and “Arkansag»
are near that for “Lipari” and obviously underestimate the experimentag
viscosities. These deviations are consistent in magnitude and direction
with possible differences in thermal history of the different samples. Singe
the sample designated “Vulecano” apparently had the same thermal hjs.
tory as material used for the high temperature measurements shown jp

s

Ty e
[Tl

Fig. 5. Comparison of calculated and measured viscosities for anhvdrous obsidian
compositions of Carron (1969). Data points are: “Vulcano’-uriangle; “Lipari™—<cirde:
“Arkansas“-square; Islande—cross. Solid lines are cslculated frem table 3: (1) “Vulcano™
(2) “Lipari”. The other compositions give calculated lines near that for “Lipari™
Since the “Vulcano” composition was also measured at high temperatures these data
may be closest to cquilibrium values (see text for discussion of the large deviation
ot other compositions).
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figure 4A (see Carron, 1969, p. 22), the agreement of the calculations
with data for this composition is consistent with the possibility of memory
effects in other samples not similarly annealed. »

At present it can only be concluded that predicted viscosities may
not reproduce experimental data at viscosities above about 10* poises;
the calculated values may be 100 low in many cases. However, it is also
dear that predictions must inevitably fail unless they are referred 10 a
limiting equilibrium conditjon or take special account of sample history.
This is a problem of great experimental, theoretical, and practical in-
terest.

Magmatic liguids (on‘amma H,0.—The characteristic value of 5%y,¢
was chosen by calculating mean slopes for the obsidian of Shaw (1963)
containing 4.3 and 6.2 percent H,O (by weight) using the other values
of 5;,° from table 1 and then as&gnmg a value for H,0-8iO, that re-
produccd the measured viscosities. Predictions using s°y,p = 2.0 are
compared with other measurements in ﬁgme 6. Unfortunately, data are
insufficient for a rigorous test of precision. Excluding the data of Shaw
(1963), which automatically agree fairly well because of the above manip-
ulation, the principal tests are given by the data of Friedman, Long,
and Srnith (1963), Burnham (1964), and Carron (1969;.

The viscosities given by Friedman, Long, and Smith (1963) were
obtained from experiments designed primarily to demonstrate mechan-
isms of compaction in ash flow sheets, and this method gives too much
unavoidable scatter of viscosity values to indicate more than rough agree-
ment with the caleulations (these measurements zlso represent condi-
tions of high viscosity where sample history could be a source of variation
in results for different experimental runs). The data of Burnham (1964)
are in serious disagreement with the calculated viscosities. The fact that
these viscosities at 8.8 percent H,O (by weight) are not much lower than the
values of Shaw (1963) at 6.2 percent H,0 suggests the possibility of errors
in the viscosities and.‘or H.O contents in one or both of these studies.
However, Carron (1969, p. 51) gives mecasurements at two different H,O
contents for two alkali aluminosilicate liquids that differ considerably
in the proportions of other major oxides. Calculated viscosities for these
Compositions agree very closely with the measurements, although there
is only one measured value in each case. A remaining possibility is that
the higher pressures of Burnham's experiments increase viscosities more
than we had previously expected (Shaw, 1963, 1965; Burnham, 1967).

It is concluded that the calculated viscositics of figure 6 are consistent
with the mecasurements, within known probabilities of experimental
error, except for the data of Burnham (1964). Thus the assumptions of
the model may not be valid at such high H,O contents and pressures,
and therefore the method is not recommended for exceptionally H.O-
rich “pegmatitic” fluids or for pressures greater than a few kilobars. It js
evident that there is great need for further study of pressure dependence
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at constant composition, especially for silica poor compositions, to preg
sures of the order of 20 kb.

Summary of comparisons with experiment for magmatic composi.
tions.—Figure 7 summarizes the deviations discussed above for cop,
parison with figure 8 of Bottinga and Weill (1972). If figure 7 were
taken to represent a homogeneous set of similar data, one might e

Ed ] e k) * b

Fig. 6. Comparison of calculated and mecasured viscosities for granitic compositions
containing H.O (percentages are by weight), Calculated curves and corresponding data
points are: (A) rhyolite of Fricdman, Long, and Smith (1963) containing less than
0.1 percent H,0-open circle (the square with cross is an unpub. measurement by
Shaw) (B) rhyolite of Friedman, Long, and Smith (1963, table 2) with about a hayf
percent H.O—ircle filled at top (0.4 percent), solid circle (0.5 percent), circle filled
at bottom (0.6 percent); (C) obsidian of Shaw (1963) with 4.3 percent H,O-circle
with cross; (D) "Verre No. 1" of Carron (1269) with 4.5 percent H,O-open square;
(E) obsidian of Shaw (1963) with 6.2 percent H,O—ross, and “Verre No. 2" of Carron
(1969) with 52 percent H.O-solid square; (F) “Spruce Pine” pegmatite of Burnham
(1964, 1267) containing 8.8 percent H,O-solid triangle.

The dashed lines are from figure 10 of Friedman, Long, and Smith (1963) for the
above compositions. Systematic deviations of these lines from the calculated curves may
partly reflect experimental uncerinty, because H,O contents of experimental rums
were inferred from independent measurements, and viscosities were obtained by inter-
pretation of compaction curves where rates sre variable during a run (note that
agreement is best for viscosities near liquidus temperatures). The agreement of the
calculated viscositics of curve E with measured values for glasses of two diflerent
H.O contents (that is 6.2 and 3.2 percent) is because the synthetic glass “Verre Ne
2” of Carron (1969) is rclatively much richer in total alkalies,
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tempted to conclude that some of the measurements of Carron (1969) at
high viscosities and those of Burnham (1964) are systematically in error.
However, it is emphasized that this is not a valid conclusion for the
reasons mentioned before. Every compasition and set of conditions must
be examined to see if any possible unique factors exist that are not
represented in those data on which the predictions are based. Within
such guidelines, fair confidence is indicated for predictions within a
factor of two at viscosities to about 10¢ poises and for equilibrium values

A\

Measured Iny (poise)

Calculated Inq (poise)

Fig. 7. Correlation between calculated and measured . viscosities. Dashed lines
define an envelope within which the calculated viscosities range between one half and
twice the measured values. The number of points from cach source is given in
parentheses after cach symbol given below (in the low viscosity range some over:
apping points have been omitted for clarity). Data sources are:

Murase and McBirney (1970)-open circle (10); Euler and Winkler (1957)-open
Square (39); Shaw (1963, 1969, unpub.)-cross (11): Burnham (196H)-solid wriangle (3);
Friedman, Long, and Smith (1963)~circled cross (11); Carron (1969)-solid square (25).
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Fig. 8. Comparison of measured and calenlated viscosities for synthetic liquids of few constituents. Data and original
sources are given in table 2 of Bottinga and Weill (1972). Compositions are given helow as mole fractions in parentheses
following the oxide; in each case the remainder is S0, Numbers on the figure identily the caleulated curve correspond-
ing (o the symbol listed after each number below, Note that the sequence of lines does vot necessarily corvespond to
sequence of symbaols.

A, Binary liquids: (1) CaO (0.305)~plus sign; (2) Na,O (0.20)- solid triangle; (3) LijO (0.80)-cross; (4) K, O (0.33)-open
civele; (B) MgO (050)-open square; (6) FeO (0.61)-solid cirele.

B. Ternary lguids: (1) CaO (0.26) *“AlO” (0.07)-open chcle; (2) CaO (0.31) “A10,” (0.23)-pins sign: (3) MgO (0.32)
“ALOL” (0.15)-solid triangle; (1) CaQ (0.25) MpO (0.21)- open square; (5) CaO (0.39) MgO (0.20)-solid circle.

C. Quaternary liquids: (1) CaO (0.10) MgO (0.13) “A10O,” (0.22)-solid tiangle; (2) CaO (0.35) MgO (0.07) “ALO” (0.11)-
open square; (3) CaO (0:45) MgO (0.07) “AlOy” (0.01) open circle,
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of stable or metastable liquids at higher viscosities. Confidence wezkens
for prediciing very high viscosities, because of uncertainties in the sample
states for which data are available (sce carlier discussion and footnote 2,
table 1).

~ Bottinga and Weill (1972, fig. &) did not test their calculations at the
highest viscosities shown in figure 7, but for the sets of data at lower
viscosities the correlations are very similar, as expected. Surprisingly,
however, the much simpler scheme of the present paper gives a slightly
tighter grouping of points, and the gencral wend is closer to the line of
1:1 correlation. This conclusion is reached mainly because of the differ:
ences in our calculated values for the numerous points of Euler and
“Winkler (1957). Some of the older data are not incuded in figure 7
(see Bottinga and Weill, 1972, fig. 8), but deviations from these data
would be similar to those shown by Bottinga and Weill.

It may seem puzzling that the results are similar to those of Bottinga
and Weill, even though no special recognition was given to the apparent
discontinuities in viscosity versus composition, at constant temperature,
shown by the binary data (see their figs. 1 through 3). Evidently these dis-
continuities are either averaged out by addition of other consttuents,
or they are not as sharp as the wrend lines in their diagrams would sug-
gest. The present method avoided the designation of composition ranges
by first fitting the viscosity to a temperature function which was then
fited 10 composition. Apparently a very crude fit of the data on this
basis gives as good discrimination as more elaborate fitting of the com-
position variations of viscosity.

Synthetic systems of few constituents.—The purpose of testing pre-
dictions against “simpler” systems is to emphasize the averaging effects
that apparently provide the key to prediction of the multicomponent
data, Figure 8 shows comparisons with the data of binary, ternary, and
Quaternary compositions in table 2 of Bottinga and Weill (1972). For the
binary and ternary compositions deviations are larger than those for mag-
matic liquids, and there seem to be systematic errors associated with
Specific constituents. For example, predictions are almost always too
high for binary and ternary compositions containing CaO. With the
addition of one more constituent, however, this deviation is apparently
weakened. In the magmatic compositions considered earlier CaO varies
from 0.90 percent (by weight) for the “Vulcano” composition of Carron
(1969) to about I1 percent for the Hawaijan tholeiite of Shaw (1969).
In both cases the viscosities deviate only about 20 percent from the
calculated values, and the composition richer in CaO deviates in the
Opposite sense from the comparisons of figure 8 (see fig. 4A and table 4).

Evidently, the deviations between measured and calculated viscosi-
ties in systems of a few constituents cannot be used individually to ad-
Just the estimates for multicomponent compositions. The comparisons
for magmatic compositions could be attributed to a fortuitous compen-
sation of errors, but the odds against such a chance correlation seem very
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large. Tt is hard to avoid the conclusion that the model reflects a genera]
rule. Apparendy in multicomponent mixtures every pairing of a specific
constituent with Si0, is so modified by all other constituents that the
pair behaves similarly despite wide variations in proportions of the ad.
ditional constituents.

Judging from composition effects such as those in figure &, the aboye
conclusion would seem to be limited to compositions having mole frac.
tions of SiO, less than about 0.8. Since this composition can be identified
structurally with the onset of rapidly increasing linkage between $i-Q
tetrahedra at higher mole fractions, it might also be assumed that the
compasition limit should be given by the proportion of oxvgen bonded
to the sum of the tetrahedral cations (such as silicon and aluminum;,
However, on this basis many quartzo-feldspathic compositions would be
out of bounds (that is, too highly coordinated for the assumptions of
the model), wherecas there is excellent agrecment of calculated viscosities
for the well documented composition from Vulcano (Carron, 1969) and
reasonable agreement in other cases. Aluminum apparently cannot be
simply categorized as a “network former”, even in compositions under.
saturated in ALO,; according to the normative scheme of Bottinga ang
Weill (1972, see their discussion of studies on aluminoesilicate composi.
tions). The present method assumes that the “binary pair” “Al0,”-S;0.
behaves in a manner similar to other pairs without specifying proporziou;
of tetrahedral and octahedral occupancy. For magmatic liquids thjs
assumption appears to work as well or better than more detdiled classi-
fications.

Figure 9 indicates that the above assumption is not valid for com.
positions of feldspar stoichiometry, even though it appears to ft daw
for feldsparsilica mixtures (see figs. 5 and 6). Therefore, a study of
transport properties in liquids of feldspar compositions and their mix-
tures with $i0; might greatly advance the undersianding of liquid
aluminesilicate structures, particularly in the light of structural and
thermodynamic data for the crystalline phases. However, cfects relating
to sample history will require careful evaluation, ‘

COMMENTS ON PHYSICAL INTERFRETATION OF VISCOSITY CORRELATIONS

At present, it is not entirely clear why the assumptions represented
by figures 2 and 3 should give such consistent results as indicated bs
figure 7. Therefore the paper is concluded with some rather speculative
remarks intended to suggest directions in which a better understanding
might be sought.

Thermodynamic components and transpori properties—In general.
any extensive property of ‘a phase in a multicomponent system of n
components is described by n partial molar cocfhcients, so that the
quantity is summed according to proportions that vary in a hyperspace
of n-1 dimensions. In polyphase systems, the number of compositional
degrees of freedom can be tested by compatibility with the phase ruk.
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Fig. 9. Liquids in systems NaalSi;O-KAISL,O-5i0O,. Lines are calculated from
%" values in table I; that is, no distinction is made between Na and K: the lower
line is for pure alkali feldspar stoichiometry, and the upper line is for a “iernary
ainimum” composition (based on the chemical analysis in table 2 renormalized on
the anhydrous basis). Data points are: triangle-anhydrous obsidian of Shaw (1963;
the viscosity value is from an unpublished measurement); square-KAlSi.O, (Shaw,
unpub. dataj; open circe-KAISi,O, (data of Kani, as published in Clark, 1966, table
12:6); solid circle-NaAl5i;04 (data of Kani),

However, since this definition of components according to the phase
rule depends on criteria of heterogeneous equilibrium, there is no ob-
.Vious way to choose the “proper” number of composition variables to
describe internal properties of an isolated homogeneous phase; the
number could be arbitrarily expanded without limit. Silicate phases
+afford notorious examples of this problem, and contrasts in paossible
"‘Fhoiccs are shown by the different variables used by Bottinga and Weill
{1972) and in this paper. In the first case, composition variables were
highly subdivided, reflecting the fact that a different set of coefficients is
Normally required to describe any mean molar property of a mixture at
each point of composition space. Alternatively, the method of this paper
Attemipts to find the minimum number of composition variables consis
.tent with experimental knowledge of the mean molar property. In this
sense, the method of choosing composition variables vaguely resembles
the definition of thermodynamic components for heterogeneous systems.
In an assemblage of heterogeneous phases, each of fixed composition
and at constant temperature and pressure, an extensive property of the
stem, such as the Gibbs free energy, is given by values characteristic

Rt - 5t 3 S5 St <

T i
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of each phase summed according to the total mass of each phase, regard.
less of their relative proportions. For a homogencous phase, however, (ha
swnmation is more complicated, because entities of fixed properties gen.
erally do not exist. Some “excess” energy of mixing (reflecting interny)
reactions or other changes in local energy densities) is found relative
the additivity of energies according to proportions of “pure end mep,.
bers”.

By the above analogy, the calculation of mean molar activatioy
energics in this paper resembles the additivity relations for heterogen,.
eous svstems. Such an interpretation applied to the idealized relatiop
in figure 3 suggests that there may be complexes of 510, that maintajp
a certain level of activation energy characteristic of a given type of mod;.
fying cation which is simply “diluted” by adding more of the same modj.
{fying constituent. Such a relation would exist if there were discreqe
microheterogeneous “phases” of a few types that control the mean acy;.
vation energy by simple summations of their respective amounts. Since
the mean activation cnergy is normally expected to be influenced by
energies of mixing (Bondi, 1967, p. 70), this is also equivalent to Sa)'irfg
that these energies are small relative to viscosity variations of the pre.
ision represented by figure 7. :

The reaction rate theory (or “relaxation theory™) of transport prop-
erties developed by Eyring and coworkers (see Ree and Eyring, 1938,
Bondi, 1967) showed that the viscosities of many simple liquids could
be correlated by an expression analogous to the Arrhenius €quation,
given by

7 = (h/v) exp (AE;/2.45 RT) ey

where AE, is the energy of vaporization, v is the molecular volume, and
h is Planck’s constant. In simplest terms, such expressions relate the pre-
exponential constant of equation 2 to dimensions of molecular structure
and relate the activation energy to some measure of the “volatility” of
structural units. According to this idea the postulated relationships of
figures 2 and 3 correspond to a continuous variation of some characteristic
“molecular” size from very large values for pure SiO, to smaller sizes with
the addition of modifying constituents. The analogous vaporization energy
decreases proportional to E*, thus with decreasing size according to the
assumption of figure 2 as interpreted by equation 4. Furthermore, at
a given mole fraction of $iO, (on the basis specified earlier) there would
be a similar variation as a function of the type of modifying constituent;
that is, the apparent molecular size and vaporization energy increase up-
ward in figure 3.

Liquid silicate solution theories.—Shaw (1964, p. 616) suggested
that concepts of polymeric reactions in silicate liquid mixtures might
be tested by viscosity data. Although this has not been accomplished
dircctly, it is instructive to compare the above ideas to ionic models of
silicate structure. Recently, Hess (1971) has shown that there is a high
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probability of forming an infinitely branching network in binary silicate
liquids when a third of the oxygens singly bonded to silicon became
doubly bonded by two silicon atoms, Following Flory (1955) he calls
this the “gel point” and notes that for cations of low ficld strength this
occurs at a mole fraction of S$iO, dlose to 0.44. This is also approximately
the lower limit of the “intermediate” composition range as outlined in
the present paper. Interestingly, it was earlier found by A. C. Lasaga and
M. Sato (written commun., 19G8) that this composition region is corre-
lated with a minimum in the “alpha function” of Darken and Gurry
(1953). which Lasaga and Sato explained by a maximum in the coulombic
attractions between cations and polymeric anions of silicate mixtures.
These observations emphasize the carlier admonition that the assumed
lincarity of figure 3 cannot be extrapolated to mole fractions of SiO,
lower than about 0.4.

Hess (1971) points out that cations of high field strength form the
most highly coordinated melts at a given silica concentration. The field
strength is given by Z 'a* where Z is the cation charge and a is the sum
-of the jonic radii of the cation and oxvgen. This hierarchy is analogous
to the relationship suggested by the partial molar activation energies of
figure § and their dimensional implications discussed in the preceding
section.

Liguid immiscibility at high silica concentrations is also correlated
with the polymerization reactions as modified by the field strength of
cation-oxygen bonding (Charles, 1969; Hess, 1971). Cations of high field
strength favor coordination with “free oxygen ions” (that is, those not
bonded to silicon). Consequently, under some conditions it is possible
to minimize the Gibbs frce energy by formation of a nearly pure SiO,
phase and a cation-rich phase. Because this free energy difference is small,
the distinction between macroscopic phase separation and a microhetero-
geneous solution is ambiguous. In the “silica-rich” region of binary sys-
tems (that is, at compositions comparable to the range considered in this
paper), the solution is considered to be structurally inhomogeneaus con-
sisting of gel and sol portions (Hess, 1971, p. 302).

The above picture is quite similar to the interpretation of the addi-
tivity relations for activation energies discussed in the last section. The
i correlations between relaxation theories, solution theories, and transport
properties for silicate liquids of magmatic composition seem to show a
consistency that holds some promise for even greater systematic classi-
fication in the future. '

Incidental observations and reservations—-The possible correlations
of polymeric structure with jonic suength and partial molar activation
energies of “components” in microheterogencous mixtures suggest a
correlation with thermal expansion coefficients. These coefficients for
oxide constituents given by Botiinga and Weill (1970) for the same
composition ranges show variations roughly inverse to those of §,° in
figure 8, as might be expected. However, as in the case of jonic strength,

R



S92 H. R. Shaw—TViscosities of magnatic silicate

the order of values for Ca0, MgO, and FeO do not agree with the
sequence shown by the activation energies. Nevertheless, such lines of
comparison may lead to a much better understanding of interaction
potentials in silicate liquids.

The coordinate system for temperature and viscosity in figure 2
can only be considered as a tentative reference grid to illustrate the
model; it may have no physical meaning at temperatures near the poing
of convergence. Hypothietically, however, the common intersection repre-
sents a point of inversion where the composition dependence of viscosity
at constant temperature changes sign. Conceivably, this sort of behavior
could relate to a change from liquidlike to gaslike behavior of the mulyj.
component mixtures. Certainly, the vapor pressures would be quite
high at such a wemperature (roughly 6000 K), although the variety of
actual chemical species at this temperature would be quite different
from those present in the liquids.

A closing comment returns to the bases for expressing silicate com.
positions, The basis chosen here (see table 2) seemed the simplest ex.
pedient consistent with definitions of the partial molar activation ener.
gies. It was found that expressing aluminum on the A0, basis or on
the various aluminate formula bases either gave poor values of mean
activation energy or required the use of more cocfficients. Obviously,
since the mole fraction of Si0Q, is different on each different basis, it
has no unique value for a given composition, The apparent success of
the “AlO,” convention seems to relate to its dual role. That is, defining
mole fractions in this way gives contributions to the activation energy
resembling those of pure SiO, at high silica concentrations, but at low
silica concentrations alumina is considered to “dilute” the network in a
manner more like the other oxides. This effect may be related to a
systematic variation of aluminum coordinations relative to polymeric
and free oxvgens and to its effective field strength considered as a modi-
fying cation. In any attempts to refine or give a theorctical interpreta-
tion of relationships proposed here, it may be more profitable to com-
pute compositions in terms of ionic species referred to the total number
of oxygen ions. For the present purpose, however, this was not practical
because of analvtical uncertainties in the oxygen content and uncertain-
ties in assigning structural occupancies.
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